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Investigation of 7-Numbers and E-Sequences
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A PV-number 0 is a real algebraic integer > 1, whose algebraic conjugates
have absolute value < 1. A T-number is a real algebraic integer > 1, whose
algebraic conjugates have absolute value <1, with at least one conjugate
having absolute value = 1. If x is a real number we shalL denote by N(x) the
“nearest” integer to x, i.e., N(x) is the unique integer satisfying x — 3 <
N(x) < x + 1; and by | x| we shall denote [N(x) — x|. It is known, Salem
(1945), that the set of PV -number forms a closed, non-discrete subset of the
real numbers and that the closure of the set of T-numbers includes the set
of PV -numbers. However, nothing else is known concerning the closure of
the set of T-numbers. The purpose of this investigation is to obtain numeri-
cal evidence concerning the distribution of T-numbers.

Let 0 be a PV or T-number which is a zero of the monic polynomial

n

Y ¢ X' It is known, Salem (1945), that there exist infinitely many A in the
i=0

field Q(0) such that if @, = N(40") then
|an+l 5 anz/an—ll < '2]’: (1)

for all large n. (If 0 is PV any A€ Q(0) such that 26" is an algebraic integer
for large n will do. In fact, g, is the trace of 40" and X;c;a,_; = 0 for all
large n.) Sequences {a,} satisfying (1) or, what is the same thing, a,,; =
N(a,?/a,_,) are called E-sequences. Pisot (1938) and Flor (1960) have shown

that if @, > ao + 2V Zz_o, then ¢ = lim a,, ,/a, exists and is > 1. Furthermore

lp — a,/ay] < V3/32a,. Such numbers ¢ > 1 are called E-numbers. 1t fol-
lows that the set of E-numbers contains both the set of PV-numbers and the
set of T-numbers. It is not known if the PV- and T-numbers comprise
the E-numbers.

* The author wishes to thank the Sloan Foundation and NSF Grant GP 13164 for support
during the preparation of this paper.
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We calculate E-sequences {a,} whose limiting ratios ¢ are close to I, and
check whether these E-sequences satisfy linear recurrence relationships
with constant coefficients. (In actuality we can only check a finite initial
segment of such an E-sequence.) If the E-sequence satisfies the recurrence

r r
Y ¢ a,4; =0, then ¢ is a root of Y ¢; X' =0and is a PV- or T-number.
i=0 i=0

The sequence {a,} satisfies a linear recurrence relation if and only if the

o0
corresponding generating function a = Y, a, X" is rational. To determine
=0

n o0

this, we work in the field of formal Laurent series of the shape o Yo B XD,
0 n=nop
where 1, is an integer (possibly negative). We put A(b) = ) b, X", more

generally A,(b) = Y b, X". 1f b,, # 0, we put ord(b) = no, and ord(0) = co.

n=no

We apply the analogue of the standard continued fraction algorithm for real
numbers to a. The polynomials in 1/X play the role of the integers. This
algorithm will terminate if apd only if a is rational. (For a related algorithm
see Berlekamp (1968)). Since this algorithm does not seem to be in the
literature, we describe it here. (A special case for so-called J-fractions ap-
pears in Wall (1948).) Put 4, = @ and ¢, = A(A,). Inductively, for n = 1, 2,
3,...put A, =1/(4,—; — Cs—,) and ¢, = A(4,). Then

1
T

S
where the ¢/s are polynomials in 1/X. Put p_,=0,p_, = l,g-, =1,
g, =0 and inductively for n=0,1, 2. ... let p, = ¢, Pn-1 + Pu-2 and
g, = Cyqy-1 + 9n-2. Then p,/q, are approximants to a in the sense that
ord(g,a — p,) = — ord(g,+,) if @, is defined, and otherwise ¢, a — p, = 0.
If p, g are polynomials in 1/X satisfying ord(ga — p) > — ord(q) then the
fraction p/q is in fact among the fractions p,/q,. This means that any linear
recurrence of degree d, which is satisfied by the sequence {a,} for d or more
consecutive times, will give rise to one of the rational approximants Pl G-
The algorithm, as described, is unwieldy, for it involves working with the
entire power series @, or at least with the entire initial segment of interest.
The modification we describe now brings in coefficients of @ when they are
needed and no sooner.

Puth, = q,a — p,and h,™ = g, A,(a) — p, Theidentity 4, = — R llgisd
is easy to verify. It follows that ¢, = — A(h,- ,/h,—1) and in fact ¢, =
- A(hf,"l’z{) fgl; all sufficiently large m. The algorithm follows:

T

I. (Initialize).
Put h_o, = ag, h-y = —1,9_,=1,9q_.,=0,n=0,m=0.
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If h,_, = 0 or if ord(g,-,) — ord(h,-y) + m < 0 or if
ord(g,-,) + ord(h,-,) — 2ord(h,—;) + m < 0 then
AVput'W, Sl 5 T 201 X

h'n-l a0 hn—l t+ Qn-10m+1 Xm+1

m =m+1l,
B. Replace m, h,_y, h,—, by m’, by, Iy, respectively.
C. Repeat Step II.

[II. (Calculate ¢, and 4,).

When the conditions of step 11 are no longer met, put ¢, = — A(/,-» I, A
Gy = CoGn-1 + Gn-2> and h, = ¢, h,_y + hy_>. Increase n by 1 and go to
step 1.

The algorithm terminates when m (or n) is large enough. Note that the
quantity called A, in the algorithm is in fact what was denoted by h,"™ earlier.
When using this algorithm one finds that the coefficients of the power series
(which must be kept exactly) are rational numbers whose numerators and

denominators are enormous integers with varying, unpredictable numbers of fin:

digits. For this reason a multiple-precision arithmetic package with auto-
matic storage allocation was written.

The results of these calculations are still preliminary in nature and will be
described later. However, it is noteworthy that the E-sequences we have
calculated (mostly with g, < 20) seem to satisfy recurrences of low degree if
they satisfy any recurrence we can find. Furthermore the coefficients of these
recurrences are always small integers. Paul Galyean has made use of this
empirical fact by performing the continued fraction algorithm (mod p) where
p is a large prime, in our case 231 _ 1, thus speeding calculations consider-
ably. These results are then checked using multiple precision arithmetic. In
no case has a false recurrence been found.

Pisot (1938) showed that all E-sequences with a, = 2 and a, = 3 satisfy
linear recurrence relations of low degrees and actually obtained their coeffici-
ents. It is not surprising that he did not continue for a, = 4, for our calcul-
ations show that the E-sequence with a, = 4, a; = 13 satisfies no recurrence
relation of degree < 100. A somewhat surprising result was that certain in-
itial segments of E-sequences satisfied recurrences, not of the PV or T type,
for many terms. For example the sequence with a, = 8, a, = 10 satisfied the
recurrence a, = a,_; + a,_¢ for 6 < n < 37. Since the roots of x° = x> + 1
are not PV or T numbers the above recurrence cannot hold for all n.

+ This package, written in 360 assembly language for use with PL/L, is suitable for large
360’s and is available from the author.
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