WO2024082511A1 - 用于显示器的抗眩光减反射膜 - Google Patents
用于显示器的抗眩光减反射膜 Download PDFInfo
- Publication number
- WO2024082511A1 WO2024082511A1 PCT/CN2023/078722 CN2023078722W WO2024082511A1 WO 2024082511 A1 WO2024082511 A1 WO 2024082511A1 CN 2023078722 W CN2023078722 W CN 2023078722W WO 2024082511 A1 WO2024082511 A1 WO 2024082511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- particles
- particle size
- reflection film
- nano
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L85/00—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
- C08L85/04—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing boron
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2244—Oxides; Hydroxides of metals of zirconium
Definitions
- the invention relates to the technical field of films, in particular to an anti-glare anti-reflection film for displays.
- anti-reflection films are usually installed on the outer surface of the display device to prevent the contrast from being reduced due to reflection of external light or to prevent external light from entering the image through reflection.
- Anti-reflection film also known as anti-reflection film, is based on the wave and interference of light. Its main function is to reduce or eliminate the reflected light on the surface of optical components, thereby increasing the transmittance of light on these components and reducing or eliminating the stray light of the system. Anti-reflection film occupies an extremely important position in the optical film industry.
- an anti-reflection film is an anti-reflection layer with a multilayer structure that can be formed on a transparent film substrate by chemical vapor deposition (CVD) or physical vapor deposition (PVD), such as the existing patent document 1.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- a high refractive index layer and a low refractive index layer By combining a high refractive index layer and a low refractive index layer, a wide-band anti-reflection can be achieved.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- anti-glare film A film
- Such hardened film must also have high wear resistance.
- the anti-glare hardened film for electronic blackboards must also have good flash point and writing effect.
- the present invention provides the following technical solutions:
- an anti-glare anti-reflection film for a display which includes, from bottom to top, a substrate, an AG coating, an HR coating, and an AR coating;
- the AG coating includes a binder resin, silicon dioxide particles, organic particles, and inorganic wear-resistant particles;
- the silicon dioxide particles are agglomerate particles of 100nm-3000nm;
- the organic particles are one or more of polymethyl methacrylate particles, polystyrene particles, polymethyl methacrylate-polystyrene copolymer particles, and polysilsesquioxane particles;
- the inorganic wear-resistant particles are formed by one or more of nano-alumina, nano-zirconia, nano-diamond, and hexagonal boron nitride nanosheets, and the inorganic wear-resistant particles are agglomerate particles of 50-200nm;
- the refractive index of HR coating is 1.53-1.74;
- the refractive index of AR coating is 1.2-1.48.
- the anti-glare AG coating is compounded with the high-refractive HR and low-refractive AR coatings in a hierarchical structure, integrating the anti-glare and anti-reflection functions.
- the composition and morphology of the inorganic wear-resistant particles are limited and dispersed in the binder resin to play the role of anti-glare and improve wear resistance.
- Silica with limited particle size and morphology is preferred.
- the silica is partially in agglomerated form to form an undulating morphology on the surface of the coating after curing, and partially exists inside the coating, which cooperates to improve the anti-glare effect.
- Organic particles are preferred, which exist inside the coating and have the effects of improving internal haze, reducing the reagglomeration of silica particle agglomerates, reducing the filling resin and adjusting the refractive index difference between the particles and the resin, achieving a balance between internal and external haze.
- the film prepared by the coating has improved properties such as hardness and wear resistance, and at the same time, the film layer has the advantages of high clarity, low flash point, and good whitening inhibition.
- the HR coating includes a binder resin and inorganic metal oxide particles with a refractive index of 2.0-2.8, the inorganic metal oxide particles are aggregated in the coating to form particles with a particle size of 10-80 nm, and the inorganic metal oxide particles are nano zirconium oxide or titanium oxide;
- the AR coating includes a binder resin and hollow silica particles with a refractive index of 1.15-1.40.
- Adding inorganic metal oxides of limited form to the HR coating can reduce haze and help improve film clarity, mechanical properties, etc.
- Adding hollow silica to the AR coating to adjust the refractive index, etc. The film layers under the above levels and components are stably combined and have achieved breakthroughs in hardness, wear resistance and other properties.
- the AG coating includes 22-45 parts of a binder resin, 3-7 parts of silica particles, 1-3 parts of organic particles, and 1-3 parts of inorganic wear-resistant particles, by weight;
- the HR coating includes 40-200 parts of a binder resin and 20-75 parts of nano zirconium oxide particles by weight;
- the AR coating comprises 9-25 parts of a binder resin and 30-80 parts of hollow silica particles by weight.
- the binder resin and the functional particles in the appropriate amount are the basic components of the coating.
- Lubricants, defoamers, leveling agents and other additives as well as curing agents for curing molding can be freely added according to needs.
- the binder resin in the coating liquid component of the cured AG coating, the coating liquid component of the cured HR coating, and the coating liquid component of the cured AR coating all include a photocurable oligomer resin having six or more functional groups and a photocurable diluent monomer resin having three or more functional groups;
- the photocurable oligomer resin is one or more of polyurethane acrylate oligomer, epoxy acrylate oligomer, polyester acrylate and polyether acrylate, polyacrylic resin oligomer, epoxy resin polymer, oxygen-containing acrylate, and uric acid acrylate;
- the photocurable diluent monomer resin is one or more of ethyl methacrylate, ethylhexyl methacrylate, styrene, methyl styrene, N-vinyl pyrrolidone monofunctional monomer, polymethylolpropane trimethacrylate, diethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, hexanediol methacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexamethacrylate, and neopentyl glycol dimethacrylate.
- the resin component with a limited structure is preferred, which is convenient for photocuring and helps to improve the hardness, flexibility, etc. of the coating.
- the AR coating includes 2-8 parts of fluorine-containing polymer, 5-30 parts of inorganic particles, and 5-23 parts of POSS.
- the inorganic particles are one or more of magnesium fluoride, boron nitride, silicon dioxide, and aluminum oxide;
- the fluorine-containing polymer is one or more of partially fluorinated acrylate silicone copolymers, partially or fully fluorinated acrylic compounds, and partially or fully fluorinated vinyl ethers;
- POSS is one or more of phenyl POSS, amino POSS, vinyl POSS, and acryl POSS.
- the main function of the fluorine-containing polymer is to increase the water contact angle and improve the friction resistance of the coating film, POSS is to increase the hardness of the AR coating, and the inorganic particles are to improve the friction resistance of the AR coating.
- the AG coating comprises, by mass percentage, 18%-38% of a photocurable oligomer resin having six or more functional groups, 4%-7% of a photocurable diluent monomer resin having three or more functional groups, 3%-7% of silica particles, 1%-3% of organic particles, 1%-3% of inorganic wear-resistant particles, 1%-5% of an auxiliary agent, and 1%-3% of a photoinitiator; preferably, the solid content of the AG coating is 42%-55%;
- the HR coating includes 1%-2% of a photocurable oligomer resin having six or more functional groups, 0.3%-1% of a photocurable diluent monomer resin having three or more functional groups, 1%-3% of nano zirconium dioxide particles, 0.05%-0.2% of an auxiliary agent, and 0.1%-0.5% of a photoinitiator; preferably, the solid content of the HR coating is 3%-6%.
- the AR coating includes 0.25%-0.5% of a photocurable oligomer resin having six or more functional groups, 0.05%-0.1% of a photocurable diluent monomer resin having three or more functional groups, 0.3%-1.5% of hollow silica particles, 0.1%-1% of solid silica particles, 0.1%-1% of POSS, and 0.1%-0.5% of a photoinitiator.
- the solid content of the AR coating is 2.0%-5.0%.
- the coating material with the above component ratio is subjected to light curing molding treatment.
- each coating material can be passed through a slit
- the coating is achieved by known coating techniques such as coating, micro-dimpled coating, blade coating, roller coating, etc., and then cured by one or a combination of ultraviolet light curing, electron radiation curing, and thermal curing. Since ultraviolet light curing has the advantage of more types of raw materials to choose from, ultraviolet light curing is preferred.
- photoinitiators such as acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether
- photoinitiators such as acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether
- aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, metallocene compounds, benzoin sulfonates, active organic amines such as triethylamine, n-butylamine, etc. can also be selected as auxiliary initiators.
- the solvent used such as a polar solvent or a non-polar solvent, can specifically be acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate, methanol, ethanol, propanol, isopropanol, isobutanol, propylene glycol methyl ether, and n-butanol, preferably methyl isobutyl ketone, propylene glycol methyl ether, isobutanol, ethyl acetate, and butyl acetate. It can be a single solvent, or preferably a mixed solvent of three or more.
- the silicon dioxide particles are added in the form of a dispersion, and mixed with a solvent with a primary particle size of 10nm-50nm to obtain a silicon dioxide particle dispersion with a secondary particle size of 100nm-2000nm;
- the inorganic wear-resistant particles are added in the form of a dispersion, and mixed with a solvent with a primary particle size of 10-50 nm to obtain a dispersion with a secondary particle size of 50-200 nm;
- the particle size of the organic particles is 1 ⁇ m-10 ⁇ m.
- the limited particle shape and addition form have been tested to help further improve the performance of the film layer.
- the average particle size of nano-zirconia particles is 5%-80% of the thickness of the HR coating; the hollow silica particle size is 50-80nm, and the average particle size of solid silica is 30%-100% of the thickness of the AR coating, which helps to improve the performance of the film layer.
- the inorganic wear-resistant particles are formed by pretreatment of hexagonal boron nitride nanosheets, wherein the pretreatment step is: mixing hexagonal boron nitride nanosheets of original particle size with a solvent and performing ultrasonic dispersion treatment to obtain a glue solution, and centrifuging the glue solution to obtain a bottom solid;
- the resulting centrifuge liquid which is the dispersion liquid of the inorganic wear-resistant particles.
- Targeted design of the dispersion liquid preparation process helps to evenly distribute and thus improve the performance of the membrane layer.
- Hexagonal boron nitride nanosheets can be prepared by known preparation methods, such as arc discharge method, solvent thermal method, vapor deposition method, and liquid phase method. Because nanoparticles have high surface energy and are easy to agglomerate, their surfaces need to be treated, such as polymer dispersant and coupling agent treatment, preferably a silane coupling agent that can react with resin to obtain reactive functional groups is used as the surface treatment agent.
- the nano zirconium oxide particles are in tetragonal phase, cubic phase or a mixture of the two.
- the limited phase helps to improve the performance of the film layer.
- nano zirconium oxide particles are added to the coating solution used to form the HR coating in the form of a dispersion.
- the dispersion of the nano zirconium oxide particles is prepared as follows:
- a zirconium-containing compound is mixed with a mixture of a solvent and an organic acid in proportion, the temperature is raised to 250-320° C., and the reaction is carried out at a constant temperature for 3-18 hours;
- the filtered product obtained by the reaction is washed several times to obtain tetragonal or cubic nano zirconium oxide particles
- the obtained nano-zirconia particles and a dispersing aid are added into a solvent to obtain a transparent nano-zirconia dispersion, in which the nano-zirconia particles form an agglomerated state with a secondary dispersion particle size of 10-50 nm.
- the above-mentioned nano zirconium oxide is crystalline nano zirconium oxide, which is prepared by a solvent-thermal one-step synthesis method.
- the raw materials are a zirconium-containing compound and an organic solvent, or a mixture of an organic solvent and an organic acid.
- the zirconium-containing compound can be an organic zirconium compound, including n-propyl alcohol, zirconium n-butoxide, zirconium tetra-tert-butoxide, etc., or an inorganic zirconium compound, including zirconium nitrate, zirconium chloride, basic zirconium carbonate, etc., preferably an organic zirconium compound, more preferably zirconium n-propyl alcohol.
- the organic solvent includes methanol, ethanol, butyl ether, benzyl alcohol, etc., preferably methanol, ethanol, benzyl alcohol
- the organic acid includes formic acid, hemp acid, stearic acid, oleic acid, etc., preferably formic acid and oleic acid.
- the solvent used for the nano zirconium oxide dispersion can be a polar solvent or a non-polar solvent, such as n-hexane, toluene, ethanol, butyl acetate, ethyl acetate, isopropanol, isobutanol, acetone, butanone, methyl isobutyl ketone, propylene glycol methyl ether, etc., preferably toluene, butyl acetate, isopropanol, isobutanol, methyl isobutyl ketone, propylene glycol methyl ether, etc.
- a polar solvent or a non-polar solvent such as n-hexane, toluene, ethanol, butyl acetate, ethyl acetate, isopropanol, isobutanol, acetone, butanone, methyl isobutyl ketone, propylene glycol methyl ether,
- dispersing aid which can be a silane coupling agent, a titanate coupling agent, a high molecular polymer with surface affinity, an acrylate monomer and an acrylate oligomer, preferably a high molecular polymer with surface affinity and an acrylate monomer, to disperse the zirconium oxide powder.
- the thickness of the AG coating is 2-50 ⁇ m and the surface water contact angle of the AG coating is lower than 80°, the optical thickness of the HR coating is 1/2 ⁇ 0 , and the optical thickness of the AR coating is 1/4 ⁇ 0 .
- the substrate it can be one of the substrates such as triacetylcellulose film (TAC), polyethylene terephthalate film (PET), polynorbornene film (COP), polymethyl methacrylate film (PMMA), polycarbonate film (PC), transparent polyimide film (CPI), etc.
- TAC triacetylcellulose film
- PET polyethylene terephthalate film
- COP polynorbornene film
- PMMA polymethyl methacrylate film
- PC polycarbonate film
- CPI transparent polyimide film
- the thickness of the substrate is preferably 25 ⁇ m-300 ⁇ m.
- polarizer surface protective film it is preferably 25 ⁇ m-80 ⁇ m for thinning considerations.
- the present invention has the following beneficial effects:
- the film layer of the present invention integrates the functions of anti-glare and anti-reflection, and has the advantages of high definition, low flash point, good whitening inhibition, high hardness, wear resistance and the like.
- FIG1 is an illustration of the film structure of the AG-HR-AR film
- FIG2 is a transmittance and reflectance spectrum of the AG1-HR1-AR1 film of Example 1;
- FIG3 is a transmittance and reflectance spectrum of the AG2-HR1-AR1 film of Example 2;
- FIG4 is a transmittance and reflectance spectrum of the AG1-HR1-AR2 film of Comparative Example 1;
- FIG5 is a transmittance and reflectance spectrum of the AG1-AR1 film of Comparative Example 2;
- FIG6 is a scanning electron microscope cross-sectional view of the AG layer of the AG1-HR1-AR1 film of Example 1;
- FIG7 is a scanning electron microscope enlarged cross-sectional view of the AG layer of the AG1-HR1-AR1 film of Example 1;
- FIG8 is a scanning electron microscope cross-sectional view of the AR layer of the AG1-HR1-AR1 film of Example 1;
- FIG9 is an electron microscope photograph of crystalline nano-zirconia of Example 7.
- FIG10 is an XRD pattern of crystalline nano-zirconia of Example 7.
- FIG. 11 is a graph showing the particle size distribution of the zirconium oxide dispersion of Example 7.
- the obtained powder is washed with ethanol and propylene glycol methyl ether for multiple times (three times respectively), and then propylene glycol methyl ether is used as a solvent, and a polymer (DISPERBYK2014 copolymer containing pigment nucleophilic groups, purchased from BYK Chemical) is used as a dispersing aid to ultrasonically disperse the zirconium oxide powder to obtain a nano zirconium oxide dispersion, and the solid content of the dispersion is 20%.
- the dispersed particle size of nano zirconium oxide is 57nm, and the primary particle size of nano zirconium oxide is 5-10nm. According to XRD test, the crystal form of nano zirconium oxide is a mixed type of tetragonal and cubic zirconium oxide.
- the obtained powder is washed with ethanol and MIBK (methyl isobutyl ketone) for multiple times (three times respectively), and then MIBK is used as a solvent and a high molecular polymer (DISPERBYK-2013, a structured copolymer containing pigment affinity groups, purchased from BYK Chemical) is used as a dispersing aid to ultrasonically disperse the zirconium oxide powder to obtain a nano zirconium oxide dispersion liquid with a solid content of 20%.
- the dispersed particle size of the nano zirconium oxide is 42nm, and the primary particle size of the nano zirconium oxide is 8-12nm.
- the crystal form of the nano zirconium oxide is a mixed type of tetragonal and cubic zirconium oxide.
- the obtained powder is washed with ethanol and MIBK (methyl isobutyl ketone) for multiple times (three times respectively), and then MIBK is used as a solvent, and a polymer (DISPERBYK-2013, a structured copolymer containing pigment affinity groups, purchased from BYK Chemical) is used as a dispersing aid to ultrasonically disperse the zirconium oxide powder to obtain a zirconium oxide dispersion, and the solid content of the dispersion is 20%.
- the dispersed particle size of nano zirconium oxide is 45nm, and the primary particle size of nano zirconium oxide is 8-12nm. According to XRD test, the crystal form of nano zirconium oxide is a mixed type of tetragonal and cubic zirconium oxide.
- Case 4 preparation method of crystalline nano zirconium oxide dispersion: n-butoxide zirconium and benzyl alcohol are added to the kettle at a mass ratio of 0.48:1 (the total volume of the reactants does not exceed 60% of the kettle volume), the speed is set to 450 rpm, and the maximum temperature of the kettle is 275°C.
- the obtained powder is washed with ethanol and MIBK (methyl isobutyl ketone) for multiple times (three times respectively), and then MIBK is used as a solvent, and a polymer (DISPERBYK-2013, a structured copolymer containing pigment affinity groups, purchased from BYK Chemical) is used as a dispersing aid to ultrasonically disperse the zirconium oxide powder to obtain a zirconium oxide dispersion, and the solid content of the dispersion is 20%.
- the dispersed particle size of nano zirconium oxide is 45nm, and the primary particle size of nano zirconium oxide is 8-12nm. According to XRD testing, the crystal form of nano zirconium oxide is a mixed type of tetragonal and cubic zirconium oxide.
- the obtained powder is washed with ethanol and MIBK (methyl isobutyl ketone) for multiple times (three times respectively), and then MIBK is used as a solvent, and a high molecular polymer (a copolymer containing pigment affinity groups DISPERSANT-2008, purchased from BYK Chemical) is used as a dispersing aid to ultrasonically disperse the zirconium oxide powder to obtain a zirconium oxide dispersion, and the solid content of the dispersion is 20%.
- the primary particle size of nano zirconium oxide is 20-25nm. According to XRD testing, the crystal form of nano zirconium oxide is a mixture of monoclinic phase and tetragonal phase. Since the reaction is carried out in an aqueous solution, it is difficult to completely remove the water in subsequent treatment, so the secondary particle size of the obtained dispersion is larger, greater than 100nm, and the dispersion is slightly turbid, not transparent.
- the obtained powder is washed with ethanol and propylene glycol methyl ether for multiple times (three times respectively), and then propylene glycol methyl ether is used as a solvent, and a high molecular polymer (a copolymer containing a pigment affinity group UNIQ-SPERSE 670 U, purchased from Germany's Allnex Group) is used as a dispersing aid to ultrasonically disperse the zirconium oxide powder to obtain a zirconium oxide dispersion, and the solid content of the dispersion is 20%.
- the primary particle size of nano zirconium oxide is 15-25nm. It can be seen from the XRD test that the crystal form of nano zirconium oxide is mainly cubic phase.
- the primary particle size of nano zirconium oxide prepared by too high a reaction temperature is larger and more difficult to disperse.
- the secondary particle size of the nano zirconium oxide dispersion prepared under this condition is greater than 100nm, and the dispersion is slightly turbid and not transparent.
- Silica particle dispersion The dispersion is obtained by grinding commercially available solid silica particles (without surface treatment) with an original particle size of 10-50 nm in an ethanol solvent by ball milling to obtain a silica particle dispersion with a secondary dispersion particle size within a predetermined range.
- the secondary dispersion particle size can be adjusted by adjusting the solvent ratio, grinding parameters, etc., which will not be described in detail.
- Inorganic wear-resistant particle dispersion First, pretreatment step: deionized water and ethanol are mixed in a volume ratio of 1:1, and commercially available hexagonal boron nitride nanosheets (without surface treatment) with a primary particle size of 10-50nm are added under stirring, stirred for 6-24 hours, and ultrasonically dispersed for about 10 minutes. The dispersion is then centrifuged at a centrifuge speed of 6000-10000rpm for 5-10 minutes, the upper clear liquid is discarded, and a precipitate (solid at the bottom of the primary layer) is left.
- the solvent (propylene glycol methyl ether) and the secondary bottom solid are subjected to the above-mentioned pretreatment step to obtain a centrifugal colloidal solution, namely, a nano hexagonal boron nitride dispersion.
- the bottom precipitate is further subjected to the above pretreatment step, the centrifugal colloidal solution is collected, and the bottom solid precipitate is subjected to the above pretreatment step again until there is no precipitate at the bottom.
- the collected centrifugal colloidal solution is the nano hexagonal boron nitride dispersion.
- coating liquid AG1 used for coating 10 kg of coating liquid is prepared according to mass percentage, of which ten-functional polyurethane acrylate oligomer (JD8098 purchased from Shanghai Yangshi Industrial Co., Ltd.) accounts for 28%, six-functional polyurethane acrylate oligomer (EB1290 purchased from Germany Allnex Group) accounts for 3%, three-functional acrylate monomer (pentaerythritol triacrylate) accounts for 3%, six-functional acrylate monomer (dipentaerythritol hexaacrylate) accounts for 3%, thiol inhibitor (butyl pentaerythritol) accounts for 2%, silicon dioxide with a dispersed particle size of 240 nm accounts for 8%, polysilsesquioxane microparticles (DF20A0 purchased from Changxing Special Materials (Suzhou) Co., Ltd.) accounts for 0.5%, and dispersed particles account for 1.
- JD8098 purchased from Shanghai Yangshi Industrial Co.
- coating liquid AG2 10 kg of coating liquid was prepared according to mass percentage, of which nine-functional polyurethane acrylate oligomer (JR9929 purchased from Changzhou Qiaorun New Material Technology Co., Ltd.) accounted for 21.5%, thirty-functional hyperbranched acrylate oligomer (BDT-4330 purchased from Shanghai Hesheng Industrial Group Co., Ltd.) accounted for 2.8%, three-functional acrylate monomer (pentaerythritol triacrylate) accounted for 1.0%, six-functional acrylate monomer (dipentaerythritol hexaacrylate) accounted for 2.4%, thiol inhibitor (butyl pentaerythritol) accounted for 2%, polyethylene glycol (purchased from Wuhan Huaxiang Kejie) accounted for 1.0%, and six-functional acrylate monomer (pentaerythritol hexaacrylate) accounted for 2.4%.
- Biotechnology Co., Ltd. 600DA accounted for 1.9%, silica with a dispersed particle size of 350nm accounted for 8%, cross-linked polystyrene particles (purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.) accounted for 1%, nano diamond particles with a dispersed particle size of 100nm accounted for 2%, photoinitiator 184 accounted for 2.1%, and other proportions of a mixed solvent of butyl acetate and propylene glycol methyl ether (according to the volume ratio, butyl acetate accounted for 75%, propylene glycol methyl ether accounted for 25%). Add each component to the mixed solvent of butyl acetate and propylene glycol methyl ether, stir until each component is completely dissolved, and obtain a coating liquid AG2 with a solid content of 44.7%.
- coating liquid AG3 10 kg of coating liquid was prepared according to mass percentage, of which nine-functional polyurethane acrylate oligomer (SU5039 purchased from Songchang Trading (Shanghai) Co., Ltd.) accounted for 21.7%, thirty-functional hyperbranched acrylate oligomer (BDT-4330 purchased from Shanghai Hesheng Industrial Group Co., Ltd.) accounted for 3.1%, three-functional acrylate monomer (pentaerythritol triacrylate) accounted for 1.2%, six-functional acrylate monomer (dipentaerythritol hexaacrylate) accounted for 2.4%, and thiol inhibitor (butyl pentaerythritol) accounted for 1.
- nine-functional polyurethane acrylate oligomer SU5039 purchased from Songchang Trading (Shanghai) Co., Ltd.
- thirty-functional hyperbranched acrylate oligomer BDT-4330 purchased from Shanghai Hesheng Industrial Group Co., Ltd.
- polyethylene glycol 600DA accounts for 2%
- the secondary particle size of the dispersion is 600nm
- silicon dioxide accounts for 10%
- polymethyl methacrylate particles account for 1.5%
- photoinitiator 184 accounts for 2.1%
- other proportions of a mixed solvent of butyl acetate and propylene glycol methyl ether accordinging to the volume ratio, butyl acetate accounts for 75% and propylene glycol methyl ether accounts for 25%).
- Preparation of coating liquid AG4 The preparation method of coating liquid 3 is followed, except that no polymethyl methacrylate particles are added.
- Preparation of coating liquid AG5 The preparation method of coating liquid 3 is followed, except that no nano-alumina particles are added.
- coating liquid HR1 10 kg of coating liquid was prepared according to mass percentage, of which aliphatic hexaacrylate (EBECRYL 1290N purchased from Allnex Resins (China) Co., Ltd.) accounted for 1.24%, 15-functional polyurethane acrylate prepolymer (W991 purchased from Guangzhou Five Elements Material Technology Co., Ltd.) accounted for 0.165%, tetrafunctional acrylate monomer (di-trimethylolpropane tetraacrylate) accounted for 0.245%, trifunctional acrylate monomer (trimethylolpropane trimethacrylate) accounted for 0.31%, nano zirconium oxide with a dispersed particle size of 20 nm (crystalline nano zirconium oxide prepared in Case 1) accounted for 1.4%, and leveling agent (polyether-modified dimethyl polysiloxane BYK-378 purchased from BYK Chemical) accounted for 1.4%.
- leveling agent polyether-modified dimethyl polysilox
- photoinitiator (1-hydroxycyclohexyl phenyl ketone) accounts for 0.27%, and the other proportions are propylene glycol methyl ether.
- Preparation of coating liquid HR2 According to the preparation method of coating liquid HR1, the zirconium oxide dispersion with a dispersed particle size greater than 100 nm prepared in Case 5 was selected.
- coating liquid AR1 10 kg of coating liquid was prepared according to mass percentage, of which nine-functional aliphatic polyurethane acrylate (JR9929 purchased from Changzhou Qiaorun New Material Technology Co., Ltd.) accounted for 0.314%, difunctional epoxy acrylate (G5100 purchased from Guangzhou Wuxing Material Technology Co., Ltd.) accounted for 0.078%, hollow silica with a particle size of 70 nm accounted for 1.26%, solid silica accounted for 0.27%, POSS accounted for 0.5%, photoinitiator accounted for 0.24%, and other proportions of solvents were added to a mixed solvent of methyl isobutyl ketone, propylene glycol methyl ether, isobutyl alcohol, ethyl acetate, and butyl acetate (the volume ratio of each component was 1:4:3:4:8), and stirred until each component was completely dissolved to obtain a coating liquid AR1 with a solid content of 2.7%
- coating liquid AR2 The same preparation method as coating liquid AR1 was used, except that 20 nm hollow silica was used.
- coating liquid AR3 The same preparation method as coating liquid AR1 was used, except that solid silica was not added.
- Preparation of coating liquid AR4 Use the preparation method of coating liquid AR1 without adding POSS.
- the coating liquid AG1 was coated on a triacetylcellulose film with a thickness of 80 ⁇ m using a micro-concave roll coater and dried at 80°C. Afterwards, the coating was cured with a high-pressure mercury lamp at a curing energy of 600 mJ/ cm2 in a nitrogen atmosphere, and the coating thickness was 4 ⁇ m to obtain a film AG1.
- the surface water contact angle of the corresponding AG coating was less than 80°.
- the coating liquid HR1 was coated on the AG1 film using a slit coater and dried at 80° C. Thereafter, the coating was cured using a high pressure mercury lamp at a curing energy of 600 mJ/cm 2 in a nitrogen atmosphere, and the coating thickness of HR was (1/2) ⁇ 0, obtaining a film AG1-HR1.
- the coating liquid AR1 was coated on the above AG1-HR1 film using a slit coater and dried at 80° C. Thereafter, the coating was cured using a high-pressure mercury lamp at a curing energy of 600 mJ/cm 2 in a nitrogen atmosphere, and the coating thickness of AR was (1/4) ⁇ 0, obtaining a film AG1-HR1-AR1.
- the coating thickness of HR is halved to 1/4 ⁇ 0 to obtain the film AG1-HR1(1/4 ⁇ 0)-AR1.
- the coating liquid AG1 was replaced by AG2 (the surface water contact angle was lower than 80°) to obtain the film AG2-HR1-AR1.
- the coating liquid AG1 was replaced with AG3 (the surface water contact angle was less than 80°) to obtain a film AG3-HR1-AR1.
- the coating liquid AG1 was replaced by AG4 (the surface water contact angle was lower than 80°) to obtain the film AG4-HR1-AR1.
- the coating liquid AG1 was replaced by AG5 (the surface water contact angle was lower than 80°) to obtain the film AG5-HR1-AR1.
- the coating liquid AR1 is replaced by AR2 to obtain the film AG1-HR1-AR2.
- Films AG1-AR1 were obtained by following the method of Example 1 without coating the HR layer.
- the coating liquid HR1 is replaced by HR2 to obtain the film AG1-HR2-AR1.
- the coating liquid AG1 is replaced by AG2, and the coating liquid AR1 is replaced by AR3 to obtain the film AG2-HR1-AR3.
- the coating liquid AG1 was replaced by AG3, and the coating liquid AR1 was replaced by AR4 to obtain the film AG3-HR1-AR4.
- the structure of the film layer of the present invention comprises a transparent substrate 10 at the bottom, an AG coating 20, an HR coating 30, and an AR coating 40 are arranged on the substrate in sequence, the AG coating 20 comprises organic microparticles 21, silica particle agglomerates 22, inorganic wear-resistant particle agglomerates 23, and silica particle agglomerates 22 located on the surface, the HR coating 30 comprises nano-zirconia particle agglomerates 31, and the AR coating 40 comprises hollow silica particles 41 and solid silica particles 42.
- the coated flexible film is subjected to an optical performance test to test the transmittance and reflectivity of the film in the range of 300-1100nm.
- the coated flexible film is subjected to a water contact angle test with a water drop volume of 2 ⁇ l.
- the coated flexible film is subjected to a friction resistance test, weights are placed according to different requirements, and the number of sliding times and speed are changed.
- the coated flexible film is subjected to a hardness test, the test requirements are: 500g, speed 40.
- Test method The coating liquid is plated on the silicon wafer by the pull-up coating method, and the silicon wafer is placed in an ellipsometer for testing.
- Test method Place the coated flexible film on a thickness gauge for testing.
- Test method Place the coated flexible film in a haze meter for testing.
- Clarity Observe the outline of the fluorescent lamp tube through the anti-glare film and evaluate the film's transmittance and diffusion properties.
- Example 1 Comparative Example 1
- the wear resistance will be improved, but the optical properties will be affected, so it is necessary to select hollow silica particles with a suitable particle size.
- Example 1 and Comparative Example 2 It can be seen from the results of Example 1 and Comparative Example 2 that when the HR layer is added, the hardness and wear resistance of the coating film are improved, the transmittance is increased, and the reflectivity is reduced, so it is necessary to select hollow silica particles with a suitable particle size.
- Example 1 when nano-zirconia particles with a dispersed particle size greater than 100 nm are added to the HR coating, the optical transmittance of the coating will be affected, so nano-zirconia particles with a dispersed particle size less than 100 nm are preferred.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nonlinear Science (AREA)
- Inorganic Chemistry (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Theoretical Computer Science (AREA)
- Paints Or Removers (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Laminated Bodies (AREA)
Abstract
一种用于显示器的抗眩光减反射膜,自下至上依次包括基底(10)、AG涂层(20)、HR涂层(30)、AR涂层(40),将防眩光的AG涂层(20)与高折射HR涂层(30)、低折射AR涂层(40)以限定层级结构复合,在AG涂层(20)中限定无机耐磨颗粒的成分及形态并通过将其分散在粘合剂树脂中起到防眩光、提高耐磨性能等作用,限定粒径及形态的二氧化硅,该团聚形态部分使固化后涂层表面形成凹凸起伏的形貌,部分存在于涂层内部,相配合提升防眩光效果。
Description
本发明涉及膜技术领域,具体涉及用于显示器的抗眩光减反射膜。
在显示装置例如阴极射线管显示装置(CRT)、等离子体显示器(PDP)、电致发光显示装置(ELD)和液晶显示装置(LCD)上,减反射薄膜通常安装在显示装置的外表面以防止因外来光的反射降低对比度或者防止外来光经反射进入图像。
减反射膜,又称增透膜,它以光的波动性和干涉现象为基础,主要功能是减少或消除光学元器件表面的反射光,从而增加光在这些元器件上的透过率,减少或消除系统的杂散光。减反射薄膜在光学薄膜产业占有极其重要的位置。
一般来说,减反射薄膜是可通过化学蒸镀(CVD)法、物理蒸镀(PVD)法在透明薄膜基材形成多层结构的防反射层,如现有专利文件1。利用高折射率层和低折射率层搭配,可以实现宽谱带的减反射,这个技术虽然在干法镀膜已经实现。但由于干法镀膜必须在真空中成膜,因此存在生产设备结构复杂,设备投资高,生产率低等缺点。因此近年来,湿法涂膜技术,因为其低成本,可大面积涂布和连续化生产,越来越多的被人们所关注。但目前现有技术主要为用湿法涂布的单层减反膜,如专利文件2-3。
在湿法镀膜领域,存在膜层的雾度偏高而不能使用的问题。
液晶显示设备自身发出的光与环境中光源在显示屏幕上的反射光相互叠加会形成眩光,眩光长期作用与人眼,不但会造成视觉上的不适应感,而且强烈的眩光还会损害视觉。为此,市场上各类液晶显示设备表面均贴合具有防眩光膜(AG膜),此类硬化膜同时还要具备高耐磨作用,如电子黑板用防眩光硬化膜在这基础上还要解决良好的闪点和书写效果。
因此,现在的显示器不仅仅要求表面有能起到减反射作用的光学膜,还需要有能防眩光的光学膜,这样才能提供更优异的可视性。另外,应用于显示盖板上的涂层,需要有较高的硬度和较好的耐磨性能,但现在湿法涂布技术制备得到的低折射率层的硬度偏低,最高仅能达到500g/1H,耐磨性能也很差,仅能达到100g/10次。这也限制了减反射膜更广泛的应用。
现有专利技术文件:
1、中国发明专利,公开号:CN104614787A。
2、中国发明专利,公开号:CN1322338C。
3、台湾发明专利,公开号:TWI515271B。
发明内容
为解决上述至少一个技术缺陷,本发明提供了如下技术方案:
本申请文件公开用于显示器的抗眩光减反射膜,自下至上依次包括基底、AG涂层、HR涂层、AR涂层;
AG涂层中包括粘合剂树脂、二氧化硅颗粒、有机粒子、无机耐磨颗粒;所述二氧化硅颗粒为100nm-3000nm的团聚体颗粒;所述有机粒子为聚甲基丙烯酸甲酯微粒子、聚苯乙烯微粒子、聚甲基丙烯酸甲酯聚苯乙烯共聚物微粒子、聚倍半硅氧烷微粒子中的一种或多种;所述无机耐磨颗粒为纳米氧化铝、纳米氧化锆、纳米金刚石、六方氮化硼纳米片中一种或多种形成,所述无机耐磨颗粒为50-200nm的团聚体颗粒;
HR涂层的折射率1.53-1.74;
AR涂层的折射率1.2-1.48。
本方案中将防眩光的AG涂层与高折射HR、低折射的AR涂层以层级结构复合,集防眩光、减反射功能为一体。
在AG涂层中,限定无机耐磨颗粒的成分及形态并通过将其分散在粘合剂树脂中起到防眩光、提高耐磨性能等作用。优选限定粒径及形态的二氧化硅,二氧化硅以团聚形态部分使固化后涂层表面形成凹凸起伏的形貌,部分存在于涂层内部,相配合提升防眩光效果。优选有机粒子,存在于涂层内部,具有提高内雾度、减少二氧化硅粒子团聚体彼此间再团聚的作用、降低填充树脂以及调节粒子与树脂之间的折射率差异的作用,实现内外雾度平衡,该涂层制备的膜在硬度、耐磨等性能取得提升,同时使膜层具有高清晰度、低闪点、泛白抑制性好等优点。
进一步,HR涂层中包括粘合剂树脂、折射率在2.0-2.8的无机金属氧化物粒子,无机金属氧化物粒子在涂层中团聚呈粒径10-80nm的颗粒状,无机金属氧化物粒子为纳米氧化锆或氧化钛;
AR涂层中包括粘合剂树脂、折射率1.15-1.40的空心二氧化硅粒子。
在HR涂层中加入限定形态的无机金属氧化物,降低雾度,有助提高膜层清晰度、力学性能等。在AR涂层中加入空心二氧化硅来调整折射率等,上述层级、组分下的膜层结合稳定且在硬度、耐磨等性能上取得突破。
进一步,以质量份数计,AG涂层包括22-45份的粘合剂树脂,二氧化硅颗粒3-7份,有机粒子1-3份,无机耐磨颗粒1-3份;
以质量份数计,HR涂层包括40-200份的粘合剂树脂,纳米氧化锆粒子20-75份;
以质量份数计,AR涂层包括9-25份粘合剂树脂,空心二氧化硅粒子30-80份。
粘合剂树脂与量比下的功能粒子为组成涂层的基本成分,对于润滑剂、消泡剂、流平剂等助剂以及固化成型的固化剂等可根据需求自由添加。
进一步,固化成型AG涂层的涂液组分、固化成型HR涂层的涂液组分、固化成型AR涂层的涂液组分中的粘合剂树脂均包括六官能团以上的光固化低聚物树脂,三官能团以上的光固化稀释单体树脂;
光固化低聚物树脂为聚氨酯丙烯酸酯低聚物、环氧丙烯酸酯低聚物、聚酯丙烯酸酯和聚醚丙烯酸酯、聚丙烯酸树脂低聚物、环氧树脂聚合物、含氧丙烯酸酯、脲酸丙烯酸酯中一种或多种;
光固化稀释单体树脂为甲基丙烯酸乙酯、甲基丙烯酸乙基己酯、苯乙烯、甲基苯乙烯、N-乙烯基吡咯烷酮单官能度单体、聚羟甲基丙烷三甲基丙烯酸酯、二甘醇二甲基丙烯酸酯、三丙二醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、己二醇甲基丙烯酸酯、季戊四醇三甲基丙烯酸酯、二季戊四醇六甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯中一种或多种。
优选限定结构的树脂组分,光固化成型方便,有助提高涂层的硬度、柔韧性等。
进一步,AR涂层包括含氟聚合物2-8份、无机粒子5-30份、POSS5-23份。无机粒子为氟化镁、氮化硼、二氧化硅、三氧化二铝中一种或多种;含氟聚合物为部分氟化的丙烯酸酯有机硅共聚物、部分或者完全氟化的丙烯酸类化合物、部分或者完全氟化的乙烯基醚的一种或多种;POSS为苯基POSS、氨基POSS、乙烯基POSS、丙烯酰基POSS中一种或多种。含氟聚合物,其主要作用为增大水接触角以及改善涂膜的耐摩擦性能,POSS为提高AR涂层的硬度,无机粒子为提高AR涂层的耐摩擦性。
进一步,以质量百分比计,AG涂层包括六官能团以上的光固化低聚物树脂18%-38%,三官能团以上的光固化稀释单体树脂4%-7%,二氧化硅颗粒3%-7%,有机粒子1%-3%,无机耐磨颗粒1%-3%,助剂1%-5%,光引发剂1%-3%;优选AG涂层中固含量在42%-55%;
以质量百分比计,HR涂层包括六官能团以上的光固化低聚物树脂1%-2%,三官能团以上的光固化稀释单体树脂0.3%-1%,纳米二氧化锆粒子1%-3%,助剂0.05%-0.2%,光引发剂0.1%-0.5%;优选HR涂层中固含量在3%-6%。
以质量百分比计,AR涂层包括六官能团以上的光固化低聚物树脂0.25%-0.5%,三官能团以上的光固化稀释单体树脂0.05%-0.1%,空心二氧化硅粒子0.3%-1.5%,实心二氧化硅粒子0.1%-1%,POSS0.1%-1%,光引发剂0.1%-0.5%。优选AR涂层中固含量在2.0%-5.0%。
优选上述组分比例的涂层材料,光固化成型处理,使用时,可将各涂层材料经狭缝
涂布、微凹涂布、刮刀涂布、辊涂等已知的涂布技术实现涂覆,之后经紫外光固化、电子辐射固化、热固化中的一种或者两种组合方式固化而成,因紫外光固化具有可选择的原料种类更多的优势,优选紫外光固化方式。
对于助剂而言,如湿流平剂、消泡剂、阻聚抑制剂、表面控制剂等,光引发剂如苯乙酮类、二苯甲酮类、噻吨酮类、苯偶姻、苯偶姻甲醚,采用芳香族重氮鎓盐、芳香族锍盐、芳香族碘鎓盐、茂金属化合物、苯偶姻磺酸酯时,也可配合选用具有活性的有机胺,如三乙胺、正丁胺等作为辅助引发剂。
上述各涂层均采用溶剂将相应组分复配而成,所采用的溶剂,如极性溶剂、非极性溶剂,具体可选择丙酮、甲基乙基酮、甲基异丁基酮、环己酮、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、甲醇、乙醇、丙醇、异丙醇、异丁醇、丙二醇甲醚、正丁醇,优选甲基异丁基酮、丙二醇甲醚、异丁醇、乙酸乙酯、乙酸丁酯,可以为单一种溶剂,优选三种及三种以上的混合溶剂。
进一步,AG涂层中:所述二氧化硅颗粒通过分散液的形式加入,以10nm-50nm的原始粒径与溶剂混合处理得到二次粒径为100nm-2000nm的二氧化硅颗粒分散液;
所述无机耐磨颗粒通过分散液的形式加入,以10-50nm原生粒径与溶剂混合得到二次粒径为50-200nm的分散液;
所述有机粒子的粒径为1μm-10μm。
限定粒子的形态及加入形式,经检测有助进一步提升膜层性能。
进一步,纳米氧化锆粒子的平均粒径为HR涂层厚度的5%-80%;空心二氧化硅粒径50-80nm,实心二氧化硅的平均粒径为AR涂层厚度的30%-100%,有助提升膜层性能。
进一步,所述无机耐磨颗粒为六方氮化硼纳米片经预处理形成,预处理步骤:将原始粒径的六方氮化硼纳米片与溶剂搅拌混合并超声分散处理得到胶液,将胶液离心处理得一次底部固体;
将一次底部固体重复进行上述预处理步骤得到二次底部固体;
将二次底部固体重复上述预处理步骤并收集所得的离心液,该离心液即无机耐磨颗粒的分散液。针对性设计分散液制备工艺,有助分布均匀,进而提升膜层性能。
六方氮化硼纳米片可以经公知的制备方法得到,如电弧放电法、溶剂热法、气相沉积法、液相法。因为纳米粒子具有高表面能容易团聚,还需要对其表面进行处理,如聚合物分散剂、偶联剂处理,优选为可与树脂参与反应得具有反应性官能得硅烷偶联剂作为表面处理剂。
进一步,纳米氧化锆粒子为四方相、立方相型中一种或二者混合。限定相型有助提高膜层性能。
进一步,纳米氧化锆粒子以分散液的形式加入形成HR涂层所采用的涂液中,纳米氧化锆粒子的分散液制备如下:
第一,将含锆化合物与溶剂、有机酸的混合物按比例混合,升温至250-320℃,恒温反应3-18h;
第二,将反应得到过滤物经多次洗涤后,得到四方或立方相纳米氧化锆粒子;
第三,将得到的纳米氧化锆粒子、分散助剂加入到溶剂中,处理得到透明的纳米氧化锆分散液,分散液中纳米氧化锆粒子形成二次分散粒径为10-50nm的团聚态。
上述纳米氧化锆为结晶纳米氧化锆,是采用溶剂热一步合成法制备得到。原材料为含锆的化合物和有机溶剂,或者有机溶剂和有机酸的混合物,含锆化合物可以是有机锆化合物,包括正丙醇高,正丁醇锆,四叔丁醇锆等,也可以是无机锆化合物,包括硝酸锆,氯化锆,碱式碳酸锆等,优选有机锆化合物,更优选正丙醇锆。有机溶剂包括甲醇,乙醇,丁基醚,苯甲醇等,优选甲醇,乙醇,苯甲醇,有机酸包括甲酸,葵酸,硬脂酸,油酸等,优选甲酸,油酸。
纳米氧化锆分散液所用的溶剂,可以是极性溶剂,也可以是非极性溶剂,如正己烷,甲苯,乙醇,乙酸丁酯,乙酸乙酯,异丙醇,异丁醇,丙酮,丁酮,甲基异丁酮,丙二醇甲醚等,优选甲苯,乙酸丁酯,异丙醇,异丁醇,甲基异丁酮,丙二醇甲醚等。
在制备该纳米氧化锆分散液时,需要加入适量的分散助剂,分散助剂可以是硅烷偶联剂,钛酸酯偶联剂,具有表面亲和作用的高分子聚合物,丙烯酸酯单体和丙烯酸酯低聚物,优选具有表面亲和作用的高分子聚合物和丙烯酸酯单体,对氧化锆粉体进行分散。
该工艺下限定工序流程及反应温度,有助得到所需形态的纳米氧化锆。
进一步,所述AG涂层厚度在2-50μm且AG涂层的表面水接触角低于80°,所述HR涂层的光学厚度为1/2λ0,所述AR涂层的光学厚度为1/4λ0。
限定涂层的光学厚度关系,可得到反射率曲线为W型的宽谱带减反射膜。
对于基底而言,可以为三醋酸纤维素膜(TAC)、聚对苯二甲酸乙二醇酯膜(PET)、聚降冰片烯膜(COP)、聚甲基丙烯酸甲酯膜(PMMA)、聚碳酸酯膜(PC)、透明聚酰亚胺膜(CPI)等基材种的一种,从透明性及光学延迟性考虑,优选三醋酸纤维素膜(TAC)。基底的厚度,优选为25μm-300μm,当作为偏光片表面保护膜的情况下,出于薄型化考虑,优选25μm-80μm。
与现有技术相比,本发明的有益效果:
本发明膜层集防眩光、减反射功能为一体,且膜层具有高清晰度、低闪点、泛白抑制性好、硬度高、耐磨等优点。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为AG-HR-AR膜的膜层结构说明;
图2为实施例1的AG1-HR1-AR1膜透射率及反射率谱图;
图3为实施例2的AG2-HR1-AR1膜透射率及反射率谱图;
图4为对比例1的AG1-HR1-AR2膜透射率及反射率谱图;
图5为对比例2的AG1-AR1膜透射率及反射率谱图;
图6为实施例1的AG1-HR1-AR1膜扫描电镜AG层截面图;
图7为实施例1的AG1-HR1-AR1膜扫描电镜AG层截面放大图;
图8为实施例1的AG1-HR1-AR1膜扫描电镜AR层截面图;
图9为实施例7结晶纳米氧化锆的电镜照片;
图10为实施例7结晶纳米氧化锆的XRD图谱;
图11为实施例7氧化锆分散液的粒度分布图。
其中,附图标记为:
10、基底;20、AG涂层;21、有机微粒子;22、二氧化硅粒子团聚体;23、无机
耐磨粒子团聚体;30、HR涂层;31、纳米氧化锆粒子团聚体;40、AR涂层;41、空心二氧化硅粒子;42、实心二氧化硅粒子。
10、基底;20、AG涂层;21、有机微粒子;22、二氧化硅粒子团聚体;23、无机
耐磨粒子团聚体;30、HR涂层;31、纳米氧化锆粒子团聚体;40、AR涂层;41、空心二氧化硅粒子;42、实心二氧化硅粒子。
下面结合附图和具体实施例对本发明作进一步说明。
第一、结晶纳米氧化锆分散液的制备
案例1、结晶纳米氧化锆分散液的制备方法:将正丙醇锆和苯甲醇按质量比0.6:1的比例加入釜中(反应物总体积不超过釜体积的60%),设定转速为450转/min,釜体最高温度为275℃。反应完成后将得到的粉体先后使用乙醇和丙二醇甲醚多次洗涤(分别洗涤三次),后用丙二醇甲醚作为溶剂,高分子聚合物(含有颜料亲核基团的共聚物DISPERBYK2014,购买自毕克化学)为分散助剂,对氧化锆粉体进行超声分散得到纳米氧化锆分散液,分散液的固含量为20%。纳米氧化锆的分散粒径为57nm,纳米氧化锆的原生粒径为5-10nm,通过XRD测试可知,纳米氧化锆的晶型为四方相和立方相氧化锆的混合型。
案例2、结晶纳米氧化锆分散液的制备方法:将正丁醇锆和二丙酮醇按质量比0.56:1的比例加入釜中(反应物总体积不超过釜体积的60%),设定转速为450转/min,釜体
最高温度为275℃。反应完成后将得到的粉体先后使用乙醇和MIBK(甲基异丁基酮)多次洗涤(分别洗涤三次),后用MIBK作为溶剂,高分子聚合物(含有颜料亲和基团的结构化共聚物DISPERBYK-2013,购买自毕克化学)为分散助剂,对氧化锆粉体进行超声分散得到纳米氧化锆分散液,分散液的固含量为20%。纳米氧化锆的分散粒径为42nm,纳米氧化锆的原生粒径为8-12nm,通过XRD测试可知,纳米氧化锆的晶型为四方相和立方相氧化锆的混合型。
案例3、结晶纳米氧化锆分散液的制备方法:将碱式碳酸锆和正己醇按质量比0.62:1的比例加入釜中(反应物总体积不超过釜体积的60%),设定转速为450转/min,釜体最高温度为275℃。反应完成后将得到的粉体先后使用乙醇和MIBK(甲基异丁基酮)多次洗涤(分别洗涤三次),后用MIBK作为溶剂,高分子聚合物(含有颜料亲和基团的结构化共聚物DISPERBYK-2013,购买自毕克化学)为分散助剂,对氧化锆粉体进行超声分散得到氧化锆分散液,分散液的固含量为20%。纳米氧化锆的分散粒径为45nm,纳米氧化锆的原生粒径为8-12nm,通过XRD测试可知,纳米氧化锆的晶型为四方相和立方相氧化锆的混合型。
案例4、结晶纳米氧化锆分散液的制备方法:将正丁醇锆和苯甲醇按质量比0.48:1的比例加入釜中(反应物总体积不超过釜体积的60%),设定转速为450转/min,釜体最高温度为275℃。反应完成后将得到的粉体先后使用乙醇和MIBK(甲基异丁基酮)多次洗涤(分别洗涤三次),后用MIBK作为溶剂,高分子聚合物(含有颜料亲和基团的结构化共聚物DISPERBYK-2013,购买自毕克化学)为分散助剂,对氧化锆粉体进行超声分散得到氧化锆分散液,分散液的固含量为20%。纳米氧化锆的分散粒径为45nm,纳米氧化锆的原生粒径为8-12nm,通过XRD测试可知,纳米氧化锆的晶型为四方相和立方相氧化锆的混合型。
案例5、结晶纳米氧化锆分散液的制备方法:将硝酸锆和尿素和水的混合物按质量比0.48:1的比例加入釜中(反应物总体积不超过釜体积的60%),设定转速为450转/min,釜体最高温度为270℃。反应完成后将得到的粉体先后使用乙醇和MIBK(甲基异丁基酮)多次洗涤(分别洗涤三次),后用MIBK作为溶剂,高分子聚合物(含有颜料亲和基团的共聚物DISPERSANT-2008,购买自毕克化学)为分散助剂,对氧化锆粉体进行超声分散得到氧化锆分散液,分散液的固含量为20%。纳米氧化锆的原生粒径为20-25nm,通过XRD测试可知,纳米氧化锆的晶型为单斜相和四方相的混合型。由于反应是在水溶液中进行的,后续处理很难完全将水除去,故所得到的分散液二次粒径偏大,大于100nm,并且分散液稍显浑浊,不是透明的。
案例6、结晶纳米氧化锆分散液的制备方法:将四叔丁醇锆和苯甲醇按质量比0.6:1的比例加入釜中(反应物总体积不超过釜体积的60%),设定转速为450转/min,釜体
最高温度为300℃。反应完成后将得到的粉体先后使用乙醇和丙二醇甲醚多次洗涤(分别洗涤三次),后用丙二醇甲醚作为溶剂,高分子聚合物(含有颜料亲和基团的共聚物UNIQ-SPERSE 670 U,购买自德国湛新集团)为分散助剂,对氧化锆粉体进行超声分散得到氧化锆分散液,分散液的固含量为20%。纳米氧化锆的原生粒径为15-25nm,通过XRD测试可知,纳米氧化锆的晶型为主要为立方相。过高的反应温度制备得到的纳米氧化锆的原生粒径较大,并且更难分散,该条件下制备得到的纳米氧化锆的分散液二次粒径大于100nm,并且分散液稍显浑浊,不是透明的。
通过上述实施例及对比例结果说明,不同原料跟溶剂的选择会影响纳米氧化锆的原生粒径跟晶型,且所得纳米氧化锆分散粒径更大。当选择此纳米氧化锆分散液加入到HR涂层中会导致涂层的透过率偏低,雾度偏高,并且影响涂层的折射率,参见下述对比例3。
第二、分散液的制备
二氧化硅颗粒分散液:分散液是将市购的10-50nm原始粒径的实心二氧化硅粒子(未经过表面处理)在乙醇溶剂中经球磨法研磨后得到二次分散粒径在预定范围的二氧化硅粒子分散液。可通过调整溶剂比例、研磨参数等调整二次分散粒径,此不在赘述。
无机耐磨颗粒分散液:首先,预处理步骤:将去离子水与乙醇按体积比1:1混合,将市购的原生粒径为10-50nm的六方氮化硼纳米片(无表面处理)在搅拌的情况下加入,搅拌6-24hr,超声分散10min左右。再将分散液进行离心分离,离心机转速为6000-10000rpm,离心5-10min,弃上层清液,留下层沉淀物(一次底部固体)。
然后,用一次底部固体重复,重复上述预处理步骤(与溶剂混合、搅拌、超声、离心),得到二次底部固体待用。
最后,将溶剂(丙二醇甲醚)与上述二次底部固体进行上述预处理步骤,得到离心胶体溶液即为纳米六方氮化硼分散液。
所得底部沉淀继续进行上述预处理步骤,收集离心胶体溶液,再将离心出的底部固体沉淀进行上述预处理步骤,直至底部没有沉淀为止,收集到的离心胶体溶液即为纳米六方氮化硼分散液。
第三、涂层所用涂液的制备
涂层所用涂液AG1的制备:按质量百分数配置10kg涂液,其中十官能团的聚氨酯丙烯酸酯低聚物(购买自上海仰世实业有限公司的JD8098,)占28%,六官能团聚氨酯丙烯酸酯低聚物(购买自德国湛新集团的EB1290)占3%,三官能团的丙烯酸酯单体(季戊四醇三丙烯酸酯)占3%,六官能团丙烯酸酯单体(双季戊四醇六丙烯酸酯)占3%,硫醇类阻聚剂(丁基季戊四硫醇)占2%,分散粒径为240nm的二氧化硅占8%,聚倍半硅氧烷微粒子(购买自长兴特殊材料(苏州)有限公司的DF20A0)占0.5%,分散粒
径为80nm的六方氮化硼纳米片占2%,光引发剂(光引发剂184,购买自上海引昌新材料有限公司)占2%,其他比例的乙酸丁酯和异丁醇的混合溶剂(按照体积比,乙酸丁酯占75%,异丁醇占25%),将各组分加入到乙酸丁酯和异丁醇的混合溶剂中,搅拌至各组分完全溶解,得到固含量为51.5%的涂液AG1。
涂液AG2的制备:按质量百分数配置10kg涂液,其中九官能团聚氨酯丙烯酸酯低聚物(购买自常州乔润新材料科技有限公司的JR9929)占21.5%,三十官能团超支化丙烯酸酯低聚物(购买自上海和盛实业集团有限公司的BDT-4330)占2.8%,三官能团丙烯酸酯单体(季戊四醇三丙烯酸酯)占1.0%,六官能团丙烯酸酯单体(双季戊四醇六丙烯酸酯)占2.4%,硫醇类阻聚剂(丁基季戊四硫醇)占2%,聚乙二醇(购买自武汉华翔科洁生物技术有限公司的600DA)占1.9%,分散粒径为350nm二氧化硅占8%,交联聚苯乙烯微粒(购买自西格玛奥德里奇(上海)贸易有限公司)占1%,分散粒径为100nm的纳米金刚石粒子2%,光引发剂184占2.1%,其他比例的乙酸丁酯和丙二醇甲醚的混合溶剂(按照体积比,乙酸丁酯占75%,丙二醇甲醚占25%),将各组分加入到乙酸丁酯和丙二醇甲醚的混合溶剂中,搅拌至各组分完全溶解,得到固含量为44.7%的涂液AG2。
涂液AG3的制备:按质量百分数配置10kg涂液,其中九官能团聚氨酯丙烯酸酯低聚物(购买自嵩常贸易(上海)有限公司的SU5039)占21.7%,三十官能团超支化丙烯酸酯低聚物(购买自上海和盛实业集团有限公司的BDT-4330)占3.1%,三官能团丙烯酸酯单体(季戊四醇三丙烯酸酯)占1.2%,六官能团丙烯酸酯单体(双季戊四醇六丙烯酸酯)占2.4%,硫醇类阻聚剂(丁基季戊四硫醇)占1.9%,聚乙二醇600DA占2%,分散液的二次粒径为600nm二氧化硅占10%,聚甲基丙烯酸甲酯微粒占1.5%,分散粒径为80nm的纳米氧化铝粒子占2%,光引发剂184占2.1%,其他比例的乙酸丁酯和丙二醇甲醚的混合溶剂(按照体积比,乙酸丁酯占75%,丙二醇甲醚占25%),将各组分加入到乙酸丁酯和丙二醇甲醚的混合溶剂中,搅拌至以上组分完全溶解,得到固含量为47.9%的涂液AG3。
涂液AG4的制备:按涂液3的制备方法,区别在于不加聚甲基丙烯酸甲酯微粒。
涂液AG5的制备:按涂液3的制备方法,区别在于不加纳米氧化铝粒子。
涂液HR1的制备:按质量百分数配置10kg涂液,其中脂肪族六丙烯酸酯(购买自湛新树脂(中国)有限公司的EBECRYL 1290N)占1.24%,十五官能团聚氨酯丙烯酸酯预聚物(购买自广州五行材料科技有限公司的W991)占0.165%,四官能团丙烯酸酯单体(双-三羟甲基丙烷四丙烯酸酯)占0.245%,三官能团丙烯酸酯单体(三羟甲基丙烷三甲基丙烯酸酯)占0.31%,分散粒径为20nm的纳米氧化锆(案例1所制备的结晶纳米氧化锆)占1.4%,流平剂(购买自毕克化学的聚醚改性二甲基聚硅氧烷BYK-378)占
0.11%,光引发剂(1-羟基环己基苯基甲酮)占0.27%,其他比例的丙二醇甲醚,将各组分加入到丙二醇甲醚溶剂中,搅拌至各组分完全溶解,得到固含量为3.7%的涂液HR1。
涂液HR2的制备:按涂液HR1的制备方法,选用案例5制备的分散粒径大于100nm氧化锆分散液。
涂液AR1的制备:按质量百分数配置10kg涂液,其中九官能团脂肪族聚氨酯丙烯酸酯(购买自常州乔润新材料科技有限公司的JR9929)占0.314%,二官能团环氧丙烯酸酯(购买自广州五行材料科技有限公司的G5100)占0.078%,粒径70nm空心二氧化硅占1.26%,实心二氧化硅占0.27%,POSS占0.5%,光引发剂占0.24%,其他比例的溶剂,将各组分添加到甲基异丁基酮、丙二醇甲醚、异丁醇、乙酸乙酯、乙酸丁酯的混合溶剂(各组分的体积比为1:4:3:4:8)中,搅拌至各组分完全溶解,得到固含为2.7%的涂液AR1。
涂液AR2的制备:用涂液AR1的配制方法,区别在于选用20nm的空心二氧化硅。
涂液AR3的制备:用涂液AR1的配制方法,区别在于不加实心二氧化硅。
涂液AR4的制备:用涂液AR1的配制方法,不加POSS。
第四、涂层的制备
以下各实施例中膜层结构如表1所示。
实施例1
首先,用微凹辊涂布机,将涂液AG1涂布在80μm厚度的三醋酸纤维素膜上并在80℃下干燥。之后,在氮气氛围中,用高压汞灯在600mJ/cm2固化能量下使涂层固化,涂层厚度为4μm,得到膜AG1。相应AG涂层的表面水接触角低于80°。
然后,用狭缝涂布机,将涂液HR1涂布在AG1膜上,并在80℃下干燥。之后,在氮气氛围中,用高压汞灯在600mJ/cm2固化能量下使涂层固化,HR的涂层厚度为(1/2)λ0,得到膜AG1-HR1。
最后,用狭缝涂布机,将涂液AR1涂布在上述AG1-HR1膜上,并在80℃下干燥。之后,在氮气氛围中,用高压汞灯在600mJ/cm2固化能量下使涂层固化,AR的涂层厚度为(1/4)λ0,得到膜AG1-HR1-AR1。
实施例2
按实施例1的方法,将HR的涂层厚度减半为1/4λ0,得到膜AG1-HR1(1/4λ0)-AR1。
实施例3
按实施例1的方法,将涂液AG1替换为AG2(表面水接触角低于80°),得到膜AG2-HR1-AR1。
实施例4
按实施例1的方法,将涂液AG1替换为AG3(表面水接触角低于80°),得到膜
AG3-HR1-AR1。
实施例5
按实施例1的方法,将涂液AG1替换为AG4(表面水接触角低于80°),得到膜AG4-HR1-AR1。
实施例6
按实施例1的方法,将涂液AG1替换为AG5(表面水接触角低于80°),得到膜AG5-HR1-AR1。
对比例1
按实施例1的方法,将涂液AR1替换为AR2,得到膜AG1-HR1-AR2。
对比例2
按实施例1的方法,不涂布HR层,得到膜AG1-AR1。
对比例3
按实施例1的方法,将涂液HR1替换为HR2,得到膜AG1-HR2-AR1。
对比例4
按实施例1的方法,将涂液AG1替换为AG2,将涂液AR1替换为AR3,得到膜AG2-HR1-AR3。
对比例5
按实施例1的方法,将涂液AG1替换为AG3,将涂液AR1替换为AR4,得到膜AG3-HR1-AR4。
第五、测试
本发明膜层的结构图1所示,底部为透明的基底10,基底上依次为AG涂层20、HR涂层30、AR涂层40,AG涂层20内为有机微粒子21、二氧化硅粒子团聚体22、无机耐磨粒子团聚体23以及位于表面处的二氧化硅粒子团聚体22,HR涂层30中的纳米氧化锆粒子团聚体31,AR涂层40内的空心二氧化硅粒子41、实心二氧化硅粒子42。
测试评价方法说明:
1、减反射膜的光学性能
检测仪器:紫外分光光度计
检测方法:将涂布后的柔性薄膜进行光学性能测试,测试薄膜的透射率、反射率,测试范围为300-1100nm。
2、减反射膜的疏水功能
检测仪器:接触角测试仪
检测方法:将涂布后的柔性薄膜进行水接触角测试,水滴体积2微升。
3、减反射膜的耐磨性能
检测仪器:耐摩擦试验机
检测方法:将涂布后的柔性薄膜进行耐摩擦性能测试,按照不同的要求放置砝码,更改滑动次数和速度。
4、减反射膜的硬度
检测仪器:电动铅笔硬度计
检测方法:将涂布后的柔性薄膜进行硬度测试,测试要求为:500g,速度40。
5、涂层折射率的测定:
检验仪器:椭偏仪Semilab SE-2000
测试方法:采用提拉涂布的方法将涂液镀在硅片上,将硅片放入椭偏仪中进行测试。
6、涂层厚度:
检验仪器:厚度仪
测试方法:将涂布后的柔性薄膜放置在厚度仪上进行测试。
7、涂层雾度:
检验仪器:光电雾度仪WGW
测试方法:将涂布后的柔性薄膜放置在雾度仪中进行测试。
8、防眩光膜的清晰度及泛白抑制性测试
清晰度性:通过防眩膜观察荧光灯的灯管轮廓,对膜的透射扩散性进行评价。
◎:清晰看到灯管,轮廓清晰,无扩散效应
○:可以看到灯管,轮廓轻微模糊
×:无法看清灯管,扩散效应明显
泛白抑制性:将防眩膜贴于黑色亚克力板上,观察涂膜泛白情况:
◎:泛白抑制性极佳
○:泛白抑制性良好
×:泛白抑制性差。
测试结果如表1、图2-图11所示:
从实施例1跟对比例1的结果可以看出,当AR涂层选20nm的空心二氧化硅粒子,耐磨性会提高,但会影响光学性能,所以需要选择粒径合适的空心二氧化硅粒子。
从实施例1跟对比例2的结果可以看出,当增加HR层后,涂膜的硬度和耐磨性都会提高,透射率增加,反射率降低,所以需要选择粒径合适的空心二氧化硅粒子。
从实施例1跟对比例3的结果可以看出,当HR涂层中添加分散粒径大于100nm的纳米氧化锆粒子会影响涂膜的光学透过性能,所以优选分散粒径小于100nm的纳米氧化锆粒子。
从实施例3跟对比例4的结果可以看出,当AR涂层中不添加实心二氧化硅粒子,涂膜的耐磨性下降。
从实施例4跟对比例5的结果可以看出,当AR涂层中不添加POSS,涂膜的硬度跟耐磨性都下降。
从实施例5的结果可以看出,当AG层中不加有机粒子,由于不能通过增加内部散射得到内雾都,所以涂膜的总雾度明显下降。
从实施例6的结果可以看出,当AG层中不加无机耐磨粒子,涂膜的钢丝绒耐磨性明显下降。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (14)
- 用于显示器的抗眩光减反射膜,其特征在于,自下至上依次包括基底、AG涂层、HR涂层、AR涂层;AG涂层中包括粘合剂树脂、二氧化硅颗粒、有机粒子、无机耐磨颗粒;所述二氧化硅颗粒为100nm-3000nm的团聚体颗粒;所述有机粒子为聚甲基丙烯酸甲酯微粒子、聚苯乙烯微粒子、聚甲基丙烯酸甲酯聚苯乙烯共聚物微粒子、聚倍半硅氧烷微粒子中的一种或多种;所述无机耐磨颗粒为纳米氧化铝、纳米氧化锆、纳米金刚石、六方氮化硼纳米片中一种或多种,所述无机耐磨颗粒为50-200nm的团聚体颗粒;HR涂层的折射率1.53-1.74;AR涂层的折射率1.2-1.48。
- 如权利要求1所述的用于显示器的抗眩光减反射膜,其特征在于:HR涂层中包括粘合剂树脂、折射率在2.0-2.8的无机金属氧化物粒子,无机金属氧化物粒子在涂层中团聚呈粒径10-80nm的颗粒状,无机金属氧化物粒子为纳米氧化锆或氧化钛;AR涂层中包括粘合剂树脂、折射率1.15-1.40的空心二氧化硅粒子。
- 如权利要求1所述的用于显示器的抗眩光减反射膜,其特征在于:以质量份数计,AG涂层中,包括22-45份的粘合剂树脂,二氧化硅颗粒3-7份,有机粒子1-3份,无机耐磨颗粒1-3份;以质量份数计,HR涂层中,包括40-200份的粘合剂树脂,纳米氧化锆粒子20-75份;以质量份数计,AR涂层中,包括9-25份粘合剂树脂,空心二氧化硅粒子30-80份。
- 如权利要求3所述的用于显示器的抗眩光减反射膜,其特征在于:AG涂层、HR涂层、AR涂层中的粘合剂树脂均包括六官能团以上的光固化低聚物树脂,三官能团以上的光固化稀释单体树脂;光固化低聚物树脂为聚氨酯丙烯酸酯低聚物、环氧丙烯酸酯低聚物、聚酯丙烯酸酯和聚醚丙烯酸酯、聚丙烯酸树脂低聚物、环氧树脂聚合物、含氧丙烯酸酯、脲酸丙烯酸酯中一种或多种;光固化稀释单体树脂为甲基丙烯酸乙酯、甲基丙烯酸乙基己酯、苯乙烯、甲基苯乙烯、N-乙烯基吡咯烷酮单官能度单体、聚羟甲基丙烷三甲基丙烯酸酯、二甘醇二甲基丙烯酸酯、三丙二醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、己二醇甲基丙烯酸酯、季戊四醇三甲基丙烯酸酯、二季戊四醇六甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯中一种或多种。
- 如权利要求3所述的用于显示器的抗眩光减反射膜,其特征在于:AR涂层中 包括含氟聚合物2-8份、无机粒子5-30份、POSS5-23份,无机粒子为氟化镁、氮化硼、二氧化硅、三氧化二铝中一种或多种,含氟聚合物为部分氟化的丙烯酸酯有机硅共聚物、部分或者完全氟化的丙烯酸类化合物、部分或者完全氟化的乙烯基醚的一种或多种,POSS为苯基POSS、氨基POSS、乙烯基POSS、丙烯酰基POSS中一种或多种。
- 如权利要求3所述的用于显示器的抗眩光减反射膜,其特征在于:以质量百分比计,形成AG涂层所采用的涂液包括六官能团以上的光固化低聚物树脂18%-38%,三官能团以上的光固化稀释单体树脂4%-7%,二氧化硅颗粒8%-12%,有机粒子1%-3%,无机耐磨颗粒1%-3%,助剂1%-5%,光引发剂1%-3%。
- 如权利要求3所述的用于显示器的抗眩光减反射膜,其特征在于:以质量百分比计,形成HR涂层所采用的涂液包括六官能团以上的光固化低聚物树脂1%-3%,三官能团以上的光固化稀释单体树脂0.3%-1%,纳米氧化锆粒子1%-3%,助剂0.05%-0.2%,光引发剂0.1%-0.5%。
- 如权利要求3所述的用于显示器的抗眩光减反射膜,其特征在于:以质量百分比计,形成AR涂层所采用的涂液包括六官能团以上的光固化低聚物树脂0.25%-0.5%,三官能团以上的光固化稀释单体树脂0.05%-0.1%,空心二氧化硅粒子0.3%-1.5%,实心二氧化硅粒子0.1%-1%,POSS0.1%-1%,光引发剂0.1%-0.5%。
- 如权利要求6所述的用于显示器的抗眩光减反射膜,其特征在于:形成AG涂层所采用的涂液中,所述二氧化硅颗粒通过分散液的形式加入,以10nm-50nm的原始粒径与溶剂混合处理得到二次粒径为100nm-2000nm的二氧化硅颗粒分散液;所述无机耐磨颗粒通过分散液的形式加入,以10-50nm原生粒径与溶剂混合得到二次粒径为50-200nm的分散液;所述有机粒子的粒径为1μm-10μm。
- 如权利要求8所述的用于显示器的抗眩光减反射膜,其特征在于:纳米氧化锆粒子的平均粒径为HR涂层厚度的5%-80%;空心二氧化硅粒径50-80nm,实心二氧化硅平均粒径为AR涂层厚度的30%-100%。
- 如权利要求9所述的用于显示器的抗眩光减反射膜,其特征在于:所述无机耐磨颗粒由六方氮化硼纳米片通过预处理形成,预处理步骤:将原始粒径的六方氮化硼纳米片与溶剂搅拌混合并超声分散处理得到胶液,将胶液离心处理得一次底部固体;将一次底部固体重复进行上述预处理步骤得到二次底部固体;将二次底部固体重复上述预处理步骤并收集所得的离心液,该离心液即无机耐磨颗粒的分散液。
- 如权利要求2所述的用于显示器的抗眩光减反射膜,其特征在于:纳米氧化锆粒子为四方相、立方相型中一种或二者混合。
- 如权利要求12所述的用于显示器的抗眩光减反射膜,其特征在于:纳米氧化锆粒子以分散液的形式加入形成HR涂层所采用的涂液中,纳米氧化锆粒子的分散液制备如下:第一,将含锆化合物与溶剂、有机酸的混合物按比例混合,升温至250-320℃,恒温反应3-18h;第二,将反应得到过滤物经多次洗涤后,得到四方或立方相纳米氧化锆粒子;第三,将得到的纳米氧化锆粒子、分散助剂加入到溶剂中,处理得到透明的纳米氧化锆分散液,分散液中纳米氧化锆粒子形成二次分散粒径为10-50nm的团聚态。
- 如权利要求1~13中任一项所述的用于显示器的抗眩光减反射膜,其特征在于:AG涂层厚度在2-50μm且AG涂层的表面水接触角低于80°,HR涂层的光学厚度为1/2λ0,所述AR涂层的光学厚度为1/4λ0。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023572754A JP2024542339A (ja) | 2022-10-20 | 2023-02-28 | ディスプレイ用のアンチグレア反射防止膜 |
KR1020237032228A KR102790531B1 (ko) | 2022-10-20 | 2023-02-28 | 디스플레이용 눈부심방지 반사방지 필름 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211286869.8 | 2022-10-20 | ||
CN202211286869.8A CN115508920B (zh) | 2022-10-20 | 2022-10-20 | 用于显示器的抗眩光减反射膜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024082511A1 true WO2024082511A1 (zh) | 2024-04-25 |
Family
ID=84509851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/078722 WO2024082511A1 (zh) | 2022-10-20 | 2023-02-28 | 用于显示器的抗眩光减反射膜 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2024542339A (zh) |
KR (1) | KR102790531B1 (zh) |
CN (1) | CN115508920B (zh) |
TW (1) | TWI869990B (zh) |
WO (1) | WO2024082511A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119798896A (zh) * | 2025-03-14 | 2025-04-11 | 安徽皖维先进功能膜材料研究院有限公司 | 一种防眩光聚乙烯醇膜及其制备方法与偏光片 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115508920B (zh) * | 2022-10-20 | 2024-10-25 | 宁波甬安光科新材料科技有限公司 | 用于显示器的抗眩光减反射膜 |
CN116779705B (zh) * | 2023-07-07 | 2024-03-26 | 宁波欧达光电有限公司 | 一种具有防眩光复合膜的光伏组件 |
CN117625033A (zh) * | 2023-11-28 | 2024-03-01 | 宁波甬安光科新材料科技有限公司 | 增硬减反射涂液及其制备方法和应用 |
CN117777776A (zh) * | 2023-12-26 | 2024-03-29 | Oppo广东移动通信有限公司 | 柔性保护膜、柔性显示屏组件及可折叠电子设备 |
CN119620255B (zh) * | 2025-02-14 | 2025-06-13 | 湖南壹鑫科技有限公司 | 一种高清晰防眩光纳米ag膜及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006349830A (ja) * | 2005-06-14 | 2006-12-28 | Riken Technos Corp | 反射防止膜及び反射防止フィルム |
CN1894601A (zh) * | 2003-12-17 | 2007-01-10 | 株式会社普利司通 | 防反射膜、电磁屏蔽性光透射性窗材、气体放电型发光面板、平板显示面板、橱窗材料和太阳能电池组件 |
US20090246415A1 (en) * | 2008-03-28 | 2009-10-01 | Wataru Horie | Functional film and display apparatus |
KR20130106670A (ko) * | 2012-03-20 | 2013-09-30 | 주식회사 옴니켐 | 반사방지 하드코팅 필름 및 이의 제조방법 |
CN105566963A (zh) * | 2015-12-25 | 2016-05-11 | 佛山佛塑科技集团股份有限公司 | 一种防眩涂料及其防眩膜 |
CN115508920A (zh) * | 2022-10-20 | 2022-12-23 | 宁波甬安光科新材料科技有限公司 | 用于显示器的抗眩光减反射膜 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4878796B2 (ja) * | 2004-09-06 | 2012-02-15 | 富士フイルム株式会社 | 光学フィルムの製造方法 |
CN100552475C (zh) * | 2005-08-03 | 2009-10-21 | 富士胶片株式会社 | 防反射膜、偏光板和图像显示装置 |
TW200712579A (en) * | 2005-08-12 | 2007-04-01 | Dainippon Printing Co Ltd | Protective film for polarizing plate and polarizing plate |
EP1972598B1 (en) * | 2005-11-25 | 2016-06-15 | JGC Catalysts and Chemicals Ltd. | Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating |
JP2007233185A (ja) * | 2006-03-02 | 2007-09-13 | Fujifilm Corp | 光学フィルム、反射防止フィルム、偏光板および画像表示装置 |
CN101341427B (zh) * | 2006-08-14 | 2012-08-29 | 大日本印刷株式会社 | 防眩性光学叠层体 |
KR20090118724A (ko) * | 2008-05-14 | 2009-11-18 | 도레이새한 주식회사 | 내찰상성 및 표면 슬립성이 우수한 반사방지필름 |
CN101630026A (zh) * | 2008-07-14 | 2010-01-20 | 达信科技股份有限公司 | 抗反射抗眩光学薄膜及其制造方法 |
JP5411477B2 (ja) | 2008-09-30 | 2014-02-12 | 積水化学工業株式会社 | 中空有機−無機ハイブリッド微粒子、反射防止性樹脂組成物、反射防止フィルム用コーティング剤、反射防止積層体及び反射防止フィルム |
JP2011081118A (ja) | 2009-10-06 | 2011-04-21 | Toppan Printing Co Ltd | 防眩フィルム |
JP6213241B2 (ja) * | 2011-07-26 | 2017-10-18 | 大日本印刷株式会社 | 防眩性フィルム、偏光板及び画像表示装置 |
TWI628457B (zh) * | 2014-04-17 | 2018-07-01 | 日商大日本印刷股份有限公司 | 防眩膜、偏光板、液晶面板以及影像顯示裝置 |
JP6520114B2 (ja) * | 2014-12-25 | 2019-05-29 | 日油株式会社 | 防眩性反射防止フィルム及びそれを用いた画像表示装置 |
CN108899435A (zh) * | 2018-06-22 | 2018-11-27 | 中国乐凯集团有限公司 | Oled照明器件光提取膜及其制造方法 |
CN114174871B (zh) * | 2019-07-30 | 2023-11-10 | 东山薄膜株式会社 | 防反射膜 |
JPWO2021153423A1 (zh) * | 2020-01-27 | 2021-08-05 | ||
US11740388B2 (en) * | 2020-02-13 | 2023-08-29 | Benq Materials Corporation | Anti-glare film and polarizer with the same |
JP2022079218A (ja) * | 2020-11-16 | 2022-05-26 | リンテック株式会社 | 防眩性反射防止シートおよび反射防止層積層用防眩性シート |
CN114479152B (zh) * | 2021-12-30 | 2023-07-04 | 宁波惠之星新材料科技股份有限公司 | 一种高硬度防眩膜 |
-
2022
- 2022-10-20 CN CN202211286869.8A patent/CN115508920B/zh active Active
-
2023
- 2023-02-28 KR KR1020237032228A patent/KR102790531B1/ko active Active
- 2023-02-28 JP JP2023572754A patent/JP2024542339A/ja active Pending
- 2023-02-28 WO PCT/CN2023/078722 patent/WO2024082511A1/zh unknown
- 2023-08-24 TW TW112131830A patent/TWI869990B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1894601A (zh) * | 2003-12-17 | 2007-01-10 | 株式会社普利司通 | 防反射膜、电磁屏蔽性光透射性窗材、气体放电型发光面板、平板显示面板、橱窗材料和太阳能电池组件 |
JP2006349830A (ja) * | 2005-06-14 | 2006-12-28 | Riken Technos Corp | 反射防止膜及び反射防止フィルム |
US20090246415A1 (en) * | 2008-03-28 | 2009-10-01 | Wataru Horie | Functional film and display apparatus |
KR20130106670A (ko) * | 2012-03-20 | 2013-09-30 | 주식회사 옴니켐 | 반사방지 하드코팅 필름 및 이의 제조방법 |
CN105566963A (zh) * | 2015-12-25 | 2016-05-11 | 佛山佛塑科技集团股份有限公司 | 一种防眩涂料及其防眩膜 |
CN115508920A (zh) * | 2022-10-20 | 2022-12-23 | 宁波甬安光科新材料科技有限公司 | 用于显示器的抗眩光减反射膜 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119798896A (zh) * | 2025-03-14 | 2025-04-11 | 安徽皖维先进功能膜材料研究院有限公司 | 一种防眩光聚乙烯醇膜及其制备方法与偏光片 |
Also Published As
Publication number | Publication date |
---|---|
JP2024542339A (ja) | 2024-11-15 |
KR20240057381A (ko) | 2024-05-02 |
TWI869990B (zh) | 2025-01-11 |
CN115508920B (zh) | 2024-10-25 |
KR102790531B1 (ko) | 2025-04-03 |
CN115508920A (zh) | 2022-12-23 |
TW202417885A (zh) | 2024-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115508920B (zh) | 用于显示器的抗眩光减反射膜 | |
KR101009821B1 (ko) | 반사방지 코팅 조성물, 반사방지 필름 및 이의 제조방법 | |
JP5712100B2 (ja) | 反射防止フィルムの製造方法、反射防止フィルム、塗布組成物 | |
JP5216501B2 (ja) | 光学フィルム、偏光板、及び画像表示装置 | |
JP4187454B2 (ja) | 反射防止フィルム | |
TW200404846A (en) | Antiglare and antireflection coatings of surface active nanoparticles | |
EP2147073A1 (en) | Composition for anti-glare film and anti-glare film prepared using the same | |
WO1998045734A1 (fr) | Films antireflet et afficheur correspondant | |
TW200405030A (en) | Antireflection film, polarizing plate and image display device | |
TWI826414B (zh) | 抗反射膜、偏光板、及顯示設備 | |
EP3734332B1 (en) | Anti-glare film and display apparatus | |
WO2007004818A1 (en) | Anti-reflective film having high surface hardness and antistatic property and method for producing the same | |
TWI718535B (zh) | 抗反射膜、偏光板、及顯示設備 | |
JPH11326601A (ja) | 反射防止膜およびそれを用いた画像表示装置 | |
KR20090049517A (ko) | 반사방지 코팅 조성물 및 이것을 이용하여 제조된 반사방지필름 | |
CN100390570C (zh) | 高折射率层、可固化涂布组合物的制备方法、防反射薄膜、偏振片和使用它们的图像显示装置 | |
TWI693426B (zh) | 抗反射膜、偏光板及顯示器設備 | |
CN115685408A (zh) | 一种光学薄膜及其制备方法 | |
JP2004271735A (ja) | 硬化性コーティング組成物の製造方法、硬化膜、反射防止膜、偏光板、及び画像表示装置 | |
JP2001255403A (ja) | 帯電防止反射防止フィルムおよびそれを用いた陰極線管表示装置 | |
US20060165964A1 (en) | High refractive index layer, production process of curable coating composition, antireflection film, polarizing plate and image display device using thereof | |
JP2007314594A (ja) | ハードコート層形成用組成物及び積層体 | |
CN117480412A (zh) | 硬涂膜、光学构件及图像显示装置 | |
JP2007277504A (ja) | 硬化性樹脂組成物及び反射防止膜 | |
JP2010139878A (ja) | 光学積層体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023572754 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23878515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |