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Pisot sequences which satisfy no linear recurrence *
by '

Davio W. Boyp (Vancouver)

Given positive integers a, < a;, the Pisot sequence E{a,, a,) is the
sequence of posifive integers defined Dby
1 az

(1) . -—-5<ﬂ?n+1w~

The ratios @,,,/a, converge to a number § = 0(ay, a,) > 1, and the set
B of such @ contains the sets § and T of Pisot—Vijayaraghavan and Salem
numbers. Pigot showed that E{a,, ¢,) with ¢, = 2 or 3 satisfies a linear

_ recurrence relation and in this case 0(a,, a,)eS. Here we shall show that

there are Pisot sequences satisfying no such relation and in fact that
the corresponding numbers § are everywhere dense. Two particular such
sequences are K(14, 23) and E(31, 51).

The paper iz organized as follows. Section 1 containg background
material. Section 2 contains our criteria for B{a,, a,) to satisfy a recurrence
corresponding to a Salem number and, as a corollary, the non-recurrence
of infinitely many sequences B(a,, &,). Tn Section 3 we consider particn-
lar pairs (ag, a,). The final section contains a few conjectures suggested
by our results:

1. Background. In 1919, Ha,rdy [7] posed the following question.
Suppose 4 > 0 and 0 > 1 are real numbers and that Jjz| denotes the distance
from the real number # fo the nearest integer. In what cu'cumstanees
can it be true that '

(2) 12670

He partially answered this by showing that if 6§ is algebraic then
it must be an algebraic infeger whose remaining conjugates all have
modulus less than 1. The set & of such 6 is now known as the sef of
P150t~V13 ayar aghava,n numberb, iollowmg Salem [11]. Hardy also showed

" * This work was sapported in patt by Canad.mn N. R.C. Grant A-8128.
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that if 267 = O(b"™) with 0 b << 1, then & is algebraic, a fact proved

independently by Thue [14]
In 1938 Pisot [10] substantially improved the latter result by showing

that if Z[MH"‘IF < oo then 0 is algebraic, hence in . He also noted that

it one sets A0* = a,+e¢, with o, the “nearest” integer to 16", then (2)
implies that (1) holds eventually, so the set of reals satisfying (2) is count-
able. He also investigated the zet EF defined above and showed that
it contains the set of reals for which eventually 16" < ¢ << 1/2(8-+1)%
He conjectured ([103, p. 238) that B = §, since both sets are countable.
Salem [11] showed this to be false when he proved that § is closed and
hence nowhere dense, a fact conjectured by Vijayaraghavan [15]. In
fact B contains in addition to § the set T of SBalem numbers introduced
in [12]. These are fhe algebraic integers 6> 1 all of whose remaining
conjugates lie within or on the unit circle, at least one being on the circle.
In the proofs that S and T are eontained in #, the corresponding sequences
{z,} satisfy linear recurrence relations.

Suppose then that {a,, a;) does satisfy a linear recurrence. Then
the Faton-Hurwitz theorem shows that it is of the form

(3) &, = gla’n—1‘ll" e +gsa'-n,-ss for 'n’;.p

where the g, are integers. Flor [5] showed that in this case the defining
polynomial P(z) =2°—g¢,2°' — ... ~~g, must have all roots but one in
the closed unit disk. This implies that P(z) == R(z) U(2) where R is the
minimal polynomial for a member of § or T and U(z) has all its roots
on the unit cirele and hence is cyclotomic by Kronecker’s theorem [8].
Thus 8{ay, a;) isin § or 7. In case 0 is in T, R is a reciprocal polynomial
and has all its roots but 6 and #~" on the unit circle ([12], p. 356). We
shall say that H(a,, a,) is S-recurrent .or T~recurrent in the respective
cages. | i

A tempting eonjecture is that (3) holds for all Pizot sequences. A posi-
tive answer would-show that F = SuT and -answer Hardy’s question
about (2). However it would also imply that T is everywhers dense and
hence settle in the negative a conjecture of Lehmer [9] which implies
a lower bound 1+¢, > 1 for T. Cantor [2] reported that T (4, 13) satisfies.
no linear recurrence of degree < 100, contrasting with Pisot’'s results
that E(2, a,) and E(3, a,) satisfy recurrences of degree at most 3. The
detailed study of H(4,13) was the starting point of our investigation.

In the nexf section we give some easily applied criteria for testing
the T-recurrence of H{ay, a,) provided 0{ay, a,) > 7 = (l/g+1) /2. By
choosing a sequence a,/a, converging to a point not in 8, we show the

existence of sequences satisfying no linear recwrrence. Since. there is .

a defailed knowledge of § only for small 8, it is not easy to give par-
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ticular examples of non-recurrencé. However, in Section 3 we give an “effec-

tive” but impractical method of festing this and show that B(14,23)
and B(31, 51) are non-recurrent. _

‘We shounld point out that our result does nof seftle the question of
whether E = §u. Conceivably, an algebraic # might be in # without
X{ay, @) being recurrent. We conjecture that this is not the case and
that in fact fhe non-recurrent H{a,, a¢,) eorrespond to transcendental 6.
We can of course state in these cases that the generating function for
E(a,, a;) iz not rational and henee cannot be continued outside the umt
dise, by the Polya—Carlgon theorem:.

We shall need the following results from [10]:

Leymma 1. Let oy a, be positive inlegers with a, > cr,0+21/a;_l,, and

et a, be defined by (1) for n = 2,3, ... Then 4, > a,,&-]—?;l/&; Jor all n.
If 6, = a,/a,, then 0,—0>1, and a,/03—2> 0. Furthermore

W 10— 6, <12(0pgr—a,), 7 =10,1,...
and
(B) A —a, | <1200 1) (g, 1), n=0,1,...,

where ¢, = sup{f,: m=a}

If 632, then |A6" —a,) < 1)2 for all n.

Proof. Up to (4), the lemma i& in [10], pp. 238-241. To prove (),
write (4) as

I“-m =" — “m+16_(m+1)! \<~. am/-?‘ 6m+1(am+1 "‘“am) “<~. 1[2 Gm+1(an _1) H

for m = n, and then sum from # to co.

If 6 > 2, then we claim that a, , > 2a, for all #. For, if a, ., < 24, —1
for some n, then (4) implies that 6 < 2 —(1/a,)+1/2{6,,; —a,} < 2, gince
@iy > 30,(2 clearly. Thus ¢, = 2, so (5) implies [A6"—a,|<1[2.

2. Criteria for T-recurrence. Suppose that H{a, ;) satisfies (3) for
some P 2 s. Then '

o0

(6) J@#) = D e, = B(z) +E(#)/D(2)

. n=f
where B, 1), B are polynomials with degH << degD = s. We suppose (3)
is a T-recurrence so D(ifz) == 0 has roots 0, 67} ey, ..., o, With 6> 1
and |op| =1 for &k = 3,..., 5. From (6) we have

. &
(7) . ) @y = Z.Bn‘l‘,ﬂﬂ—n‘i‘ Zﬂkaﬁ,"—l— bn’ " o= 0, 1, va

k=3
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where b, = 0 fornzyp —s. It b, = 0 for all w» we say the recurrence is
pure. We shall write

(8) Clrn:*«ﬂ.ﬁn—}*s,n, w=01,...
(9) 8, = Zﬁka;:? n =10, +1, &2,.
, fowary

{1.0) 6y, = AL pd™ 4+ 4,, n =0, F1,.

Note that é, and ¢, are defined for all integers.

Our results are all based on the following two observations: since
¢, satisties (3) for all », and g, = A1, ¢, i3 an integer for all n. Also, 6,
is & sum of powers of numbers of modulus one and hence iz an almost
periodic funection of ».

ToeoREM 1. Suppose that E(ay, a,) satisfies a T-recurrence. Let 0
= fl{a, a;). Define

(11) A(@, y, 2) = {08(2 + 8%) —y (1 +202) + 26} /62
Then for all n, positive or megative, ¢, safisfies
(12) on1 =045 G0 Cusa)] < (1+6)/20

CIF 022, tkeﬂ Oy, = cﬂfor % 2= 0, 30 the recurrence is pure. If (I/ Fr1)j2< B
< 2, then Oy, = €, provided that

sy = @, > 2 F13/(62—6—1).

Proof. Write {,, = 6%e,_ —20¢, + 8,1, 9, = 8°6,_1—200, + 5,,, and
by = 0°b, ;—26b,+b,,,. The condition (1) implies that :

(14) AT (e ity — ) < (A0 g, ) 2.
Thus, if & = supls,l, we have
(15) : [€al < (1/2) -+ (e +4e2) 246"
Using &, = pt™+ 8,4+ b, we see that
(16) - fin == Lp— 8y — pf~ (G — 67T,
Let n-—co in (16) and use ¢, = 0 for n>p and (15) to conclude that
(17) lHmsup oy, = limsup s, < 1/2.
_ ron o0
However, %, is an almost periodic function of #, and so {17) implies
(18} . Imal <12 for m =0, +1,. |

More fully, if a; = exp (2nie;), ‘then by Dirichlet’s theorem ([3], p. 14),
there are infinitely many g 50 that | Eqa), < ¢~ % for all g. Thus fm any n,
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[l — nsql BN be made arbitrarily small for arbitrarily large ¢ so (17)
implies (18). By (10),
(19)  0%(6n 1 ~A(Cns bty Cnsa))

= (Bgcn.—l _96‘9ﬂ+6n+1) - 5{626‘“—266“_!_1 +Cn+2) i/ 6"?:1-{»1 .
Combining this with (18) proves (12).

Now calevlating as in (19) but using (15) instead of (18) we ohtain

(20) Ia’n~1wd(anﬂan+1:a’n+2)1 |":n“_66n,+1§< 1T IZB + ‘9_}_48 ”.e-n+1

‘We know that a, == ¢, for sufficiently large m. T we suppose that a,,
= 6, for m > n, say, then (12) and {20) will show that a, ; = ¢,_; pro-
vided -

(21) (14 60)/0°+ (s + 46y [A6"F! < 1.
Using (8), (21) will hold it
(22) : @, _1 > {e+4e%) f(0*—8~1)+e.

Now, if 6= 2, , then Lemma 1 shows that &< 1/2, and so0 .(22) will hold

if @,_, > 2, which is frue for all # > 1; (we may assume ag 2> 4 by Pisot’s

regults). Thus, by baclkwards mductlon, a, =c¢, for nz0i 022

On the other hand, if we use (4), g, = 6 —1[2(a;—ao) > ~1/41/_
¢ —1/8, so that (5) implies

(23) < 1/2(0—1)(8 — 9/8

and if 0 > (1/5 +1)/2 this gives &+ 482 < 13. Hence (13) (with n replaced -
by n —1) implies (22) and the induction follows as before.
TueorEM 2. Let E(ay, a,) satisfy a T-reeurvence. Then, for al.m,

(24) [oms — (8 672) 6 0yl < (642)/20%

Proof. We have from (10) that e,;—(0-F87")6,4Cpia = Op1—
~(0+ 0718, + 8pp1 = ¥n, 8ay. To estimate y, most efficiently, we write
it in terms of », and use (18). By elementary difference calculus we have

(25) : = 07 (672 —1) > 07 g
k=1

from which (24) follows. (Note that this is better than the obvious use
of 14, | << 1/2(0—1)%)

' CoROLLARY. If Ela,,a,) satisfies a T-recurrence and G(ao,a1)>2
and if ¢, = £C_ppy for some k, and for two successive values of n, then
this relation holds for all m and 1 = +pud®
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Proot. If 0> 2 then (0--2)/262 < 1/2. Thus, if T(z, y) denotes the
nearest integer to (06" w—y, we have ¢, = L(e,, ¢yyy) and o,
= Ly, 65;) for all n, from which the result concerning ¢, and ¢_g gy
follows. Since as #—+00, ¢, ~ A6 and c_y,z ~ 0"+, we obtain A = fub"

Applications. To apply Theorem 1 (or 2), we simply generate a,
for m =.0,1, ..., ¥ uniil ay > 10°% say. Then (4) shows 0 is determined
o within essentially 10~°, Starting with a value of n# for which (13) holds
{n =0 if 8> 2), we determine successively ¢,. 1, 6,_s, ..., 63 With M < ¢,
sinee (1-+6)/262 < 1/2 if 0 > (¥541)/2. The limited accuracy in 6 does
not cause accumulation of error because ¢, iz rounded to the nearest
integer, so we can use (12) until ¢, is nearly the same order of magnitude
ag ay. Weo check whether | 4{e,, ¢,,,, ¢l < (14 6)/28%, to within the
known accuracy and if this fails for any # we know ¥ (a,, &) is- not a 7-
' recwrrence. For example B{4,13) is not T-recurrent since in this case
[A{e_q, €, &)l = 4892 > 2022 = (14 6)/26% We postpone discussion of
further examples until Secfion 3.

We would like to apply these theorems to sequences of (&g, a,) with
a,fmy—p zay. However ao(ﬂ(mu, ay)—-p) need not tend to zero so there
iz some difficulty with this direct approach. This is alleviated by Theorem 3.
However this result uses only the information that ¢_, is an integer so
is not as powerful in particular eases as Theorem 1 or 2.

THEOREM 3. If H(a,, a;) salisfies a pure T-recurrence then

(26) o (i + @) fall < (L4 8)/262 +10/{(6 —1)3ay)
@7 a3 ol < (L 4-26)/26°-+1/a,.

(Remark. Note that the word “pure” is redundant if 6> 2, by
Theorem 1.) : - X

Proof. Define a, = ¢, for # < 0: From (10), using the notation of
Theorem 1, we have

(28)  (ay4, ——_a.‘i) —~(aya_; —ap)
=M= A0 g b (8 —207 8 0T 8) —p0(8, —207" 8- 0728, +
' F{8y 8y~ 0]) —(3_1 0, — &)
We shall estimate [n,] < 1/2 by (18), and
(29) ) 0] <1/2(6—1)* = 4,

which follows from (b), since [4,| << limsupld,i. To estimate Hy, We Tse
(15) and (14) with » =1 (¢; = 0) to obtain

(30 (0 — 670 < 1+ (e + 4% /24

icm
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Thus, if we use 4 = (&, —&,)/8, {28) gives

(31)  |oo(tho+az) — @y (6_y+ar)]
< (L1 0) 6y /200 + (1 + 0) [, ] /262 + ] (L4 0)5 8/62 - 462

Now (26) follows from (31) if we use (23), (29), (30) and 0> (V5+1)/2,
since (26) is {rivial if 6 < (1/5 -+1}/2. The constant one obtains is actually
0.621- and this can be improved by using (32) below.

"The proof of (27) is similar, One starts from the expression for a;a_; —
—a? used in (28). To obtain the constant 1, (actually .955), one uses the
esfimate

(32) . ’ |6n*265n+1+62 6ﬂ+2| €1/2+2(82 _1)163
valid for 6 = V3. This is obtained by expanding 9, in terms of g, as in

the proof of Theorem 2. One could use (29) but the constant obtained
would not be as good.

THEOREM 4. There are pairs (ty, &) for which E{a,, a,) satisfies no

linear recurrence. In fact, the set of numbers 0(ay, ay) corresponding 1o

such pairs is dense in the interval [T, oo), T = (VB +1)/2.

Proof. Let I = [—1/2,1/2). Let p be any number in (z, oo) which
ig not in § and which is not algebraic of degree less than four. Given an
integer ag > 0, write ago = @i+ §, @,0°> = b+, ag(1+ 0% /o = ¢-+ [, where
a,, b, ¢ are integers and &, n, {<I. By the Kronecker-Weyl theorem ({31,
p. 66), (&, %, {) is uniformly distributed in I as-a, varies. Hence, fex>0
is any constant with (14 p)/2¢® < 1/2 —¢ = p, there are infinitely many
a, for which

p—20fl <y and (L E(L4e®/er—nlel > 7.
For such a4 we have '
(33) aijay = (@0 + &) [ay == b-b-n—2p6+&ag
50 that a, = b if a, is sofficiently large. Furthermore,
(34)  ap{my+as)/ay. = Go{@o+Gpe® —n) (@0 —£)
— (02 (1+ ¢") — ) (o @) (1 + (§/a0 @)+ (£/Bo0)* + --)
= e+ L+ E(L+ %) et —nfe+0(L/ay).

Hence, there are infinitely many a, for which (26) is violated. _Si;ncg,
by (13) of Theorem 1, & T-recurrence iz pure if a, is sufficiently large,
we have gshown that F(aq, a,) cannot satisfy a T-reecurzence for inﬁnitely
many a, with a,/a,—g. But 6(a,, a,)—¢¢8 and § iy closed s0 (g, a;) ¢S
for @, sufficiently large so B (ag, a;) can satisfy an S-recarrence for only
finitely many such a,. Since these acre\the only- possibilities, our proof
is complete. - :
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3. Specific examples. Although in Theorem. 4 we used (ao, @) with
iy Jag—p, where g is not algebraic of degree less than four, most of the
specific examples we have considered were olitained by ta.kmg ¥y [0y TO
be a good approximation to & quadratic integer not in 8. Cantor’s example
(4,13) can be considered ag”the first in the sequence (4,13), (17, b5),
(72,233), ... in which a/a, is a convergent in the continued fraction
expansion of p = V5 -+1. In this case the approximation is so good that
E(a,, a,) follows the recurrence a, = 2, ,-4a, . for a large number
of terms and this in turn forces '

10(aq, a;}—p] =< 45", where = 2 =logdflog(e/4) = 6.54112...
Using this, one can show that (12) is violated for all convergents sinee
{1+ 0)/202 = .202... ~‘while oo™l = 1/4 +0{1/ay).

The convergents to 247 = (5 —!—VE) /2 provide another interesting
set- of examples: (2, 7), (3,11), (5,18), (8,29), ... none of which iz T-
recurrent. By Pisof’s results #(2,7) and E(3,11) are S-recurrent and
it can be shown that E(5, 18) is also S-recurfent. We know that thig
can’ be true for only a finite number of convergents since 2 4-7¢8, bub
to determine these explicitly would require 2 good estimate of dist(2 -+
+1, 8} and this seems difficult to determme {There are points. of §
within .0001... of 24 7).

We should note that 1/5—:—1 and (1/3+5) /2 are not .-in,Eas the follow-
ing result shows ([107, p. 236). Note that P need not be the minimal
polynomial. ‘

- LEMMA 2. Suppose that 0 is a root of the polynomial P(z ) = gy 2" 4
+ oo ey, with integer coefficients, and suppose that L{P) = ¢ + ... 4
Jrlem] < 2(6—1)% If 6 45 in B, then 68 is in S or T.

Proof. I 0 = 6{a,, ¢;) in H, then by Lemma 1, limsup|i6™—a,]|

<1/2(9-1)% Thus if &, = ¢ea,+ ... +6p8,_, then |d,] <1 for n suf-
ficiently large. Hence d,, = 0, being an integer. But then E(wa, o) satisfies
a linear recurrence so # is in 8 or 7.

A great degl is known about the set § for 6 < 2, so thig iy a natural
place to seek 0(ay, #,)¢S. Siegel [13] determined the smallest two el-
ements in S Dufresnoy and Pisot [4] found all 8 in § less than 6
= 1.61836..., and showed that = = 1.61803... is the smallest limit pomt
- of 8. Grandet-Hngot [6] showed that 2 is the minimum of 8 and Amara J1]
has found all points in § less than 2. Unfortunately, if. § < 615, we have
(1+ 6)/202 > 49986, so Theomm 1 is not very useful here. As a compro-
‘mise we sought examples among the convergents to ﬁ—l = 1.6457 ...
Theorem 1 applies to (14, 23) since [d4(6_y, ¢_jq, 6_g)ll > (14 0)/26%

.~
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it also applies to {17, 28) and (31, 51) but fails for (48, 79), the next
convergent,

Our criterion for 6¢4 is based on the ideas in [11] and [13]. F 08, I
then there is a sequence of positive infegers {b,} such that ([13], p. 595).

(35) b2+ Z‘ b,y )F < 1+ 62

=l
Conversely, if 8 > 1 and (35) holds for some sequence {b,} then Theorem B
of [12] shows that 6 is in 8. We observe that the finite sequences (b;, ..., by)
satlsfymg b= 1 and

(36) bﬁ'Jf“ 2 (bn.“— ﬂbn—l)z < I+ o2

n=1

can be arranged in 3 tree in a natural way since if (b, ..., by) satisfies
(36) then so does (b, ..., by_,). Furthermore if (b, .. ., by) satisties (36}
then there are only a fmlte number of integers by, so that (Boy vy By
satisties (36). Comparing with (35), we see that & is not in 8 it and only
if this tree is finite. The finiteness can be checked with a finite amount
of computation in a standard way (“backtrack®). Tn practice, one is
limited by the size of the tree and the accuracy required for § so that
by 0 can be determined with sufficient accuracy. There are some abvions
econonyies that ean be effected. Using slightly less than one second of
OPU time on an IBM370/168, we were able to check in this way that
(14, 23) and 6(31,51) are not in S.

One can construct an amusing proof that the complement of § is
open by the association hetween these 6 and finite trees of the above
type. ’

4. Conjectures. The following are at least partially suggested by
our results:

1. For almost all pairs (a,, a,), B(a,, 6,) satisties no linear recurrence.

2. Tf 6is in § or T and 6 = 0(ay, a,) ¥, then E(ay, ¢,) satisfies
a linear recurrence.

3. If BeF is algebraic then 6 iz in & or T

4. The set SUT is closed.
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_Suites a spectre vide et suites pseudo-aléatoires
paxr

J. Coquer (Valenciennes) et M. MEnDEs-France (Talence)
1. Introduction. Roit F: N—C une suite infinie. On appelle spectre
{de Fourier-Bohr) de F l’ensemble
>
{la notation e(2) représente exp 2inz).
. On dit que F est pseudo-aléatoire st les deux conditions suivantes

gont remplies (voir [1] et [2]): ‘
(i) Pour tout entier p, la limite p(p) de la quantité

sp(F) = {aeR/Z | timsup %

-+ 00

n—1 - ’
;F(k)e(——ak)

n—1

1 .
— X FmF(k+-p)

k=0

existe quand n croit indéfiniment (y s'appelle la cerrélation de I);
—1

{ii) m——Zly (%)% == 0.

Une des pr opmétés remarquables des suites paeudo-aléatoires est gu'elles
sont & spectre vide (dans la théorie de I'équirépartition (mod 1), cette
propriété. porte le nom de ,théoréme de Van der Corput”}. La réciproque
est fausge: la suite ne 8(]/%) est & spectre vide, mais elle n’ést pas pseudo-
aléatoire.

Dans [2], J.-P. Bertandias précise 1e§ différences (et les ressemblances)
entre snite psendo-aléatoire et suite & spectre vide. Dans notre article,
nows nous proposons de montrer gue pour certaines classes de suites,
ilya équwaélence entre les deux concepts pspectre vide” ef ,,pseudo-
a,léatome”

2. Les suites q~mu.lt1phcatwes. Soit ¢3> 2 un entier donné. On dit.



