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Abstract

A parity palindrome is a finite sequence of positive integers which when reduced

modulo 2 reads the same from back to front as front to back. Compositions that

are parity palindromes have ‘a surprisingly’ nice enumerating function. It will be

proved that the number of such compositions of 2n + 1 and also of 2n is 2 · 3n−1.

Further refinements and implications are also explored.

1. Introduction

Compositions are representations of integers as ordered sums of integers. This

contrasts with partitions, where order is ignored. Thus while there are five partitions

of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

there are eight compositions:

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

Compositions provide a lovely topic in elementary combinatorics because counting

them provides examples of nice formulas and elegant succinct proofs. As an exam-

ple, there are 2n−1 compositions of n. In Section 2, we provide a short survey of

these results.

Our subject here is the study of compositions that are parity palindromes. This

means that, modulo 2, the composition reads the same back to front as front to

back.

1This author is partially supported by Simons Foundation Grant 633284



INTEGERS: 21 (2021) 2

We show that there are also elegant theorems for parity palindrome compositions

which, surprisingly, are much harder to prove than comparable results for ordinary

compositions.

Theorem 1. The number of parity palindrome compositions (PPC’s) of 2n equals

the number of PPC’s of 2n + 1 which in turn equals 2 · 3n−1.

For example, both 4 (4, 3 + 1, 1 + 3, 2 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1) and 5 (5, 3 + 1 +

1, 1 + 3 + 1, 1 + 1 + 3, 2 + 1 + 2, 1 + 1 + 1 + 1 + 1) have 6 = 2 · 32−1 parity palindrome

compositions.

We now define ppc(n, s) to be the number of parity palindrome compositions of

n with s parts.

Theorem 2. The following identities hold for PPC’s depending upon the parity of

their arguments:

ppc(2k + 1, 2s + 1) = ppc(2k + 2, 2s + 1) =

s∑
j=0

2j
(

k

s + j

)(
s

j

)
(1.1)

=

s∑
j=0

(
k + j

2s

)(
s

j

)
,

ppc(2k + 1, 2s) = 0, (1.2)

ppc(2k, 2s) =

s∑
j=0

2s
(

k − 1

j + s− 1

)(
s

j

)
=

s∑
j=0

(
k + j − 1

2s− 1

)(
s

j

)
. (1.3)

In Section 2, we recount the classical results on ordinary compositions and

palindrome compositions. The proofs of these results are remarkably elegant and

straightforward.

To make the proofs of Theorems 1 and 2 readable, we have collected a number

of combinatorial identities in Section 3. Section 4 provides proofs of Theorems 1

and 2. Section 5 considers further aspects of PPC’s. Section 6 is devoted to open

questions.

2. The Classical Results

The point of this section is to contrast compositions and palindrome compositions

with parity palindrome compositions (PPC’s). A palindrome composition is, as the

name implies, a composition that reads the same from back to front as from front

to back.

Theorem 3. There are 2n−1 compositions of n.

Theorem 4. There are
(
n−1
s−1
)
compositions of n with s parts.
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Remark 1. Both of these theorems can be found in the works of Netto [4, p. 120]

and MacMahon [2, p. 621], [3, p. 151]. We follow natural recursive proofs.

Proof of Theorem 3. Split the compositions of n into two classes: (1) those that end

in 1, and (2) those that do not. For class (1), remove the ending 1’s, thus leaving

all the compositions of n − 1. For class (2), subtract 1 from the last part of each

composition, again leaving all the compositions of n − 1. Thus there are twice as

many compositions of n as of n−1. Finally since there is one (= 21−1) composition

of 1, we see that the result follows.

Proof of Theorem 4. Let c(n, s) denote the number of compositions of n into s parts.

The exact same argument used in the proof of theorem 3 reveals

c(n, s) = c(n− 1, s− 1) + c(n− 1, s).

This recurrence together with

c(n, 1) = c(n, n) = 1,

reveals immediately (by mathematical induction) that

c(n, s) =

(
n− 1

s− 1

)
.

Let pc(n, s) denote the number of palindrome compositions of n into s parts, and

pc(n) denote the total number of palindrome compositions of n.

Theorem 5. For n ≥ 1, we have pc(n) = 2b
n
2 c.

Proof. We mimic the proof of Theorem 3. The first and last parts are identical. If

they are both 1, delete them leaving a palindrome composition of n− 2. If they are

both greater than 1, subtract 1 from each again leaving a palindrome composition

of n− 2. Thus we have a bijection between the palindrome compositions of n and

two copies of those for n− 2. Hence

pc(n) = 2 pc(n− 2).

Noting that pc(1) = 1 and pc(2) = 2, we see that the desired result follows by

mathematical induction.

Theorem 6. The following identities hold for pc’s, again depending on the parity

of their arguments:

pc(2n, 2m) = pc(2n, 2m− 1) = pc(2n− 1, 2m− 1) =

(
n− 1

m− 1

)
,pc(2n− 1, 2m) = 0.
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Proof. Now we mimic the proof of Theorem 4. As in the proof of Theorem 5, given

a palindrome partition of n into s parts, the first and last parts are identical. If

they are both 1, delete them leaving a palindrome composition of n− 2 into s− 2

parts. If they are both greater than 1, subtract 1 from each leaving a palindrome

composition of n − 2 into s parts. This operation yields a bijection between the

palindrome compositions of n into s parts and those of n− 2 with either s− 2 or s

parts. Hence

pc(n, s) = pc(n− 2, s− 2) + pc(n− 2, s).

Also,

pc(2n− 1, 2m) = 0

follows from the fact that any palindrome composition with an even number of parts

must necessarily be a composition of an even number.

Finally, we see immediately that pc(n, 1) = pc(n, n) = 1. Thus the assertions now

follow from the recurrences and initial condition by mathematical induction.

3. Necessary Lemmas

The combinatorial ease of the proofs of Theorems 3-6 is very appealing. A natural

bijective proof of recurrences establishes everything.

The treatment of parity palindrome compositions is not nearly so straightforward.

To prove Theorems 1 and 2, we require the following results.

Lemma 1. For k ≥ 2,

k−1∑
j=1

(2j − 1)3k−j = 3k − 3k.

Proof. This is a straightforward mathematical induction exercise.

Lemma 2. For N ≥ 0,

M∑
j=0

(
j

N

)
=

(
M + 1

N + 1

)
.

Proof. This classical result is also an elementary exercise in mathematical induction.

Lemma 3. For A ≥ 0, k ≥ 1, the binomial identity

k∑
N=1

(2N − 1)

(
k −N

A

)
=(

k

A + 2

)
+

(
k + 1

A + 2

)
holds.
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Proof. This is slightly trickier than the previous results. Begin by considering

k∑
N=1

(2N − 1)

(
k −N

A

)
=

k−1∑
N=0

(2(k −N)− 1)

(
k − (k −N)

A

)
(reversing summation order)

=

k−1∑
N=0

(2k + 1− (2N + 2))

(
N

A

)

= (2k + 1)

k−1∑
N=0

(
N

A

)
− 2

k−1∑
N=0

(N + 1)

(
N

A

)

= (2k + 1)

k−1∑
N=0

(
N

A

)
− 2(A + 1)

k−1∑
N=0

(
N + 1

A + 1

)
=

(
k

A + 2

)
+

(
k + 1

A + 2

)
,

where the final line follows from Lemma 2 and algebraic simplifications.

We only require the first entry in the next result, but both results are needed for

the mathematical induction proof.

Lemma 4. For k ≥ 1,

S1(k) :=
∑
j,s≥0

(
k + j

2s

)(
s

j

)
= 2 · 3k−1

S2(k) :=
∑
j,s≥0

(
k + j

2s− 1

)(
s

j

)
= 4 · 3k−1.

Proof. We proceed by induction on k. We have

S1(1) =

(
1

0

)
+

(
2

2

)(
1

1

)
= 2 = 2 · 31−1;

S2(1) =

(
1

1

)(
1

0

)
+

(
2

1

)(
1

1

)
+

(
3

3

)(
2

2

)
= 4 = 4 · 31−1.

Now assume both identities are true for each value of k less than a given k. Thus

S1(k) =
∑
j,s≥0

((
k + j − 1

2s

)
+

(
k + j − 1

2s− 1

))(
s

j

)
= S1(k − 1) + S2(k − 1)

= 2 · 3k−2 + 4 · 3k−2

= 6 · 3k−2 = 2 · 3k−1,
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and

S2(k) =
∑

j≥0,s≥1

((
k + j − 1

2s− 1

)
+

(
k + j − 1

2s− 2

))(
s

j

)

= S2(k − 1) +
∑
s,j≥0

(
k + j − 1

2s

)(
s + 1

j

)

= S2(k − 1) +
∑
s,j≥0

(
k + j − 1

2s

)((
s

j

)
+

(
s

j − 1

))

= S2(k − 1) + S1(k − 1) +
∑
s,j≥0

(
k + j

2s

)(
s

j

)
= S2(k − 1) + S1(k − 1) + S1(k)

= 4 · 3k−2 + 2 · 3k−2 + 2 · 3k−1

= 2 · 3k−2(2 + 1 + 3)

= 4 · 3k−1,

and the lemma follows by mathematical induction.

Lemma 5. For k ≥ 0 and s ≥ 0,

s∑
j=0

2j
(

k

s + j

)(
s

j

)
=

s∑
j=0

(
k + j

2s

)(
s

j

)
.

Proof. We begin by using a binomial identity:

s∑
j=0

2j
(

k

s + j

)(
s

j

)
= 2s

s∑
j=0

2−j
(

k

2s− j

)(
s

j

)
(by j → s− j)

= 2s
(
k

2s

) s∑
j=0

(−2s)j(−s)j2−j

(k − 2s + 1)jj!

(where (A)j = A(A + 1) · · · (A + j − 1))

=

(
k

2s

) s∑
j=0

(−s)j(k + 1)j(−1)j

j!(k − 2s + 1)j

(by [1, p. 10, eq.(1)] with z = −1)

=

s∑
j=0

(k + j)!

(2s)!(k − 2s + j)!

(
s

j

)

=

s∑
j=0

(
k + j

2s

)(
s

j

)
.



INTEGERS: 21 (2021) 7

4. Proofs of Theorems 1 and 2

We have relegated much of the mechanics of our proofs to the previous section in

order to make the work in this section more transparent. We begin with a direct

proof of Theorem 1. We then proceed to Theorem 2.

The first paragraph in the proof of Theorem 1 is the critical one in this section.

Everything else relies on exactly this argument and the recurrences it produces. We

shall denote by ppc(n) the number of parity palindrome compositions of n.

Proof of Theorem 1. Let us analyze the first and last summands in a parity palin-

drome composition (=PPC) of 2k. First note that there is also the one term PPC,

namely 2k itself. Otherwise the first and last summands can be either (1) (2i− 1)

and (2j − 1) with the remaining parts being a PPC for 2k − 2i − 2j + 2, or (2) 2i

and 2j with remaining parts being a PPC for 2k − 2i− 2j. Hence

ppc(2k) = 1 +
∑
i,j≥1

ppc(2k − 2i− 2j + 2) +
∑
i,j≥1

ppc(2k − 2i− 2j)

= 1 +
∑
N≥2

i+j=N
i,j≥1

ppc(2k − 2N + 2) +
∑
N≥2

i+j=N
i,j≥1

ppc(2k − 2N)

= 1 +

k+1∑
N=2

(N − 1) ppc(2k − 2N + 2) +

k∑
N=2

(N − 1) ppc(2k − 2N)

= 1 +

k∑
N=1

N ppc(2k − 2N) +

k∑
N=1

(N − 1) ppc(2k − 2N)

= 1 +

k∑
N=1

(2N − 1) ppc(2k − 2N).

We now proceed, by strong mathematical induction, to prove ppc(2k) = 2 · 3k−1.

When k = 1,ppc(2) = 2 = 2 · 30 where the PPC’s are 2 and 1 + 1.

Now assume ppc(2i) = 2 · 3i−1 for all i < k for a particular k. Then

ppc(2k) = 1 +

k∑
N=1

(2N − 1) ppc(2k − 2N)

= 1 +

k−1∑
N=1

(2N − 1) ppc(2k − 2N) + (2k − 1) ppc(0)

= 1 +

k−1∑
N=1

(2N − 1) · 2 · 3k−N−1 + (2k − 1

= 1 + 2 · 3k−1 − 2k + 2k − 1 = 2 · 3k−1.



INTEGERS: 21 (2021) 8

Thus the case for 2k is proved via strong mathematical induction.

Finally, we need to show that

ppc(2k + 1) = 2 · 3k−1 for k ≥ 1,ppc(1) = 1.

It is not hard to see that ppc(2k+1) = ppc(2k). There is a simple bijection between

the two sets of compositions. Namely, all the PPC’s for 2k+1 must be of odd

length. Subtract 1 from the middle entry (or delete the middle entry if it is a 1).

The reverse map is clear and establishes the bijection.

Proof of Theorem 2. We proceed step by step. First, to see that

ppc(2k + 2, 2s + 1) = ppc(2k + 1, 2s + 1),

we note that because the number of parts is odd, the parity of the number considered

must be the same as the middle part of the PPC in question. We now provide a

bijection between the PPC’s of 2k + 2 into 2s + 1 parts and those of 2k + 1 into

2s+1 parts. Namely for 2k+2, we subtract 1 from the middle part, and the inverse

map adds 1 to the middle part. For example, ppc(5, 3) = ppc(6, 3) = 4, and the

bijection is as follows:

1 1 3 1 2 3

1 3 1 1 4 1

3 1 1 3 2 1

2 1 2 2 2 2

Next we shall prove that

ppc(2k + 1, 2s + 1) =

s∑
j=0

2j
(

k

s + j

)(
s

j

)
.

The argument given in the first paragraph of the proof of Theorem 1 may be copied

here to show that

ppc(2k + 1, 2s + 1) =

k∑
N=1

(2N − 1) ppc(2k + 1− 2N, 2s− 1).

The only addition to the argument is the observation that when the first and last

part are removed from the PPC, then the number of parts is reduced by 2.

We now proceed by induction on s. When s = 0, the assertion is 1=1.
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Now assume the assertion is true up to but not including a given s:

ppc(2k + 1, 2s + 1) =

k∑
N=1

(2N − 1) ppc(2k + 1− 2N, 2s− 1)

=

k∑
N=1

(2N − 1)

s−1∑
j=0

2j
(

k −N

s− 1 + j

)(
s− 1

j

)

=

s−1∑
j=0

2j
(
s− 1

j

) k∑
N=1

(2N − 1)

(
k −N

s− 1 + j

)

=

s−1∑
j=0

2j
(
s− 1

j

)((
k

s + 1 + j

)
+

(
k + 1

s + 1 + j

))
(by Lemma 3)

=

s−1∑
j=0

2j
(
s− 1

j

)(
2

(
k

s + 1 + j

)
+

(
k

s + j

))

=

s−1∑
j=0

2j+1

(
s− 1

j

)(
k

s + 1 + j

)
+

s−1∑
j=0

2j
(
s− 1

j

)(
k

s + j

)

=

s∑
j=0

2j
(
s− 1

j − 1

)(
k

s + j

)
+

s−1∑
j=0

2j
(
s− 1

j

)(
k

s + j

)

=

s∑
j=0

2j
((

s− 1

j − 1

)
+

(
s− 1

j

))(
k

s + j

)

=

s∑
j=0

2j
(
s

j

)(
k

s + j

)
,

and the assertion follows by strong mathematical induction.

The second line of Theorem 2 is a restatement of Lemma 5.

The assertion

ppc(2k + 1, 2s) = 0

follows immediately from the fact that a PPC with an even number of parts must

be a composition of an even number because part i and 2s + 1 − i have the same

parity.

Next we must show that

ppc(2k, 2s) =

s∑
j=0

2j
(

k − 1

j + s− 1

)(
s

j

)
.

As before, we see that the argument given in the first paragraph of the proof of

Theorem 1 (except that we must note that the removal of the first and last parts
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reduces 2s to 2s− 2). Hence

ppc(2k, 2s) =

k∑
N=1

(2N − 1) ppc(2k − 2N, 2s− 2).

We proceed by strong mathematical induction on s. When s = 1, we see that

ppc(2k, 2) = 2k − 1,

the relevant PPC’s being (1, 2k − 1), (2, 2k − 2), . . . , (2k − 1, 1). On the other side,

1∑
j=0

2j
(
k − 1

j

)(
1

j

)
= 1 + 2(k − 1) = 2k − 1.

Thus the case s = 1 is established.

Now we assume the truth of our assertion for all values less than a particular s.

It follows that

ppc(2k, 2s) =

k∑
N=1

(2N − 1) ppc(2k − 2N, 2s− 2)

=

k∑
N=1

(2N − 1)

s−1∑
j=0

2j
(
k −N − 1

j + s− 2

)(
s− 1

j

)

=

s−1∑
j=0

(
s− 1

j

) k∑
N=1

(2N − 1)2j
(
k −N − 1

j + s− 2

)

=

s−1∑
j=0

2j
(
s− 1

j

)((
k − 1

j + s

)
+

(
k

j + s

))
(by Lemma 3)

=

s−1∑
j=0

2j
(
s− 1

j

)(
2

(
k − 1

j + s

)
+

(
k − 1

j + s− 1

))

=

s−1∑
j=0

2j+1

(
s− 1

j

)(
k − 1

j + s

)
+

s−1∑
j=0

2j
(
s− 1

j

)(
k − 1

j + s− 1

)

=

s∑
j=0

2j
(
s− 1

j − 1

)(
k − 1

j + s− 1

)
+

s∑
j=0

2j
(
s− 1

j

)(
k − 1

j + s− 1

)

=

s∑
j=0

2j
(

k − 1

s + j − 1

)((
s− 1

j − 1

)
+

(
s− 1

j

))

=

s∑
j=0

2j
(

k − 1

j + s− 1

)(
s

j

)
.
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Finally,

s∑
j=0

2j
(

k − 1

j + s− 1

)(
s

j

)
=

s∑
j=0

2j
((

k

j + s

)
−
(
k − 1

j + s

))(
s

j

)

=

s∑
j=0

(
k + j

2s

)(
s

j

)
−

s∑
j=0

(
k + j − 1

2s

)(
s

j

)

=

s∑
j=0

((
k + j

2s

)
−
(
k + j − 1

2s

))(
s

j

)

=

s∑
j=0

(
k + j − 1

2s− 1

)(
s

j

)
.

5. Some Further Simplifications

Corollary 1. For T ≥ 1,

T∑
k=1

ppc(2k, 2s) = ppc(2T + 1, 2s + 1).

First proof. We have

T∑
k=1

ppc(2k, 2s) =

T∑
k=1

s∑
j=0

2j
(

k − 1

j + s− 1

)(
s

j

)

=

s∑
j=0

2j
(

T

j + s

)(
s

j

)
(by Lemma 2)

= ppc(2T + 1, 2s + 1).

Second proof. The central part in PPC’s of 2T +1 into 2s+1 parts must also be odd.

If this central odd part, 2i+ 1, is removed, the result is a PPC of (2T + 1)− (2i+ 1)



INTEGERS: 21 (2021) 12

into 2s parts, hence

ppc(2T + 1, 2s + 1) =

T∑
i=0

ppc((2T + 1)− (2i + 1), 2s)

=

T∑
i=0

ppc(2(T − i), 2s)

=

T∑
i=0

ppc(2i, 2s)

=

T∑
i=1

ppc(2i, 2s).

Corollary 2. Theorem 2 implies Theorem 1.

Proof. Clearly,

ppc(n) =

n∑
s=0

ppc(n, s).

Hence

ppc(2n) =

2n∑
s=0

ppc(2n, s)

=

n∑
s=0

ppc(2n, 2s) +

n−1∑
s=0

ppc(2n, 2s + 1)

=

n∑
s=0

s∑
j=0

(
n + j − 1

2s− 1

)(
s

j

)
+

n−1∑
s=0

s∑
j=0

(
n + j − 1

2s

)(
s

j

)

=
∑
s,j≥0

(
n + j

2s

)(
s

j

)
= 2 · 3n−1

by Lemma 4. Next,

ppc(2n + 1) =

2n+1∑
s=0

ppc(2n + 1, s)

=

n∑
s=0

ppc(2n + 1, 2s + 1) (because ppc(2n + 1, 2s) = 0)

=
∑
s,j≥0

(
k + j

2s

)(
s

j

)
= 2 · 3n−1.



INTEGERS: 21 (2021) 13

We close this section with a surprising relation between compositions with parts

having k colors and parity palindrome compositions.

Let Tk(n) denote the number of compositions of n with k colors.

Theorem 7. For n, k ≥ 1, we have Tk(n) = k(k + 1)n−1.

Proof. Clearly Tk(1) = k. Also Tk(n) = (k + 1)Tk(n − 1) owing to the following

natural bijection. Namely, split the compositions of n into (k+1) classes as follows.

The first k classes end with 1i; 1 ≤ i ≤ k. Removing the 1i leaves the compo-

sitions of n − 1. The final class consists of compositions of n with the last part

mj > 1. Replacing mj by (m− 1)j yields again all the compositions of n− 1. Thus

we have divided the compositions of n into k+1 disjoint subsets each with Tk(n−1)

elements. Hence

Tk(n) = (k + 1)Tk(n− 1),

and the desired result follows by induction.

Corollary 3. For n ≥ 1, we have T2(n) = ppc(2n + 1) = ppc(2n).

Proof. This follows immediately from Theorems 1 and 7 and the fact that each of

these functions equals 2 · 3n−1.

6. Conclusion

A theme of this paper is the contrast between the simplicity of the proofs given

in Section 2 for Theorems 3-6, and the seemingly necessary intricacy of the proofs

of Theorems 1 and 2. Especially striking is the similarity and simplicity of the

statements of Theorems 1 and 5. Clearly Theorem 1 (if not Theorem 2) cries out

for a much more combinatorial bijective proof, perhaps involving Corollary 3.

One is tempted to consider other moduli besides 2 and to invoke palindromes

modulo k. So far we have not found results with the elegance of Theorems 1 and 2.
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