[go: up one dir, main page]

login
Search: a008776 -id:a008776
     Sort: relevance | references | number | modified | created      Format: long | short | data
Powers of 34.
+10
3
1, 34, 1156, 39304, 1336336, 45435424, 1544804416, 52523350144, 1785793904896, 60716992766464, 2064377754059776, 70188843638032384, 2386420683693101056, 81138303245565435904, 2758702310349224820736
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 34), L(1, 34), P(1, 34), T(1, 34). Essentially same as Pisot sequences E(34, 1156), L(34, 1156), P(34, 1156), T(34, 1156). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 34-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-34*x). - Philippe Deléham, Nov 24 2008
a(n) = 34^n; a(n) = 34*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
PROG
(Magma) [34^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
KEYWORD
nonn,easy
STATUS
approved
Powers of 35.
+10
3
1, 35, 1225, 42875, 1500625, 52521875, 1838265625, 64339296875, 2251875390625, 78815638671875, 2758547353515625, 96549157373046875, 3379220508056640625, 118272717781982421875, 4139545122369384765625
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 35), L(1, 35), P(1, 35), T(1, 35). Essentially same as Pisot sequences E(35, 1225), L(35, 1225), P(35, 1225), T(35, 1225). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 35-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-35*x). - Philippe Deléham, Nov 24 2008
a(n) = 35^n; a(n) = 35*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
35^Range[0, 15] (* Harvey P. Dale, Sep 10 2011 *)
PROG
(Magma)[35^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
KEYWORD
nonn,easy
STATUS
approved
Powers of 38.
+10
3
1, 38, 1444, 54872, 2085136, 79235168, 3010936384, 114415582592, 4347792138496, 165216101262848, 6278211847988224, 238572050223552512, 9065737908494995456, 344498040522809827328, 13090925539866773438464, 497455170514937390661632
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 38), L(1, 38), P(1, 38), T(1, 38). Essentially same as Pisot sequences E(38, 1444), L(38, 1444), P(38, 1444), T(38, 1444). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 38-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011. [See A000244 for a proof.]
FORMULA
G.f.: 1/(1 - 38*x). - Philippe Deléham, Nov 24 2008
a(n) = 38^n; a(n) = 38 * a(n-1), n > 0, a(0) = 1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
38^Range[0, 19] (* Alonso del Arte, Feb 18 2017 *)
PROG
(Magma) [38^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=38^n \\ M. F. Hasler, Feb 21 2017
CROSSREFS
Cf. A000244 (powers of 3).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Powers of 40.
+10
3
1, 40, 1600, 64000, 2560000, 102400000, 4096000000, 163840000000, 6553600000000, 262144000000000, 10485760000000000, 419430400000000000, 16777216000000000000, 671088640000000000000, 26843545600000000000000
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 40), L(1, 40), P(1, 40), T(1, 40). Essentially same as Pisot sequences E(40, 1600), L(40, 1600), P(40, 1600), T(40, 1600). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 40-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1 - 40*x). - Philippe Deléham, Nov 24 2008
a(n) = 40^n; a(n) = 40*a(n-1) a(0) = 1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
40^Range[0, 19] (* Alonso del Arte, Sep 04 2016 *)
PROG
(Magma) [40^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=40^n \\ Charles R Greathouse IV, Jun 19 2015
(PARI) powers(40, 10) \\ Charles R Greathouse IV, Jun 19 2015
CROSSREFS
Cf. A000302 (powers of 4), A011557 (powers of 10).
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1996
STATUS
approved
Powers of 44.
+10
3
1, 44, 1936, 85184, 3748096, 164916224, 7256313856, 319277809664, 14048223625216, 618121839509504, 27197360938418176, 1196683881290399744, 52654090776777588736, 2316779994178213904384, 101938319743841411792896
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 44), L(1, 44), P(1, 44), T(1, 44). Essentially same as Pisot sequences E(44, 1936), L(44, 1936), P(44, 1936), T(44, 1936). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 44-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-44*x). - Philippe Deléham, Nov 24 2008
a(n) = 44^n; a(n) = 44*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
44^Range[0, 20] (* Harvey P. Dale, May 22 2017 *)
PROG
(Magma)[44^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
KEYWORD
nonn,easy
STATUS
approved
Powers of 46.
+10
3
1, 46, 2116, 97336, 4477456, 205962976, 9474296896, 435817657216, 20047612231936, 922190162669056, 42420747482776576, 1951354384207722496, 89762301673555234816, 4129065876983540801536, 189937030341242876870656
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 46), L(1, 46), P(1, 46), T(1, 46). Essentially same as Pisot sequences E(46, 2116), L(46, 2116), P(46, 2116), T(46, 2116). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 46-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-46*x). - Philippe Deléham, Nov 24 2008
a(n) = 46^n; a(n) = 46*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
46^Range[0, 20] (* or *) NestList[46#&, 1, 20] (* Harvey P. Dale, Jan 15 2017 *)
PROG
(Magma)[46^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
KEYWORD
nonn,easy
STATUS
approved
Pisot sequence E(4,13): a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
+10
3
4, 13, 42, 136, 440, 1424, 4609, 14918, 48285, 156284, 505844, 1637264, 5299328, 17152321, 55516872, 179691313, 581606398, 1882483892, 6093030640, 19721296176, 63831867233, 206604436042, 668716032329, 2164431415224, 7005609443657, 22675037578854
OFFSET
0,1
COMMENTS
According to David Boyd his last use (as of April, 2006) of his Pisot number finding program was to prove that in fact this sequence does not satisfy a linear recurrence. He remarks "This took a couple of years in background on various Sun workstations." - Gene Ward Smith, Apr 11 2006
Satisfies a linear recurrence of order 6 just for n <= 23 (see A274952). - N. J. A. Sloane, Aug 07 2016
REFERENCES
Cantor, D. G. "Investigation of T-numbers and E-sequences." In Computers in Number Theory, ed. AOL Atkin and BJ Birch, Acad. Press, NY (1971); pp. 137-140.
Cantor, D. G. (1976). On families of Pisot E-sequences. In Annales scientifiques de l'École Normale Supérieure (Vol. 9, No. 2, pp. 283-308).
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
David Cantor, Investigation of T-numbers and E-sequences, In Computers in Number Theory, ed. A. O. L. Atkin and B. J. Birch, Acad. Press, NY (1971); pp. 137-140. [Annotated scanned copy]
C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa, 7 (1938), 205-248.
FORMULA
It is known that this does not satisfy any linear recurrence [Boyd].
MATHEMATICA
nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; NestList[nxt, {4, 13}, 30][[All, 1]] (* Harvey P. Dale, Jun 24 2018 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 4, 13) \\ Colin Barker, Jul 28 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
KEYWORD
nonn
AUTHOR
STATUS
approved
Pisot sequences E(3,7), P(3,7).
+10
3
3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691, 124155792775
OFFSET
0,1
LINKS
D. W. Boyd, Pisot sequences which satisfy no linear recurrences, Acta Arith. 32 (1) (1977) 89-98.
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, On linear recurrence relations satisfied by Pisot sequences, Acta Arithm. 47 (1) (1986) 13.
D. W. Boyd, Pisot sequences which satisfy no linear recurrences. II, Acta Arithm. 48 (1987) 191.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, in Advances in Number Theory (Kingston ON, 1991), pp. 333-340, Oxford Univ. Press, New York, 1993.
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016). [This is a different document from the one with the same title on Doron Zeilberger's web site]
Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, 2016; Local copy [pdf file only, no active links]
C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa, 7 (1938), 205-248.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (3-2*x+x^2)/(1-3*x+2*x^2-x^3). - Colin Barker, Feb 19 2012
Since Pisot (1938) showed that E(3,k) always satisfies a linear recurrence, presumably it would not be difficult to prove that the above conjectures are correct. - N. J. A. Sloane, Jul 30 2016
Theorem: a(n) = 3 a(n - 1) - 2 a(n - 2) + a(n - 3) for n>=3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
MATHEMATICA
a=1; b=1; c=1; Table[a+=b; b+=c; c+=a, {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2010 *)
PROG
(Magma) XY:=[3, 7]; [n le 2 select XY[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..32]]; // Klaus Brockhaus, Nov 17 2010
(Magma) a:=1; b:=1; c:=1; S:=[]; for n in [1..32] do a+:=b; b+:=c; c+:=a; Append(~S, c); end for; S; // Klaus Brockhaus, Nov 17 2010
(PARI) Vec((3-2*x+x^2)/(1-3*x+2*x^2-x^3) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
See A008776 for definitions of Pisot sequences.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Pisot sequence T(2,5), a(n) = floor(a(n-1)^2/a(n-2)).
+10
3
2, 5, 12, 28, 65, 150, 346, 798, 1840, 4242, 9779, 22543, 51967, 119796, 276157, 636604, 1467515, 3382951, 7798460, 17977197, 41441465, 95531857, 220222323, 507661769, 1170274058, 2697743762, 6218903474, 14335965099, 33047609788, 76182140871, 175616894078
OFFSET
0,1
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-6) (holds at least up to n = 1000 but is not known to hold in general).
MATHEMATICA
RecurrenceTable[{a[0] == 2, a[1] == 5, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
PROG
(Magma) Iv:=[2, 5]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
(PARI) pisotT(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
a
}
CROSSREFS
See A008776 for definitions of Pisot sequences.
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) = n + 4.
+10
3
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
OFFSET
0,1
COMMENTS
Pisot sequences E(4,5), P(4,5), T(4,5).
FORMULA
a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: (4 - 3*x)/(1 - x)^2.
E.g.f.: (4 + x)*exp(x).
a(n) = A020744(n)/2 = A055999(n+1) - A055999(n). (End)
MATHEMATICA
Range[4, 100] (* Wesley Ivan Hurt, May 17 2023 *)
PROG
(PARI) a(n)=n+4
CROSSREFS
See A008776 for definitions of Pisot sequences.
KEYWORD
nonn,easy,changed
STATUS
approved

Search completed in 0.144 seconds