[go: up one dir, main page]

WO2020054214A1 - Inspection instruction information generation device, substrate inspection system, inspection instruction information generation method, and inspection instruction information generation program - Google Patents

Inspection instruction information generation device, substrate inspection system, inspection instruction information generation method, and inspection instruction information generation program Download PDF

Info

Publication number
WO2020054214A1
WO2020054214A1 PCT/JP2019/028270 JP2019028270W WO2020054214A1 WO 2020054214 A1 WO2020054214 A1 WO 2020054214A1 JP 2019028270 W JP2019028270 W JP 2019028270W WO 2020054214 A1 WO2020054214 A1 WO 2020054214A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
instruction information
inspection
wiring
inspection instruction
Prior art date
Application number
PCT/JP2019/028270
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 椹木
Original Assignee
日本電産リード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産リード株式会社 filed Critical 日本電産リード株式会社
Priority to KR1020217011041A priority Critical patent/KR102707838B1/en
Priority to JP2020546728A priority patent/JP7352840B2/en
Priority to CN201980060230.8A priority patent/CN112689769B/en
Publication of WO2020054214A1 publication Critical patent/WO2020054214A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to an inspection instruction information generating apparatus that generates inspection instruction information for instructing an inspection position when inspecting a substrate, a substrate inspection system that performs an inspection using the inspection instruction information, an inspection instruction information generating method, and The present invention relates to an inspection instruction information generation program.
  • a substrate provided with a conductor that spreads in a plane (hereinafter, referred to as a plane conductor)
  • conductive portions such as pads, bumps, and wiring on the surface of the substrate and the plane conductor are electrically connected in the thickness direction of the substrate.
  • a board with a connected structure.
  • FIG. 22 is a conceptual schematic diagram showing a multi-layer substrate WB which is an example of a substrate provided with a planar conductor IP which is a conductor pattern which spreads planarly in an inner layer of the substrate.
  • the multilayer substrate WB shown in FIG. 22 has conductive portions PA and PB such as pads and wiring patterns provided on the substrate surface BS.
  • the conductive portions PA and PB are electrically connected to the planar conductor IP by vias RA and RB.
  • the planar conductor IP corresponds to the planar conductor.
  • a printed wiring board is laminated on both sides of a conductive metal plate as a base, and the formed substrate is peeled off from the base metal plate to form two printed wiring boards.
  • a method of forming a substrate There is a method of forming a substrate.
  • the substrate before the substrate is separated from the base metal plate (hereinafter, referred to as an intermediate substrate) has an aspect in which the metal plate is sandwiched between two substrates. .
  • Such an intermediate substrate is also called a carrier substrate.
  • FIG. 23 is a conceptual schematic diagram showing an example of such an intermediate substrate MB.
  • a substrate WB1 is provided on one surface of a metal plate MP
  • a substrate WB2 is provided on the other surface of the metal plate MP.
  • conductive portions PA1, PB1,..., PF1 such as pads and wiring patterns are provided on the substrate surface BS1 of the substrate WB1.
  • Conductive portions PA2, PB2,..., PF2 such as pads and wiring patterns are provided on a contact surface BS2 of the substrate WB1 with the metal plate MP.
  • the metal plate MP is, for example, a conductive metal plate having a thickness of about 1 mm to 10 mm.
  • the conductive portions PA1 to PF1 are electrically connected to the conductive portions PA2 to PF2 through vias RA to RF. Since the conductive portions PA2 to PF2 are in close contact with and conductive to the metal plate MP, the conductive portions PA1 to PF1 are electrically connected to the metal plate MP by the vias RA to RF.
  • the conductive part PA1 and the via RA form a pair, the conductive part PB1 and the via RB form a pair, and the conductive part and the via respectively form a pair.
  • the substrate WB2 has the same configuration as the substrate WB1, and a description thereof will be omitted.
  • the metal plate MP corresponds to a planar conductor.
  • the resistance values Ra, Rb of the vias RA, RB may be measured.
  • the resistance of the equivalent resistance of the planar conductor IP is represented by R1 to R4.
  • a measurement current I flows between the conductive portions PA1 and PB1, and a voltage V generated between the conductive portions PA1 and PB1. Is measured, and the resistance value is calculated as V / I.
  • V / I on the current path from the conductive part PA1 in the conductive portion PB1, two locations via RA, the resistance value of the RB Ra, and Rb, the resistance value R 1 of the sheet conductor IP resistor R1 Is obtained.
  • the conductive portions PA1 to PE1 are described in a straight line for the sake of space. However, in an actual substrate, the conductive portions PA1 to PE1 are two-dimensionally distributed on the substrate surface. Therefore, resistance against the electric current I 1 by selecting the pair of conductive parts PA1, PC1 for the measurement, the electric current I 2 to select another pair of conductive portions PB1, PD1, the current I 1, I 2 The current paths may overlap.
  • the inspection must be performed one by one between the pair of conductive parts so that the measurement current does not overlap, and the inspection time of the entire substrate increases.
  • An object of the present invention is to provide an inspection instruction information generating apparatus that generates inspection instruction information indicating an inspection location where the inspection time of a substrate can be easily reduced, a board inspection system including the inspection instruction information generating apparatus, and an inspection instruction information generating method. And an inspection instruction information generation program.
  • a conductor layer that is a layer provided with a conductive planar conductor that spreads in a plane, a substrate surface provided with a plurality of conductive portions, and the conductor layer A wiring layer which is a layer laminated between the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and a planar conductor of the conductive layer.
  • a storage section for storing conductive structure information indicating how the planar conductor, the conductive section, the wiring, and the via are electrically connected to each other on a substrate including a via to be connected, and a wiring in the wiring layer
  • the conductive parts are selected as a first selected conductive part from each of the groups, and the selected plurality is selected.
  • the information indicating the first selected conductive part of the pair And an inspection instruction information generating unit for executing a test instruction information generating process of recording a test instruction information.
  • a board inspection system includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first A step of detecting a voltage between the selected conductive parts and inspecting vias and wiring of a current path between the first selected conductive parts of each pair based on the current and the voltage.
  • a board inspection system includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive portions, and testing vias and wiring of a current path between each pair of the first selected conductive portions based on the current and the voltage; (c2) the test instruction information Between the second selected conductive portions forming a pair, the first current supply process performs a second current supply process of flowing current in a non-parallel manner, and the voltage between the paired second selected conductive portions is And based on the detected current and voltage, Via the current path between the conductive portion and executes the step of examining the wiring.
  • a board inspection system includes the above-described inspection instruction information generation device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit (C1) a first current flowing between a pair of first selected conductive portions with respect to a plurality of pairs of first selected conductive portions indicated by the inspection instruction information for each of the wiring layers in the order indicated by the information; The supply process is performed in parallel, the voltage between the pair of first selected conductive units is detected, and based on the current and the voltage, the via of the current path between the pair of first selected conductive units and A step of inspecting the wiring is performed, and if the result of the inspection in the step (c1) is defective, the step (c1) is not performed on the wiring layer having the next or subsequent order.
  • a board inspection system includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive parts, and inspecting vias and wiring of a current path between the pair of first selected conductive parts based on the current and the voltage, and performing the step (c1).
  • the inspection instruction information generating method may further include a conductive layer that is a layer provided with a conductive planar conductor that spreads in a plane, a substrate surface provided with a plurality of conductive portions, and the conductive layer.
  • a wiring layer that is a layer laminated between a layer and the substrate surface; a via that connects the wiring of the wiring layer to the plurality of conductive parts; a wiring of the wiring layer and a planar conductor of the conductor layer
  • the wiring of the wiring layer is formed based on conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via are electrically connected to each other on the substrate including a via that connects the wiring layer and the via.
  • a pair of the conductive portions is selected as a first selected conductive portion from each of the groups, and the selected plural pairs of the first selected conductive portions are selected.
  • Information as inspection instruction information. Including inspection instruction information generation step of executing the test instruction information generating process.
  • FIG. 1 is a schematic diagram conceptually showing a configuration of a board inspection system 1 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an example of an electrical configuration of a measurement unit illustrated in FIG. 1. It is sectional drawing which shows an example of the board
  • FIG. 2 is a plan view illustrating an example of a substrate to be inspected. 4 illustrates an example of conductive structure information D1 ′ obtained by simplifying the conductive structure information D1 of the substrate B illustrated in FIG. 3.
  • 6 is a diagram illustrating conductive structure information D1 ′′ that is obtained by expressing the conductive structure information D1 ′ illustrated in FIG. 5 in a tree structure.
  • 4 is a flowchart illustrating an example of an inspection instruction information generating method according to an embodiment of the present invention and an operation of an inspection instruction information generating apparatus using the inspection instruction information generating method.
  • 4 is a flowchart illustrating an example of an inspection instruction information generating method according to an embodiment of the present invention and an operation of an inspection instruction information generating apparatus using the inspection instruction information generating method.
  • 4 is a flowchart illustrating an example of an inspection instruction information generating method according to an embodiment of the present invention and an operation of an inspection instruction information generating apparatus using the inspection instruction information generating method.
  • 4 is a flowchart illustrating an example of a board inspection method according to an embodiment of the present invention and an operation of a board inspection apparatus using the board inspection method.
  • FIG. 5 is a flowchart illustrating an example of a first step in a test instruction information generating method according to an embodiment of the present invention. It is a flowchart which shows an example of the process regarding the branch connected to the root node in the test
  • FIG. 7 is an explanatory diagram illustrating another example of the conductive structure information D1 ′′ illustrated in FIG. 6.
  • FIG. 4 is an explanatory diagram illustrating another example of the substrate illustrated in FIG. 3.
  • FIG. 9 is an explanatory diagram in a table format showing an example of inspection instruction information;
  • 3 is a flowchart illustrating an example of an operation of the substrate inspection device illustrated in FIG. 3 is a flowchart illustrating an example of an operation of the substrate inspection device illustrated in FIG. 3 is a flowchart illustrating an example of an operation of the substrate inspection device illustrated in FIG.
  • It is a conceptual schematic diagram which shows an example of the board
  • 23 is an explanatory diagram for describing a measuring method for measuring a resistance value of a via and a planar conductor IP of the multilayer substrate WB illustrated in FIG. 22.
  • FIG. 22 is an explanatory
  • the board inspection system 1 shown in FIG. 1 includes an inspection instruction information generation device 3 and a board inspection device 2.
  • the inspection instruction information generating device 3 shown in FIG. 1 includes an inspection instruction information generating unit 31 and a storage unit 32.
  • the inspection instruction information generating apparatus 3 is configured using a computer such as a personal computer, for example, and executes a predetermined arithmetic processing (CPU (Central Processing Unit)), a RAM for temporarily storing data (Random Access Memory), A non-volatile storage device such as an HDD (Hard Disk Drive) and / or a flash memory, a communication circuit, and peripheral circuits thereof are provided.
  • the inspection instruction information generating device 3 functions as the inspection instruction information generating unit 31 by executing the inspection instruction information generating program according to the embodiment of the present invention stored in, for example, a nonvolatile storage device.
  • the storage unit 32 is configured using, for example, the above-described nonvolatile storage device.
  • the storage unit 32 stores the conductive structure information D1.
  • the conductive structure information D1 may be transmitted from the outside to the inspection instruction information generating device 3 via, for example, a communication circuit (not shown), and the transmitted conductive structure information D1 may be stored in the storage unit 32.
  • a communication circuit not shown
  • the conductive structure information D1 may be stored in the storage unit 32.
  • the conductive structure information D1 can be stored in the storage unit 32.
  • the conductive structure information D1 is information indicating how the planar conductor IP, the conductive portion P, the wiring W of each wiring layer L, and the via V of the substrate B described later are conductively connected.
  • As the conductive structure information D1 for example, so-called Gerber data used in the manufacture of a substrate and / or a netlist can be used.
  • the inspection instruction information generating unit 31 generates inspection instruction information D2 for instructing the board inspection apparatus 2 on a pair of conductive parts P to which a current is to flow for inspection based on the conductive structure information D1.
  • the inspection instruction information generating unit 31 may transmit the inspection instruction information D2 to the board inspection apparatus 2 via a communication circuit (not shown), for example.
  • the inspection instruction information generation unit 31 may write the inspection instruction information D2 on a storage medium. Then, the user may cause the board inspection apparatus 2 to read the inspection instruction information D2 from the storage medium. Details of the operation of the inspection instruction information generation unit 31 will be described later.
  • the board inspection apparatus 2 shown in FIG. 1 is an apparatus for inspecting a board B which is an inspection target board to be inspected.
  • the substrate B is, for example, an intermediate substrate or a multilayer substrate, and includes a printed wiring substrate, a film carrier, a flexible substrate, a ceramic multilayer wiring substrate, a semiconductor substrate such as a semiconductor chip and a semiconductor wafer, a package substrate for a semiconductor package, a liquid crystal display and a plasma display. Electrode plate, an intermediate substrate in the process of manufacturing these substrates, or a so-called carrier substrate.
  • the multilayer board WB shown in FIG. 22 and the intermediate board MB shown in FIG. 23 correspond to an example of the board B which is the board to be inspected.
  • the board inspection apparatus 2 shown in FIG. In the internal space of the housing 112, the substrate fixing device 110, the measuring unit 121, the measuring unit 122, the moving mechanism 125, and the control unit 20 are mainly provided.
  • the substrate fixing device 110 is configured to fix the substrate B at a predetermined position.
  • the measuring unit 121 is located above the substrate B fixed to the substrate fixing device 110.
  • the measurement unit 122 is located below the substrate B fixed to the substrate fixing device 110.
  • the measurement units 121 and 122 include measurement jigs 4U and 4L for bringing the probe into contact with a plurality of conductive units provided on the substrate B.
  • a plurality of probes Pr are attached to the measuring jigs 4U and 4L.
  • the measurement jigs 4U and 4L arrange and hold a plurality of probes Pr so as to correspond to the arrangement of the conductive parts to be measured provided on the surface of the substrate B.
  • the moving mechanism 125 appropriately moves the measuring units 121 and 122 in the housing 112 in accordance with a control signal from the control unit 20, and brings the probes Pr of the measuring jigs 4U and 4L into contact with each conductive unit of the substrate B.
  • the board inspection apparatus 2 may include only one of the measurement units 121 and 122, and the board B may be provided with a conductive unit on only one side. In addition, the board inspection apparatus 2 may perform measurement on both sides of the board to be inspected by using either one of the measurement units to turn the board to be inspected upside down.
  • the control unit 20 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, and a ROM (Read Only Memory) that stores a predetermined control program. , A non-volatile storage unit 22 such as a hard disk drive (HDD), and peripheral circuits thereof.
  • the control unit 20 functions as the inspection processing unit 21 by executing, for example, a control program stored in the storage unit 22.
  • the measurement unit 121 shown in FIG. 2 includes a scanner unit 13, a plurality of measurement blocks 12, and a plurality of probes Pr.
  • the measuring section 122 is configured in the same manner as the measuring section 121, and thus the description thereof is omitted.
  • the measurement block 12 includes power supply units CS and CM, and a voltage detection unit VM.
  • the power supply units CS and CM are constant current circuits that output a current I according to a control signal from the control unit 20.
  • the power supply unit CS allows the current I to flow in a direction to be supplied to the scanner unit 13, and the power supply unit CM allows the current I to flow in a direction drawn from the scanner unit 13.
  • the voltage detection unit VM is a voltage detection circuit that measures a voltage and transmits the voltage value to the control unit 20.
  • the scanner unit 13 is a switching circuit configured using switching elements such as a transistor and a relay switch.
  • the scanner unit 13 includes current terminals + F and -F for supplying a current I for resistance measurement to the substrate B, and a voltage detection terminal + S and a voltage detection terminal + S for detecting a voltage generated between the conductive parts of the substrate B due to the current I. -S corresponding to the plurality of measurement blocks 12. Further, a plurality of probes Pr are electrically connected to the scanner unit 13.
  • the scanner unit 13 switches the connection relationship between the current terminals + F, -F and the voltage detection terminals + S, -S and the plurality of probes Pr according to a control signal from the control unit 20.
  • the power supply unit CS has one output terminal connected to the circuit ground and the other end connected to the current terminal + F.
  • the power supply section CM has one output terminal connected to the circuit ground and the other end connected to the current terminal -F.
  • the voltage detection unit VM has one end connected to the voltage detection terminal + S and the other end connected to the voltage detection terminal -S.
  • the scanner unit 13 is capable of electrically connecting the current terminals + F, -F and the voltage detection terminals + S, -S to an arbitrary probe Pr.
  • the scanner unit 13 allows the current I to flow between any of the conductive parts that the probe Pr is in contact with, and detects the voltage V generated between the conductive parts in accordance with the control signal from the control unit 20. It is made possible to measure by VM.
  • the power supply units CS and CM only need to be able to pass the current I to the substrate B via the scanner unit 13, and are not limited to an example in which one ends of the power supply units CS and CM are connected to the circuit ground.
  • the current loop may be formed by connecting one end of the power supply unit CS and one end of the power supply unit CM.
  • control unit 20 outputs a control signal to the scanner unit 13 to cause the plurality of power units CS and CM to cause the current I to flow between an arbitrary plurality of pairs of probes Pr, and an arbitrary plurality of pairs of probes Pr.
  • the voltage between them can be detected by the plurality of voltage detection units VM.
  • FIG. 3 also serves as an explanatory diagram illustrating the conductive structure information D1 of the substrate B.
  • the conductive structure information D1 is not necessarily data represented by an image, but in the following description, the structure represented by the conductive structure information D1 will be described with reference to the drawings for easy understanding.
  • the board B shown in FIG. 3 is a multilayer board in which five boards B1 to B5 are stacked.
  • One surface of the substrate B is a substrate surface F1
  • the other surface is a substrate surface F2.
  • the boundary between the substrates B1 and B2 is the wiring layer L1
  • the boundary between the substrates B2 and B3 is the wiring layer L2
  • the boundary between the substrates B3 and B4 is the conductor layer Lc
  • the boundary between the substrates B4 and B5 is the wiring layer L4.
  • Conductive portions P1 to P7 are provided on the substrate surface F1, and conductive portions P11 to P17 are provided on the substrate surface F2.
  • the conductive portions P1 to P7 and P11 to P17 are inspection points, such as pads, bumps, wirings, and electrodes, to which the probe Pr contacts.
  • the conductor layer Lc is provided with a planar conductor IP that is a conductor that spreads in a planar or mesh shape.
  • the wiring layer L1 is provided with wirings W11 and W12
  • the wiring layer L2 is provided with wirings W21 and W22
  • the wiring layer L4 is provided with wirings W41, W42 and W43 and the wirings W44 and W45.
  • the planar conductor IP may have a shape of a single sheet, that is, a shape that spreads in a planar shape, and a conductor pattern such as wiring is combined in a regular or irregular mesh shape (mesh shape) to form a single layer.
  • the conductor may have a shape that spreads in a plane as a whole.
  • FIG. 3 illustrates an example in which the planar conductor IP extends over substantially the entire area of the substrate B, but the planar conductor IP is not necessarily limited to an example that extends over substantially the entire area of the substrate B.
  • the planar conductor IP may be provided only in a partial region of the substrate B.
  • the wiring W may be provided in a region of the conductor layer Lc where the planar conductor IP of the substrate B is not provided.
  • the substrate B shown in FIG. 4 includes a planar conductor IPa and a planar conductor IPd which are electrically separated from each other.
  • the planar conductor IPa is used, for example, as an analog ground
  • the planar conductor IPd is used, for example, as a digital ground.
  • the substrate B may include a plurality of planar conductors IP insulated from each other.
  • the wirings W41, W42, and W43 are a single wiring in which the wiring W41, the wiring W42, and the wiring W43 of the wiring layer L4 are continuous, but for convenience of description, each part of the single wiring W41, W42, and W43 is wired. These are referred to as W41, a wiring W42, and a wiring W43.
  • the wirings W44 and W45 are a single wiring in which the wiring W44 and the wiring W45 are continuous, and the wiring W44 and the wiring W45 are parts of the single wirings W44 and W45, respectively.
  • the substrate B is provided with vias V11 to V17 penetrating the substrate B1, the vias V21 to V27 penetrating the substrate B2, the vias V31 to V36 penetrating the substrate B3, and penetrating the substrate B4. Vias V41 to V45 are provided, and vias V51 to V57 penetrating the substrate B5 are provided.
  • the conductive structure information stored in the storage unit 22 includes the conductive units P1 to P7, P11 to P17, wirings W11, W12, W21, W22, W41 to W45, vias V11 to V17, V21 to V27, V31 to V36, V41 to V45, V51 to V57, and information indicating how the planar conductor IP is conductively connected, for example, information indicating the connection relationship illustrated in FIG.
  • conductive portions such as the conductive portions P1 to P7 and P11 to P17 are collectively referred to as a conductive portion P
  • wires such as the wires W11, W12, W21, W22, and W41 to W45 are collectively referred to as a wire W.
  • V11 to V17, V21 to V27, V31 to V36, V41 to V45, V51 to V57, and the like are collectively referred to as a via V
  • the wiring layers L1, L2, and L4 are collectively referred to as a wiring layer L.
  • Each conductive part P is conductively connected to the planar conductor IP via the via V and the wiring W.
  • the wiring structure in which each conductive portion P is conductively connected to the planar conductor IP is generally used for connecting a circuit ground or a power supply pattern.
  • the substrate B may include wiring, pads, and the like that are not connected to the circuit ground and the power supply pattern.
  • each probe Pr of the measuring section 121 is brought into contact with the conductive sections P1 to P7 by the moving mechanism 125, and each probe Pr of the measuring section 122 is brought into contact with the conductive sections P11 to P17. Touched.
  • the measuring units 121 and 122 allow the current I to flow between any pair of conductive parts P and detect the voltage between the pair of conductive parts P.
  • the measuring units 121 and 122 may contact a current supply probe Pr and a voltage measurement probe Pr with one conductive portion P for resistance measurement by a so-called four-terminal resistance measurement method.
  • a current supply probe Pr and a voltage measurement probe Pr may contact a current supply probe Pr and a voltage measurement probe Pr with one conductive portion P for resistance measurement by a so-called four-terminal resistance measurement method.
  • one probe Pr serving both as a current supply and a voltage measurement may be brought into contact with one conductive part P.
  • the inspection processing unit 21 controls the measurement units 121 and 122 so that one of the pair of conductive units P selected as described later is supplied with the current I from the power supply unit CS (see FIG. 2), and the other is.
  • the current I is drawn from the power supply unit CM (see FIG. 2) to supply the current I between the conductive parts P and detect the voltage between the conductive parts P.
  • the substrate B To inspect.
  • the inspection processing unit 21 can perform a resistance measurement by a four-terminal resistance measurement method or a two-terminal resistance measurement method based on the current and the voltage, and can inspect the substrate B based on the resistance value.
  • the inspection processing unit 21 controls the measuring units 121 and 122 to perform the current supply and the voltage detection is simply described as the inspection processing unit 21 supplying the current and detecting the voltage. I do. Details of the operation of the inspection processing unit 21 will be described later.
  • FIGS. 5 and 6 are explanatory diagrams showing an example of the conductive structure information D1 changed in the process of executing the inspection instruction information generating method when generating the inspection instruction information corresponding to the substrate B shown in FIG.
  • FIGS. 5 to 14 the operation of the inspection instruction information generating device 3 that executes the inspection instruction information generating method based on the inspection instruction information generating program according to one embodiment of the present invention will be described.
  • the inspection instruction information generating unit 31 performs a process of simplifying the connection structure indicated by the conductive structure information D1 as a pre-process before grouping the conductive units P of the substrate B. Specifically, when the wirings W of the plurality of wiring layers L are connected in parallel, the inspection instruction information generation unit 31 places the wirings W connected in parallel to the substrate surface F1 of the respective wirings W most.
  • the conductive structure information D1 is duplicated and changed so as to replace with the close wiring W, and the conductive structure information D1 'is generated (step S1: (d) step).
  • the wirings W11 and W21 of the plurality of wiring layers L1 and L2 are connected in parallel by vias V21 and V22.
  • the two wires W11 and W21 are replaced with one of the wires W11 and W21 closest to the substrate surface F1, and the conductive structure The information D1 'is generated.
  • the data since one end of the via V22 is open, the data may be treated as not having the via V22. This simplifies the wiring structure of the substrate B, and facilitates subsequent processing.
  • the inspection instruction information generating unit 31 sets the vias V or the columns of the vias V connected in parallel to each other.
  • the conductive structure information D1 ' is changed so as to be replaced with one or one row of vias (step S2: (e) step).
  • the vias V24 and V33 are connected in series to form a row, and the vias V25 and V34 are connected in series to form a row.
  • the row of vias V24 and V33 and the row of vias V25 and V34 are connected in parallel by the wiring W12 and the planar conductor IP.
  • via V32 and via V33 are connected in parallel by wiring W22 and planar conductor IP.
  • the columns of the vias V24 and V33 and the columns of the vias V25 and V34 are changed to one of the columns, for example, the columns of the vias V24 and V33, for the conductive structure information D1 '.
  • the replacement is performed by replacing the via V32 and the via V33 with one via V, for example, the via V32.
  • the vias V41 and V42 are connected in parallel by the series wiring of the wirings W41, W42 and W43 and the planar conductor IP.
  • the vias V41 and V42 are replaced with one via V, for example, the via V41 on the conductive structure information D1.
  • vias V43, V44, V45 are connected in parallel by the wires W44, W45 and the planar conductor IP.
  • the vias V43, V44, and V45 are replaced with one via V, for example, the via V43 for the conductive structure information D1 '. This simplifies the wiring structure of the substrate B, and facilitates subsequent processing.
  • the inspection instruction information generation unit 31 does not necessarily need to execute steps S1 and S2, and sets the conductive structure information D1 in the data format representing the actual wiring structure of the substrate B shown in FIG. May be performed.
  • the inspection instruction information generating unit 31 converts the data structure of the conductive structure information D1 'into a tree structure (step S3: (m) step).
  • the conductive structure information D1 'converted into the tree structure is referred to as conductive structure information D1' '.
  • one wiring W is represented by one node N
  • the planar conductor IP is represented by a root node NR
  • the via V is formed between the conductive part P and the node.
  • Or a branch M connecting nodes are shown in the conductive structure information D1 ′′.
  • the inspection instruction information generation unit 31 does not necessarily need to execute step S3, and executes the subsequent processing using the conductive structure information D1 and the conductive structure information D1 ′ in a data format representing the wiring structure of the substrate B. Is also good.
  • the processing for the node N is equivalent to the processing for the wiring W corresponding to the node N
  • the processing for the root node NR is equivalent to the processing for the planar conductor IP
  • the processing for the branch M is The processing is the same as the processing for the wiring W corresponding to the node N.
  • the node N11 corresponds to the wiring W11 (W21)
  • the node N12 corresponds to the wiring W12
  • the node N21 corresponds to the wiring W22
  • the node N41 corresponds to the wiring W22.
  • the node N42 corresponds to the wirings W44, W45, corresponding to the wirings W41, W42, W43.
  • Branch M11 is via V11 (V21)
  • branch M12 is via V12 (V22)
  • branch M13 is via V14
  • branch M14 is via V15
  • branch M22 is via V24 (V25)
  • branch Mr1 is vias V21, V31, and branch.
  • Mr2 is via V32 (V33)
  • branch Mr3 is via V16
  • V26 is via V35
  • branch Mr4 is via V17
  • V27 is via V36
  • branch M41 is via V51
  • branch M42 is via V52
  • branch M43 is via V53
  • branch M44 is via.
  • V54 branch M45 corresponds to via V55
  • branch M46 corresponds to via V56
  • branch M47 corresponds to via V57
  • branch Mr5 corresponds to via V41 (V42)
  • branch Mr6 corresponds to via V43 (V44, V45).
  • the inspection instruction information generation unit 31 selects the wiring layer L1 closest to the substrate surface F1 as the first selection layer LL1 and the wiring layer L4 closest to the substrate surface F2 as the second selection layer LL2 (Step S4: ( f) Step).
  • the processing of steps S4 to S27 and S101 to S501 corresponds to an example of the inspection instruction information generation processing.
  • inspection instruction information generation unit 31 executes the first step (Step S5).
  • inspection instruction information generating section 31 performs, based on conductive structure information D1 ′′, conductive section P of substrate surface F1 that is electrically connected to each other via node N (wiring W) of first selection layer LL1. These are grouped together (step S101: step (a) of step (f)).
  • the first selection layer LL1 is the wiring layer L1
  • the conductive portions P1 and P2 which are conductive via the node N11 of the first selection layer LL1 are grouped.
  • the conductive portions P4 and P5 that conduct through the node N12 of the first selection layer LL1 are grouped.
  • the inspection instruction information generation unit 31 selects two conductive units from among the conductive units P included in each group as a pair of first selected conductive units, It is recorded in the inspection instruction information D2 in association with the first selection layer LL1 (step S102: step (b) of step (f)).
  • the first selection conductive part is information indicating conductive parts (inspection locations) that can be inspected in parallel.
  • the conductive parts P1 and P2 from the group of the conductive parts P1 and P2 corresponding to the wiring layer L1, and the conductive parts P4 and P5 from the group of the conductive parts P4 and P5 are selected.
  • a pair of the conductive part P1 and the conductive part P2 is described as a conductive part pair P1, P2.
  • the inspection instruction information generating unit 31 Two conductive portions P including the conductive portion P not selected as the first selected conductive portion are selected as a pair of second selected conductive portions, and are recorded in the inspection instruction information D2 in association with the first selected layer LL1 (step).
  • the second selected conductive part is information indicating a conductive part (inspection location) to be inspected non-parallel to the first selected conductive part.
  • Step S104 Step (a) of Step (f)).
  • the second selection layer LL2 is the wiring layer L4
  • the conductive portions P11, P12, and P13 that conduct through the node N41 of the second selection layer LL2 in the tree-structured conductive structure information D1 ′′ illustrated in FIG. , P14 are grouped, and the conductive portions P15, P16, P17 conducting through the node N42 of the second selection layer LL2 are grouped.
  • the inspection instruction information generation unit 31 selects two conductive parts from the conductive parts P included in each group as a pair of first selected conductive parts. Is recorded in the inspection instruction information D2 in association with the second selection layer LL2 (step S105: step (b) of step (f)).
  • any of the conductive parts P11, P12, P13, and P14 for example, any conductive part P11, P12, and any one of the conductive parts P15, P16, and P17, for example, any conductive part P15 , P16 are selected.
  • step S104 when there is a group having a conductive part P not selected as the first selected conductive part among the groups grouped in step S104, the inspection instruction information generating unit 31 Two conductive portions P including the conductive portion P not selected as the first selected conductive portion are selected as a pair of second selected conductive portions, and are recorded in the inspection instruction information D2 in association with the second selected layer LL2 (step S106: The (b) step of the (f) step), the first step is finished, and the processing shifts to the step S7 (FIG. 7).
  • the inspection instruction information generating unit 31 selects the conductive part pair P13, P14 and the conductive part pair P16, P17 as the second selected conductive part.
  • the inspection instruction information generation unit 31 checks the flag Fip1, which is a control flag for controlling the processing (step S7).
  • step S7 When the flag Fip1 is 1 (YES in step S7), the flag Fip1 is already set to 1 in step S12 to be described later, and each wiring layer L on the substrate surface F1 side of the conductor layer Lc and the substrate surface F1 side of the conductor layer Lc. Means that the generation of the inspection instruction information D2 corresponding to. Has already been completed. Therefore, the inspection instruction information generation unit 31 proceeds to step S17 (FIG. 9) without executing steps S11 to S16.
  • step S7 the inspection instruction information generation unit 31 proceeds to step S11 (FIG. 8), and the conductor layer Lc is located on the side of the first selection layer LL1 that is away from the substrate surface F1. It is checked whether or not they are adjacent (step S11).
  • step S11 If the conductor layer Lc is adjacent to the first selection layer LL1 on the side away from the substrate surface F1 (YES in step S11), the inspection instruction information generation unit 31 sets the flag Fip1 to 1 (step S12), The process proceeds to step S301 (FIG. 12) in order to select a conductive part P used for inspection of the via V connected to the substrate surface F1 side of the conductor IP.
  • the inspection instruction information generation unit 31 determines whether the first selection layer LL1 has the substrate surface F1. Is selected as a new first selection layer LL1 (step S13: step (g)). Thus, steps S14 to S16 are executed with the new first selection layer LL1 as a processing target.
  • the first selection layer LL1 is the wiring layer L1.
  • the conductor layer Lc is not adjacent to the wiring layer L1 on the side away from the substrate surface F1 (NO in step S11), and the wiring layer L2 adjacent to the wiring layer L1 on the side away from the substrate surface F1 is a new first layer.
  • One selection layer LL1 is obtained (step S13).
  • the inspection instruction information generation unit 31 is connected to the node N of the first selection layer LL1 on the side away from the root node NR of the one node N corresponding to each of the nodes N.
  • One of the branches M (via V) is electrically connected on the opposite side of the node N, that is, one conductive portion P of the substrate surface F1 that is conductive is selected.
  • the inspection instruction information generation unit 31 groups the selected conductive units P for each corresponding node N (step S14: (g1) step).
  • the node N21 is provided in the wiring layer L2 which is the first selection layer LL1.
  • Branch M21 and branch M22 are connected to node N21.
  • a conductive portion P3 as a conductive portion P on the substrate surface F1 that is directly or indirectly conductive to the side of the branch M21 opposite to the node N21. Therefore, the conductive part P3 corresponding to the branch M21 is selected.
  • Conductive portions P4 and P5 are provided as conductive portions P on the substrate surface F1 that are directly or indirectly conductive to the side of the branch M22 opposite to the node N21. Any one of the conductive portions P4 and P5, for example, the conductive portion P4 is selected as the conductive portion P corresponding to the branch M22. Thereby, conductive portions P3 and P4 are grouped corresponding to node N21.
  • the inspection instruction information generation unit 31 selects any two conductive parts from the conductive parts P included in each group as a pair of first selected conductive parts. Then, it is recorded in the inspection instruction information D2 in association with the first selection layer LL1 (Step S15: Step (b) of the step (g2)).
  • two conductive portions P3 and P4 are selected as a pair of first selected conductive portions from among the conductive portions P3 and P4 grouped in step S14.
  • conductive portions P1 and P2 as the conductive portions P on the substrate surface F1 that conducts directly or indirectly to the side opposite to N21. Any one of the conductive portions P1 and P2, for example, the conductive portion P1 is selected as the conductive portion P corresponding to the branch M23. Then, conductive portions P1, P3, and P4 obtained by adding conductive portion P1 to conductive portions P3 and P4 described above are grouped corresponding to node N21.
  • step S15 two conductive portions, for example, the conductive portions P1 and P3 are selected from the conductive portions P1, P3 and P4 as a pair of first selected conductive portions.
  • step S14 when there is a group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S14, the inspection instruction information generating unit 31 Two conductive portions P including the conductive portion P not selected as one selected conductive portion are selected as a pair of second selected conductive portions, and are recorded in the inspection instruction information D2 in association with the first selected layer LL1 (step S16). : (G2) step (b) step), and then proceeding to step S17 (FIG. 9).
  • step S14 when there is no group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S14, the inspection instruction information generating unit 31 proceeds to step S17.
  • the inspection instruction information generation unit 31 checks a flag Fip2 which is a control flag for controlling the processing (step S17).
  • step S17 If the flag Fip2 is 1 (YES in step S17), the flag Fip2 is already set to 1 in step S19 to be described later, and each wiring layer L on the substrate surface F2 side of the conductor layer Lc and the substrate surface F2 side of the conductor layer Lc. Means that the generation of the inspection instruction information D2 has already been completed. Therefore, the inspection instruction information generator 31 proceeds to step S26 (FIG. 10) without executing steps S18 to S24.
  • step S17 the inspection instruction information generation unit 31 proceeds to step S18, and determines whether the conductor layer Lc is adjacent to the second selection layer LL2 on the side away from the substrate surface F2. It is checked whether or not it is (step S18).
  • the inspection instruction information generation unit 31 sets the flag Fip2 to 1 (step S19), and The process proceeds to step S401 (FIG. 13) in order to select a conductive portion P used for inspection of the via V connected to the substrate surface F2 side of the conductor IP.
  • step S19 the routine goes to step S401 (FIG. 13).
  • step S401 the inspection instruction information generation unit 31 determines, for each branch M (via V) connected to the substrate surface F2 side of the root node NR (planar conductor IP), the root node NR Is electrically connected to the opposite side, that is, by selecting one conductive portion P to be conductive, the selected conductive portion P is grouped as a conductive portion corresponding to the substrate surface F2 side of the root node NR (step S401). : (H) step).
  • the branches Mr5 and Mr6 are connected to the substrate surface F2 of the root node NR.
  • the conductive portions P that conduct to the branch Mr5 include the conductive portions P11, P12, P13, and P14.
  • the conductive portions P that conduct to the branch Mr6 include conductive portions P15, P16, and P17. Therefore, in step S401, any one of the conductive parts P11, P12, P13, and P14, for example, the conductive part P11 is selected, and any one of the conductive parts P15, P16, and P17, for example, the conductive part P15 Is selected. Thereby, the conductive portions P11 and P15 are grouped.
  • the inspection instruction information generating unit 31 selects two conductive portions P from the conductive portions P grouped in step S401 as a pair of first selected conductive portions, and selects the root node NR on the substrate surface F2 side. It is recorded in the inspection instruction information D2 in association with each other (step S402: (h) step).
  • step S402 two conductive parts P are selected as a pair of first selected conductive parts from the conductive parts P11 and P15 grouped in step S401.
  • Step S401 when there is a group having a conductive part P not selected as the first selected conductive part among the groups grouped in step S401, the inspection instruction information generating unit 31 Two conductive parts P including the conductive part P not selected as one selected conductive part are selected as a pair of second selected conductive parts, and are recorded in the inspection instruction information D2 in association with the substrate surface F2 side of the root node NR. (Step S403), the process proceeds to step S26 (FIG. 10).
  • the inspection instruction information generating part 31 directly performs the processing in step S26 (FIG. Go to 10).
  • the inspection instruction information generation unit 31 selects a plurality of pairs of conductive parts P so as to include all the conductive parts P selected in step S401, and selects a plurality of pairs of first conductive parts P.
  • the selected conductive portion may be recorded in the inspection instruction information D2 in association with the substrate surface F2 side of the root node NR.
  • a plurality of pairs of conductive parts P are selected so as to include all the conductive parts P selected in step S401, and the plurality of pairs of first selected conductive parts are selected as the root node NR.
  • the inspection instruction information generating unit 31 determines whether the second selection layer LL2 has the substrate surface F2. Is selected as a new second selection layer LL2 (step S21: step (g)). Thus, steps S22 to S24 are executed with the new second selection layer LL2 as a processing target.
  • the inspection instruction information generating unit 31 is connected to the node N of the second selection layer LL2 on the side away from the root node NR of one of the nodes N.
  • One of the branches M (via V) is electrically connected on the side opposite to the node N, that is, one conductive portion P of the substrate surface F2 that is conductive is selected.
  • the inspection instruction information generating unit 31 groups the selected conductive units P for each corresponding node N (step S22: (g1) step).
  • the inspection instruction information generation unit 31 selects any two conductive parts from the conductive parts P included in each group as a pair of first selected conductive parts. Then, it is recorded in the inspection instruction information D2 in association with the second selection layer LL2 (Step S23: Step (b) of the step (g2)).
  • the inspection instruction information generating unit 31 Two conductive parts P including the conductive part P not selected as one selected conductive part are selected as a pair of second selected conductive parts, and are recorded in the inspection instruction information D2 in association with the second selected layer LL2 (Step S24). : (G2) step (b) step), and then proceeding to step S26 (FIG. 10).
  • step S22 when there is no group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S22, the inspection instruction information generating unit 31 keeps step S23 to step S26 (FIG. Go to 10).
  • the inspection instruction information generation unit 31 shifts the processing from step S23 to step S26 (FIG. 10) without recording the inspection instruction information D2.
  • the inspection instruction information generator 31 checks whether or not inspection instruction information D2 corresponding to all the wiring layers L and the substrate surfaces F1 and F2 of the planar conductor IP has been generated (step S26).
  • step S26 When the inspection instruction information D2 corresponding to all the wiring layers L and the substrate surfaces F1 and F2 of the planar conductor IP has been generated (YES in step S26), the process proceeds to step S27. On the other hand, when the wiring layer L or the planar conductor IP on the substrate surfaces F1 and F2 side where the corresponding inspection instruction information D2 has not yet been generated remains (NO in step S26), the process proceeds to step S11 (FIG. 8). I do.
  • step S11 the inspection instruction information generating unit 31 checks whether or not the conductor layer Lc is adjacent to the first selection layer LL1 on the side away from the substrate surface F1 (step S11).
  • the first selection layer LL1 is now the wiring layer L2. Since the conductor layer Lc is adjacent to the wiring layer L2 on the side away from the substrate surface F1 (YES in step S11), the inspection instruction information generation unit 31 sets the flag Fip1 to 1 (step S12), and proceeds to step S301. The processing shifts to (FIG. 12).
  • step S301 the inspection instruction information generating unit 31 conducts the conduction on the opposite side to the root node NR for each branch M (via V) connected to the substrate surface F1 side of the root node NR (plane conductor IP).
  • the selected conductive part P is grouped as a conductive part corresponding to the substrate surface F1 side of the root node NR (step S301: (h) step).
  • the branches Mr1, Mr2, Mr3, and Mr4 are connected to the substrate surface F1 side of the root node NR.
  • the conductive portions P that conduct to the branch Mr1 include the conductive portions P1 and P2.
  • the conductive portions P that conduct to the branch Mr2 include the conductive portions P3, P4, and P5.
  • the conductive portion P that is electrically connected to the branch Mr4 includes a conductive portion P7.
  • any one of the conductive portions P1 and P2, for example, the conductive portion P1 is selected, and any one of the conductive portions P3, P4, and P5, for example, the conductive portion P3 is selected. Further, conductive portions P6 and P7 are selected. Thereby, the conductive portions P1, P3, P6, and P7 are grouped.
  • the inspection instruction information generating unit 31 selects any two conductive portions P from the conductive portions P grouped in step S301 as a pair of first selected conductive portions, and selects the substrate surface F1 of the root node NR. It is recorded in the inspection instruction information D2 in association with the side (step S302: (h) step).
  • any two conductive portions P for example, the conductive portions P1 and P3 are selected from the conductive portions P1, P3, P6, and P7 grouped in step S301 as a pair of first selected conductive portions. Selected.
  • Step S301 when there is a group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S301, the inspection instruction information generating unit 31 Two conductive parts P including the conductive part P not selected as one selected conductive part are selected as a pair of second selected conductive parts, and recorded in the inspection instruction information D2 in association with the substrate surface F1 side of the root node NR. (Step S303), the process proceeds to Step S17 (FIG. 9).
  • step S302 among the conductive portions P1, P3, P6, and P7 grouped in step S301, the conductive portions P6 and P7 are not selected as the first selected conductive portions.
  • the conductive portions P6 and P7 are selected as a pair of second selected conductive portions (step S303).
  • step S303 for example, when the conductive parts included in the group are three conductive parts P1, P3, and P6, and only one conductive part P6 is not selected as the first selected conductive part, the conductive part P6 And one of the conductive portions P1 and P3 is selected as a pair of second selected conductive portions.
  • the inspection instruction information generating unit 31 includes a plurality of pairs of conductive units P so as to include all the conductive units P selected in step S301. May be selected and recorded in the inspection instruction information D2 in association with the substrate surface F1 side of the root node NR as a plurality of pairs of first selected conductive portions.
  • the inspection instruction information generating unit 31 pairs the conductive units P1, P3 and the conductive units P6, P7 from the conductive units P1, P3, P6, P7 grouped in step S301, and , P3 and the conductive portions P6, P7 may be recorded in the inspection instruction information D2 in association with the substrate surface F1 side of the root node NR as a plurality of pairs of first selected conductive portions.
  • step S17 since the flag Fip2 is now 1, the inspection instruction information generating unit 31 shifts the processing to step S26 (FIG. 10).
  • step S26 since the processes of steps S5 to S403 have been performed on all the wiring layers L and the substrate surfaces F1 and F2 of the planar conductor IP (YES in step S26), further leakage of the inspection location is prevented. In order to do so, a second step is executed (step S27).
  • inspection instruction information generation unit 31 searches for a wiring W that is not sandwiched between any pair of the first and second selected conductive units selected in steps S1 to S403 (step S501: (J) Step).
  • a pair of the second selected conductive portions a pair of conductive portions P6 and P7, a pair of conductive portions P13 and P14, and a pair of conductive portions. P16 and P17 are selected.
  • the conductive portions P1 to P7 are continuously selected as a first and a second selected conductive portion in a daisy chain, any one of the pair of the first and the second selected conductive portions is selected. There is no wiring W that is not sandwiched.
  • the conductive portion pair P11, P12 and the conductive portion pair P13, P14 are discontinuous.
  • FIG. 15 is an explanatory diagram for explaining the second step.
  • FIG. 15 is a partially enlarged view of the vicinity of the conductive portions P11 to P14 in FIG.
  • the pair of conductive portions P11 and P12 and the pair of conductive portions P13 and P14 are selected as the pair of the first and second selected conductive portions.
  • the set pair P12, P13 is not selected.
  • the wiring W42 illustrated in FIG. 15 is not sandwiched between any of the pair of the first and second selection conductive units.
  • the inspection instruction information generation unit 31 checks the presence or absence of the corresponding wiring W (step S503), and if there is the corresponding wiring W (YES in step S503), proceeds to step S504. On the other hand, if there is no corresponding wiring W (NO in step S503), the inspection instruction information generating unit 31 ends the processing. In the example shown in FIG. 6, the wiring W42 corresponds.
  • step S ⁇ b> 504 the inspection instruction information generation unit 31 connects the conductive part P to one end of the corresponding wiring W without passing through the wiring W and connects to the other end of the wiring W without passing through the wiring W.
  • the conductive part P to be inspected is recorded in the inspection instruction information D2 as a pair of third selected conductive parts to be inspected non-parallel to the first selected conductive part (step S504: (k) step).
  • a conductive portion P12 that conducts to one end T1 of the corresponding wiring W42 without passing through the wiring W42, and a conductive portion P13 that conducts to the other end T2 of the wiring W42 without passing through the wiring W42. are selected as a pair of third selection conductive parts (step S504).
  • the inspection instruction information generation unit 31 checks whether or not the substrate B includes a plurality of conductor layers Lc (step S505). If there is a plurality of conductor layers Lc (YES in step S505), the process proceeds to step S506. I do. On the other hand, if there is no plurality of conductor layers Lc (NO in step S505), the inspection instruction information generating unit 31 ends the processing.
  • step S506 the inspection instruction information generation unit 31 checks whether there is a via V connecting the planar conductors IP of the plurality of conductor layers Lc (step S506). If there is the via V (YES in step S506), the process proceeds to step S507. On the other hand, if the via V does not exist (NO in step S506), the inspection instruction information generating unit 31 ends the processing.
  • the substrate B shown in FIG. 17 includes two conductor layers Lc, and is provided with a via Vc for connecting the planar conductors IP of the two conductor layers Lc.
  • a via Vc for connecting the planar conductors IP of the two conductor layers Lc.
  • step S507 the inspection instruction information generation unit 31 inspects one of the conductive parts P on the substrate surface F1 and one of the conductive parts P on the substrate surface F2 non-parallel to the first selected conductive part. It is recorded in the inspection instruction information D2 as a pair of fourth selection conductive parts to be performed (step S507: (l) step), and the processing ends.
  • the board inspection apparatus 2 can inspect the via Vc by inspection based on the inspection instruction information D2.
  • the conductive portion P on the substrate surface F1 and the conductive portion P on the substrate surface F2 correspond to the inspection target. Only the fourth selected conductive portion for inspecting the via Vc is selected as the pair of conductive portions P, and it is minimized to select the pair of conductive portions P from both surfaces of the substrate B. .
  • the conductive portion P straddling between the two surfaces of the substrate B is the minimum fourth selection conductive portion necessary for inspecting the via Vc, and the other is the one surface of the substrate B Is a pair of the first, second, and third selected conductive portions, the effect of noise when an inspection based on the inspection instruction information D2 is performed is reduced.
  • the probe Pr of the measuring jig 4U When a via is inspected between both surfaces of the substrate B, the probe Pr of the measuring jig 4U is brought into contact with the conductive portion P of the substrate surface F1 of the substrate B, and the measuring jig is brought into contact with the conductive portion P of the substrate surface F2 of the substrate B. It is necessary to bring 4 L probe Pr into contact. At this time, if any one of the probe Pr of the measurement jig 4U and the probe Pr of the measurement jig 4L has a poor contact, it is not possible to specify which probe Pr caused the poor contact.
  • both probes Pr are once separated from the substrate B, and both probes Pr are brought into contact with the substrate B again, and the inspection is performed again. Such a re-inspection needs to be repeated a number of times until both probes Pr that come into contact with both surfaces of the substrate B both normally contact the conductive portion P.
  • the inspection time is extended and the conductive portion P is easily damaged.
  • steps S1 to S507 the inspection of the conductive portions P extending over both surfaces of the substrate B is minimized, and most of the inspections are performed between the conductive portions P provided on one surface of the substrate B. It is easy to reduce re-inspection due to failure and reduce the possibility that the conductive portion P is damaged.
  • the inspection instruction information generating device 3 can generate the inspection instruction information D2 by the processes of steps S1 to S507. Also, according to steps S1 to S507, the order recorded in the inspection instruction information D2 for each corresponding substrate surface corresponds to the order of the conductive portion pairs in which the substrate inspection apparatus 2 should execute the inspection. . Specifically, it is recorded in the inspection instruction information D2 in order from the one corresponding to the layer close to the substrate surfaces F1 and F2.
  • each conductive part pair to be inspected is The inspection instruction information D2 illustrated in FIG. 18 is generated in association with the surface, the layer, and the type of the first, second, third, and fourth selected conductive units.
  • layer means each layer of the wiring layer L and the conductor layer Lc.
  • FIG. 18 five pairs of conductive portions are associated with the substrate surface F1, and the order in which inspections are to be performed is shown from top to bottom. Similarly, six conductive portion pairs are associated with the substrate surface F2, and the order in which inspections are to be performed is shown in order from top to bottom.
  • the inspection instruction information D2 obtained in this manner is transmitted to the board inspection apparatus 2 by, for example, a communication circuit (not shown), or the inspection instruction information D2 is stored in a storage medium such as a USB memory. By reading the data into the device 2, the data can be stored in the storage unit 22.
  • the storage unit 22 stores the test instruction information D2 illustrated in FIG.
  • the inspection processing unit 21 selects, as the inspection layer LT1, the layer having the earliest order among the layers on the substrate surface F1 based on the inspection instruction information D2 (step S51).
  • the layer (the top layer) in the first order (the top layer) associated with the substrate surface F1 is the wiring layer L1, and thus the wiring layer L1 is set as the inspection layer LT1.
  • the inspection processing unit 21 selects the layer having the earliest order as the inspection layer LT2 among the layers on the substrate surface F2 side (Step S52).
  • the layer (the uppermost layer) in the earliest order associated with the substrate surface F2 is the wiring layer L4, and thus the wiring layer L4 is set as the inspection layer LT2.
  • the inspection processing unit 21 performs a first current supply process of flowing a measurement current in parallel between the paired conductive portions with respect to the conductive portion pair of the first selected conductive portion in the test layers LT1 and LT2.
  • the inspection processing unit 21 determines whether the conductive layer pair is the first selected conductive part of the wiring layers L1 and L4.
  • a measuring current is passed in parallel to P1, P2, conductive part pairs P4, P5, conductive part pairs P11, P12, and conductive part pairs P15, P16.
  • the inspection processing unit 21 detects a voltage between the pair of conductive portions of the first selected conductive portion in the inspection layers LT1 and LT2, and based on the voltage and the measurement current, determines a current path between the conductive portions.
  • the via V and the wiring W are inspected (step S54: (c1) step).
  • the inspection processing unit 21 causes a current to flow between each pair of the conductive part pairs P1 and P2, the conductive part pairs P4 and P5, the conductive part pairs P11 and P12, and the conductive part pairs P15 and P16, Detect the voltage between pairs. Then, the inspection processing unit 21 calculates the resistance value between each pair by, for example, dividing the voltage between each pair by the current flowing between each pair. The inspection processing unit 21 compares each of the calculated resistance values with, for example, a reference value stored in advance in the storage unit 22. If each of the resistance values is equal to or less than the reference value, the board B is determined to be good. Is larger than the reference value, the board B is determined to be defective.
  • step S54 the inspection processing unit 21 notifies the user of the determination result by, for example, displaying the information on a notifying unit such as a display device (not shown). Note that the inspection processing unit 21 does not necessarily need to notify the user of the determination result.
  • step S54 the current path between each pair of the conductive part pair P1, P2, the conductive part pair P4, P5, the conductive part pair P11, P12, and the conductive part pair P15, P16 selected as the first selected conductive part is determined.
  • the vias V corresponding to the branches M11, M12, M13, M14, M41, M42, M45, M46 and the wirings W corresponding to the nodes N11, N12, N41, N42 are inspected.
  • step S53 a parallel connection is made between each pair of the conductive portion pairs P1 and P2, the conductive portion pairs P4 and P5, the conductive portion pairs P11 and P12, and the conductive portion pairs P15 and P16 selected as the first selected conductive portion. Current, and the voltage between each pair can be measured, so that the inspection time of the substrate can be easily reduced.
  • the conductive portion pair P of the first selected conductive portion is selected for each layer so that current overlap does not occur even when a measurement current is passed in parallel. Therefore, in steps S51 to S54, the conductive part pair P through which the measuring current is caused to flow in parallel based on the inspection instruction information D2 is determined, thereby reducing the risk of lowering the inspection accuracy and shortening the substrate inspection time. It is possible to do.
  • step S54 when it is determined in step S54 that the substrate B is defective (YES in step S55), the inspection processing unit 21 ends the processing without executing the subsequent processing. On the other hand, when the substrate B is not determined to be defective in step S54 (NO in step S55), the inspection processing unit 21 shifts the processing to step S61 (FIG. 20).
  • step S61 the inspection processing unit 21 applies the current for measurement to the pair of conductive portions of the second selected conductive portion in the inspection layers LT1 and LT2 in a non-parallel to the first current supply process between the paired conductive portions. Is performed (step S61: (c2) step).
  • the inspection processing unit 21 detects a voltage between the conductive portion pair of the second selected conductive portions in the test layers LT1 and LT2, and based on the voltage and the measurement current, forms the paired second selected conductive portion.
  • the via V and the wiring W of the current path therebetween are inspected (step S62: (c2) step).
  • the inspection processing unit 21 performs the inspection and reports the determination result by the same method as in step S54.
  • steps S61 and S62 the inspection of the second selected conductive unit is performed in a non-parallel manner to the inspection of the first selected conductive unit, thereby preventing the measurement current from being duplicated.
  • the processes of steps S61 and S62 for the conductive portion pair of the second selected conductive portion in the test layer LT1 and the conductive portion pair of the second selected conductive portion in the test layer LT2 may be performed in parallel.
  • the inspection processing unit 21 performs steps S61 and S62 for the conductive part pairs P13 and P14, which are the second selected conductive parts of the wiring layers L1 and L4, and the conductive part pairs P16 and P17. Run in parallel.
  • the inspection processing unit 21 determines that the substrate B is defective in the inspection in step S62 (YES in step S63), the inspection processing unit 21 ends the processing without performing the subsequent processing. On the other hand, when the substrate B is not determined to be defective in the inspection in Step S62 (NO in Step S63), the inspection processing unit 21 proceeds to Step S64.
  • step S64 the inspection processing unit 21 checks whether or not both the inspection layers LT1 and LT2 are the conductor layers Lc and whether one of the inspection layers LT1 and LT2 is the conductor layer Lc and the other is absent. Step S64). When both the inspection layers LT1 and LT2 are the conductor layers Lc, and when one of the two does not correspond to the conductor layer Lc and the other is absent (NO in step S64), the inspection processing unit 21 proceeds to step S65.
  • step S64 when both of the inspection layers LT1 and LT2 are the conductor layers Lc, or when one of the inspection layers LT1 and LT2 is the conductor layer Lc and the other is without the inspection layer described later (YES in step S64), the inspection processing unit The process proceeds to step S71 (FIG. 21). Now, since neither of the inspection layers LT1 and LT2 is the conductor layer Lc (NO in step S64), the process proceeds to step S65.
  • step S65 if the inspection layer LT1 is not the conductor layer Lc, the inspection processing unit 21 sets the next layer of the layers on the substrate surface F1 side as the inspection layer LT1 based on the inspection instruction information D2 (step S65). S65). When the current inspection layer LT1 is the conductor layer Lc, the inspection processing unit 21 determines that there is no new inspection layer LT1. Next, if the inspection layer LT2 is not the conductor layer Lc, the inspection processing unit 21 sets the next layer of the layers on the substrate surface F2 side as the inspection layer LT2 based on the inspection instruction information D2 (Step S66). Then, the process proceeds to step S53 (FIG. 19). When the current inspection layer LT2 is the conductor layer Lc, the inspection processing unit 21 determines that there is no new inspection layer LT2.
  • the inspection processing unit 21 sets the new inspection layer LT1 as the wiring layer L2 and sets the new inspection layer LT2 as the conductor layer Lc in step S53. (FIG. 19).
  • step S53 the inspection processing unit 21 determines the pair of conductive portions P3 and P4, which are the first selected conductive portions of the wiring layer L2, and the pair of conductive portions P11, P15, which are the first selected conductive portions of the conductive layer Lc on the substrate surface F2. And a voltage between the conductive part pairs P3 and P4 and a voltage between the conductive part pairs P11 and P15 are detected in parallel with respect to, and based on the voltage and the measurement current, the conductive current is detected.
  • the via V and the wiring W of the current path between the sections are inspected (steps S53 and S54: (c1) step).
  • step S55 the inspection processing unit 21 proceeds to step S61.
  • steps S61 to S63 are not executed and the process proceeds to step S64. I do.
  • step S64 when both the inspection layers LT1 and LT2 are the conductor layers Lc, and when one of the inspection layers LT1 and LT2 is the conductor layer Lc and the other does not have the inspection layer, the process proceeds to step S65, and the inspection processing unit 21 Sets the conductor layer Lc, which is the layer in the order next to the wiring layer L2 on the substrate surface F1 side in the inspection instruction information D2, as the inspection layer LT1 (step S65). In step S66, since the inspection layer LT2 is the conductor layer Lc, the inspection processing unit 21 returns to step S53 without any new inspection layer LT2.
  • step S53 the inspection processing unit 21 supplies a measurement current to the conductive portion pairs P1 and P3, which are the first selected conductive portions of the conductive layer Lc on the substrate surface F1, and sets a voltage between the conductive portion pairs P1 and P3. Is detected, and the via V and the wiring W of the current path between the conductive parts are inspected based on the voltage and the measuring current (steps S53 and S54: (c1) step).
  • step S55 the inspection processing unit 21 proceeds to step S61.
  • the inspection processing unit 21 executes steps S61 and S62 on the conductive unit pairs P6 and P7.
  • step S63 the inspection processing unit 21 proceeds to step S64.
  • the inspection layer LT1 is set to the conductor layer Lc in the above-described step S65, and the inspection layer LT2 is set to be absent in the above-described step S66 (YES in step S64), and the process proceeds to step S71 (FIG. 21).
  • step S71 the inspection processing unit 21 performs a third current supply process for flowing a measurement current between the paired conductive portions with respect to the conductive portion pair of the third selected conductive portion.
  • the processing is executed in a non-parallel manner (step S71).
  • the inspection processing unit 21 detects a voltage between the conductive part pairs of the third selected conductive part, and based on the voltage and the measurement current, determines the via V of the current path between the conductive parts and the wiring W. Is inspected (step S72). The inspection processing unit 21 performs the inspection and reports the determination result by the same method as in step S54.
  • the inspection processing unit 21 performs the third current supply process for flowing the measurement current between the conductive portions of the conductive portion pair P12 and P13 in a manner not parallel to the first and second current supply processes (step S71). ), A voltage between the conductive parts of the conductive part pair P12, P13 is detected, and based on the voltage and the measuring current, the via V of the current path between the conductive parts and the wiring W are inspected (step S72). .
  • the wiring W42 of the current path between the conductive portion pair P12 and P13 shown in FIG. 15 is inspected.
  • the possibility that the inspection of the wiring W may be omitted can be reduced, and the inspection accuracy of the substrate B can be improved.
  • the inspection processing unit 21 performs a fourth current supply process of flowing a measurement current between the paired conductive portions with respect to the conductive portion pair of the fourth selected conductive portion, by performing the first to third current supply processes. Are executed in a non-parallel manner (step S73).
  • the inspection processing unit 21 detects a voltage between the pair of conductive portions of the fourth selected conductive portion, and, based on the voltage and the measurement current, determines the via V and the wiring W of the current path between the conductive portions. Is inspected (step S74), and the process ends.
  • the inspection processing unit 21 performs the inspection and reports the determination result by the same method as in step S54.
  • the inspection processing unit 21 ends the processing without executing steps S73 and S74.
  • the via Vc of the substrate B provided with two conductor layers Lc and provided with the vias Vc connecting the planar conductors IP of the two conductor layers Lc to each other is provided. Can be inspected.
  • the inspection instruction information D2 is ordered by the inspection instruction information generating device 3 for each substrate surface in order from the one corresponding to the layer closer to the substrate surfaces F1 and F2.
  • the board inspection apparatus 2 determines the inspection order in steps S51, S52, S65, and S66, so that the wiring layers L can be sequentially inspected in order from the one closer to the substrate surfaces F1 and F2.
  • the number of conductive portion pairs of the first selected conductive portion corresponding to one layer increases.
  • the number of conductive part pairs of the first selected conductive part is larger, the number of conductive part pairs that can be inspected in parallel in step S53 increases.
  • the number of parallel inspections at an early stage of the inspection can be increased by setting the wiring layers L as inspection targets in order from the one closer to the substrate surfaces F1 and F2. If the number of parallel inspections at the beginning of the inspection can be increased, a defect of the substrate B can be detected at an early stage of the inspection. Therefore, when the inspection is ended when a defect is detected as in steps S55 and S63, the wiring layers L are inspected in order from the one closer to the substrate surfaces F1 and F2. In addition, it is possible to shorten the time required to detect a defect and increase the possibility of shortening the inspection time.
  • the inspection instruction information generating device 3 and the substrate inspection device 2 are configured as separate devices, but the inspection instruction information generating device 3 and the substrate inspection device 2 are configured as a single device. May be.
  • the board inspection device 2 may include the inspection instruction information generation unit 31 and the storage unit 32, so that the substrate inspection device 2 may also function as the inspection instruction information generation device.
  • a board inspection system is constituted by one board inspection apparatus also serving as an inspection instruction information generating apparatus.
  • the inspection instruction information generating device 3 and the inspection instruction information generating method do not necessarily need to execute all the flows shown in FIGS. 7 to 14, and the inspection processing unit 21 does not necessarily have to execute the flow shown in FIGS. 19 to 21. It is not necessary to execute all the flows.
  • the inspection instruction information generating device 3 and the inspection instruction information generating method for example, even when only steps S101 and S102 are executed, the wiring W of the wiring layer L1 adjacent to the substrate surface F1, and the wiring adjacent to the substrate surface F1. Inspection instruction information D2 that can easily reduce the inspection time of the via V connecting the layer L1 and the conductive portion P can be generated.
  • the inspection processing unit 21 may execute steps S53 and S54.
  • the example in which the wiring layer L and the conductive portion P are provided on both surfaces of the conductor layer Lc has been described, but the wiring layer L and the conductive portion P may be provided only on one surface of the conductor layer Lc.
  • the substrate B may not include the substrates B4 and B5.
  • the processing related to the second selection layer LL2 does not need to be executed, and for example, steps S18 to S24, S104 to S106, S401 to S403, S52, S66, etc. are unnecessary.
  • the inspection processing unit 21 may be configured not to execute steps S55 and S63 and to continue the inspection even when a defect is detected during the inspection.
  • the inspection instruction information generating apparatus 3 and the inspection instruction information generating method always record the conductive part pairs in the inspection instruction information D2 in steps S4, S13, and S21 in order from the one corresponding to the layer closer to the substrate surfaces F1 and F2. It is not limited to the example to make it.
  • the conductive part pairs may be recorded in the inspection instruction information D2 in an arbitrary order.
  • the inspection instruction information generating apparatus includes a conductor layer that is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, and a substrate surface on which a plurality of conductive portions are provided.
  • a wiring layer that is a layer laminated between the conductor layer and the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and the conductive layer.
  • a storage unit that stores conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via in the substrate including the planar conductor and the via are connected.
  • the inspection instruction information generating method includes a conductor layer that is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, and a substrate surface provided with a plurality of conductive portions.
  • a wiring layer that is a layer laminated between the conductor layer and the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and the conductive layer.
  • the wiring layer is formed based on conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via are electrically connected to each other on a substrate including a planar conductor and a via connecting the via.
  • the information indicating the conductive part is Including inspection instruction information generation step of executing the test instruction information generating process of generating a.
  • the inspection instruction information generation program includes a conductor layer that is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, and a substrate surface provided with a plurality of conductive portions.
  • a wiring layer that is a layer laminated between the conductor layer and the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and the conductive layer.
  • the wiring layer is formed based on conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via are electrically connected to each other on a substrate including a planar conductor and a via connecting the via.
  • a pair of the conductive parts is selected as a first selected conductive part from each of the groups, and a first selection of the selected plurality of pairs is performed.
  • the inspection instruction information generating process of generating the information causes the computer to execute.
  • a pair of first selection conductive units is selected from one group, and thus a plurality of pairs of first selection conductive units belong to different groups. Then, even if currents are supplied in parallel to a plurality of pairs of the first selected conductive portions indicated by the inspection instruction information, currents do not overlap. Therefore, by using a plurality of pairs of the first selected conductive portions based on the inspection instruction information obtained as described above as inspection locations, inspections at a plurality of locations can be performed in parallel, resulting in a reduction in board inspection time. It becomes easy to do.
  • the inspection instruction information generation processing includes: (a) a step of grouping the conductive parts that are electrically connected to each other via the wiring of the wiring layer based on the conductive structure information; and (b) the grouping.
  • the inspection instruction information generation processing includes: (a) a step of grouping the conductive parts that are electrically connected to each other via the wiring of the wiring layer based on the conductive structure information; and (b) the grouping.
  • two conductive portions are selected as the pair of first selected conductive portions from among the conductive portions included in each group, and the selected plurality of pairs of the first selected conductive portions are arranged in parallel. Recording in the inspection instruction information as an inspection location that can be inspected by using the inspection instruction information.
  • conductive portions that are electrically connected to each other via the wiring of the wiring layer that is, conductive portions that may overlap with each other if a current flows through a plurality of conductive portion pairs.
  • the groups are grouped together.
  • two conductive portions are selected as a pair of first selected conductive portions from among the conductive portions included in each of the groups, and the selected plural pairs of first selected conductive portions are connected in parallel. It is recorded in the inspection instruction information as an inspection location that can be inspected.
  • a pair of first selection conductive units is selected from one group, and thus a plurality of pairs of first selection conductive units belong to different groups. Therefore, even if currents are supplied in parallel to a plurality of pairs of the first selected conductive portions indicated by the inspection instruction information, currents do not overlap. Therefore, by using a plurality of pairs of the first selected conductive portions based on the inspection instruction information obtained as described above as inspection locations, inspections at a plurality of locations can be performed in parallel, resulting in a reduction in board inspection time. It becomes easy to do.
  • the conductive part that is not selected as the first selected conductive part is added to the group. It is preferable to record the two conductive portions included in the inspection instruction information as a pair of second selected conductive portions to be tested non-parallel to the plurality of pairs of first selected conductive portions.
  • the substrate includes a plurality of the wiring layers, and further includes a plurality of vias connecting the plurality of wiring layers
  • the inspection instruction information generating unit includes: (d) wiring of the plurality of wiring layers in parallel. If connected, the conductive structure information is changed before the step (a) so that the plurality of wirings connected in parallel are replaced with one of the wirings closest to the substrate surface. It is preferable to further execute a step of performing the inspection instruction information generation processing based on the conductive structure information changed in the step (d).
  • the inspection instruction information generating process is executed based on the simplified conductive structure information. As a result, the execution of the inspection instruction information generation processing becomes easy.
  • the inspection instruction information generating unit may perform the connection in parallel before the step (a). Further performing the step of changing the conductive structure information changed in the step (d) so as to replace the via or the row of the vias with one or a row of vias, and changing the conductive structure information changed in the step (e). It is preferable to execute the inspection instruction information generation processing based on structure information.
  • the inspection instruction information generating process is executed based on the simplified conductive structure information. As a result, the execution of the inspection instruction information generation processing becomes easy.
  • the substrate includes a plurality of the wiring layers, and further includes a plurality of vias connecting the plurality of wiring layers
  • the inspection instruction information generating unit includes: (f) the most one of the plurality of wiring layers; Performing the steps (a) and (b) on a wiring layer near the substrate surface as a processing target; and (g) performing the other wiring layers on the other wiring layers except for the wiring layer closest to the substrate surface.
  • G1 For each of the wirings of the wiring layer to be processed, corresponding to one of the wirings, a single via connected to a side of the one wiring away from the conductor layer is set as a processing target.
  • the selected conductive portion is grouped for each corresponding wiring, and ( g2) Grouping in the step (g1)
  • the step (b) is performed on the group, and in the step (b), the first selection conductive portion of each pair is recorded in the inspection instruction information in association with the wiring layer to be processed. preferable.
  • the plurality of pairs of the first selected conductive portions are connected to the wiring layer in order from the one selected as a wiring layer close to the substrate surface as a processing target. It is preferable that the inspection instruction information is recorded in the order of each layer.
  • the number of pairs of the first selection conductive parts with respect to the wiring layer to be processed that is, the number of conductive parts that can flow a measuring current in parallel during the inspection is increased.
  • the inspection instruction information is obtained at the time of inspection.
  • the wiring layers to be inspected are selected in the order in which the wiring layers have been inspected, and the inspection can be performed by applying a measuring current to the first selected conductive portion pair corresponding to the wiring layer.
  • the inspection can be performed by applying a measuring current to the first selected conductive portion pair corresponding to the wiring layer.
  • one of the conductive parts electrically connected on the opposite side to the planar conductor is selected.
  • the conductive portions are grouped as conductive portions corresponding to one side of the planar conductor, and two conductive portions are selected as a pair of first selected conductive portions from the grouped conductive portions, and the selected conductive portions are selected. It is preferable to record a pair of first selected conductive portions in the inspection instruction information.
  • the via connected to the planar conductor can be inspected.
  • the inspection instruction information generating process includes: (j) searching for the wiring that is not sandwiched between the pair of the first selected conductive portions and that is not sandwiched between the pair of the second selected conductive portions; A conductive portion that conducts without passing through the wire to one end of the searched wire, and a conductive portion that conducts without passing through the wire to the other end of the wire, the plurality of pairs of first selected conductive portions,
  • the method further includes a step of recording in the inspection instruction information as a pair of third selected conductive portions to be inspected non-parallel.
  • the substrate surface and the wiring layer are provided on both sides of the conductor layer, respectively, and the inspection instruction information generating unit executes the inspection instruction information generation processing on both sides of the conductor layer.
  • the substrate includes a plurality of the conductor layers and vias connecting the planar conductors of the plurality of conductor layers
  • the inspection instruction information generation processing includes: One of the conductive portions on the substrate surface and one of the conductive portions on the other substrate surface, the plurality of pairs of the first selected conductive portions as a pair of fourth selected conductive portions to be inspected non-parallel, It is preferable that the method further includes a step of recording the inspection instruction information.
  • the inspection instruction information generating unit converts the conductive structure information into a tree-structured data structure by associating the via with a node, the wiring with a branch, and the planar conductor with a root node. Is preferably further executed, and the inspection instruction information generating process is executed based on the conductive structure information converted into the tree structure in the step (m).
  • the inspection instruction information generating process is executed based on the simplified conductive structure information. As a result, the execution of the inspection instruction information generation processing becomes easy.
  • a board inspection system includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first A step of detecting a voltage between the selected conductive parts and inspecting vias and wiring of a current path between the first selected conductive parts of each pair based on the current and the voltage.
  • the first current supply process is performed in parallel on a plurality of pairs of the first selected conductive units based on the test instruction information, so that the test at a plurality of locations can be performed while avoiding overlapping of the measured currents.
  • the inspection time of the substrate can be easily reduced.
  • a board inspection system includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive portions, and testing vias and wiring of a current path between each pair of the first selected conductive portions based on the current and the voltage; (c2) the test instruction information Between the second selected conductive portions forming a pair, the first current supply process performs a second current supply process of flowing current in a non-parallel manner, and the voltage between the paired second selected conductive portions is And based on the detected current and voltage, Via the current path between the conductive portion and executes the step of examining the wiring.
  • a board inspection system includes the above-described inspection instruction information generation device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit (C1) a first current flowing between a pair of first selected conductive portions with respect to a plurality of pairs of first selected conductive portions indicated by the inspection instruction information for each of the wiring layers in the order indicated by the information; The supply process is performed in parallel, the voltage between the pair of first selected conductive units is detected, and based on the current and the voltage, the via of the current path between the pair of first selected conductive units and A step of inspecting the wiring is performed, and if the result of the inspection in the step (c1) is defective, the step (c1) is not performed on the wiring layer having the next or subsequent order.
  • a board inspection system includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive parts, and inspecting vias and wiring of a current path between the pair of first selected conductive parts based on the current and the voltage, and performing the step (c1).
  • the inspection instruction information generating apparatus, the inspection instruction information generating method, and the inspection instruction information generating program having such a configuration can generate the inspection instruction information indicating the inspection location where the inspection time of the board can be easily reduced. it can.
  • the board inspection system having such a configuration can easily reduce the board inspection time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

In the present invention, on the basis of conduction structure information D1 indicating how a planar conductor IP, a plurality of conduction parts P, wiring W, and a via V are conductively connected in a substrate comprising a conductor layer Lc, a substrate surface F upon which the conduction parts P are provided, a wiring layer L, and the via V, if there are a plurality of groups of conduction parts P electrically connected to each other via the wiring W of the wiring layer L, inspection instruction information generation processing is carried out in which conduction parts P are selected from the groups one pair at a time as first selected conduction parts and information indicating a plurality of the pairs of first selected conduction parts that have been selected is generated as inspection instruction information D2.

Description

検査指示情報生成装置、基板検査システム、検査指示情報生成方法、及び検査指示情報生成プログラムInspection instruction information generation device, substrate inspection system, inspection instruction information generation method, and inspection instruction information generation program
 本発明は、基板を検査する際の検査箇所を指示するための検査指示情報を生成する検査指示情報生成装置、この検査指示情報を用いて検査を行う基板検査システム、検査指示情報生成方法、及び検査指示情報生成プログラムに関する。 The present invention relates to an inspection instruction information generating apparatus that generates inspection instruction information for instructing an inspection position when inspecting a substrate, a substrate inspection system that performs an inspection using the inspection instruction information, an inspection instruction information generating method, and The present invention relates to an inspection instruction information generation program.
 従来より、回路基板に設けられたビアのように、回路基板の一方の面から他方の面に亘って貫通するものを測定対象とするときに、当該測定対象に測定電流を流し、当該測定対象に生じた電圧を測定することによって、その電流値と電圧値とから当該測定対象の抵抗値を測定する基板検査装置が知られている(例えば、特許文献1参照。)。 2. Description of the Related Art Conventionally, when a measurement object such as a via provided on a circuit board penetrates from one surface to the other surface of a circuit board, a measurement current is applied to the measurement object and the measurement object is measured. 2. Description of the Related Art There is known a board inspection apparatus that measures a voltage generated in a substrate and measures a resistance value of the measurement target from the current value and the voltage value (for example, see Patent Document 1).
特開2012-117991号公報JP-A-2012-117991
 ところで、面状に拡がる導体(以下、面状導体と称する)を内部に備えた基板において、基板表面のパッド、バンプ、配線等の導電部と面状導体とが基板の厚み方向に電気的に接続された構造の基板がある。 By the way, in a substrate provided with a conductor that spreads in a plane (hereinafter, referred to as a plane conductor), conductive portions such as pads, bumps, and wiring on the surface of the substrate and the plane conductor are electrically connected in the thickness direction of the substrate. There is a board with a connected structure.
 図22は、基板内層に面状に拡がる導体パターンである面状導体IPを備えた基板の一例である多層基板WBを示す概念的な模式図である。図22に示す多層基板WBは、その基板面BSにパッドや配線パターン等の導電部PA,PBが設けられている。導電部PA,PBは、ビアRA,RBによって面状導体IPと電気的に接続されている。多層基板WBの例では、面状導体IPが面状導体に相当する。 FIG. 22 is a conceptual schematic diagram showing a multi-layer substrate WB which is an example of a substrate provided with a planar conductor IP which is a conductor pattern which spreads planarly in an inner layer of the substrate. The multilayer substrate WB shown in FIG. 22 has conductive portions PA and PB such as pads and wiring patterns provided on the substrate surface BS. The conductive portions PA and PB are electrically connected to the planar conductor IP by vias RA and RB. In the example of the multilayer substrate WB, the planar conductor IP corresponds to the planar conductor.
 また、基板の製造方法として、導電性の金属板を土台としてこの金属板の両面にプリント配線基板を積層形成し、形成された基板を土台の金属板から剥離することによって、二枚のプリント配線基板を形成する方法がある。このような基板の製造方法において、土台の金属板から基板を剥離する前の状態の基板(以下、中間基板と称する)は、金属板が二枚の基板に挟まれた態様を有している。このような中間基板は、キャリア基板とも称される。 Further, as a method of manufacturing a substrate, a printed wiring board is laminated on both sides of a conductive metal plate as a base, and the formed substrate is peeled off from the base metal plate to form two printed wiring boards. There is a method of forming a substrate. In such a method for manufacturing a substrate, the substrate before the substrate is separated from the base metal plate (hereinafter, referred to as an intermediate substrate) has an aspect in which the metal plate is sandwiched between two substrates. . Such an intermediate substrate is also called a carrier substrate.
 図23は、このような中間基板MBの一例を示す概念的な模式図である。図23に示す中間基板MBは、金属板MPの一方の面に基板WB1が設けられ、金属板MPの他方の面に基板WB2が設けられている。基板WB1の基板面BS1には、パッドや配線パターン等の導電部PA1,PB1,・・・,PF1が設けられている。基板WB1の金属板MPとの接触面BS2には、パッドや配線パターン等の導電部PA2,PB2,・・・,PF2が設けられている。金属板MPは、例えば厚さが1mm~10mm程度の導電性を有する金属板である。 FIG. 23 is a conceptual schematic diagram showing an example of such an intermediate substrate MB. In the intermediate substrate MB shown in FIG. 23, a substrate WB1 is provided on one surface of a metal plate MP, and a substrate WB2 is provided on the other surface of the metal plate MP. On the substrate surface BS1 of the substrate WB1, conductive portions PA1, PB1,..., PF1 such as pads and wiring patterns are provided. Conductive portions PA2, PB2,..., PF2 such as pads and wiring patterns are provided on a contact surface BS2 of the substrate WB1 with the metal plate MP. The metal plate MP is, for example, a conductive metal plate having a thickness of about 1 mm to 10 mm.
 導電部PA1~PF1は、ビアRA~RFによって導電部PA2~PF2と電気的に接続されている。導電部PA2~PF2は、金属板MPと密着、導通しているので、導電部PA1~PF1は、ビアRA~RFによって金属板MPと電気的に接続されている。導電部PA1とビアRAとが対になり、導電部PB1とビアRBとが対になり、それぞれ導電部とビアとが対になっている。基板WB2は、基板WB1と同様に構成されているのでその説明を省略する。中間基板MBの例では、金属板MPが面状導体に相当する。 (4) The conductive portions PA1 to PF1 are electrically connected to the conductive portions PA2 to PF2 through vias RA to RF. Since the conductive portions PA2 to PF2 are in close contact with and conductive to the metal plate MP, the conductive portions PA1 to PF1 are electrically connected to the metal plate MP by the vias RA to RF. The conductive part PA1 and the via RA form a pair, the conductive part PB1 and the via RB form a pair, and the conductive part and the via respectively form a pair. The substrate WB2 has the same configuration as the substrate WB1, and a description thereof will be omitted. In the example of the intermediate substrate MB, the metal plate MP corresponds to a planar conductor.
 多層基板WBや中間基板MB等の検査として、ビアRA,RBの抵抗値Ra,Rbを測定する場合がある。 (4) As an inspection of the multilayer substrate WB, the intermediate substrate MB, and the like, the resistance values Ra, Rb of the vias RA, RB may be measured.
 図24中、面状導体IPの等価抵抗の抵抗をR1~R4で表している。ビアRA,RBの抵抗値Ra,Rbを測定するには、導電部PA1と導電部PB1との間に測定用の電流Iを流し、導電部PA1と導電部PB1との間に生じた電圧Vを測定し、抵抗値をV/Iとして算出することが考えられる。これにより、V/Iによって、導電部PA1から導電部PB1に至る電流経路上の、二箇所のビアRA,RBの抵抗値Ra,Rbと、面状導体IPの抵抗R1の抵抗値Rとの合計が得られる。 In FIG. 24, the resistance of the equivalent resistance of the planar conductor IP is represented by R1 to R4. In order to measure the resistance values Ra and Rb of the vias RA and RB, a measurement current I flows between the conductive portions PA1 and PB1, and a voltage V generated between the conductive portions PA1 and PB1. Is measured, and the resistance value is calculated as V / I. Thus, the V / I, on the current path from the conductive part PA1 in the conductive portion PB1, two locations via RA, the resistance value of the RB Ra, and Rb, the resistance value R 1 of the sheet conductor IP resistor R1 Is obtained.
 ここで、図24では、紙面の都合にて導電部PA1~PE1が一直線上に並んで記載されている。しかしながら、実際の基板では、導電部PA1~PE1は、基板面に二次元的に分散配置されている。そのため、抵抗測定のために一対の導電部PA1,PC1を選択して電流Iを流し、もう一対の導電部PB1,PD1を選択して電流Iを流すと、電流I,Iの電流経路に重複が生じる場合がある。 Here, in FIG. 24, the conductive portions PA1 to PE1 are described in a straight line for the sake of space. However, in an actual substrate, the conductive portions PA1 to PE1 are two-dimensionally distributed on the substrate surface. Therefore, resistance against the electric current I 1 by selecting the pair of conductive parts PA1, PC1 for the measurement, the electric current I 2 to select another pair of conductive portions PB1, PD1, the current I 1, I 2 The current paths may overlap.
 図24に示す例では抵抗R2で電流の重複が生じている。この場合、導電部PA1,PC1間の電圧V=I(Ra+R+R+Rc)+Iとなる。I=Iとすると、V/I=(Ra+R+R+Rc)+Rとなるから、測定しようとする抵抗値(Ra+R+R+Rc)に対して抵抗値Rが加算された抵抗値が得られることになる結果、抵抗測定精度が低下してしまう。 In the example shown in FIG. 24, current overlap occurs in the resistor R2. In this case, the conductive part PA1, the voltage between the PC1 V = I 1 (Ra + R 1 + R 2 + Rc) + I 2 becomes R 2. Assuming that I 1 = I 2 , V / I 1 = (Ra + R 1 + R 2 + Rc) + R 2. Therefore, the resistance value R 2 is added to the resistance value (Ra + R 1 + R 2 + Rc) to be measured. As a result of obtaining the resistance value, the resistance measurement accuracy is reduced.
 そのため、測定用電流の重複が生じないように、一対の導電部間を一箇所ずつ、順次検査を実行しなければならず、基板全体の検査時間が増大してしまうという不都合があった。 Therefore, the inspection must be performed one by one between the pair of conductive parts so that the measurement current does not overlap, and the inspection time of the entire substrate increases.
 本発明の目的は、基板の検査時間を短縮することが容易な検査箇所を示す検査指示情報を生成する検査指示情報生成装置、この検査指示情報生成装置を含む基板検査システム、検査指示情報生成方法、及び検査指示情報生成プログラムを提供することである。 An object of the present invention is to provide an inspection instruction information generating apparatus that generates inspection instruction information indicating an inspection location where the inspection time of a substrate can be easily reduced, a board inspection system including the inspection instruction information generating apparatus, and an inspection instruction information generating method. And an inspection instruction information generation program.
 本発明の一例に係る検査指示情報生成装置は、面状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報を記憶する記憶部と、前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記導電構造情報に基づいて、当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を、検査指示情報として記録する検査指示情報生成処理を実行する検査指示情報生成部とを備える。 Inspection instruction information generating device according to an example of the present invention, a conductor layer that is a layer provided with a conductive planar conductor that spreads in a plane, a substrate surface provided with a plurality of conductive portions, and the conductor layer A wiring layer which is a layer laminated between the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and a planar conductor of the conductive layer. A storage section for storing conductive structure information indicating how the planar conductor, the conductive section, the wiring, and the via are electrically connected to each other on a substrate including a via to be connected, and a wiring in the wiring layer When there are a plurality of groups of the conductive parts that are electrically connected to each other via the conductive structure information, based on the conductive structure information, the conductive parts are selected as a first selected conductive part from each of the groups, and the selected plurality is selected. The information indicating the first selected conductive part of the pair And an inspection instruction information generating unit for executing a test instruction information generating process of recording a test instruction information.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行する。 Further, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first A step of detecting a voltage between the selected conductive parts and inspecting vias and wiring of a current path between the first selected conductive parts of each pair based on the current and the voltage.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程と、(c2)前記検査指示情報によって示される対となる第二選択導電部間に、前記第一電流供給処理とは非並行に電流を流す第二電流供給処理を実行し、その対となる第二選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記対となる第二選択導電部間の電流経路のビアと配線とを検査する工程とを実行する。 Further, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive portions, and testing vias and wiring of a current path between each pair of the first selected conductive portions based on the current and the voltage; (c2) the test instruction information Between the second selected conductive portions forming a pair, the first current supply process performs a second current supply process of flowing current in a non-parallel manner, and the voltage between the paired second selected conductive portions is And based on the detected current and voltage, Via the current path between the conductive portion and executes the step of examining the wiring.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、前記検査指示情報によって示される順序に従い前記配線層毎に、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行し、前記(c1)工程の検査の結果が不良であった場合、前記順序が次以降の配線層に対する前記(c1)工程を実行しない。 In addition, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generation device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit (C1) a first current flowing between a pair of first selected conductive portions with respect to a plurality of pairs of first selected conductive portions indicated by the inspection instruction information for each of the wiring layers in the order indicated by the information; The supply process is performed in parallel, the voltage between the pair of first selected conductive units is detected, and based on the current and the voltage, the via of the current path between the pair of first selected conductive units and A step of inspecting the wiring is performed, and if the result of the inspection in the step (c1) is defective, the step (c1) is not performed on the wiring layer having the next or subsequent order.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行し、前記(c1)工程において、前記検査指示情報によって前記導体層の一方の側に対応付けられた前記複数対の第一選択導電部に対する前記第一電流供給処理と、前記導体層の他方の側に対応付けられた前記複数対の第一選択導電部に対する前記第一電流供給処理とを並行して実行する。 Further, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive parts, and inspecting vias and wiring of a current path between the pair of first selected conductive parts based on the current and the voltage, and performing the step (c1). In the first current supply processing for the plurality of pairs of first selected conductive portions associated with one side of the conductor layer by the inspection instruction information, and the first current supply process associated with the other side of the conductor layer A plurality of pairs of the first selected conductive portions, Executed in parallel and a current supply process.
 また、本発明の一例に係る検査指示情報生成方法は、面状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報に基づいて、前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を、検査指示情報として生成する検査指示情報生成処理を実行する検査指示情報生成工程を含む。 In addition, the inspection instruction information generating method according to an example of the present invention may further include a conductive layer that is a layer provided with a conductive planar conductor that spreads in a plane, a substrate surface provided with a plurality of conductive portions, and the conductive layer. A wiring layer that is a layer laminated between a layer and the substrate surface; a via that connects the wiring of the wiring layer to the plurality of conductive parts; a wiring of the wiring layer and a planar conductor of the conductor layer The wiring of the wiring layer is formed based on conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via are electrically connected to each other on the substrate including a via that connects the wiring layer and the via. When there are a plurality of groups of the conductive portions that are electrically connected to each other, a pair of the conductive portions is selected as a first selected conductive portion from each of the groups, and the selected plural pairs of the first selected conductive portions are selected. Information as inspection instruction information. Including inspection instruction information generation step of executing the test instruction information generating process.
本発明の一実施形態に係る基板検査システム1の構成を概念的に示す模式図である。1 is a schematic diagram conceptually showing a configuration of a board inspection system 1 according to an embodiment of the present invention. 図1に示す測定部の電気的構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of an electrical configuration of a measurement unit illustrated in FIG. 1. 検査対象となる基板の一例を示す断面図である。It is sectional drawing which shows an example of the board | substrate used as a test object. 検査対象となる基板の一例を示す平面図である。FIG. 2 is a plan view illustrating an example of a substrate to be inspected. 図3に示す基板Bの導電構造情報D1を単純化した導電構造情報D1´の一例を図示したものである。4 illustrates an example of conductive structure information D1 ′ obtained by simplifying the conductive structure information D1 of the substrate B illustrated in FIG. 3. 図5に示す導電構造情報D1´を木構造により表現した導電構造情報D1´´を図示したものである。6 is a diagram illustrating conductive structure information D1 ″ that is obtained by expressing the conductive structure information D1 ′ illustrated in FIG. 5 in a tree structure. 本発明の一実施形態に係る検査指示情報生成方法、及びその検査指示情報生成方法を用いる検査指示情報生成装置の動作の一例を示すフローチャートである。4 is a flowchart illustrating an example of an inspection instruction information generating method according to an embodiment of the present invention and an operation of an inspection instruction information generating apparatus using the inspection instruction information generating method. 本発明の一実施形態に係る検査指示情報生成方法、及びその検査指示情報生成方法を用いる検査指示情報生成装置の動作の一例を示すフローチャートである。4 is a flowchart illustrating an example of an inspection instruction information generating method according to an embodiment of the present invention and an operation of an inspection instruction information generating apparatus using the inspection instruction information generating method. 本発明の一実施形態に係る検査指示情報生成方法、及びその検査指示情報生成方法を用いる検査指示情報生成装置の動作の一例を示すフローチャートである。4 is a flowchart illustrating an example of an inspection instruction information generating method according to an embodiment of the present invention and an operation of an inspection instruction information generating apparatus using the inspection instruction information generating method. 本発明の一実施形態に係る基板検査方法、及びその基板検査方法を用いる基板検査装置の動作の一例を示すフローチャートである。4 is a flowchart illustrating an example of a board inspection method according to an embodiment of the present invention and an operation of a board inspection apparatus using the board inspection method. 本発明の一実施形態に係る検査指示情報生成方法における第一工程の一例を示すフローチャートである。5 is a flowchart illustrating an example of a first step in a test instruction information generating method according to an embodiment of the present invention. 本発明の一実施形態に係る検査指示情報生成方法における根ノードに接続された枝に関する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process regarding the branch connected to the root node in the test | inspection instruction information generation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る検査指示情報生成方法における根ノードに接続された枝に関する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process regarding the branch connected to the root node in the test | inspection instruction information generation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る検査指示情報生成方法における第二工程の一例を示すフローチャートである。It is a flowchart which shows an example of the 2nd process in the test | inspection instruction information generation method which concerns on one Embodiment of this invention. 図5の部分拡大図である。It is the elements on larger scale of FIG. 図6に示す導電構造情報D1´´の別の例を示す説明図である。FIG. 7 is an explanatory diagram illustrating another example of the conductive structure information D1 ″ illustrated in FIG. 6. 図3に示す基板の別の例を示す説明図である。FIG. 4 is an explanatory diagram illustrating another example of the substrate illustrated in FIG. 3. 検査指示情報の一例を示す表形式の説明図である。FIG. 9 is an explanatory diagram in a table format showing an example of inspection instruction information; 図1に示す基板検査装置の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of an operation of the substrate inspection device illustrated in FIG. 図1に示す基板検査装置の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of an operation of the substrate inspection device illustrated in FIG. 図1に示す基板検査装置の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of an operation of the substrate inspection device illustrated in FIG. 面状導体を備えた基板の一例を示す概念的な模式図である。It is a conceptual schematic diagram which shows an example of the board | substrate provided with the planar conductor. 面状導体を備えた基板の一例を示す概念的な模式図である。It is a conceptual schematic diagram which shows an example of the board | substrate provided with the planar conductor. 図22に示す多層基板WBのビア及び面状導体IPの抵抗値を測定する測定方法を説明するための説明図である。23 is an explanatory diagram for describing a measuring method for measuring a resistance value of a via and a planar conductor IP of the multilayer substrate WB illustrated in FIG. 22. FIG.
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1に示す基板検査システム1は、検査指示情報生成装置3と、基板検査装置2とを含んでいる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the drawings, configurations denoted by the same reference numerals indicate the same configurations, and the description thereof will be omitted. The board inspection system 1 shown in FIG. 1 includes an inspection instruction information generation device 3 and a board inspection device 2.
 図1に示す検査指示情報生成装置3は、検査指示情報生成部31と、記憶部32とを備えている。検査指示情報生成装置3は、例えばパーソナルコンピュータ等のコンピュータを用いて構成されており、所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、HDD(Hard Disk Drive)及び/又はフラッシュメモリ等の不揮発性の記憶装置、通信回路、及びこれらの周辺回路等を備えている。 The inspection instruction information generating device 3 shown in FIG. 1 includes an inspection instruction information generating unit 31 and a storage unit 32. The inspection instruction information generating apparatus 3 is configured using a computer such as a personal computer, for example, and executes a predetermined arithmetic processing (CPU (Central Processing Unit)), a RAM for temporarily storing data (Random Access Memory), A non-volatile storage device such as an HDD (Hard Disk Drive) and / or a flash memory, a communication circuit, and peripheral circuits thereof are provided.
 そして、検査指示情報生成装置3は、例えば不揮発性の記憶装置に記憶された、本発明の一実施形態に係る検査指示情報生成プログラムを実行することによって、検査指示情報生成部31として機能する。記憶部32は、例えば上述の不揮発性の記憶装置を用いて構成されている。 Then, the inspection instruction information generating device 3 functions as the inspection instruction information generating unit 31 by executing the inspection instruction information generating program according to the embodiment of the present invention stored in, for example, a nonvolatile storage device. The storage unit 32 is configured using, for example, the above-described nonvolatile storage device.
 記憶部32には、導電構造情報D1が記憶される。導電構造情報D1は、外部から例えば図略の通信回路を介して検査指示情報生成装置3へ送信されることによって、当該送信された導電構造情報D1を記憶部32に記憶してもよく、例えばUSB(Universal Serial Bus)メモリ等の記憶媒体に記憶された導電構造情報D1を検査指示情報生成装置3が読み取ることによって、導電構造情報D1を記憶部32に記憶してもよく、種々の方法で導電構造情報D1を記憶部32に記憶させることができる。 The storage unit 32 stores the conductive structure information D1. The conductive structure information D1 may be transmitted from the outside to the inspection instruction information generating device 3 via, for example, a communication circuit (not shown), and the transmitted conductive structure information D1 may be stored in the storage unit 32. By reading the conductive structure information D1 stored in a storage medium such as a USB (Universal Serial Bus) memory by the inspection instruction information generating device 3, the conductive structure information D1 may be stored in the storage unit 32. The conductive structure information D1 can be stored in the storage unit 32.
 導電構造情報D1は、後述する基板Bの、面状導体IP、導電部P、各配線層Lの配線W、及びビアVが、どのように導通接続されているかを示す情報である。導電構造情報D1としては、例えば基板の製造に用いられるいわゆるガーバーデータ、及び/又はネットリスト等を用いることができる。 The conductive structure information D1 is information indicating how the planar conductor IP, the conductive portion P, the wiring W of each wiring layer L, and the via V of the substrate B described later are conductively connected. As the conductive structure information D1, for example, so-called Gerber data used in the manufacture of a substrate and / or a netlist can be used.
 検査指示情報生成部31は、導電構造情報D1に基づいて、基板検査装置2に対して検査のために電流を流すべき導電部Pの対を指示するための検査指示情報D2を生成する。検査指示情報生成部31は、例えば図略の通信回路を介して検査指示情報D2を基板検査装置2へ送信してもよい。あるいは検査指示情報生成部31は、検査指示情報D2を記憶媒体に書き込んでもよい。そして、ユーザがその記憶媒体から検査指示情報D2を基板検査装置2に読み込ませるようにしてもよい。検査指示情報生成部31の動作の詳細については後述する。 (4) The inspection instruction information generating unit 31 generates inspection instruction information D2 for instructing the board inspection apparatus 2 on a pair of conductive parts P to which a current is to flow for inspection based on the conductive structure information D1. The inspection instruction information generating unit 31 may transmit the inspection instruction information D2 to the board inspection apparatus 2 via a communication circuit (not shown), for example. Alternatively, the inspection instruction information generation unit 31 may write the inspection instruction information D2 on a storage medium. Then, the user may cause the board inspection apparatus 2 to read the inspection instruction information D2 from the storage medium. Details of the operation of the inspection instruction information generation unit 31 will be described later.
 図1に示す基板検査装置2は、検査対象の被検査基板である基板Bを検査するための装置である。 基板 The board inspection apparatus 2 shown in FIG. 1 is an apparatus for inspecting a board B which is an inspection target board to be inspected.
 基板Bは、例えば中間基板や多層基板であり、プリント配線基板、フィルムキャリア、フレキシブル基板、セラミック多層配線基板、半導体チップ及び半導体ウェハ等の半導体基板、半導体パッケージ用のパッケージ基板、液晶ディスプレイやプラズマディスプレイ用の電極板、及びこれらの基板を製造する過程の中間基板や、いわゆるキャリア基板であってもよい。図22に示す多層基板WB、及び図23に示す中間基板MBは、被検査基板である基板Bの一例に相当している。 The substrate B is, for example, an intermediate substrate or a multilayer substrate, and includes a printed wiring substrate, a film carrier, a flexible substrate, a ceramic multilayer wiring substrate, a semiconductor substrate such as a semiconductor chip and a semiconductor wafer, a package substrate for a semiconductor package, a liquid crystal display and a plasma display. Electrode plate, an intermediate substrate in the process of manufacturing these substrates, or a so-called carrier substrate. The multilayer board WB shown in FIG. 22 and the intermediate board MB shown in FIG. 23 correspond to an example of the board B which is the board to be inspected.
 図1に示す基板検査装置2は、筐体112を有している。筐体112の内部空間には、基板固定装置110と、測定部121と、測定部122と、移動機構125と、制御部20とが主に設けられている。基板固定装置110は、基板Bを所定の位置に固定するように構成されている。 基板 The board inspection apparatus 2 shown in FIG. In the internal space of the housing 112, the substrate fixing device 110, the measuring unit 121, the measuring unit 122, the moving mechanism 125, and the control unit 20 are mainly provided. The substrate fixing device 110 is configured to fix the substrate B at a predetermined position.
 測定部121は、基板固定装置110に固定された基板Bの上方に位置する。測定部122は、基板固定装置110に固定された基板Bの下方に位置する。測定部121,122は、基板Bに設けられた複数の導電部にプローブを接触させるための測定治具4U,4Lを備えている。 The measuring unit 121 is located above the substrate B fixed to the substrate fixing device 110. The measurement unit 122 is located below the substrate B fixed to the substrate fixing device 110. The measurement units 121 and 122 include measurement jigs 4U and 4L for bringing the probe into contact with a plurality of conductive units provided on the substrate B.
 測定治具4U,4Lには、複数のプローブPrが取り付けられている。測定治具4U,4Lは、基板Bの表面に設けられた測定対象の導電部の配置と対応するように複数のプローブPrを配置、保持する。移動機構125は、制御部20からの制御信号に応じて測定部121,122を筐体112内で適宜移動させ、測定治具4U,4LのプローブPrを基板Bの各導電部に接触させる。 A plurality of probes Pr are attached to the measuring jigs 4U and 4L. The measurement jigs 4U and 4L arrange and hold a plurality of probes Pr so as to correspond to the arrangement of the conductive parts to be measured provided on the surface of the substrate B. The moving mechanism 125 appropriately moves the measuring units 121 and 122 in the housing 112 in accordance with a control signal from the control unit 20, and brings the probes Pr of the measuring jigs 4U and 4L into contact with each conductive unit of the substrate B.
 なお、基板検査装置2は、測定部121,122のうちいずれか一方のみを備えてもよく、基板Bは、片面のみに導電部が設けられていてもよい。また、基板検査装置2は、いずれか一方の測定部によって、被検査基板を表裏反転させてその両面の測定を行うようにしてもよい。 Note that the board inspection apparatus 2 may include only one of the measurement units 121 and 122, and the board B may be provided with a conductive unit on only one side. In addition, the board inspection apparatus 2 may perform measurement on both sides of the board to be inspected by using either one of the measurement units to turn the board to be inspected upside down.
 制御部20は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)と、データを一時的に記憶するRAM(Random Access Memory)と、所定の制御プログラムを記憶するROM(Read Only Memory)、HDD(Hard Disk Drive)等の不揮発性の記憶部22と、これらの周辺回路等とを備えて構成されている。そして、制御部20は、例えば記憶部22に記憶された制御プログラムを実行することにより、検査処理部21として機能する。 The control unit 20 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, and a ROM (Read Only Memory) that stores a predetermined control program. , A non-volatile storage unit 22 such as a hard disk drive (HDD), and peripheral circuits thereof. The control unit 20 functions as the inspection processing unit 21 by executing, for example, a control program stored in the storage unit 22.
 図2に示す測定部121は、スキャナ部13、複数の測定ブロック12、及び複数のプローブPrを備えている。なお、測定部122は、測定部121と同様に構成されているのでその説明を省略する。 (2) The measurement unit 121 shown in FIG. 2 includes a scanner unit 13, a plurality of measurement blocks 12, and a plurality of probes Pr. The measuring section 122 is configured in the same manner as the measuring section 121, and thus the description thereof is omitted.
 測定ブロック12は、電源部CS,CMと、電圧検出部VMとを備えている。電源部CS,CMは、制御部20からの制御信号に応じた電流Iを出力する定電流回路である。電源部CSはスキャナ部13へ供給する方向に電流Iを流し、電源部CMはスキャナ部13から引き込む方向に電流Iを流す。電圧検出部VMは電圧を測定し、その電圧値を制御部20へ送信する電圧検出回路である。 The measurement block 12 includes power supply units CS and CM, and a voltage detection unit VM. The power supply units CS and CM are constant current circuits that output a current I according to a control signal from the control unit 20. The power supply unit CS allows the current I to flow in a direction to be supplied to the scanner unit 13, and the power supply unit CM allows the current I to flow in a direction drawn from the scanner unit 13. The voltage detection unit VM is a voltage detection circuit that measures a voltage and transmits the voltage value to the control unit 20.
 スキャナ部13は、例えばトランジスタやリレースイッチ等のスイッチング素子を用いて構成された切り替え回路である。スキャナ部13は、基板Bに抵抗測定用の電流Iを供給するための電流端子+F,-Fと、電流Iによって基板Bの導電部間に生じた電圧を検出するための電圧検出端子+S,-Sとを、複数の測定ブロック12に対応して複数備えている。また、スキャナ部13には、複数のプローブPrが電気的に接続されている。スキャナ部13は、制御部20からの制御信号に応じて電流端子+F,-F及び電圧検出端子+S,-Sと、複数のプローブPrとの間の接続関係を切り替える。 The scanner unit 13 is a switching circuit configured using switching elements such as a transistor and a relay switch. The scanner unit 13 includes current terminals + F and -F for supplying a current I for resistance measurement to the substrate B, and a voltage detection terminal + S and a voltage detection terminal + S for detecting a voltage generated between the conductive parts of the substrate B due to the current I. -S corresponding to the plurality of measurement blocks 12. Further, a plurality of probes Pr are electrically connected to the scanner unit 13. The scanner unit 13 switches the connection relationship between the current terminals + F, -F and the voltage detection terminals + S, -S and the plurality of probes Pr according to a control signal from the control unit 20.
 電源部CSは、その出力端子の一端が回路グラウンドに接続され、他端が電流端子+Fに接続されている。電源部CMは、その出力端子の一端が回路グラウンドに接続され、他端が電流端子-Fに接続されている。電圧検出部VMは、その一端が電圧検出端子+Sに接続され、他端が電圧検出端子-Sに接続されている。 The power supply unit CS has one output terminal connected to the circuit ground and the other end connected to the current terminal + F. The power supply section CM has one output terminal connected to the circuit ground and the other end connected to the current terminal -F. The voltage detection unit VM has one end connected to the voltage detection terminal + S and the other end connected to the voltage detection terminal -S.
 そして、スキャナ部13は、制御部20からの制御信号に応じて、電流端子+F,-F及び電圧検出端子+S,-Sを任意のプローブPrに導通接続可能にされている。これにより、スキャナ部13は、制御部20からの制御信号に応じて、プローブPrが接触している任意の導電部間に電流Iを流し、その導電部間に生じた電圧Vを電圧検出部VMによって測定させることが可能にされている。 {Circle around (2)} In accordance with the control signal from the control unit 20, the scanner unit 13 is capable of electrically connecting the current terminals + F, -F and the voltage detection terminals + S, -S to an arbitrary probe Pr. Thus, the scanner unit 13 allows the current I to flow between any of the conductive parts that the probe Pr is in contact with, and detects the voltage V generated between the conductive parts in accordance with the control signal from the control unit 20. It is made possible to measure by VM.
 測定ブロック12は、複数設けられているので、複数の導電部間に対して、並行して電流供給と電圧測定とを実行可能にされている。 Since a plurality of measurement blocks 12 are provided, current supply and voltage measurement can be executed in parallel between a plurality of conductive parts.
 なお、電源部CS,CMは、スキャナ部13を介して基板Bに電流Iを流すことができればよく、電源部CS,CMの一端が回路グラウンドに接続される例に限らない。例えば、電源部CSの一端と電源部CMの一端とが接続されて電流ループが形成される構成であってもよい。 Note that the power supply units CS and CM only need to be able to pass the current I to the substrate B via the scanner unit 13, and are not limited to an example in which one ends of the power supply units CS and CM are connected to the circuit ground. For example, the current loop may be formed by connecting one end of the power supply unit CS and one end of the power supply unit CM.
 これにより、制御部20は、スキャナ部13へ制御信号を出力することで、複数の電源部CS,CMにより電流Iを任意の複数対のプローブPr間に流させ、任意の複数対のプローブPr間の電圧を、複数の電圧検出部VMによって検出させることが可能にされている。 Accordingly, the control unit 20 outputs a control signal to the scanner unit 13 to cause the plurality of power units CS and CM to cause the current I to flow between an arbitrary plurality of pairs of probes Pr, and an arbitrary plurality of pairs of probes Pr. The voltage between them can be detected by the plurality of voltage detection units VM.
 図3は、基板Bの導電構造情報D1を図示した説明図を兼ねている。導電構造情報D1は、必ずしも画像で表されたデータではないが、以下の説明では理解を容易にするために、導電構造情報D1で表される構造を図面で表して説明する。 FIG. 3 also serves as an explanatory diagram illustrating the conductive structure information D1 of the substrate B. The conductive structure information D1 is not necessarily data represented by an image, but in the following description, the structure represented by the conductive structure information D1 will be described with reference to the drawings for easy understanding.
 図3に示す基板Bは、5枚の基板B1~B5が積層された多層基板である。基板Bの一方の表面が基板面F1、他方の表面が基板面F2とされている。基板B1,B2の境界が配線層L1、基板B2,B3の境界が配線層L2、基板B3,B4の境界が導体層Lc、基板B4,B5の境界が配線層L4とされている。 基板 The board B shown in FIG. 3 is a multilayer board in which five boards B1 to B5 are stacked. One surface of the substrate B is a substrate surface F1, and the other surface is a substrate surface F2. The boundary between the substrates B1 and B2 is the wiring layer L1, the boundary between the substrates B2 and B3 is the wiring layer L2, the boundary between the substrates B3 and B4 is the conductor layer Lc, and the boundary between the substrates B4 and B5 is the wiring layer L4.
 基板面F1には導電部P1~P7が設けられ、基板面F2には導電部P11~P17が設けられている。導電部P1~P7,P11~P17は、パッド、バンプ、配線、電極等の、プローブPrが当接される検査点となる。 導電 Conductive portions P1 to P7 are provided on the substrate surface F1, and conductive portions P11 to P17 are provided on the substrate surface F2. The conductive portions P1 to P7 and P11 to P17 are inspection points, such as pads, bumps, wirings, and electrodes, to which the probe Pr contacts.
 導体層Lcには、面状又はメッシュ状に拡がる導体である面状導体IPが設けられている。配線層L1には配線W11,W12が設けられ、配線層L2には配線W21,W22が設けられ、配線層L4には配線W41,W42,W43と配線W44,W45とが設けられている。面状導体IPは、一枚のシート状、すなわち面状に拡がる形状であってもよく、規則的又は不規則なメッシュ状(網目状)に配線等の導体パターンが組み合わされて、同一層内に全体として面状に拡がるような形状を有する導体であってもよい。 The conductor layer Lc is provided with a planar conductor IP that is a conductor that spreads in a planar or mesh shape. The wiring layer L1 is provided with wirings W11 and W12, the wiring layer L2 is provided with wirings W21 and W22, and the wiring layer L4 is provided with wirings W41, W42 and W43 and the wirings W44 and W45. The planar conductor IP may have a shape of a single sheet, that is, a shape that spreads in a planar shape, and a conductor pattern such as wiring is combined in a regular or irregular mesh shape (mesh shape) to form a single layer. The conductor may have a shape that spreads in a plane as a whole.
 なお、図3では、面状導体IPが基板Bの略全域に拡がっている例を示したが、面状導体IPは、必ずしも基板Bの略全域に拡がっている例に限られない。面状導体IPは、基板Bの一部の領域のみに設けられていてもよい。例えば、導体層Lcにおける基板Bの面状導体IPが設けられていない領域に、配線Wが設けられていてもよい。 In addition, FIG. 3 illustrates an example in which the planar conductor IP extends over substantially the entire area of the substrate B, but the planar conductor IP is not necessarily limited to an example that extends over substantially the entire area of the substrate B. The planar conductor IP may be provided only in a partial region of the substrate B. For example, the wiring W may be provided in a region of the conductor layer Lc where the planar conductor IP of the substrate B is not provided.
 図4に示す基板Bは、互いに電気的に分離された面状導体IPaと、面状導体IPdとを備えている。面状導体IPaは例えばアナロググラウンドとして用いられ、面状導体IPdは例えばデジタルグラウンドとして用いられる。図4に示すように、基板Bは、互いに絶縁された複数の面状導体IPを備えていてもよい。 4 The substrate B shown in FIG. 4 includes a planar conductor IPa and a planar conductor IPd which are electrically separated from each other. The planar conductor IPa is used, for example, as an analog ground, and the planar conductor IPd is used, for example, as a digital ground. As shown in FIG. 4, the substrate B may include a plurality of planar conductors IP insulated from each other.
 配線W41,W42,W43は、配線層L4の配線W41、配線W42、及び配線W43が連なった一本の配線であるが、説明の便宜上、一本の配線W41,W42,W43の各部分を配線W41、配線W42、及び配線W43と称する。同様に、配線W44,W45は、配線W44と配線W45とが連なった一本の配線であり、配線W44及び配線W45は、それぞれ一本の配線W44,W45の一部分である。 The wirings W41, W42, and W43 are a single wiring in which the wiring W41, the wiring W42, and the wiring W43 of the wiring layer L4 are continuous, but for convenience of description, each part of the single wiring W41, W42, and W43 is wired. These are referred to as W41, a wiring W42, and a wiring W43. Similarly, the wirings W44 and W45 are a single wiring in which the wiring W44 and the wiring W45 are continuous, and the wiring W44 and the wiring W45 are parts of the single wirings W44 and W45, respectively.
 また、基板Bには、基板B1を貫通するビアV11~V17が設けられ、基板B2を貫通するビアV21~V27が設けられ、基板B3を貫通するビアV31~V36が設けられ、基板B4を貫通するビアV41~V45が設けられ、基板B5を貫通するビアV51~V57が設けられている。 The substrate B is provided with vias V11 to V17 penetrating the substrate B1, the vias V21 to V27 penetrating the substrate B2, the vias V31 to V36 penetrating the substrate B3, and penetrating the substrate B4. Vias V41 to V45 are provided, and vias V51 to V57 penetrating the substrate B5 are provided.
 記憶部22に記憶された導電構造情報には、これら導電部P1~P7,P11~P17、配線W11,W12,W21,W22,W41~W45、ビアV11~V17,V21~V27,V31~V36,V41~V45,V51~V57、及び面状導体IPが、どのように導通接続されているかを示す情報、例えば図3に図示された接続関係を示す情報が含まれている。 The conductive structure information stored in the storage unit 22 includes the conductive units P1 to P7, P11 to P17, wirings W11, W12, W21, W22, W41 to W45, vias V11 to V17, V21 to V27, V31 to V36, V41 to V45, V51 to V57, and information indicating how the planar conductor IP is conductively connected, for example, information indicating the connection relationship illustrated in FIG.
 以下、導電部P1~P7,P11~P17等の導電部を総称して導電部Pと称し、配線W11,W12,W21,W22,W41~W45等の配線を総称して配線Wと称し、ビアV11~V17,V21~V27,V31~V36,V41~V45,V51~V57等を総称してビアVと称し、配線層L1,L2,L4を総称して配線層Lと称する。 Hereinafter, conductive portions such as the conductive portions P1 to P7 and P11 to P17 are collectively referred to as a conductive portion P, and wires such as the wires W11, W12, W21, W22, and W41 to W45 are collectively referred to as a wire W. V11 to V17, V21 to V27, V31 to V36, V41 to V45, V51 to V57, and the like are collectively referred to as a via V, and the wiring layers L1, L2, and L4 are collectively referred to as a wiring layer L.
 各導電部Pは、ビアVや配線Wを介して面状導体IPと導通接続されている。このように、各導電部Pが面状導体IPと導通接続される配線構造は、一般的に、回路グラウンドや電源パターンの接続用に用いられている。なお、基板Bは、回路グラウンドや電源パターンに接続されない配線やパッド等を含んでいてもむろんよい。 Each conductive part P is conductively connected to the planar conductor IP via the via V and the wiring W. As described above, the wiring structure in which each conductive portion P is conductively connected to the planar conductor IP is generally used for connecting a circuit ground or a power supply pattern. Note that the substrate B may include wiring, pads, and the like that are not connected to the circuit ground and the power supply pattern.
 基板固定装置110に基板Bが取り付けられると、移動機構125によって、測定部121の各プローブPrが導電部P1~P7に当接され、測定部122の各プローブPrが導電部P11~P17に当接される。これにより、測定部121,122は、任意の一対の導電部P間に電流Iを流し、その一対の導電部P間の電圧を検出可能にされている。 When the substrate B is attached to the substrate fixing device 110, each probe Pr of the measuring section 121 is brought into contact with the conductive sections P1 to P7 by the moving mechanism 125, and each probe Pr of the measuring section 122 is brought into contact with the conductive sections P11 to P17. Touched. Thus, the measuring units 121 and 122 allow the current I to flow between any pair of conductive parts P and detect the voltage between the pair of conductive parts P.
 測定部121,122は、いわゆる四端子抵抗測定法による抵抗測定のために、一つの導電部Pに、電流供給用のプローブPrと電圧測定用のプローブPrとを接触させてもよく、いわゆる二端子抵抗測定法による抵抗測定のために、一つの導電部Pに、電流供給と電圧測定とを兼ねた一つのプローブPrを接触させてもよい。 The measuring units 121 and 122 may contact a current supply probe Pr and a voltage measurement probe Pr with one conductive portion P for resistance measurement by a so-called four-terminal resistance measurement method. For the resistance measurement by the terminal resistance measurement method, one probe Pr serving both as a current supply and a voltage measurement may be brought into contact with one conductive part P.
 検査処理部21は、測定部121,122を制御して、後述するように選択された一対の導電部Pのうち、一方に電源部CS(図2参照)からの電流Iを供給させ、他方から電源部CM(図2参照)によって電流Iを引き抜かせることによって、導電部P間に電流Iを供給させ、その導電部P間の電圧を検出させ、その電流と電圧とに基づいて基板Bを検査する。検査処理部21は、例えば、その電流と電圧とに基づいて、四端子抵抗測定法又は二端子抵抗測定法による抵抗測定を行い、その抵抗値に基づき、基板Bの検査を行うことができる。 The inspection processing unit 21 controls the measurement units 121 and 122 so that one of the pair of conductive units P selected as described later is supplied with the current I from the power supply unit CS (see FIG. 2), and the other is. The current I is drawn from the power supply unit CM (see FIG. 2) to supply the current I between the conductive parts P and detect the voltage between the conductive parts P. Based on the current and the voltage, the substrate B To inspect. For example, the inspection processing unit 21 can perform a resistance measurement by a four-terminal resistance measurement method or a two-terminal resistance measurement method based on the current and the voltage, and can inspect the substrate B based on the resistance value.
 以下、検査処理部21が測定部121,122を制御することによって電流供給及び電圧検出を行わせることを、単に、検査処理部21が、電流を供給する、電圧を検出する、というように記載する。検査処理部21の動作の詳細については後述する。 Hereinafter, the fact that the inspection processing unit 21 controls the measuring units 121 and 122 to perform the current supply and the voltage detection is simply described as the inspection processing unit 21 supplying the current and detecting the voltage. I do. Details of the operation of the inspection processing unit 21 will be described later.
 次に、上述の検査指示情報生成装置3の動作について説明する。図3に示す基板Bに対応する検査指示情報を生成する場合を例に説明する。図5、図6は、図3に示す基板Bに対応する検査指示情報を生成する場合の検査指示情報生成方法の実行過程において変更された導電構造情報D1の一例を図示した説明図である。以下、図5~図14を参照しつつ、本発明の一実施形態に係る検査指示情報生成プログラムに基づいて検査指示情報生成方法を実行する検査指示情報生成装置3の動作を説明する。 Next, the operation of the inspection instruction information generating device 3 will be described. The case where the inspection instruction information corresponding to the substrate B shown in FIG. 3 is generated will be described as an example. FIGS. 5 and 6 are explanatory diagrams showing an example of the conductive structure information D1 changed in the process of executing the inspection instruction information generating method when generating the inspection instruction information corresponding to the substrate B shown in FIG. Hereinafter, with reference to FIGS. 5 to 14, the operation of the inspection instruction information generating device 3 that executes the inspection instruction information generating method based on the inspection instruction information generating program according to one embodiment of the present invention will be described.
 なお、以下のフローチャートにおいて、同一の処理には同一のステップ番号を付してその説明を省略する。 In the following flowcharts, the same processes are denoted by the same step numbers, and description thereof is omitted.
 まず、検査指示情報生成部31は、基板Bの各導電部Pをグループ化するにあたって、前処理として、導電構造情報D1によって示される接続構造を単純化する処理を行う。具体的には、検査指示情報生成部31は、複数の配線層Lの配線Wが並列に接続されている場合、当該並列接続された配線Wを、その各配線Wのうち最も基板面F1に近い配線Wに置き換えるように、導電構造情報D1を複製、変更し、導電構造情報D1´を生成する(ステップS1:(d)工程)。 First, the inspection instruction information generating unit 31 performs a process of simplifying the connection structure indicated by the conductive structure information D1 as a pre-process before grouping the conductive units P of the substrate B. Specifically, when the wirings W of the plurality of wiring layers L are connected in parallel, the inspection instruction information generation unit 31 places the wirings W connected in parallel to the substrate surface F1 of the respective wirings W most. The conductive structure information D1 is duplicated and changed so as to replace with the close wiring W, and the conductive structure information D1 'is generated (step S1: (d) step).
 具体的には、図3に示す基板Bでは、複数の配線層L1,L2の配線W11,W21が、ビアV21,V22によって並列接続されている。この場合、導電構造情報D1に対して、図5に示すように、二本の配線W11,W21を、配線W11,W21のうち、最も基板面F1に近い一本の配線W11に置き換え、導電構造情報D1´を生成する。このとき、ビアV22の一端がオープンになるので、データ上は、ビアV22が存在しない扱いとしてもよい。これにより、基板Bの配線構造が単純化されるので、以降の処理が容易になる。 {Specifically, in the substrate B shown in FIG. 3, the wirings W11 and W21 of the plurality of wiring layers L1 and L2 are connected in parallel by vias V21 and V22. In this case, for the conductive structure information D1, as shown in FIG. 5, the two wires W11 and W21 are replaced with one of the wires W11 and W21 closest to the substrate surface F1, and the conductive structure The information D1 'is generated. At this time, since one end of the via V22 is open, the data may be treated as not having the via V22. This simplifies the wiring structure of the substrate B, and facilitates subsequent processing.
 次に、検査指示情報生成部31は、配線Wと面状導体IPとによって、ビアV又はビアVの列が並列接続されている場合、当該並列接続されたビアV又はビアVの列を、一つ又は一列のビアに置き換えるように、導電構造情報D1´を変更する(ステップS2:(e)工程)。 Next, when the vias V or the columns of the vias V are connected in parallel by the wiring W and the planar conductor IP, the inspection instruction information generating unit 31 sets the vias V or the columns of the vias V connected in parallel to each other. The conductive structure information D1 'is changed so as to be replaced with one or one row of vias (step S2: (e) step).
 具体的には、図3に示す基板Bでは、ビアV24,V33が直列接続されて列をなし、ビアV25,V34が直列接続されて列をなしている。そして、配線W12と面状導体IPとによって、ビアV24,V33の列と、ビアV25,V34の列とが並列接続されている。また、配線W22と面状導体IPとによって、ビアV32とビアV33とが並列接続されている。 Specifically, on the substrate B shown in FIG. 3, the vias V24 and V33 are connected in series to form a row, and the vias V25 and V34 are connected in series to form a row. The row of vias V24 and V33 and the row of vias V25 and V34 are connected in parallel by the wiring W12 and the planar conductor IP. In addition, via V32 and via V33 are connected in parallel by wiring W22 and planar conductor IP.
 この場合、例えば図5に示すように、導電構造情報D1´に対して、ビアV24,V33の列と、ビアV25,V34の列とをいずれか一方の列、例えばビアV24,V33の列に置き換え、ビアV32とビアV33とを一つのビアV、例えばビアV32に置き換える。 In this case, for example, as shown in FIG. 5, the columns of the vias V24 and V33 and the columns of the vias V25 and V34 are changed to one of the columns, for example, the columns of the vias V24 and V33, for the conductive structure information D1 '. The replacement is performed by replacing the via V32 and the via V33 with one via V, for example, the via V32.
 また、配線W41,W42,W43の直列配線と面状導体IPとによって、ビアV41とビアV42とが並列接続されている。この場合、例えば図5に示すように、導電構造情報D1の上で、ビアV41,V42を一つのビアV、例えばビアV41に置き換える。また、配線W44,W45と面状導体IPとによって、ビアV43,V44,V45が並列接続されている。この場合、例えば図5に示すように、導電構造情報D1´に対して、ビアV43,V44,V45を一つのビアV、例えばビアV43に置き換える。これにより、基板Bの配線構造が単純化されるので、以降の処理が容易になる。 {Circle around (4)} The vias V41 and V42 are connected in parallel by the series wiring of the wirings W41, W42 and W43 and the planar conductor IP. In this case, for example, as shown in FIG. 5, the vias V41 and V42 are replaced with one via V, for example, the via V41 on the conductive structure information D1. Further, vias V43, V44, V45 are connected in parallel by the wires W44, W45 and the planar conductor IP. In this case, for example, as shown in FIG. 5, the vias V43, V44, and V45 are replaced with one via V, for example, the via V43 for the conductive structure information D1 '. This simplifies the wiring structure of the substrate B, and facilitates subsequent processing.
 なお、検査指示情報生成部31は、必ずしもステップS1,S2を実行する必要はなく、図3に示す基板Bの実際の配線構造を表すデータ形式の導電構造情報D1を導電構造情報D1´として以後の処理を実行してもよい。 Note that the inspection instruction information generation unit 31 does not necessarily need to execute steps S1 and S2, and sets the conductive structure information D1 in the data format representing the actual wiring structure of the substrate B shown in FIG. May be performed.
 次に、検査指示情報生成部31は、導電構造情報D1´のデータ構造を、木構造に変換する(ステップS3:(m)工程)。木構造に変換された導電構造情報D1´を、導電構造情報D1´´と称する。図6に示すように、導電構造情報D1´´では、一つの配線Wが一つのノードNで表現され、面状導体IPは根ノードNRで表現され、ビアVは、導電部Pとノード間をつなぐ枝M、又はノード相互間をつなぐ枝Mとして表現される。 Next, the inspection instruction information generating unit 31 converts the data structure of the conductive structure information D1 'into a tree structure (step S3: (m) step). The conductive structure information D1 'converted into the tree structure is referred to as conductive structure information D1' '. As shown in FIG. 6, in the conductive structure information D1 ″, one wiring W is represented by one node N, the planar conductor IP is represented by a root node NR, and the via V is formed between the conductive part P and the node. , Or a branch M connecting nodes.
 なお、検査指示情報生成部31は、必ずしもステップS3を実行する必要はなく、基板Bの配線構造を表すデータ形式の導電構造情報D1、導電構造情報D1´を用いて以後の処理を実行してもよい。以下の説明において、ノードNに対する処理は、そのノードNに対応する配線Wに対する処理と同等であり、根ノードNRに対する処理は、面状導体IPに対する処理と同等であり、枝Mに対する処理は、そのノードNに対応する配線Wに対する処理と同等である。 Note that the inspection instruction information generation unit 31 does not necessarily need to execute step S3, and executes the subsequent processing using the conductive structure information D1 and the conductive structure information D1 ′ in a data format representing the wiring structure of the substrate B. Is also good. In the following description, the processing for the node N is equivalent to the processing for the wiring W corresponding to the node N, the processing for the root node NR is equivalent to the processing for the planar conductor IP, and the processing for the branch M is The processing is the same as the processing for the wiring W corresponding to the node N.
 図6に示す木構造の導電構造情報D1´´の例では、ノードN11が配線W11(W21)に対応し、ノードN12が配線W12に対応し、ノードN21が配線W22に対応し、ノードN41が配線W41,W42,W43に対応し、ノードN42が配線W44,W45に対応している。また、枝M11がビアV11(V21)、枝M12がビアV12(V22)、枝M13がビアV14、枝M14がビアV15、枝M22がビアV24(V25)、枝Mr1がビアV21,V31、枝Mr2がビアV32(V33)、枝Mr3がビアV16,V26,V35、枝Mr4がビアV17,V27,V36、枝M41がビアV51、枝M42がビアV52、枝M43がビアV53、枝M44がビアV54、枝M45がビアV55、枝M46がビアV56、枝M47がビアV57、枝Mr5がビアV41(V42)、枝Mr6がビアV43(V44,V45)にそれぞれ対応している。 In the example of the conductive structure information D1 ″ having a tree structure illustrated in FIG. 6, the node N11 corresponds to the wiring W11 (W21), the node N12 corresponds to the wiring W12, the node N21 corresponds to the wiring W22, and the node N41 corresponds to the wiring W22. The node N42 corresponds to the wirings W44, W45, corresponding to the wirings W41, W42, W43. Branch M11 is via V11 (V21), branch M12 is via V12 (V22), branch M13 is via V14, branch M14 is via V15, branch M22 is via V24 (V25), branch Mr1 is vias V21, V31, and branch. Mr2 is via V32 (V33), branch Mr3 is via V16, V26, V35, branch Mr4 is via V17, V27, V36, branch M41 is via V51, branch M42 is via V52, branch M43 is via V53, and branch M44 is via. V54, branch M45 corresponds to via V55, branch M46 corresponds to via V56, branch M47 corresponds to via V57, branch Mr5 corresponds to via V41 (V42), and branch Mr6 corresponds to via V43 (V44, V45).
 次に、検査指示情報生成部31は、基板面F1に最も近い配線層L1を第一選択層LL1、基板面F2に最も近い配線層L4を第二選択層LL2として選択する(ステップS4:(f)工程)。ステップS4~S27,S101~S501の処理が、検査指示情報生成処理の一例に相当している。 Next, the inspection instruction information generation unit 31 selects the wiring layer L1 closest to the substrate surface F1 as the first selection layer LL1 and the wiring layer L4 closest to the substrate surface F2 as the second selection layer LL2 (Step S4: ( f) Step). The processing of steps S4 to S27 and S101 to S501 corresponds to an example of the inspection instruction information generation processing.
 次に、検査指示情報生成部31は、第一工程を実行する(ステップS5)。図11を参照して、検査指示情報生成部31は、導電構造情報D1´´に基づいて、第一選択層LL1のノードN(配線W)を介して互いに導通する基板面F1の導電部P同士をグループ化する(ステップS101:(f)工程の(a)工程)。 Next, the inspection instruction information generation unit 31 executes the first step (Step S5). Referring to FIG. 11, inspection instruction information generating section 31 performs, based on conductive structure information D1 ″, conductive section P of substrate surface F1 that is electrically connected to each other via node N (wiring W) of first selection layer LL1. These are grouped together (step S101: step (a) of step (f)).
 ここでは第一選択層LL1は配線層L1であるから、図6に示す木構造の導電構造情報D1´´において、第一選択層LL1のノードN11を介して導通する導電部P1,P2がグループ化され、第一選択層LL1のノードN12を介して導通する導電部P4,P5がグループ化される。 Here, since the first selection layer LL1 is the wiring layer L1, in the tree-structured conductive structure information D1 '' shown in FIG. 6, the conductive portions P1 and P2 which are conductive via the node N11 of the first selection layer LL1 are grouped. And the conductive portions P4 and P5 that conduct through the node N12 of the first selection layer LL1 are grouped.
 次に、検査指示情報生成部31は、ステップS101でグループ化された各グループについて、当該各グループに含まれる導電部Pの中から二つの導電部を一対の第一選択導電部として選択し、第一選択層LL1と対応付けて検査指示情報D2に記録する(ステップS102:(f)工程の(b)工程)。第一選択導電部は、並行して検査可能な導電部(検査箇所)を示す情報である。 Next, for each group grouped in step S101, the inspection instruction information generation unit 31 selects two conductive units from among the conductive units P included in each group as a pair of first selected conductive units, It is recorded in the inspection instruction information D2 in association with the first selection layer LL1 (step S102: step (b) of step (f)). The first selection conductive part is information indicating conductive parts (inspection locations) that can be inspected in parallel.
 図6の例では、第一選択導電部として、配線層L1に対応する導電部P1,P2のグループから導電部P1,P2、導電部P4,P5のグループから導電部P4,P5が選択される。以下、導電部P1と導電部P2との対を、導電部対P1,P2のように表記する。 In the example of FIG. 6, as the first selected conductive part, the conductive parts P1 and P2 from the group of the conductive parts P1 and P2 corresponding to the wiring layer L1, and the conductive parts P4 and P5 from the group of the conductive parts P4 and P5 are selected. . Hereinafter, a pair of the conductive part P1 and the conductive part P2 is described as a conductive part pair P1, P2.
 次に、検査指示情報生成部31は、ステップS101でグループ化された各グループの中に、第一選択導電部として選択されなかった導電部Pを有するグループがある場合、そのグループに対し、その第一選択導電部として選択されなかった導電部Pを含む二つの導電部Pを一対の第二選択導電部として選択し、第一選択層LL1と対応付けて検査指示情報D2に記録する(ステップS103:(f)工程の(b)工程)。第二選択導電部は、第一選択導電部と非並行に検査されるべき導電部(検査箇所)を示す情報である。 Next, when there is a group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S101, the inspection instruction information generating unit 31 Two conductive portions P including the conductive portion P not selected as the first selected conductive portion are selected as a pair of second selected conductive portions, and are recorded in the inspection instruction information D2 in association with the first selected layer LL1 (step). S103: (b) step of (f) step). The second selected conductive part is information indicating a conductive part (inspection location) to be inspected non-parallel to the first selected conductive part.
 図6の例では、導電部P1,P2のグループ、及び導電部P4,P5のグループの中には、第一選択導電部として選択されなかった導電部Pを有するグループがないので、検査指示情報生成部31は、次のステップS104へ処理を移行する。 In the example of FIG. 6, since there is no group having the conductive part P not selected as the first selected conductive part in the group of the conductive parts P1 and P2 and the group of the conductive parts P4 and P5, the inspection instruction information The generation unit 31 proceeds to the next step S104.
 次に、検査指示情報生成部31は、導電構造情報D1´´に基づいて、第二選択層LL2のノードN(配線W)を介して互いに導通する基板面F2の導電部P同士をグループ化する(ステップS104:(f)工程の(a)工程)。 Next, based on the conductive structure information D1 '', the inspection instruction information generating unit 31 groups the conductive parts P on the substrate surface F2 which are electrically connected to each other via the node N (wiring W) of the second selection layer LL2. (Step S104: Step (a) of Step (f)).
 ここでは第二選択層LL2は配線層L4であるから、図6に示す木構造の導電構造情報D1´´において、第二選択層LL2のノードN41を介して導通する導電部P11,P12,P13,P14がグループ化され、第二選択層LL2のノードN42を介して導通する導電部P15,P16,P17がグループ化される。 Here, since the second selection layer LL2 is the wiring layer L4, the conductive portions P11, P12, and P13 that conduct through the node N41 of the second selection layer LL2 in the tree-structured conductive structure information D1 ″ illustrated in FIG. , P14 are grouped, and the conductive portions P15, P16, P17 conducting through the node N42 of the second selection layer LL2 are grouped.
 次に、検査指示情報生成部31は、ステップS104でグループ化された各グループについて、当該各グループに含まれる導電部Pの中から二個の導電部を一対の第一選択導電部として選択し、第二選択層LL2と対応付けて検査指示情報D2に記録する(ステップS105:(f)工程の(b)工程)。 Next, for each group grouped in step S104, the inspection instruction information generation unit 31 selects two conductive parts from the conductive parts P included in each group as a pair of first selected conductive parts. Is recorded in the inspection instruction information D2 in association with the second selection layer LL2 (step S105: step (b) of step (f)).
 図6の例では、第一選択導電部として、導電部P11,P12,P13,P14のグループから任意の例えば導電部P11,P12、導電部P15,P16,P17のグループから任意の例えば導電部P15,P16が選択される。 In the example of FIG. 6, as the first selected conductive part, any of the conductive parts P11, P12, P13, and P14, for example, any conductive part P11, P12, and any one of the conductive parts P15, P16, and P17, for example, any conductive part P15 , P16 are selected.
 次に、検査指示情報生成部31は、ステップS104でグループ化された各グループの中に、第一選択導電部として選択されなかった導電部Pを有するグループがある場合、そのグループに対し、その第一選択導電部として選択されなかった導電部Pを含む二つの導電部Pを一対の第二選択導電部として選択し、第二選択層LL2と対応付けて検査指示情報D2に記録し(ステップS106:(f)工程の(b)工程)、第一工程を終了してステップS7(図7)へ処理を移行する。 Next, when there is a group having a conductive part P not selected as the first selected conductive part among the groups grouped in step S104, the inspection instruction information generating unit 31 Two conductive portions P including the conductive portion P not selected as the first selected conductive portion are selected as a pair of second selected conductive portions, and are recorded in the inspection instruction information D2 in association with the second selected layer LL2 (step S106: The (b) step of the (f) step), the first step is finished, and the processing shifts to the step S7 (FIG. 7).
 図6の例では、導電部P11,P12,P13,P14のグループ、及び導電部P15,P16,P17のグループには、第一選択導電部として選択されなかった導電部P13,P14、及び導電部P17がある。この場合、検査指示情報生成部31は、導電部対P13,P14、及び導電部対P16,P17を第二選択導電部として選択する。 In the example of FIG. 6, in the group of the conductive parts P11, P12, P13, and P14 and the group of the conductive parts P15, P16, and P17, the conductive parts P13, P14, and the conductive part that are not selected as the first selected conductive parts. There is P17. In this case, the inspection instruction information generating unit 31 selects the conductive part pair P13, P14 and the conductive part pair P16, P17 as the second selected conductive part.
 図7に戻って、検査指示情報生成部31は、処理を制御するための制御フラグであるフラグFip1をチェックする(ステップS7)。 Returning to FIG. 7, the inspection instruction information generation unit 31 checks the flag Fip1, which is a control flag for controlling the processing (step S7).
 フラグFip1が1の場合(ステップS7でYES)、後述するステップS12で既にフラグFip1が1にされ、導体層Lcの基板面F1側、及び導体層Lcよりも基板面F1側の各配線層Lに対応する検査指示情報D2の生成が既に終了していることを意味する。そのため、検査指示情報生成部31は、ステップS11~S16を実行することなくステップS17(図9)へ移行する。 When the flag Fip1 is 1 (YES in step S7), the flag Fip1 is already set to 1 in step S12 to be described later, and each wiring layer L on the substrate surface F1 side of the conductor layer Lc and the substrate surface F1 side of the conductor layer Lc. Means that the generation of the inspection instruction information D2 corresponding to. Has already been completed. Therefore, the inspection instruction information generation unit 31 proceeds to step S17 (FIG. 9) without executing steps S11 to S16.
 フラグFip1が1ではない場合(ステップS7でNO)、検査指示情報生成部31は、ステップS11(図8)へ移行し、第一選択層LL1の、基板面F1から遠ざかる側に導体層Lcが隣接しているか否かをチェックする(ステップS11)。 When the flag Fip1 is not 1 (NO in step S7), the inspection instruction information generation unit 31 proceeds to step S11 (FIG. 8), and the conductor layer Lc is located on the side of the first selection layer LL1 that is away from the substrate surface F1. It is checked whether or not they are adjacent (step S11).
 第一選択層LL1の、基板面F1から遠ざかる側に導体層Lcが隣接している場合(ステップS11でYES)、検査指示情報生成部31は、フラグFip1を1にして(ステップS12)、面状導体IPの基板面F1側に接続されたビアVの検査に用いる導電部Pを選択するべくステップS301(図12)へ処理を移行する。 If the conductor layer Lc is adjacent to the first selection layer LL1 on the side away from the substrate surface F1 (YES in step S11), the inspection instruction information generation unit 31 sets the flag Fip1 to 1 (step S12), The process proceeds to step S301 (FIG. 12) in order to select a conductive part P used for inspection of the via V connected to the substrate surface F1 side of the conductor IP.
 一方、第一選択層LL1の、基板面F1から遠ざかる側に導体層Lcが隣接していない場合(ステップS11でNO)、検査指示情報生成部31は、第一選択層LL1の、基板面F1から遠ざかる側に隣接する配線層Lを新たな第一選択層LL1として選択する(ステップS13:(g)工程)。これにより、新たな第一選択層LL1を処理対象としてステップS14~S16が実行される。 On the other hand, when the conductor layer Lc is not adjacent to the first selection layer LL1 on the side away from the substrate surface F1 (NO in step S11), the inspection instruction information generation unit 31 determines whether the first selection layer LL1 has the substrate surface F1. Is selected as a new first selection layer LL1 (step S13: step (g)). Thus, steps S14 to S16 are executed with the new first selection layer LL1 as a processing target.
 例えば図6に示す例において、今、第一選択層LL1は配線層L1である。配線層L1の、基板面F1から遠ざかる側には導体層Lcは隣接しておらず(ステップS11でNO)、配線層L1の、基板面F1から遠ざかる側に隣接する配線層L2が新たな第一選択層LL1となる(ステップS13)。 {For example, in the example shown in FIG. 6, the first selection layer LL1 is the wiring layer L1. The conductor layer Lc is not adjacent to the wiring layer L1 on the side away from the substrate surface F1 (NO in step S11), and the wiring layer L2 adjacent to the wiring layer L1 on the side away from the substrate surface F1 is a new first layer. One selection layer LL1 is obtained (step S13).
 次に、検査指示情報生成部31は、導電構造情報D1´´に基づいて、第一選択層LL1のノードNそれぞれに対応して、その一つのノードNの根ノードNRから遠ざかる側に接続された枝M(ビアV)一つに対して、そのノードNとは逆側で電気的に接続、すなわち導通する基板面F1の導電部Pを一つ選択する。検査指示情報生成部31は、対応するノードN毎に、選択された導電部Pをグループ化する(ステップS14:(g1)工程)。 Next, based on the conductive structure information D1 ″, the inspection instruction information generation unit 31 is connected to the node N of the first selection layer LL1 on the side away from the root node NR of the one node N corresponding to each of the nodes N. One of the branches M (via V) is electrically connected on the opposite side of the node N, that is, one conductive portion P of the substrate surface F1 that is conductive is selected. The inspection instruction information generation unit 31 groups the selected conductive units P for each corresponding node N (step S14: (g1) step).
 図6に示す例では、第一選択層LL1である配線層L2には、ノードN21がある。ノードN21には、枝M21と枝M22とが接続されている。枝M21の、ノードN21とは逆側に直接又は間接に導通する基板面F1の導電部Pとして、導電部P3がある。従って、枝M21に対応する導電部P3が選択される。枝M22の、ノードN21とは逆側に直接又は間接に導通する基板面F1の導電部Pとして、導電部P4,P5がある。この導電部P4,P5の中から任意の一つ、例えば導電部P4が、枝M22に対応する導電部Pとして選択される。これにより、ノードN21に対応して導電部P3,P4がグループ化される。 In the example shown in FIG. 6, the node N21 is provided in the wiring layer L2 which is the first selection layer LL1. Branch M21 and branch M22 are connected to node N21. There is a conductive portion P3 as a conductive portion P on the substrate surface F1 that is directly or indirectly conductive to the side of the branch M21 opposite to the node N21. Therefore, the conductive part P3 corresponding to the branch M21 is selected. Conductive portions P4 and P5 are provided as conductive portions P on the substrate surface F1 that are directly or indirectly conductive to the side of the branch M22 opposite to the node N21. Any one of the conductive portions P4 and P5, for example, the conductive portion P4 is selected as the conductive portion P corresponding to the branch M22. Thereby, conductive portions P3 and P4 are grouped corresponding to node N21.
 次に、検査指示情報生成部31は、ステップS14でグループ化された各グループについて、当該各グループに含まれる導電部Pの中から任意の二つの導電部を一対の第一選択導電部として選択し、第一選択層LL1と対応付けて検査指示情報D2に記録する(ステップS15:(g2)工程の(b)工程)。 Next, for each group grouped in step S14, the inspection instruction information generation unit 31 selects any two conductive parts from the conductive parts P included in each group as a pair of first selected conductive parts. Then, it is recorded in the inspection instruction information D2 in association with the first selection layer LL1 (Step S15: Step (b) of the step (g2)).
 図6に示す例では、ステップS14でグループ化された導電部P3,P4の中から二つの導電部P3,P4が一対の第一選択導電部として選択される。 In the example shown in FIG. 6, two conductive portions P3 and P4 are selected as a pair of first selected conductive portions from among the conductive portions P3 and P4 grouped in step S14.
 例えば図16に示す木構造の導電構造情報D1´´のように、ノードN11が根ノードNRと接続されずにノードN21と枝M23で接続されていた場合、ステップS14では、枝M23の、ノードN21とは逆側に直接又は間接に導通する基板面F1の導電部Pとして、導電部P1,P2がある。この導電部P1,P2の中から任意の一つ、例えば導電部P1が、枝M23に対応する導電部Pとして選択される。そうすると、上述の導電部P3,P4に導電部P1を加えた導電部P1,P3,P4が、ノードN21に対応してグループ化される。 For example, if the node N11 is not connected to the root node NR but is connected to the node N21 by the branch M23 as in the tree-structured conductive structure information D1 '' shown in FIG. There are conductive portions P1 and P2 as the conductive portions P on the substrate surface F1 that conducts directly or indirectly to the side opposite to N21. Any one of the conductive portions P1 and P2, for example, the conductive portion P1 is selected as the conductive portion P corresponding to the branch M23. Then, conductive portions P1, P3, and P4 obtained by adding conductive portion P1 to conductive portions P3 and P4 described above are grouped corresponding to node N21.
 さらに、ステップS15において、導電部P1,P3,P4の中から二つの導電部、例えば導電部P1,P3が、一対の第一選択導電部として選択されることになる。 {Circle around (2)} In step S15, two conductive portions, for example, the conductive portions P1 and P3 are selected from the conductive portions P1, P3 and P4 as a pair of first selected conductive portions.
 次に、検査指示情報生成部31は、ステップS14でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループが有る場合、そのグループに対し、その第一選択導電部として選択されなかった導電部Pを含む二つの導電部Pを一対の第二選択導電部として選択し、第一選択層LL1と対応付けて検査指示情報D2に記録し(ステップS16:(g2)工程の(b)工程)、ステップS17(図9)へ移行する。 Next, when there is a group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S14, the inspection instruction information generating unit 31 Two conductive portions P including the conductive portion P not selected as one selected conductive portion are selected as a pair of second selected conductive portions, and are recorded in the inspection instruction information D2 in association with the first selected layer LL1 (step S16). : (G2) step (b) step), and then proceeding to step S17 (FIG. 9).
 一方、検査指示情報生成部31は、ステップS14でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループが無い場合、そのままステップS17へ移行する。 On the other hand, when there is no group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S14, the inspection instruction information generating unit 31 proceeds to step S17.
 次に、検査指示情報生成部31は、処理を制御するための制御フラグであるフラグFip2をチェックする(ステップS17)。 Next, the inspection instruction information generation unit 31 checks a flag Fip2 which is a control flag for controlling the processing (step S17).
 フラグFip2が1の場合(ステップS17でYES)、後述するステップS19で既にフラグFip2が1にされ、導体層Lcの基板面F2側、及び導体層Lcよりも基板面F2側の各配線層Lに対する検査指示情報D2の生成が既に終了していることを意味する。そのため、検査指示情報生成部31は、ステップS18~S24を実行することなくステップS26(図10)へ移行する。 If the flag Fip2 is 1 (YES in step S17), the flag Fip2 is already set to 1 in step S19 to be described later, and each wiring layer L on the substrate surface F2 side of the conductor layer Lc and the substrate surface F2 side of the conductor layer Lc. Means that the generation of the inspection instruction information D2 has already been completed. Therefore, the inspection instruction information generator 31 proceeds to step S26 (FIG. 10) without executing steps S18 to S24.
 フラグFip2が1ではない場合(ステップS17でNO)、検査指示情報生成部31は、ステップS18へ移行し、第二選択層LL2の、基板面F2から遠ざかる側に導体層Lcが隣接しているか否かをチェックする(ステップS18)。 When the flag Fip2 is not 1 (NO in step S17), the inspection instruction information generation unit 31 proceeds to step S18, and determines whether the conductor layer Lc is adjacent to the second selection layer LL2 on the side away from the substrate surface F2. It is checked whether or not it is (step S18).
 第二選択層LL2の、基板面F2から遠ざかる側に導体層Lcが隣接している場合(ステップS18でYES)、検査指示情報生成部31は、フラグFip2を1にして(ステップS19)、面状導体IPの基板面F2側に接続されたビアVの検査に用いる導電部Pを選択するべくステップS401(図13)へ処理を移行する。 When the conductor layer Lc is adjacent to the second selection layer LL2 on the side away from the substrate surface F2 (YES in step S18), the inspection instruction information generation unit 31 sets the flag Fip2 to 1 (step S19), and The process proceeds to step S401 (FIG. 13) in order to select a conductive portion P used for inspection of the via V connected to the substrate surface F2 side of the conductor IP.
 例えば図6に示す例において、今、第二選択層LL2が配線層L4であれば、配線層L4の、基板面F2から遠ざかる側には導体層Lcが隣接している(ステップS18でYES)から、フラグFip2が1にされ(ステップS19)、ステップS401(図13)へ移行する。 For example, in the example shown in FIG. 6, if the second selection layer LL2 is the wiring layer L4, the conductor layer Lc is adjacent to the wiring layer L4 on the side away from the substrate surface F2 (YES in step S18). From this, the flag Fip2 is set to 1 (step S19), and the routine goes to step S401 (FIG. 13).
 図13を参照して、ステップS401において、検査指示情報生成部31は、根ノードNR(面状導体IP)の基板面F2側に接続された枝M(ビアV)毎に、根ノードNRとは逆側に電気的に接続、すなわち導通する導電部Pを一つ選択することにより当該選択された導電部Pを根ノードNRの基板面F2側に対応する導電部としてグループ化する(ステップS401:(h)工程)。 Referring to FIG. 13, in step S401, the inspection instruction information generation unit 31 determines, for each branch M (via V) connected to the substrate surface F2 side of the root node NR (planar conductor IP), the root node NR Is electrically connected to the opposite side, that is, by selecting one conductive portion P to be conductive, the selected conductive portion P is grouped as a conductive portion corresponding to the substrate surface F2 side of the root node NR (step S401). : (H) step).
 図6に示す例では、根ノードNRの基板面F2側には、枝Mr5,Mr6が接続されている。枝Mr5に導通する導電部Pとしては、導電部P11,P12,P13,P14がある。枝Mr6に導通する導電部Pとしては、導電部P15,P16,P17がある。従って、ステップS401では、導電部P11,P12,P13,P14の中から任意の一つ、例えば導電部P11が選択され、導電部P15,P16,P17の中から任意の一つ、例えば導電部P15が選択される。これにより、導電部P11,P15がグループ化される。 In the example shown in FIG. 6, the branches Mr5 and Mr6 are connected to the substrate surface F2 of the root node NR. The conductive portions P that conduct to the branch Mr5 include the conductive portions P11, P12, P13, and P14. The conductive portions P that conduct to the branch Mr6 include conductive portions P15, P16, and P17. Therefore, in step S401, any one of the conductive parts P11, P12, P13, and P14, for example, the conductive part P11 is selected, and any one of the conductive parts P15, P16, and P17, for example, the conductive part P15 Is selected. Thereby, the conductive portions P11 and P15 are grouped.
 次に、検査指示情報生成部31は、ステップS401でグループ化された導電部Pの中から二つの導電部Pを一対の第一選択導電部として選択し、根ノードNRの基板面F2側と対応付けて検査指示情報D2に記録する(ステップS402:(h)工程)。 Next, the inspection instruction information generating unit 31 selects two conductive portions P from the conductive portions P grouped in step S401 as a pair of first selected conductive portions, and selects the root node NR on the substrate surface F2 side. It is recorded in the inspection instruction information D2 in association with each other (step S402: (h) step).
 ステップS402では、ステップS401でグループ化された導電部P11,P15の中から二つの導電部Pが、一対の第一選択導電部として選択される。この場合、ステップS401でグループ化された導電部Pは、導電部P11,P15の二つだけなので、この二つの導電部P11,P15が一対の第一選択導電部として選択される。 In step S402, two conductive parts P are selected as a pair of first selected conductive parts from the conductive parts P11 and P15 grouped in step S401. In this case, there are only two conductive portions P, P15 and P15, which are grouped in step S401, and these two conductive portions P11 and P15 are selected as a pair of first selected conductive portions.
 次に、検査指示情報生成部31は、ステップS401でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループが有る場合、そのグループに対し、その第一選択導電部として選択されなかった導電部Pを含む二つの導電部Pを一対の第二選択導電部として選択し、根ノードNRの基板面F2側と対応付けて検査指示情報D2に記録し(ステップS403)、処理をステップS26(図10)へ移行する。 Next, when there is a group having a conductive part P not selected as the first selected conductive part among the groups grouped in step S401, the inspection instruction information generating unit 31 Two conductive parts P including the conductive part P not selected as one selected conductive part are selected as a pair of second selected conductive parts, and are recorded in the inspection instruction information D2 in association with the substrate surface F2 side of the root node NR. (Step S403), the process proceeds to step S26 (FIG. 10).
 今、ステップS401でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループは存在しないので、検査指示情報生成部31は、そのまま処理をステップS26(図10)へ移行する。 Since there is no group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S401, the inspection instruction information generating part 31 directly performs the processing in step S26 (FIG. Go to 10).
 なお、ステップS402,S403を実行する代わりに、検査指示情報生成部31は、ステップS401で選択された全ての導電部Pを含むように複数対の導電部Pを選択し、複数対の第一選択導電部として根ノードNRの基板面F2側と対応付けて検査指示情報D2に記録してもよい。 Note that, instead of executing steps S402 and S403, the inspection instruction information generation unit 31 selects a plurality of pairs of conductive parts P so as to include all the conductive parts P selected in step S401, and selects a plurality of pairs of first conductive parts P. The selected conductive portion may be recorded in the inspection instruction information D2 in association with the substrate surface F2 side of the root node NR.
 この場合、後述する検査処理部21による検査にて、根ノードNRの基板面F2側と対応付けられた複数対の第一選択導電部には、並行して電流が供給されて、検査が行われることになる。複数対の導電部Pに並行して電流供給すると、電流経路の重複が生じる。しかしながら、根ノードNRすなわち面状導体IPは、電気抵抗が配線Wと比べて非常に小さいため、面状導体IPで電流経路の重複が生じた場合であっても電圧の測定結果に与える影響が小さい。 In this case, in an inspection performed by an inspection processing unit 21 described later, current is supplied in parallel to a plurality of pairs of first selection conductive units associated with the substrate surface F2 side of the root node NR, and the inspection is performed. Will be When current is supplied to a plurality of pairs of conductive parts P in parallel, current paths overlap. However, the electrical resistance of the root node NR, that is, the planar conductor IP is much smaller than that of the wiring W. Therefore, even when the current path overlaps in the planar conductor IP, the influence on the voltage measurement result is not affected. small.
 そこで、ステップS402,S403を実行する代わりに、ステップS401で選択された全ての導電部Pを含むように複数対の導電部Pを選択し、複数対の第一選択導電部として根ノードNRの基板面F2側と対応付けて検査指示情報D2に記録することによって、後述する検査処理部21による検査にて、複数対の第一選択導電部に並行して電流を供給させ、検査時間を短縮させることが可能である。 Therefore, instead of executing steps S402 and S403, a plurality of pairs of conductive parts P are selected so as to include all the conductive parts P selected in step S401, and the plurality of pairs of first selected conductive parts are selected as the root node NR. By recording in the inspection instruction information D2 in association with the substrate surface F2 side, current is supplied in parallel to a plurality of pairs of the first selection conductive portions in the inspection by the inspection processing section 21 described later, thereby shortening the inspection time. It is possible to do.
 一方、第二選択層LL2の、基板面F2から遠ざかる側に導体層Lcが隣接していない場合(ステップS18でNO)、検査指示情報生成部31は、第二選択層LL2の、基板面F2から遠ざかる側に隣接する配線層Lを新たな第二選択層LL2として選択する(ステップS21:(g)工程)。これにより、新たな第二選択層LL2を処理対象としてステップS22~S24が実行される。 On the other hand, when the conductor layer Lc is not adjacent to the second selection layer LL2 on the side away from the substrate surface F2 (NO in step S18), the inspection instruction information generating unit 31 determines whether the second selection layer LL2 has the substrate surface F2. Is selected as a new second selection layer LL2 (step S21: step (g)). Thus, steps S22 to S24 are executed with the new second selection layer LL2 as a processing target.
 次に、検査指示情報生成部31は、導電構造情報D1´´に基づいて、第二選択層LL2のノードNそれぞれに対応して、その一つのノードNの根ノードNRから遠ざかる側に接続された枝M(ビアV)一つに対して、そのノードNとは逆側で電気的に接続、すなわち導通する基板面F2の導電部Pを一つ選択する。そして、検査指示情報生成部31は、対応するノードN毎に、選択された導電部Pをグループ化する(ステップS22:(g1)工程)。 Next, based on the conductive structure information D1 ″, the inspection instruction information generating unit 31 is connected to the node N of the second selection layer LL2 on the side away from the root node NR of one of the nodes N. One of the branches M (via V) is electrically connected on the side opposite to the node N, that is, one conductive portion P of the substrate surface F2 that is conductive is selected. Then, the inspection instruction information generating unit 31 groups the selected conductive units P for each corresponding node N (step S22: (g1) step).
 次に、検査指示情報生成部31は、ステップS22でグループ化された各グループについて、当該各グループに含まれる導電部Pの中から任意の二つの導電部を一対の第一選択導電部として選択し、第二選択層LL2と対応付けて検査指示情報D2に記録する(ステップS23:(g2)工程の(b)工程)。 Next, for each group grouped in step S22, the inspection instruction information generation unit 31 selects any two conductive parts from the conductive parts P included in each group as a pair of first selected conductive parts. Then, it is recorded in the inspection instruction information D2 in association with the second selection layer LL2 (Step S23: Step (b) of the step (g2)).
 次に、検査指示情報生成部31は、ステップS22でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループが有る場合、そのグループに対し、その第一選択導電部として選択されなかった導電部Pを含む二つの導電部Pを一対の第二選択導電部として選択し、第二選択層LL2と対応付けて検査指示情報D2に記録し(ステップS24:(g2)工程の(b)工程)、ステップS26(図10)へ移行する。 Next, when there is a group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S22, the inspection instruction information generating unit 31 Two conductive parts P including the conductive part P not selected as one selected conductive part are selected as a pair of second selected conductive parts, and are recorded in the inspection instruction information D2 in association with the second selected layer LL2 (Step S24). : (G2) step (b) step), and then proceeding to step S26 (FIG. 10).
 一方、検査指示情報生成部31は、ステップS22でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループが無い場合、そのままステップS23からステップS26(図10)へ移行する。 On the other hand, when there is no group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S22, the inspection instruction information generating unit 31 keeps step S23 to step S26 (FIG. Go to 10).
 図6に示す例では、今、すなわち配線層L2と面状導体IPの基板面F2側に対応する処理では、第一選択導電部として選択されなかった導電部Pを有するグループは存在しないので、検査指示情報生成部31は、検査指示情報D2の記録を行うことなく処理をステップS23からステップS26(図10)へ移行する。 In the example shown in FIG. 6, that is, in the processing corresponding to the wiring layer L2 and the substrate surface F2 side of the planar conductor IP, there is no group having the conductive portion P not selected as the first selected conductive portion. The inspection instruction information generation unit 31 shifts the processing from step S23 to step S26 (FIG. 10) without recording the inspection instruction information D2.
 次に、検査指示情報生成部31は、全ての配線層Lと面状導体IPの基板面F1,F2側に対応する検査指示情報D2を生成済か否かをチェックする(ステップS26)。 Next, the inspection instruction information generator 31 checks whether or not inspection instruction information D2 corresponding to all the wiring layers L and the substrate surfaces F1 and F2 of the planar conductor IP has been generated (step S26).
 全ての配線層Lと面状導体IPの基板面F1,F2側に対応する検査指示情報D2を生成済の場合(ステップS26でYES)、ステップS27へ処理を移行する。一方、まだ対応する検査指示情報D2が生成されていない配線層L又は面状導体IPの基板面F1,F2側が残っている場合(ステップS26でNO)、ステップS11(図8)へ処理を移行する。 (4) When the inspection instruction information D2 corresponding to all the wiring layers L and the substrate surfaces F1 and F2 of the planar conductor IP has been generated (YES in step S26), the process proceeds to step S27. On the other hand, when the wiring layer L or the planar conductor IP on the substrate surfaces F1 and F2 side where the corresponding inspection instruction information D2 has not yet been generated remains (NO in step S26), the process proceeds to step S11 (FIG. 8). I do.
 ステップS11において、検査指示情報生成部31は、第一選択層LL1の、基板面F1から遠ざかる側に導体層Lcが隣接しているか否かをチェックする(ステップS11)。図6に示す例では、今、第一選択層LL1は配線層L2である。配線層L2の、基板面F1から遠ざかる側には導体層Lcが隣接している(ステップS11でYES)ので、検査指示情報生成部31は、フラグFip1を1にして(ステップS12)、ステップS301(図12)へ処理を移行する。 In step S11, the inspection instruction information generating unit 31 checks whether or not the conductor layer Lc is adjacent to the first selection layer LL1 on the side away from the substrate surface F1 (step S11). In the example shown in FIG. 6, the first selection layer LL1 is now the wiring layer L2. Since the conductor layer Lc is adjacent to the wiring layer L2 on the side away from the substrate surface F1 (YES in step S11), the inspection instruction information generation unit 31 sets the flag Fip1 to 1 (step S12), and proceeds to step S301. The processing shifts to (FIG. 12).
 ステップS301において、検査指示情報生成部31は、根ノードNR(面状導体IP)の基板面F1側に接続された枝M(ビアV)毎に、根ノードNRとは逆側に導通する導電部Pを一つ選択することにより当該選択された導電部Pを根ノードNRの基板面F1側に対応する導電部としてグループ化する(ステップS301:(h)工程)。 In step S301, the inspection instruction information generating unit 31 conducts the conduction on the opposite side to the root node NR for each branch M (via V) connected to the substrate surface F1 side of the root node NR (plane conductor IP). By selecting one part P, the selected conductive part P is grouped as a conductive part corresponding to the substrate surface F1 side of the root node NR (step S301: (h) step).
 図6に示す例では、根ノードNRの基板面F1側には、枝Mr1,Mr2,Mr3,Mr4が接続されている。枝Mr1に導通する導電部Pとしては、導電部P1,P2がある。枝Mr2に導通する導電部Pとしては、導電部P3,P4,P5がある。枝Mr3に導通する導電部Pとしては、導電部P6がある。枝Mr4に導通する導電部Pとしては、導電部P7がある。 In the example shown in FIG. 6, the branches Mr1, Mr2, Mr3, and Mr4 are connected to the substrate surface F1 side of the root node NR. The conductive portions P that conduct to the branch Mr1 include the conductive portions P1 and P2. The conductive portions P that conduct to the branch Mr2 include the conductive portions P3, P4, and P5. As the conductive portion P that is electrically connected to the branch Mr3, there is a conductive portion P6. The conductive portion P that is electrically connected to the branch Mr4 includes a conductive portion P7.
 従って、ステップS301では、導電部P1,P2の中から任意の一つ、例えば導電部P1が選択され、導電部P3,P4,P5の中から任意の一つ、例えば導電部P3が選択され、さらに導電部P6,P7が選択される。これにより、導電部P1,P3,P6,P7がグループ化される。 Therefore, in step S301, any one of the conductive portions P1 and P2, for example, the conductive portion P1 is selected, and any one of the conductive portions P3, P4, and P5, for example, the conductive portion P3 is selected. Further, conductive portions P6 and P7 are selected. Thereby, the conductive portions P1, P3, P6, and P7 are grouped.
 次に、検査指示情報生成部31は、ステップS301でグループ化された導電部Pの中から任意の二つの導電部Pを一対の第一選択導電部として選択し、根ノードNRの基板面F1側と対応付けて検査指示情報D2に記録する(ステップS302:(h)工程)。 Next, the inspection instruction information generating unit 31 selects any two conductive portions P from the conductive portions P grouped in step S301 as a pair of first selected conductive portions, and selects the substrate surface F1 of the root node NR. It is recorded in the inspection instruction information D2 in association with the side (step S302: (h) step).
 図6に示す例では、ステップS301でグループ化された導電部P1,P3,P6,P7の中から任意の二つの導電部P、例えば導電部P1,P3が、一対の第一選択導電部として選択される。 In the example shown in FIG. 6, any two conductive portions P, for example, the conductive portions P1 and P3 are selected from the conductive portions P1, P3, P6, and P7 grouped in step S301 as a pair of first selected conductive portions. Selected.
 次に、検査指示情報生成部31は、ステップS301でグループ化されたグループの中に、第一選択導電部として選択されなかった導電部Pを有するグループが有る場合、そのグループに対し、その第一選択導電部として選択されなかった導電部Pを含む二つの導電部Pを一対の第二選択導電部として選択し、根ノードNRの基板面F1側と対応付けて検査指示情報D2に記録し(ステップS303)、処理をステップS17(図9)へ移行する。 Next, when there is a group having the conductive part P not selected as the first selected conductive part among the groups grouped in step S301, the inspection instruction information generating unit 31 Two conductive parts P including the conductive part P not selected as one selected conductive part are selected as a pair of second selected conductive parts, and recorded in the inspection instruction information D2 in association with the substrate surface F1 side of the root node NR. (Step S303), the process proceeds to Step S17 (FIG. 9).
 ステップS302では、ステップS301でグループ化された導電部P1,P3,P6,P7の内、導電部P6,P7が第一選択導電部として選択されなかったので、検査指示情報生成部31は、第一選択導電部として選択されなかった導電部Pを有する導電部P1,P3,P6,P7のグループに対し、その第一選択導電部として選択されなかった導電部P6,P7を含む二つの導電部P、この場合、導電部P6,P7を一対の第二選択導電部として選択する(ステップS303)。 In step S302, among the conductive portions P1, P3, P6, and P7 grouped in step S301, the conductive portions P6 and P7 are not selected as the first selected conductive portions. For a group of conductive portions P1, P3, P6 and P7 having a conductive portion P not selected as one selected conductive portion, two conductive portions including conductive portions P6 and P7 not selected as the first selected conductive portion. P, in this case, the conductive portions P6 and P7 are selected as a pair of second selected conductive portions (step S303).
 ステップS303では、例えばグループに含まれる導電部が導電部P1,P3,P6の三つであり、第一選択導電部として選択されなかったのは導電部P6一つだけだった場合、導電部P6と、導電部P1,P3のうちいずれか一つとが、一対の第二選択導電部として選択される。 In step S303, for example, when the conductive parts included in the group are three conductive parts P1, P3, and P6, and only one conductive part P6 is not selected as the first selected conductive part, the conductive part P6 And one of the conductive portions P1 and P3 is selected as a pair of second selected conductive portions.
 なお、上述のステップS402,S403と同様、ステップS302,S303を実行する代わりに、検査指示情報生成部31は、ステップS301で選択された全ての導電部Pを含むように複数対の導電部Pを選択し、複数対の第一選択導電部として根ノードNRの基板面F1側と対応付けて検査指示情報D2に記録してもよい。例えば、検査指示情報生成部31は、ステップS301でグループ化された導電部P1,P3,P6,P7から、導電部P1,P3と、導電部P6,P7とをそれぞれ対にして、導電部P1,P3と、導電部P6,P7とを複数対の第一選択導電部として根ノードNRの基板面F1側と対応付けて検査指示情報D2に記録してもよい。 Note that, similarly to steps S402 and S403 described above, instead of executing steps S302 and S303, the inspection instruction information generating unit 31 includes a plurality of pairs of conductive units P so as to include all the conductive units P selected in step S301. May be selected and recorded in the inspection instruction information D2 in association with the substrate surface F1 side of the root node NR as a plurality of pairs of first selected conductive portions. For example, the inspection instruction information generating unit 31 pairs the conductive units P1, P3 and the conductive units P6, P7 from the conductive units P1, P3, P6, P7 grouped in step S301, and , P3 and the conductive portions P6, P7 may be recorded in the inspection instruction information D2 in association with the substrate surface F1 side of the root node NR as a plurality of pairs of first selected conductive portions.
 次に、ステップS17(図9)において、今、フラグFip2は1であるから、検査指示情報生成部31は、処理をステップS26(図10)へ移行する。 Next, in step S17 (FIG. 9), since the flag Fip2 is now 1, the inspection instruction information generating unit 31 shifts the processing to step S26 (FIG. 10).
 ステップS26では、全ての配線層Lと面状導体IPの基板面F1,F2側に対してステップS5~S403の処理が実行済であるから(ステップS26でYES)、さらに検査箇所の漏れを防止するべく第二工程が実行される(ステップS27)。 In step S26, since the processes of steps S5 to S403 have been performed on all the wiring layers L and the substrate surfaces F1 and F2 of the planar conductor IP (YES in step S26), further leakage of the inspection location is prevented. In order to do so, a second step is executed (step S27).
 図14を参照して、検査指示情報生成部31は、ステップS1~S403において選択された第一及び第二選択導電部の対の、いずれにも挟まれない配線Wを探索する(ステップS501:(j)工程)。 Referring to FIG. 14, inspection instruction information generation unit 31 searches for a wiring W that is not sandwiched between any pair of the first and second selected conductive units selected in steps S1 to S403 (step S501: (J) Step).
 図6に示す例では、ステップS1~S403において、第一選択導電部の対として、導電部対P1,P2、導電部対P1,P3、導電部対P3,P4、導電部対P4,P5、導電部対P11,P12、導電部対P11,P15、導電部対P15,P16が選択され、第二選択導電部の対として、導電部対P6,P7、導電部対P13,P14、導電部対P16,P17が選択されている。 In the example shown in FIG. 6, in steps S1 to S403, as the pair of the first selected conductive portions, a pair of conductive portions P1, P2, a pair of conductive portions P1, P3, a pair of conductive portions P3, P4, a pair of conductive portions P4, P5, A pair of conductive portions P11 and P12, a pair of conductive portions P11 and P15, and a pair of conductive portions P15 and P16 are selected. As a pair of the second selected conductive portions, a pair of conductive portions P6 and P7, a pair of conductive portions P13 and P14, and a pair of conductive portions. P16 and P17 are selected.
 そうすると、基板面F1側では、第一及び第二選択導電部として、導電部P1~P7が数珠つなぎに連続して選択されているので、第一及び第二選択導電部の対の、いずれにも挟まれない配線Wは存在しない。一方、基板面F2側では、導電部対P11,P12と導電部対P13,P14の間が不連続になっている。 Then, on the substrate surface F1 side, since the conductive portions P1 to P7 are continuously selected as a first and a second selected conductive portion in a daisy chain, any one of the pair of the first and the second selected conductive portions is selected. There is no wiring W that is not sandwiched. On the other hand, on the substrate surface F2 side, the conductive portion pair P11, P12 and the conductive portion pair P13, P14 are discontinuous.
 図15は、第二工程を説明するための説明図である。図15は、図5の導電部P11~P14付近を部分的に拡大して示している。 FIG. 15 is an explanatory diagram for explaining the second step. FIG. 15 is a partially enlarged view of the vicinity of the conductive portions P11 to P14 in FIG.
 図6、図15に示す例では、ステップS1~S403において、第一及び第二選択導電部の対として、導電部対P11,P12と導電部対P13,P14とが選択されているが、導電部対P12,P13は選択されていない。その結果、図15に示す配線W42は、第一及び第二選択導電部の対の、いずれにも挟まれていない。 In the examples shown in FIGS. 6 and 15, in steps S1 to S403, the pair of conductive portions P11 and P12 and the pair of conductive portions P13 and P14 are selected as the pair of the first and second selected conductive portions. The set pair P12, P13 is not selected. As a result, the wiring W42 illustrated in FIG. 15 is not sandwiched between any of the pair of the first and second selection conductive units.
 次に、検査指示情報生成部31は、該当する配線Wの有無をチェックし(ステップS503)、該当する配線Wが有れば(ステップS503でYES)、ステップS504へ移行する。一方、該当する配線Wが無ければ(ステップS503でNO)、検査指示情報生成部31は処理を終了する。図6に示す例では配線W42が該当する。 Next, the inspection instruction information generation unit 31 checks the presence or absence of the corresponding wiring W (step S503), and if there is the corresponding wiring W (YES in step S503), proceeds to step S504. On the other hand, if there is no corresponding wiring W (NO in step S503), the inspection instruction information generating unit 31 ends the processing. In the example shown in FIG. 6, the wiring W42 corresponds.
 ステップS504では、検査指示情報生成部31は、該当する配線Wの一端に対してその配線Wを介さず導通する導電部Pと、その配線Wの他端に対してその配線Wを介さず導通する導電部Pとを、第一選択導電部とは非並行に検査すべき一対の第三選択導電部として検査指示情報D2に記録する(ステップS504:(k)工程)。 In step S <b> 504, the inspection instruction information generation unit 31 connects the conductive part P to one end of the corresponding wiring W without passing through the wiring W and connects to the other end of the wiring W without passing through the wiring W. The conductive part P to be inspected is recorded in the inspection instruction information D2 as a pair of third selected conductive parts to be inspected non-parallel to the first selected conductive part (step S504: (k) step).
 図15に示す例では、例えば、該当する配線W42の一端T1に対して配線W42を介さず導通する導電部P12と、配線W42の他端T2に対して配線W42を介さず導通する導電部P13とを一対の第三選択導電部として選択する(ステップS504)。 In the example shown in FIG. 15, for example, a conductive portion P12 that conducts to one end T1 of the corresponding wiring W42 without passing through the wiring W42, and a conductive portion P13 that conducts to the other end T2 of the wiring W42 without passing through the wiring W42. Are selected as a pair of third selection conductive parts (step S504).
 次に、検査指示情報生成部31は、基板Bが、導体層Lcを複数備えるか否かをチェックし(ステップS505)、導体層Lcが複数有る場合(ステップS505でYES)、ステップS506へ移行する。一方、導体層Lcが複数無ければ(ステップS505でNO)、検査指示情報生成部31は処理を終了する。 Next, the inspection instruction information generation unit 31 checks whether or not the substrate B includes a plurality of conductor layers Lc (step S505). If there is a plurality of conductor layers Lc (YES in step S505), the process proceeds to step S506. I do. On the other hand, if there is no plurality of conductor layers Lc (NO in step S505), the inspection instruction information generating unit 31 ends the processing.
 ステップS506では、検査指示情報生成部31は、複数の導体層Lcの面状導体IP同士を接続するビアVの有無をチェックする(ステップS506)。そして、当該ビアVが有れば(ステップS506でYES)ステップS507へ移行する。一方、当該ビアVが無ければ(ステップS506でNO)、検査指示情報生成部31は処理を終了する。 In step S506, the inspection instruction information generation unit 31 checks whether there is a via V connecting the planar conductors IP of the plurality of conductor layers Lc (step S506). If there is the via V (YES in step S506), the process proceeds to step S507. On the other hand, if the via V does not exist (NO in step S506), the inspection instruction information generating unit 31 ends the processing.
 図17に示す基板Bは、導体層Lcを二つ備え、二つの導体層Lcの面状導体IP同士を接続するビアVcが設けられている。ビアVcの導通を検査するためには、基板面F1の導電部Pと、基板面F2の導電部Pとの間に電流を流す必要がある。 基板 The substrate B shown in FIG. 17 includes two conductor layers Lc, and is provided with a via Vc for connecting the planar conductors IP of the two conductor layers Lc. In order to inspect the continuity of the via Vc, it is necessary to flow a current between the conductive portion P on the substrate surface F1 and the conductive portion P on the substrate surface F2.
 そこで、ステップS507において、検査指示情報生成部31は、基板面F1の導電部Pのうち一つと、基板面F2の導電部Pのうち一つとを、第一選択導電部とは非並行に検査すべき一対の第四選択導電部として検査指示情報D2に記録し(ステップS507:(l)工程)、処理を終了する。 Therefore, in step S507, the inspection instruction information generation unit 31 inspects one of the conductive parts P on the substrate surface F1 and one of the conductive parts P on the substrate surface F2 non-parallel to the first selected conductive part. It is recorded in the inspection instruction information D2 as a pair of fourth selection conductive parts to be performed (step S507: (l) step), and the processing ends.
 一対の第四選択導電部が検査指示情報D2に記録される結果、基板検査装置2は、検査指示情報D2に基づく検査によって、ビアVcを検査することが可能になる。 (4) As a result of the pair of fourth selection conductive portions being recorded in the inspection instruction information D2, the board inspection apparatus 2 can inspect the via Vc by inspection based on the inspection instruction information D2.
 また、ステップS1~S507によって選択される第一、第二、第三、及び第四選択導電部のうち、基板面F1の導電部Pと、基板面F2の導電部Pとが、検査対象の一対の導電部Pとして選択されるのは、ビアVcを検査するための第四選択導電部のみであり、基板Bの両面から一対の導電部Pを選択することが必要最小限とされている。 Further, among the first, second, third, and fourth selected conductive portions selected in steps S1 to S507, the conductive portion P on the substrate surface F1 and the conductive portion P on the substrate surface F2 correspond to the inspection target. Only the fourth selected conductive portion for inspecting the via Vc is selected as the pair of conductive portions P, and it is minimized to select the pair of conductive portions P from both surfaces of the substrate B. .
 基板Bの一対の導電部Pの間に電流を流してその電圧を測定することにより、検査を行う場合、検出電圧には、外来電磁界がノイズとして重畳される。基板Bの一方の面内では外来電磁界が略同じように印加されるため、基板Bの一方の面側で外来電磁界により誘起されるノイズ電圧は、略一定となる。そのため、基板Bの一方の面内の一対の導電部Pの間の電圧を測定する場合、その測定電圧に重畳されるノイズはコモンモードとなる結果、測定電圧に与えるノイズの影響が低減される。 (4) When an inspection is performed by flowing a current between the pair of conductive portions P of the substrate B and measuring the voltage, an external electromagnetic field is superimposed on the detected voltage as noise. Since an external electromagnetic field is applied in substantially the same manner on one surface of the substrate B, the noise voltage induced by the external electromagnetic field on one surface of the substrate B is substantially constant. Therefore, when measuring the voltage between the pair of conductive portions P in one surface of the substrate B, the noise superimposed on the measured voltage becomes a common mode, so that the influence of the noise on the measured voltage is reduced. .
 一方、基板Bの両面間では、基板Bの表裏で印加される電磁界強度に差が生じ、基板Bの一方の面と他方の面とで外来電磁界により誘起されるノイズ電圧に差が生じる。そのため、基板Bの両面に跨がって一対の導電部Pの間の電圧を測定する場合、その測定電圧に重畳されるノイズはノーマルモードとなる結果、測定電圧にそのままノイズ電圧が重畳される。その結果、基板Bの一方の面内の一対の導電部Pの間の電圧を測定する場合よりも、基板Bの両面に跨がって一対の導電部Pの間の電圧を測定する方がノイズの影響が大きくなる。 On the other hand, between the two surfaces of the substrate B, there is a difference in the intensity of the electromagnetic field applied on the front and back of the substrate B, and there is a difference in the noise voltage induced by the external electromagnetic field on one surface and the other surface of the substrate B. . Therefore, when measuring the voltage between the pair of conductive portions P across both surfaces of the substrate B, the noise superimposed on the measured voltage is in a normal mode, and the noise voltage is superimposed on the measured voltage as it is. . As a result, it is more preferable to measure the voltage between the pair of conductive portions P over both surfaces of the substrate B than to measure the voltage between the pair of conductive portions P in one surface of the substrate B. The effect of noise increases.
 ステップS1~S507によれば、基板Bの両面間に跨がる導電部PはビアVcを検査するために必要な最小限の第四選択導電部とされ、それ以外は基板Bの一方の面内の導電部Pが、第一、第二、及び第三選択導電部の対とされるので、検査指示情報D2に基づく検査を行った場合のノイズの影響が低減される。 According to steps S1 to S507, the conductive portion P straddling between the two surfaces of the substrate B is the minimum fourth selection conductive portion necessary for inspecting the via Vc, and the other is the one surface of the substrate B Is a pair of the first, second, and third selected conductive portions, the effect of noise when an inspection based on the inspection instruction information D2 is performed is reduced.
 また、基板Bの両面間でビアを検査する場合、基板Bにおける基板面F1の導電部Pに測定治具4UのプローブPrを接触させ、基板Bにおける基板面F2の導電部Pに測定治具4LのプローブPrを接触させる必要がある。このとき、測定治具4UのプローブPrと測定治具4LのプローブPrのいずれか一方が接触不良を生じた場合、いずれのプローブPrで接触不良が生じたのかを特定することができない。 When a via is inspected between both surfaces of the substrate B, the probe Pr of the measuring jig 4U is brought into contact with the conductive portion P of the substrate surface F1 of the substrate B, and the measuring jig is brought into contact with the conductive portion P of the substrate surface F2 of the substrate B. It is necessary to bring 4 L probe Pr into contact. At this time, if any one of the probe Pr of the measurement jig 4U and the probe Pr of the measurement jig 4L has a poor contact, it is not possible to specify which probe Pr caused the poor contact.
 そのため、両方のプローブPrを一旦基板Bから離間させ、再度両方のプローブPrを基板Bに接触させて、再検査を行う。このような再検査を、基板Bの両面に接触させる両方のプローブPrが、両方とも正常に導電部Pに接触するまで何度も繰り返す必要がある。このように導電部Pに対するプローブPrの離間、接触を繰り返すと、検査時間が延び、かつ導電部Pに傷が付きやすい。 た め Therefore, both probes Pr are once separated from the substrate B, and both probes Pr are brought into contact with the substrate B again, and the inspection is performed again. Such a re-inspection needs to be repeated a number of times until both probes Pr that come into contact with both surfaces of the substrate B both normally contact the conductive portion P. When the probe Pr is repeatedly separated from and contacted with the conductive portion P, the inspection time is extended and the conductive portion P is easily damaged.
 ステップS1~S507によれば、基板Bの両面間に跨がる導電部Pの検査は最小限とされ、大部分は基板Bの片面に設けられた導電部P同士の検査となるので、接触不良による再検査を減少させ、導電部Pに傷が付くおそれを低減することが容易である。 According to steps S1 to S507, the inspection of the conductive portions P extending over both surfaces of the substrate B is minimized, and most of the inspections are performed between the conductive portions P provided on one surface of the substrate B. It is easy to reduce re-inspection due to failure and reduce the possibility that the conductive portion P is damaged.
 以上、検査指示情報生成装置3は、ステップS1~S507の処理により、検査指示情報D2を生成することができる。また、ステップS1~S507によれば、対応する基板面毎に、検査指示情報D2に記録された順序が、基板検査装置2に対して検査を実行させるべき導電部対の順序に対応している。具体的には、基板面F1,F2に近い層に対応する方から順に、検査指示情報D2に記録されている。 As described above, the inspection instruction information generating device 3 can generate the inspection instruction information D2 by the processes of steps S1 to S507. Also, according to steps S1 to S507, the order recorded in the inspection instruction information D2 for each corresponding substrate surface corresponds to the order of the conductive portion pairs in which the substrate inspection apparatus 2 should execute the inspection. . Specifically, it is recorded in the inspection instruction information D2 in order from the one corresponding to the layer close to the substrate surfaces F1 and F2.
 検査指示情報生成部31によるステップS15,S16,S23,S24,S102,S103,S105,S106,S302,S303,S402,S403,S504,S507の処理により、検査対象となる各導電部対が、基板面、層、及び第一,第二,第三,第四選択導電部の種別と対応付けられて、図18に示す検査指示情報D2が生成されている。ここで、「層」は、配線層L及び導体層Lcの各層を意味している。 By the processing of steps S15, S16, S23, S24, S102, S103, S105, S106, S302, S303, S402, S403, S504, and S507 by the inspection instruction information generation unit 31, each conductive part pair to be inspected is The inspection instruction information D2 illustrated in FIG. 18 is generated in association with the surface, the layer, and the type of the first, second, third, and fourth selected conductive units. Here, “layer” means each layer of the wiring layer L and the conductor layer Lc.
 図18では、基板面F1に対して五つの導電部対が対応付けられており、上から下の順に、検査を実行すべき順序が示されている。同様に、基板面F2に対して六つの導電部対が対応付けられており、上から下の順に、検査を実行すべき順序が示されている。 In FIG. 18, five pairs of conductive portions are associated with the substrate surface F1, and the order in which inspections are to be performed is shown from top to bottom. Similarly, six conductive portion pairs are associated with the substrate surface F2, and the order in which inspections are to be performed is shown in order from top to bottom.
 このようにして得られた検査指示情報D2を、例えば図略の通信回路によって基板検査装置2に送信させたり、検査指示情報D2をUSBメモリ等の記憶媒体に記憶させ、この記憶媒体を基板検査装置2に読み込ませたりすることによって、記憶部22に記憶させることができる。 The inspection instruction information D2 obtained in this manner is transmitted to the board inspection apparatus 2 by, for example, a communication circuit (not shown), or the inspection instruction information D2 is stored in a storage medium such as a USB memory. By reading the data into the device 2, the data can be stored in the storage unit 22.
 次に、上述の基板検査装置2の動作について説明する。以下、記憶部22に、図18に示す検査指示情報D2が記憶されている場合を例に、説明する。 Next, the operation of the above-described board inspection apparatus 2 will be described. Hereinafter, an example will be described in which the storage unit 22 stores the test instruction information D2 illustrated in FIG.
 図19を参照して、検査処理部21は、検査指示情報D2に基づき、基板面F1側の各層のうち、最も順序が先の層を、検査層LT1として選択する(ステップS51)。図18に示す例では、基板面F1に対応付けられた最も順序が先の層(一番上)の層は配線層L1であるから、配線層L1が検査層LT1とされる。 Referring to FIG. 19, the inspection processing unit 21 selects, as the inspection layer LT1, the layer having the earliest order among the layers on the substrate surface F1 based on the inspection instruction information D2 (step S51). In the example illustrated in FIG. 18, the layer (the top layer) in the first order (the top layer) associated with the substrate surface F1 is the wiring layer L1, and thus the wiring layer L1 is set as the inspection layer LT1.
 次に、検査処理部21は、検査指示情報D2に基づき、基板面F2側の各層のうち、最も順序が先の層を、検査層LT2として選択する(ステップS52)。図18に示す例では、基板面F2に対応付けられた最も順序が先の層(一番上)の層は配線層L4であるから、配線層L4が検査層LT2とされる。 Next, based on the inspection instruction information D2, the inspection processing unit 21 selects the layer having the earliest order as the inspection layer LT2 among the layers on the substrate surface F2 side (Step S52). In the example illustrated in FIG. 18, the layer (the uppermost layer) in the earliest order associated with the substrate surface F2 is the wiring layer L4, and thus the wiring layer L4 is set as the inspection layer LT2.
 次に、検査処理部21は、検査層LT1,LT2における第一選択導電部の導電部対に対して、対となる導電部間に、並行して測定用電流を流す第一電流供給処理を実行する(ステップS53:(c1)工程)。図18に示す例では、今、検査層LT1は配線層L1、検査層LT2は配線層L4であるから、検査処理部21は、配線層L1,L4の第一選択導電部である導電部対P1,P2、導電部対P4,P5、導電部対P11,P12、導電部対P15,P16に対して、並行して測定用電流を流す。 Next, the inspection processing unit 21 performs a first current supply process of flowing a measurement current in parallel between the paired conductive portions with respect to the conductive portion pair of the first selected conductive portion in the test layers LT1 and LT2. Execute (Step S53: (c1) step). In the example shown in FIG. 18, since the inspection layer LT1 is the wiring layer L1 and the inspection layer LT2 is the wiring layer L4, the inspection processing unit 21 determines whether the conductive layer pair is the first selected conductive part of the wiring layers L1 and L4. A measuring current is passed in parallel to P1, P2, conductive part pairs P4, P5, conductive part pairs P11, P12, and conductive part pairs P15, P16.
 次に、検査処理部21は、検査層LT1,LT2における第一選択導電部の導電部対間の電圧を検出し、その電圧と測定用電流とに基づいて、当該導電部間における電流経路のビアVと配線Wとを検査する(ステップS54:(c1)工程)。 Next, the inspection processing unit 21 detects a voltage between the pair of conductive portions of the first selected conductive portion in the inspection layers LT1 and LT2, and based on the voltage and the measurement current, determines a current path between the conductive portions. The via V and the wiring W are inspected (step S54: (c1) step).
 図18の例では、検査処理部21は、導電部対P1,P2、導電部対P4,P5、導電部対P11,P12、導電部対P15,P16の各対間にそれぞれ電流を流し、各対間の電圧を検出する。そして、検査処理部21は、例えばその各対間の電圧を、各対間に流れた電流で除算することによって各対間の抵抗値を算出する。検査処理部21は、算出された各抵抗値を、例えば予め記憶部22に記憶された基準値と比較し、各抵抗値が基準値以下であれば基板Bは良好と判定し、各抵抗値が基準値を超えていれば基板Bは不良と判定する。 In the example of FIG. 18, the inspection processing unit 21 causes a current to flow between each pair of the conductive part pairs P1 and P2, the conductive part pairs P4 and P5, the conductive part pairs P11 and P12, and the conductive part pairs P15 and P16, Detect the voltage between pairs. Then, the inspection processing unit 21 calculates the resistance value between each pair by, for example, dividing the voltage between each pair by the current flowing between each pair. The inspection processing unit 21 compares each of the calculated resistance values with, for example, a reference value stored in advance in the storage unit 22. If each of the resistance values is equal to or less than the reference value, the board B is determined to be good. Is larger than the reference value, the board B is determined to be defective.
 ステップS54において、検査処理部21は、例えば図略の表示装置等の報知部に表示する等の方法により、その判定結果を、ユーザに報知する。なお、検査処理部21は、必ずしも判定結果をユーザに報知しなくてもよい。 In step S54, the inspection processing unit 21 notifies the user of the determination result by, for example, displaying the information on a notifying unit such as a display device (not shown). Note that the inspection processing unit 21 does not necessarily need to notify the user of the determination result.
 ステップS54では、第一選択導電部として選択された、導電部対P1,P2、導電部対P4,P5、導電部対P11,P12、及び導電部対P15,P16の各対間の電流経路となる枝M11,M12,M13,M14,M41,M42,M45,M46に対応するビアV、及びノードN11,N12,N41,N42に対応する配線Wが検査される。 In step S54, the current path between each pair of the conductive part pair P1, P2, the conductive part pair P4, P5, the conductive part pair P11, P12, and the conductive part pair P15, P16 selected as the first selected conductive part is determined. The vias V corresponding to the branches M11, M12, M13, M14, M41, M42, M45, M46 and the wirings W corresponding to the nodes N11, N12, N41, N42 are inspected.
 ステップS53では、第一選択導電部として選択された、導電部対P1,P2、導電部対P4,P5、導電部対P11,P12、及び導電部対P15,P16の各対間に、並行して電流を流し、各対間の電圧を測定することができるので、基板の検査時間を短縮することが容易となる。 In step S53, a parallel connection is made between each pair of the conductive portion pairs P1 and P2, the conductive portion pairs P4 and P5, the conductive portion pairs P11 and P12, and the conductive portion pairs P15 and P16 selected as the first selected conductive portion. Current, and the voltage between each pair can be measured, so that the inspection time of the substrate can be easily reduced.
 また、もし仮に、同一のノードN(配線W)を介して導通する複数対の導電部対P間に並行して電流を流した場合、測定用電流が重複して流れる配線Wが生じるおそれがある。この場合、電流の重複により生じた電圧は、測定誤差となるため、検査精度が低下するおそれがある。 Further, if a current flows in parallel between a plurality of pairs of conductive portions P that conduct through the same node N (wiring W), there is a possibility that a wiring W in which a measuring current overlaps occurs. is there. In this case, the voltage generated by the overlap of the current causes a measurement error, and thus the inspection accuracy may be reduced.
 一方、検査指示情報D2では、層毎に、並行して測定用電流を流しても電流重複が生じないように、第一選択導電部の導電部対Pが選択されている。従って、ステップS51~54において、検査指示情報D2に基づいて測定用電流を並行して流す導電部対Pを決定することによって、検査精度が低下するおそれを低減しつつ、基板の検査時間を短縮することが可能とされている。 On the other hand, in the inspection instruction information D2, the conductive portion pair P of the first selected conductive portion is selected for each layer so that current overlap does not occur even when a measurement current is passed in parallel. Therefore, in steps S51 to S54, the conductive part pair P through which the measuring current is caused to flow in parallel based on the inspection instruction information D2 is determined, thereby reducing the risk of lowering the inspection accuracy and shortening the substrate inspection time. It is possible to do.
 次に、検査処理部21は、ステップS54で基板Bが不良と判定された場合(ステップS55でYES)、それ以降の処理を実行することなく処理を終了する。一方、ステップS54で基板Bが不良と判定されなかった場合(ステップS55でNO)、検査処理部21は、ステップS61(図20)へ処理を移行する。 Next, when it is determined in step S54 that the substrate B is defective (YES in step S55), the inspection processing unit 21 ends the processing without executing the subsequent processing. On the other hand, when the substrate B is not determined to be defective in step S54 (NO in step S55), the inspection processing unit 21 shifts the processing to step S61 (FIG. 20).
 ステップS61において、検査処理部21は、検査層LT1,LT2における第二選択導電部の導電部対に対して、対となる導電部間に、第一電流供給処理とは非並行に測定用電流を流す第二電流供給処理を実行する(ステップS61:(c2)工程)。 In step S61, the inspection processing unit 21 applies the current for measurement to the pair of conductive portions of the second selected conductive portion in the inspection layers LT1 and LT2 in a non-parallel to the first current supply process between the paired conductive portions. Is performed (step S61: (c2) step).
 次に、検査処理部21は、検査層LT1,LT2における第二選択導電部の導電部対間の電圧を検出し、その電圧と測定用電流とに基づいて、対となる第二選択導電部間の電流経路のビアVと配線Wとを検査する(ステップS62:(c2)工程)。検査処理部21は、ステップS54の場合と同様の方法により、検査、及びその判定結果の報知を行う。 Next, the inspection processing unit 21 detects a voltage between the conductive portion pair of the second selected conductive portions in the test layers LT1 and LT2, and based on the voltage and the measurement current, forms the paired second selected conductive portion. The via V and the wiring W of the current path therebetween are inspected (step S62: (c2) step). The inspection processing unit 21 performs the inspection and reports the determination result by the same method as in step S54.
 ステップS61,S62における測定用電流の供給及び検査は、ステップS53とは非並行に、すなわちステップS53による測定用電流が流れていないタイミングで実行される。 (4) The supply and inspection of the measurement current in steps S61 and S62 are performed in a non-parallel to step S53, that is, at a timing when the measurement current in step S53 is not flowing.
 ステップS61,S62において、第二選択導電部に対する検査を、第一選択導電部に対する検査と非並行に実行することによって、測定用電流の重複が防止される。検査層LT1における第二選択導電部の導電部対と、検査層LT2における第二選択導電部の導電部対とに対するステップS61,S62の処理は、並行して実行してもよい。 (4) In steps S61 and S62, the inspection of the second selected conductive unit is performed in a non-parallel manner to the inspection of the first selected conductive unit, thereby preventing the measurement current from being duplicated. The processes of steps S61 and S62 for the conductive portion pair of the second selected conductive portion in the test layer LT1 and the conductive portion pair of the second selected conductive portion in the test layer LT2 may be performed in parallel.
 図18の例では、今、検査層LT1は配線層L1、検査層LT2は配線層L4であるから、検査層LT1(配線層L1)における第二選択導電部の導電部対は存在せず、従って検査層LT1(配線層L1)における第二選択導電部の導電部対に対する第二電流供給処理は実行されない。検査処理部21は、配線層L1,L4の第二選択導電部である導電部対P13,P14と、導電部対P16,P17に対して、ステップS61,S62を、ステップS53,S54とは非並行に実行する。 In the example of FIG. 18, since the inspection layer LT1 is the wiring layer L1 and the inspection layer LT2 is the wiring layer L4, there is no conductive part pair of the second selection conductive part in the inspection layer LT1 (wiring layer L1). Therefore, the second current supply process is not performed on the conductive portion pair of the second selected conductive portion in the inspection layer LT1 (wiring layer L1). The inspection processing unit 21 performs steps S61 and S62 for the conductive part pairs P13 and P14, which are the second selected conductive parts of the wiring layers L1 and L4, and the conductive part pairs P16 and P17. Run in parallel.
 次に、検査処理部21は、ステップS62の検査で基板Bが不良と判定された場合(ステップS63でYES)、それ以降の処理を実行することなく処理を終了する。一方、ステップS62の検査で基板Bが不良と判定されなかった場合(ステップS63でNO)、検査処理部21は、ステップS64へ処理を移行する。 Next, when the inspection processing unit 21 determines that the substrate B is defective in the inspection in step S62 (YES in step S63), the inspection processing unit 21 ends the processing without performing the subsequent processing. On the other hand, when the substrate B is not determined to be defective in the inspection in Step S62 (NO in Step S63), the inspection processing unit 21 proceeds to Step S64.
 ステップS64において、検査処理部21は、検査層LT1,LT2の両方が導体層Lcである場合、及び一方が導体層Lcで他方が無しの場合のいずれかに該当するか否かをチェックする(ステップS64)。検査層LT1,LT2の両方が導体層Lcである場合、及び一方が導体層Lcで他方が無しの場合のいずれにも該当しない場合(ステップS64でNO)、検査処理部21はステップS65へ移行し、検査層LT1,LT2の両方が導体層Lcである場合、又は一方が導体層Lc且つ他方が後述の検査層無しの場合のいずれかに該当する場合(ステップS64でYES)、検査処理部21はステップS71(図21)へ移行する。今、検査層LT1,LT2はいずれも導体層Lcではないから(ステップS64でNO)ステップS65へ移行する。 In step S64, the inspection processing unit 21 checks whether or not both the inspection layers LT1 and LT2 are the conductor layers Lc and whether one of the inspection layers LT1 and LT2 is the conductor layer Lc and the other is absent. Step S64). When both the inspection layers LT1 and LT2 are the conductor layers Lc, and when one of the two does not correspond to the conductor layer Lc and the other is absent (NO in step S64), the inspection processing unit 21 proceeds to step S65. However, when both of the inspection layers LT1 and LT2 are the conductor layers Lc, or when one of the inspection layers LT1 and LT2 is the conductor layer Lc and the other is without the inspection layer described later (YES in step S64), the inspection processing unit The process proceeds to step S71 (FIG. 21). Now, since neither of the inspection layers LT1 and LT2 is the conductor layer Lc (NO in step S64), the process proceeds to step S65.
 ステップS65において、検査処理部21は、検査層LT1が導体層Lcでなければ、検査指示情報D2に基づき、基板面F1側の各層のうち、次の順序の層を検査層LT1とする(ステップS65)。検査処理部21は、現在の検査層LT1が導体層Lcの場合、新たな検査層LT1を無しとする。次に、検査処理部21は、検査層LT2が導体層Lcでなければ、検査指示情報D2に基づき、基板面F2側の各層のうち、次の順序の層を検査層LT2とし(ステップS66)、ステップS53(図19)へ移行する。検査処理部21は、現在の検査層LT2が導体層Lcの場合、新たな検査層LT2を無しとする。 In step S65, if the inspection layer LT1 is not the conductor layer Lc, the inspection processing unit 21 sets the next layer of the layers on the substrate surface F1 side as the inspection layer LT1 based on the inspection instruction information D2 (step S65). S65). When the current inspection layer LT1 is the conductor layer Lc, the inspection processing unit 21 determines that there is no new inspection layer LT1. Next, if the inspection layer LT2 is not the conductor layer Lc, the inspection processing unit 21 sets the next layer of the layers on the substrate surface F2 side as the inspection layer LT2 based on the inspection instruction information D2 (Step S66). Then, the process proceeds to step S53 (FIG. 19). When the current inspection layer LT2 is the conductor layer Lc, the inspection processing unit 21 determines that there is no new inspection layer LT2.
 今、検査層LT1は配線層L1、検査層LT2は配線層L4であるから、検査処理部21は、新たな検査層LT1を配線層L2とし、新たな検査層LT2を導体層LcとしてステップS53(図19)へ移行する。 Now, since the inspection layer LT1 is the wiring layer L1 and the inspection layer LT2 is the wiring layer L4, the inspection processing unit 21 sets the new inspection layer LT1 as the wiring layer L2 and sets the new inspection layer LT2 as the conductor layer Lc in step S53. (FIG. 19).
 ステップS53において、検査処理部21は、配線層L2の第一選択導電部である導電部対P3,P4と、基板面F2における導体層Lcの第一選択導電部である導電部対P11,P15とに対して並行して測定用電流を流し、導電部対P3,P4間の電圧と導電部対P11,P15間の電圧とを検出し、その電圧と測定用電流とに基づいて、当該導電部間における電流経路のビアVと配線Wとを検査する(ステップS53,S54:(c1)工程)。 In step S53, the inspection processing unit 21 determines the pair of conductive portions P3 and P4, which are the first selected conductive portions of the wiring layer L2, and the pair of conductive portions P11, P15, which are the first selected conductive portions of the conductive layer Lc on the substrate surface F2. And a voltage between the conductive part pairs P3 and P4 and a voltage between the conductive part pairs P11 and P15 are detected in parallel with respect to, and based on the voltage and the measurement current, the conductive current is detected. The via V and the wiring W of the current path between the sections are inspected (steps S53 and S54: (c1) step).
 以下、検査処理部21は、ステップS55でNOであれば、ステップS61へ移行する。図18に示す検査指示情報D2によれば、配線層L2及び基板面F2の導体層Lcに対応する第二選択導電部は存在しないから、ステップS61~S63は実行されることなくステップS64へ移行する。 Hereinafter, if NO in step S55, the inspection processing unit 21 proceeds to step S61. According to the inspection instruction information D2 shown in FIG. 18, since the second selection conductive portion corresponding to the wiring layer L2 and the conductor layer Lc on the substrate surface F2 does not exist, steps S61 to S63 are not executed and the process proceeds to step S64. I do.
 ステップS64において、検査層LT1,LT2の両方が導体層Lcである場合、及び一方が導体層Lcで他方が検査層無しの場合のいずれにも該当しないからステップS65へ移行し、検査処理部21は、検査指示情報D2における基板面F1側の配線層L2の次の順序の層である導体層Lcを検査層LT1とする(ステップS65)。ステップS66では、検査層LT2が導体層Lcのため、検査処理部21は、新たな検査層LT2を無しとして再びステップS53へ移行する。 In step S64, when both the inspection layers LT1 and LT2 are the conductor layers Lc, and when one of the inspection layers LT1 and LT2 is the conductor layer Lc and the other does not have the inspection layer, the process proceeds to step S65, and the inspection processing unit 21 Sets the conductor layer Lc, which is the layer in the order next to the wiring layer L2 on the substrate surface F1 side in the inspection instruction information D2, as the inspection layer LT1 (step S65). In step S66, since the inspection layer LT2 is the conductor layer Lc, the inspection processing unit 21 returns to step S53 without any new inspection layer LT2.
 ステップS53において、検査処理部21は、基板面F1側の導体層Lcの第一選択導電部である導電部対P1,P3に対して測定用電流を流し、導電部対P1,P3間の電圧を検出し、その電圧と測定用電流とに基づいて、当該導電部間における電流経路のビアVと配線Wとを検査する(ステップS53,S54:(c1)工程)。 In step S53, the inspection processing unit 21 supplies a measurement current to the conductive portion pairs P1 and P3, which are the first selected conductive portions of the conductive layer Lc on the substrate surface F1, and sets a voltage between the conductive portion pairs P1 and P3. Is detected, and the via V and the wiring W of the current path between the conductive parts are inspected based on the voltage and the measuring current (steps S53 and S54: (c1) step).
 以下、検査処理部21は、ステップS55でNOであれば、ステップS61へ移行する。図18に示す検査指示情報D2によれば、基板面F1側の導体層Lcの第二選択導電部は導電部対P6,P7である。従って、検査処理部21は、導電部対P6,P7に対してステップS61,62を実行する。 Hereinafter, if NO in step S55, the inspection processing unit 21 proceeds to step S61. According to the inspection instruction information D2 shown in FIG. 18, the second selected conductive portion of the conductive layer Lc on the substrate surface F1 side is the pair of conductive portions P6 and P7. Therefore, the inspection processing unit 21 executes steps S61 and S62 on the conductive unit pairs P6 and P7.
 以下、検査処理部21は、ステップS63でNOであれば、ステップS64へ移行する。今、検査層LT1は上述するステップS65で導体層Lcとされ、検査層LT2は上述するステップS66で無しとされている(ステップS64でYES)から、ステップS71(図21)へ移行する。 Hereinafter, if NO in step S63, the inspection processing unit 21 proceeds to step S64. Now, the inspection layer LT1 is set to the conductor layer Lc in the above-described step S65, and the inspection layer LT2 is set to be absent in the above-described step S66 (YES in step S64), and the process proceeds to step S71 (FIG. 21).
 ステップS71において、検査処理部21は、第三選択導電部の導電部対に対して、対となる導電部間に、測定用電流を流す第三電流供給処理を、第一、第二電流供給処理とは非並行に実行する(ステップS71)。 In step S71, the inspection processing unit 21 performs a third current supply process for flowing a measurement current between the paired conductive portions with respect to the conductive portion pair of the third selected conductive portion. The processing is executed in a non-parallel manner (step S71).
 次に、検査処理部21は、第三選択導電部の導電部対間の電圧を検出し、その電圧と測定用電流とに基づいて、当該導電部間における電流経路のビアVと配線Wとを検査する(ステップS72)。検査処理部21は、ステップS54の場合と同様の方法により、検査、及びその判定結果の報知を行う。 Next, the inspection processing unit 21 detects a voltage between the conductive part pairs of the third selected conductive part, and based on the voltage and the measurement current, determines the via V of the current path between the conductive parts and the wiring W. Is inspected (step S72). The inspection processing unit 21 performs the inspection and reports the determination result by the same method as in step S54.
 図18の例では、基板面F1に対応する第三選択導電部は存在せず、基板面F2に対応する第三選択導電部は導電部対P12,P13である。従って、検査処理部21は、導電部対P12,P13の導電部間に、測定用電流を流す第三電流供給処理を、第一、第二電流供給処理とは非並行に実行し(ステップS71)、導電部対P12,P13の導電部間の電圧を検出し、その電圧と測定用電流とに基づいて、当該導電部間における電流経路のビアVと配線Wとを検査する(ステップS72)。 で は In the example of FIG. 18, there is no third selected conductive portion corresponding to the substrate surface F1, and the third selected conductive portion corresponding to the substrate surface F2 is a pair of conductive portions P12 and P13. Accordingly, the inspection processing unit 21 performs the third current supply process for flowing the measurement current between the conductive portions of the conductive portion pair P12 and P13 in a manner not parallel to the first and second current supply processes (step S71). ), A voltage between the conductive parts of the conductive part pair P12, P13 is detected, and based on the voltage and the measuring current, the via V of the current path between the conductive parts and the wiring W are inspected (step S72). .
 図18の例では、図15に示す導電部対P12,P13間の電流経路の配線W42が検査される。これにより、配線Wの検査漏れが生じるおそれを低減し、基板Bの検査精度を向上することができる。 In the example of FIG. 18, the wiring W42 of the current path between the conductive portion pair P12 and P13 shown in FIG. 15 is inspected. Thereby, the possibility that the inspection of the wiring W may be omitted can be reduced, and the inspection accuracy of the substrate B can be improved.
 次に、検査処理部21は、第四選択導電部の導電部対に対して、対となる導電部間に、測定用電流を流す第四電流供給処理を、第一~第三電流供給処理とは非並行に実行する(ステップS73)。 Next, the inspection processing unit 21 performs a fourth current supply process of flowing a measurement current between the paired conductive portions with respect to the conductive portion pair of the fourth selected conductive portion, by performing the first to third current supply processes. Are executed in a non-parallel manner (step S73).
 次に、検査処理部21は、第四選択導電部の導電部対間の電圧を検出し、その電圧と測定用電流とに基づいて、当該導電部間における電流経路のビアVと配線Wとを検査し(ステップS74)、処理を終了する。検査処理部21は、ステップS54の場合と同様の方法により、検査、及びその判定結果の報知を行う。 Next, the inspection processing unit 21 detects a voltage between the pair of conductive portions of the fourth selected conductive portion, and, based on the voltage and the measurement current, determines the via V and the wiring W of the current path between the conductive portions. Is inspected (step S74), and the process ends. The inspection processing unit 21 performs the inspection and reports the determination result by the same method as in step S54.
 図18の例では、第四選択導電部は存在しないので、検査処理部21は、ステップS73,S74を実行することなく処理を終了する。 In the example of FIG. 18, since the fourth selection conductive unit does not exist, the inspection processing unit 21 ends the processing without executing steps S73 and S74.
 ステップS73,S74によれば、例えば図17に示すような、導体層Lcを二つ備え、二つの導体層Lcの面状導体IP同士を接続するビアVcが設けられた基板Bの、ビアVcを検査することができる。 According to steps S73 and S74, for example, as shown in FIG. 17, the via Vc of the substrate B provided with two conductor layers Lc and provided with the vias Vc connecting the planar conductors IP of the two conductor layers Lc to each other is provided. Can be inspected.
 また、検査指示情報D2は、検査指示情報生成装置3によって、基板面毎に、基板面F1,F2に近い層に対応する方から順に、順序づけされている。その結果、基板検査装置2は、ステップS51,S52,S65,S66によって検査順序を定めることによって、配線層Lを、基板面F1,F2に近い方から順に、順次検査対象とすることができる。 {Circle around (2)} The inspection instruction information D2 is ordered by the inspection instruction information generating device 3 for each substrate surface in order from the one corresponding to the layer closer to the substrate surfaces F1 and F2. As a result, the board inspection apparatus 2 determines the inspection order in steps S51, S52, S65, and S66, so that the wiring layers L can be sequentially inspected in order from the one closer to the substrate surfaces F1 and F2.
 一般的に、基板Bは、基板面F1,F2に近いほど、配線層Lに設けられた配線Wの数が多い傾向がある。配線層Lに設けられた配線Wの数が多いほど、一つの層に対応する第一選択導電部の導電部対の数が増加する。第一選択導電部の導電部対の数が多いほど、ステップS53で並行して検査可能な導電部対の数が増加する。 Generally, the closer the substrate B is to the substrate surfaces F1 and F2, the more the number of wirings W provided in the wiring layer L tends to be. As the number of wirings W provided in the wiring layer L increases, the number of conductive portion pairs of the first selected conductive portion corresponding to one layer increases. As the number of conductive part pairs of the first selected conductive part is larger, the number of conductive part pairs that can be inspected in parallel in step S53 increases.
 従って、配線層Lを、基板面F1,F2に近い方から順に、検査対象とすることによって、検査の早い時期における並行検査数を増加させることができる。検査の初期における並行検査数を増加させることができれば、基板Bの不良を検査の早い時期に検出することができる。従って、ステップS55,S63のように、不良が検出されたときに検査を終了するようにした場合には、配線層Lを、基板面F1,F2に近い方から順に、検査対象とすることによって、不良を検出するまでの時間を短縮し、検査時間を短縮できる可能性を高めることができる。 Therefore, the number of parallel inspections at an early stage of the inspection can be increased by setting the wiring layers L as inspection targets in order from the one closer to the substrate surfaces F1 and F2. If the number of parallel inspections at the beginning of the inspection can be increased, a defect of the substrate B can be detected at an early stage of the inspection. Therefore, when the inspection is ended when a defect is detected as in steps S55 and S63, the wiring layers L are inspected in order from the one closer to the substrate surfaces F1 and F2. In addition, it is possible to shorten the time required to detect a defect and increase the possibility of shortening the inspection time.
 なお、検査指示情報生成装置3と基板検査装置2とが、別個の装置として構成される例を示したが、検査指示情報生成装置3と基板検査装置2とは、単一の装置として構成されていてもよい。例えば、基板検査装置2が検査指示情報生成部31と記憶部32とを備えることによって、基板検査装置2が検査指示情報生成装置を兼ねる構成であってもよい。この場合、検査指示情報生成装置を兼ねる1台の基板検査装置によって、基板検査システムが構成される。 Note that the example has been described in which the inspection instruction information generating device 3 and the substrate inspection device 2 are configured as separate devices, but the inspection instruction information generating device 3 and the substrate inspection device 2 are configured as a single device. May be. For example, the board inspection device 2 may include the inspection instruction information generation unit 31 and the storage unit 32, so that the substrate inspection device 2 may also function as the inspection instruction information generation device. In this case, a board inspection system is constituted by one board inspection apparatus also serving as an inspection instruction information generating apparatus.
 また、検査指示情報生成装置3及び検査指示情報生成方法は、必ずしも図7~図14に記載の全てのフローを実行する必要はなく、検査処理部21は、必ずしも図19~図21に記載の全てのフローを実行する必要はない。 Further, the inspection instruction information generating device 3 and the inspection instruction information generating method do not necessarily need to execute all the flows shown in FIGS. 7 to 14, and the inspection processing unit 21 does not necessarily have to execute the flow shown in FIGS. 19 to 21. It is not necessary to execute all the flows.
 検査指示情報生成装置3及び検査指示情報生成方法は、例えばステップS101,S102のみを実行した場合であっても、基板面F1と隣接する配線層L1の配線W、及び基板面F1と隣接する配線層L1と導電部Pとを接続するビアVの検査時間を容易に短縮することが可能な検査指示情報D2を生成することができる。この場合、検査処理部21は、ステップS53,S54を実行すればよい。 The inspection instruction information generating device 3 and the inspection instruction information generating method, for example, even when only steps S101 and S102 are executed, the wiring W of the wiring layer L1 adjacent to the substrate surface F1, and the wiring adjacent to the substrate surface F1. Inspection instruction information D2 that can easily reduce the inspection time of the via V connecting the layer L1 and the conductive portion P can be generated. In this case, the inspection processing unit 21 may execute steps S53 and S54.
 また、導体層Lcの両面に、配線層Lと導電部Pとが設けられている例を示したが、配線層Lと導電部Pとは、導体層Lcの片面のみに設けられていてもよい。例えば、基板Bは、基板B4,B5を備えていなくてもよい。この場合、第二選択層LL2に係る処理は実行不要であり、例えばステップS18~S24,S104~S106、S401~S403、S52、S66等は実行不要である。 Further, the example in which the wiring layer L and the conductive portion P are provided on both surfaces of the conductor layer Lc has been described, but the wiring layer L and the conductive portion P may be provided only on one surface of the conductor layer Lc. Good. For example, the substrate B may not include the substrates B4 and B5. In this case, the processing related to the second selection layer LL2 does not need to be executed, and for example, steps S18 to S24, S104 to S106, S401 to S403, S52, S66, etc. are unnecessary.
 また、検査処理部21は、ステップS55,S63,を実行せず、検査途中で不良が検出された場合であっても、検査を継続する構成としてもよい。また、検査指示情報生成装置3及び検査指示情報生成方法は、必ずしもステップS4,S13,S21によって、基板面F1,F2に近い層に対応する方から順に、導電部対を検査指示情報D2に記録させる例に限らない。検査指示情報生成装置3及び検査指示情報生成方法は、任意の順番で導電部対を検査指示情報D2に記録させてもよい。 (4) The inspection processing unit 21 may be configured not to execute steps S55 and S63 and to continue the inspection even when a defect is detected during the inspection. In addition, the inspection instruction information generating apparatus 3 and the inspection instruction information generating method always record the conductive part pairs in the inspection instruction information D2 in steps S4, S13, and S21 in order from the one corresponding to the layer closer to the substrate surfaces F1 and F2. It is not limited to the example to make it. In the inspection instruction information generating device 3 and the inspection instruction information generating method, the conductive part pairs may be recorded in the inspection instruction information D2 in an arbitrary order.
 すなわち、本発明の一例に係る検査指示情報生成装置は、面状又はメッシュ状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報を記憶する記憶部と、前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記導電構造情報に基づいて、当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を、検査指示情報として記録する検査指示情報生成処理を実行する検査指示情報生成部とを備える。 That is, the inspection instruction information generating apparatus according to an example of the present invention includes a conductor layer that is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, and a substrate surface on which a plurality of conductive portions are provided. A wiring layer that is a layer laminated between the conductor layer and the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and the conductive layer. A storage unit that stores conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via in the substrate including the planar conductor and the via are connected. When there are a plurality of groups of the conductive parts that are electrically connected to each other via the wiring of the wiring layer, based on the conductive structure information, select one pair of the conductive parts from each group as a first selected conductive part, The selected pairs of The information indicating the selected conductive portion, and an inspection instruction information generating unit for executing a test instruction information generating process of recording a test instruction information.
 また、本発明の一例に係る検査指示情報生成方法は、面状又はメッシュ状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報に基づいて、前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を、検査指示情報として生成する検査指示情報生成処理を実行する検査指示情報生成工程を含む。 In addition, the inspection instruction information generating method according to an example of the present invention includes a conductor layer that is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, and a substrate surface provided with a plurality of conductive portions. A wiring layer that is a layer laminated between the conductor layer and the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and the conductive layer. The wiring layer is formed based on conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via are electrically connected to each other on a substrate including a planar conductor and a via connecting the via. When there are a plurality of groups of the conductive parts that are electrically connected to each other via the wiring of, a pair of the conductive parts is selected as a first selected conductive part from each of the groups, and a first selection of the selected plurality of pairs is performed. The information indicating the conductive part is Including inspection instruction information generation step of executing the test instruction information generating process of generating a.
 また、本発明の一例に係る検査指示情報生成プログラムは、面状又はメッシュ状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報に基づいて、前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を検査指示情報として生成する検査指示情報生成処理を、コンピュータに実行させる。 In addition, the inspection instruction information generation program according to an example of the present invention includes a conductor layer that is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, and a substrate surface provided with a plurality of conductive portions. A wiring layer that is a layer laminated between the conductor layer and the substrate surface, a via connecting the wiring of the wiring layer and the plurality of conductive portions, and a wiring of the wiring layer and the conductive layer. The wiring layer is formed based on conductive structure information indicating how the planar conductor, the conductive portion, the wiring, and the via are electrically connected to each other on a substrate including a planar conductor and a via connecting the via. When there are a plurality of groups of the conductive parts that are electrically connected to each other via the wiring of, a pair of the conductive parts is selected as a first selected conductive part from each of the groups, and a first selection of the selected plurality of pairs is performed. Check the information indicating the conductive part with the inspection finger. The inspection instruction information generating process of generating the information, causes the computer to execute.
 配線層の配線を介して互いに導通する導電部同士のグループが複数ある場合、あるグループの導電部間に電流を流したとしても、他のグループにその電流が流れることはない。そこでこれらの構成によれば、配線層の配線を介して互いに導通する導電部同士のグループが複数ある場合に、検査指示情報生成処理によって、導電構造情報に基づいて、当該各グループから導電部が第一選択導電部として一対ずつ選択され、当該選択された複数対の第一選択導電部を示す情報が、検査指示情報として記録される。そうすると、一つのグループから一対の第一選択導電部が選択されるから、複数対の第一選択導電部は、それぞれ別のグループに属する。そうすると、検査指示情報によって示される複数対の第一選択導電部に対しては、並行して電流を流しても、電流の重複が生じない。従って、このようにして得られた検査指示情報に基づく複数対の第一選択導電部を検査箇所とすることによって、複数箇所の検査を並行して実施可能になる結果、基板の検査時間を短縮することが容易となる。 (4) In the case where there are a plurality of groups of conductive parts that are conductive to each other via the wiring of the wiring layer, even if a current flows between conductive parts of a certain group, the current does not flow to another group. Therefore, according to these configurations, when there are a plurality of groups of conductive parts that are electrically connected to each other via the wiring of the wiring layer, the conductive parts are extracted from the respective groups based on the conductive structure information by the inspection instruction information generation processing. One pair is selected as the first selected conductive unit, and information indicating the selected plurality of pairs of the first selected conductive units is recorded as inspection instruction information. Then, a pair of first selection conductive units is selected from one group, and thus a plurality of pairs of first selection conductive units belong to different groups. Then, even if currents are supplied in parallel to a plurality of pairs of the first selected conductive portions indicated by the inspection instruction information, currents do not overlap. Therefore, by using a plurality of pairs of the first selected conductive portions based on the inspection instruction information obtained as described above as inspection locations, inspections at a plurality of locations can be performed in parallel, resulting in a reduction in board inspection time. It becomes easy to do.
 また、前記検査指示情報生成処理は、(a)前記導電構造情報に基づいて、前記配線層の配線を介して互いに導通する前記導電部同士をグループ化する工程と、(b)前記グループ化された複数のグループについて、当該各グループに含まれる導電部の中から二つの導電部を前記一対の第一選択導電部として選択し、当該選択された複数対の第一選択導電部を、並行して検査可能な検査箇所として前記検査指示情報に記録する工程とを含むことが好ましい。 In addition, the inspection instruction information generation processing includes: (a) a step of grouping the conductive parts that are electrically connected to each other via the wiring of the wiring layer based on the conductive structure information; and (b) the grouping. For the plurality of groups, two conductive portions are selected as the pair of first selected conductive portions from among the conductive portions included in each group, and the selected plurality of pairs of the first selected conductive portions are arranged in parallel. Recording in the inspection instruction information as an inspection location that can be inspected by using the inspection instruction information.
 この構成によれば、(a)で、配線層の配線を介して互いに導通する導電部同士、すなわちもし複数の導電部対に電流を流したら相互に電流経路の重複が生じる可能性のある導電部同士がグループ化される。また、グループ化された複数のグループについて、すなわち、もしもグループ内の導電部対間で電流を流したとしても、他のグループの電流経路との重複が生じない関係にある複数のグループを対象に、(b)で、当該各グループに含まれる導電部の中から二つの導電部が一対の第一選択導電部として選択され、当該選択された複数対の第一選択導電部が、並行して検査可能な検査箇所として検査指示情報に記録される。そうすると、一つのグループから一対の第一選択導電部が選択されるから、複数対の第一選択導電部は、それぞれ別のグループに属する。従って、検査指示情報によって示される複数対の第一選択導電部に対しては、並行して電流を流しても、電流の重複が生じない。従って、このようにして得られた検査指示情報に基づく複数対の第一選択導電部を検査箇所とすることによって、複数箇所の検査を並行して実施可能になる結果、基板の検査時間を短縮することが容易となる。 According to this configuration, in (a), conductive portions that are electrically connected to each other via the wiring of the wiring layer, that is, conductive portions that may overlap with each other if a current flows through a plurality of conductive portion pairs. The groups are grouped together. In addition, for a plurality of groups that are grouped, that is, for a plurality of groups that have a relationship that does not cause overlap with the current paths of other groups even if current flows between pairs of conductive parts in the group. , (B), two conductive portions are selected as a pair of first selected conductive portions from among the conductive portions included in each of the groups, and the selected plural pairs of first selected conductive portions are connected in parallel. It is recorded in the inspection instruction information as an inspection location that can be inspected. Then, a pair of first selection conductive units is selected from one group, and thus a plurality of pairs of first selection conductive units belong to different groups. Therefore, even if currents are supplied in parallel to a plurality of pairs of the first selected conductive portions indicated by the inspection instruction information, currents do not overlap. Therefore, by using a plurality of pairs of the first selected conductive portions based on the inspection instruction information obtained as described above as inspection locations, inspections at a plurality of locations can be performed in parallel, resulting in a reduction in board inspection time. It becomes easy to do.
 また、前記(b)工程は、さらに、前記第一選択導電部として選択されなかった導電部を有するグループがある場合、そのグループに対し、その第一選択導電部として選択されなかった導電部を含む二つの導電部を、前記複数対の第一選択導電部とは非並行に検査すべき一対の第二選択導電部として前記検査指示情報に記録することが好ましい。 Further, in the step (b), when there is a group having a conductive part that is not selected as the first selected conductive part, the conductive part that is not selected as the first selected conductive part is added to the group. It is preferable to record the two conductive portions included in the inspection instruction information as a pair of second selected conductive portions to be tested non-parallel to the plurality of pairs of first selected conductive portions.
 この構成によれば、第一選択導電部として選択されなかった導電部が、検査箇所から漏れるおそれを低減できる。 According to this configuration, it is possible to reduce the possibility that the conductive portion that is not selected as the first selected conductive portion leaks from the inspection location.
 また、前記基板は、前記配線層を複数層備え、前記複数の配線層間を接続する複数のビアをさらに備え、前記検査指示情報生成部は、(d)複数の前記配線層の配線が並列に接続されている場合、前記(a)工程より前に、当該並列接続された複数の配線を、その各配線のうち最も前記基板面に近い一つの配線に置き換えるように、前記導電構造情報を変更する工程をさらに実行し、前記(d)工程で変更された導電構造情報に基づいて前記検査指示情報生成処理を実行することが好ましい。 Further, the substrate includes a plurality of the wiring layers, and further includes a plurality of vias connecting the plurality of wiring layers, and the inspection instruction information generating unit includes: (d) wiring of the plurality of wiring layers in parallel. If connected, the conductive structure information is changed before the step (a) so that the plurality of wirings connected in parallel are replaced with one of the wirings closest to the substrate surface. It is preferable to further execute a step of performing the inspection instruction information generation processing based on the conductive structure information changed in the step (d).
 この構成によれば、導電構造情報が単純化されるので、単純化された導電構造情報に基づき検査指示情報生成処理が実行される。その結果、検査指示情報生成処理の実行が容易となる。 According to this configuration, since the conductive structure information is simplified, the inspection instruction information generating process is executed based on the simplified conductive structure information. As a result, the execution of the inspection instruction information generation processing becomes easy.
 また、前記検査指示情報生成部は、(e)前記配線と前記面状導体とによって、前記ビア又はビアの列が並列接続されている場合、前記(a)工程より前に、当該並列接続されたビア又はビアの列を、一つ又は一列のビアに置き換えるように、前記(d)工程で変更された導電構造情報を変更する工程をさらに実行し、前記(e)工程で変更された導電構造情報に基づいて前記検査指示情報生成処理を実行することが好ましい。 In addition, (e) when the via or the row of vias is connected in parallel by the wiring and the planar conductor, the inspection instruction information generating unit may perform the connection in parallel before the step (a). Further performing the step of changing the conductive structure information changed in the step (d) so as to replace the via or the row of the vias with one or a row of vias, and changing the conductive structure information changed in the step (e). It is preferable to execute the inspection instruction information generation processing based on structure information.
 この構成によれば、導電構造情報が単純化されるので、単純化された導電構造情報に基づき検査指示情報生成処理が実行される。その結果、検査指示情報生成処理の実行が容易となる。 According to this configuration, since the conductive structure information is simplified, the inspection instruction information generating process is executed based on the simplified conductive structure information. As a result, the execution of the inspection instruction information generation processing becomes easy.
 また、前記基板は、前記配線層を複数層備え、前記複数の配線層間を接続する複数のビアをさらに備え、前記検査指示情報生成部は、(f)前記複数の配線層のうち、最も前記基板面に近い配線層を処理対象として前記(a)及び(b)工程を実行し、(g)前記最も前記基板面に近い配線層を除く他の配線層に対して、当該他の配線層それぞれを処理対象として、(g1)前記処理対象となる前記配線層の配線毎に、その一つの配線に対応して、その一つの配線の前記導体層から遠ざかる側に接続されたビア一つに対して、その一つのビアのその配線とは逆側で電気的に接続された前記導電部を一つ選択することにより、対応する前記配線毎に、前記選択された導電部をグループ化し、(g2)前記(g1)工程においてグループ化されたグループに対して、前記(b)工程を実行し、前記(b)工程は、前記処理対象の配線層と対応付けて前記各対の第一選択導電部を前記検査指示情報に記録することが好ましい。 Further, the substrate includes a plurality of the wiring layers, and further includes a plurality of vias connecting the plurality of wiring layers, and the inspection instruction information generating unit includes: (f) the most one of the plurality of wiring layers; Performing the steps (a) and (b) on a wiring layer near the substrate surface as a processing target; and (g) performing the other wiring layers on the other wiring layers except for the wiring layer closest to the substrate surface. (G1) For each of the wirings of the wiring layer to be processed, corresponding to one of the wirings, a single via connected to a side of the one wiring away from the conductor layer is set as a processing target. On the other hand, by selecting one of the conductive portions electrically connected to the one via on the side opposite to the wiring, the selected conductive portion is grouped for each corresponding wiring, and ( g2) Grouping in the step (g1) The step (b) is performed on the group, and in the step (b), the first selection conductive portion of each pair is recorded in the inspection instruction information in association with the wiring layer to be processed. preferable.
 この構成によれば、複数の配線層と、複数の配線層間を接続する複数のビアとを備えた基板を検査するための検査箇所となる導電部対を、検査指示情報に記録することが可能となる。 According to this configuration, it is possible to record, in the test instruction information, a conductive portion pair serving as a test location for testing a substrate having a plurality of wiring layers and a plurality of vias connecting the plurality of wiring layers. Becomes
 また、前記(b)工程は、前記(f)及び(g)工程において、前記基板面に近い配線層を処理対象として選択されたものから順に、前記複数対の第一選択導電部を前記配線層毎に順序付けて前記検査指示情報に記録することが好ましい。 In the step (b), in the steps (f) and (g), the plurality of pairs of the first selected conductive portions are connected to the wiring layer in order from the one selected as a wiring layer close to the substrate surface as a processing target. It is preferable that the inspection instruction information is recorded in the order of each layer.
 一般的に、基板は、基板面に近いほど、配線層に設けられた配線の数が多い傾向がある。配線層に設けられた配線の数が多いほど、処理対象の配線層に対する第一選択導電部の対の数、すなわち検査の際に並行して測定用電流を流すことができる導電部の対が増加する。従って、基板面に近い配線層を処理対象として選択されたものから順に、複数対の第一選択導電部を配線層毎に順序付けて検査指示情報に記録すると、検査の際に、この検査指示情報によって順序付けされた順に検査対象の配線層を選択し、その配線層に対応する第一選択導電部対に測定用電流を流して検査することができる。このように検査をおこなうと、検査の早い時期における並行検査数を増加させることができる。検査の初期における並行検査数を増加させることができれば、基板の不良を検査の早い時期に検出することができる。 Generally, the closer the substrate is to the substrate surface, the more the number of wirings provided in the wiring layer tends to be. As the number of wirings provided in the wiring layer is larger, the number of pairs of the first selection conductive parts with respect to the wiring layer to be processed, that is, the number of conductive parts that can flow a measuring current in parallel during the inspection is increased. To increase. Accordingly, when a plurality of pairs of the first selected conductive portions are sequentially recorded in the inspection instruction information for each wiring layer in order from the one selected as a processing target for the wiring layer close to the substrate surface, the inspection instruction information is obtained at the time of inspection. In this case, the wiring layers to be inspected are selected in the order in which the wiring layers have been inspected, and the inspection can be performed by applying a measuring current to the first selected conductive portion pair corresponding to the wiring layer. By performing the inspection in this way, the number of parallel inspections at an early stage of the inspection can be increased. If the number of parallel inspections at the initial stage of the inspection can be increased, it is possible to detect a failure of the substrate at an early stage of the inspection.
 また、(h)前記面状導体の一方の側に接続されたビア毎に、前記面状導体とは逆側で電気的に接続された前記導電部を一つ選択することにより当該選択された導電部を前記面状導体の一方の側に対応する導電部としてグループ化し、当該グループ化された導電部の中から二つの導電部を一対の第一選択導電部として選択し、当該選択された一対の第一選択導電部を前記検査指示情報に記録することが好ましい。 Also, (h) for each via connected to one side of the planar conductor, one of the conductive parts electrically connected on the opposite side to the planar conductor is selected. The conductive portions are grouped as conductive portions corresponding to one side of the planar conductor, and two conductive portions are selected as a pair of first selected conductive portions from the grouped conductive portions, and the selected conductive portions are selected. It is preferable to record a pair of first selected conductive portions in the inspection instruction information.
 この構成によれば、面状導体に接続されたビアを検査することができる。 According to this configuration, the via connected to the planar conductor can be inspected.
 また、前記検査指示情報生成処理は、(j)前記第一選択導電部の対に挟まれず、かつ前記第二選択導電部の対に挟まれない前記配線を探索する工程と、(k)前記探索された配線の一端に対してその配線を介さず導通する導電部と、その配線の他端に対してその配線を介さず導通する導電部とを、前記複数対の第一選択導電部とは非並行に検査すべき一対の第三選択導電部として前記検査指示情報に記録する工程とをさらに含むことが好ましい。 Further, the inspection instruction information generating process includes: (j) searching for the wiring that is not sandwiched between the pair of the first selected conductive portions and that is not sandwiched between the pair of the second selected conductive portions; A conductive portion that conducts without passing through the wire to one end of the searched wire, and a conductive portion that conducts without passing through the wire to the other end of the wire, the plurality of pairs of first selected conductive portions, Preferably, the method further includes a step of recording in the inspection instruction information as a pair of third selected conductive portions to be inspected non-parallel.
 この構成によれば、検査対象箇所の検査指示情報への記録漏れが生じるおそれを低減することができる。 According to this configuration, it is possible to reduce the possibility that the recording of the inspection target portion in the inspection instruction information is omitted.
 また、前記基板面及び前記配線層は、前記導体層の両側にそれぞれ設けられ、前記検査指示情報生成部は、前記検査指示情報生成処理を、前記導体層の両側に対して実行することが好ましい。 Further, it is preferable that the substrate surface and the wiring layer are provided on both sides of the conductor layer, respectively, and the inspection instruction information generating unit executes the inspection instruction information generation processing on both sides of the conductor layer. .
 この構成によれば、導体層の両側に、それぞれ基板面と配線層とが設けられた基板に対応する検査指示情報を生成することが可能となる。 According to this configuration, it is possible to generate inspection instruction information corresponding to a substrate provided with a substrate surface and a wiring layer on both sides of the conductor layer.
 また、前記基板は、複数の前記導体層と、前記複数の導体層の前記面状導体同士を接続するビアとを備え、前記検査指示情報生成処理は、(l)前記両側の基板面における一方の基板面の導電部のうち一つと、他方の基板面の導電部のうち一つとを、前記複数対の第一選択導電部とは非並行に検査すべき一対の第四選択導電部として前記検査指示情報に記録する工程をさらに含むことが好ましい。 Further, the substrate includes a plurality of the conductor layers and vias connecting the planar conductors of the plurality of conductor layers, and the inspection instruction information generation processing includes: One of the conductive portions on the substrate surface and one of the conductive portions on the other substrate surface, the plurality of pairs of the first selected conductive portions as a pair of fourth selected conductive portions to be inspected non-parallel, It is preferable that the method further includes a step of recording the inspection instruction information.
 この構成によれば、複数の導体層と、複数の導体層の面状導体同士を接続するビアとを備えた基板に対しても、その面状導体同士を接続するビアを検査するための一対の第四選択導電部を検査指示情報に記録することができる。 According to this configuration, even for a substrate including a plurality of conductor layers and vias connecting the planar conductors of the plurality of conductor layers, a pair of vias for inspecting the vias connecting the planar conductors is provided. Can be recorded in the inspection instruction information.
 また、前記検査指示情報生成部は、(m)前記ビアをノード、前記配線を枝、前記面状導体を根ノードに対応させることによって、前記導電構造情報を木構造のデータ構造に変換する工程をさらに実行し、前記(m)工程で木構造に変換された導電構造情報に基づいて前記検査指示情報生成処理を実行することが好ましい。 In addition, the inspection instruction information generating unit converts the conductive structure information into a tree-structured data structure by associating the via with a node, the wiring with a branch, and the planar conductor with a root node. Is preferably further executed, and the inspection instruction information generating process is executed based on the conductive structure information converted into the tree structure in the step (m).
 この構成によれば、導電構造情報が単純化されるので、単純化された導電構造情報に基づいて検査指示情報生成処理が実行される。その結果、検査指示情報生成処理の実行が容易となる。 According to this configuration, since the conductive structure information is simplified, the inspection instruction information generating process is executed based on the simplified conductive structure information. As a result, the execution of the inspection instruction information generation processing becomes easy.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行する。 Further, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first A step of detecting a voltage between the selected conductive parts and inspecting vias and wiring of a current path between the first selected conductive parts of each pair based on the current and the voltage.
 この構成によれば、検査指示情報に基づく複数対の第一選択導電部に対して、第一電流供給処理を並行して実行することによって、測定電流の重複を避けつつ、複数箇所の検査を並行して実施可能になる結果、基板の検査時間を短縮することが容易となる。 According to this configuration, the first current supply process is performed in parallel on a plurality of pairs of the first selected conductive units based on the test instruction information, so that the test at a plurality of locations can be performed while avoiding overlapping of the measured currents. As a result, the inspection time of the substrate can be easily reduced.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程と、(c2)前記検査指示情報によって示される対となる第二選択導電部間に、前記第一電流供給処理とは非並行に電流を流す第二電流供給処理を実行し、その対となる第二選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記対となる第二選択導電部間の電流経路のビアと配線とを検査する工程とを実行する。 Further, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive portions, and testing vias and wiring of a current path between each pair of the first selected conductive portions based on the current and the voltage; (c2) the test instruction information Between the second selected conductive portions forming a pair, the first current supply process performs a second current supply process of flowing current in a non-parallel manner, and the voltage between the paired second selected conductive portions is And based on the detected current and voltage, Via the current path between the conductive portion and executes the step of examining the wiring.
 この構成によれば、第一選択導電部として選択されなかった導電部とつながる電流経路上のビア又は配線の検査を行うことができる。 According to this configuration, it is possible to inspect a via or a wiring on a current path connected to a conductive part that is not selected as the first selected conductive part.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、前記検査指示情報によって示される順序に従い前記配線層毎に、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行し、前記(c1)工程の検査の結果が不良であった場合、前記順序が次以降の配線層に対する前記(c1)工程を実行しない。 In addition, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generation device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit (C1) a first current flowing between a pair of first selected conductive portions with respect to a plurality of pairs of first selected conductive portions indicated by the inspection instruction information for each of the wiring layers in the order indicated by the information; The supply process is performed in parallel, the voltage between the pair of first selected conductive units is detected, and based on the current and the voltage, the via of the current path between the pair of first selected conductive units and A step of inspecting the wiring is performed, and if the result of the inspection in the step (c1) is defective, the step (c1) is not performed on the wiring layer having the next or subsequent order.
 この構成によれば、基板面に近い方から順に、配線層を処理対象として検査することによって、基板の不良を検査の早い時期に検出することができる。そして、検査の結果が不良であった場合には、順序が次以降の配線層に対する検査は実行しない。その結果、不良が速やかに検出され、かつ不良が検出された時点で検査が終了するので、検査時間を短縮することが容易である。 According to this configuration, by inspecting the wiring layer as an object to be processed in order from the one closer to the substrate surface, it is possible to detect a defect of the substrate at an early stage of the inspection. If the result of the inspection is defective, the inspection is not executed for the wiring layers in the next and subsequent orders. As a result, the defect is promptly detected, and the inspection ends when the defect is detected, so that the inspection time can be easily reduced.
 また、本発明の一例に係る基板検査システムは、上述の検査指示情報生成装置と、前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、前記検査処理部は、(c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行し、前記(c1)工程において、前記検査指示情報によって前記導体層の一方の側に対応付けられた前記複数対の第一選択導電部に対する前記第一電流供給処理と、前記導体層の他方の側に対応付けられた前記複数対の第一選択導電部に対する前記第一電流供給処理とを並行して実行する。 Further, a board inspection system according to an example of the present invention includes the above-described inspection instruction information generating device, and an inspection processing unit that inspects the substrate based on the inspection instruction information, wherein the inspection processing unit comprises: (c1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and the first Detecting a voltage between the selected conductive parts, and inspecting vias and wiring of a current path between the pair of first selected conductive parts based on the current and the voltage, and performing the step (c1). In the first current supply processing for the plurality of pairs of first selected conductive portions associated with one side of the conductor layer by the inspection instruction information, and the first current supply process associated with the other side of the conductor layer A plurality of pairs of the first selected conductive portions, Executed in parallel and a current supply process.
 この構成によれば、導体層の両側に、それぞれ基板面と配線層とが設けられた基板を検査する場合、導体層の一方の側に対する検査と他方の側に対する検査とを並行して実行することができるので、検査時間を短縮することが容易である。 According to this configuration, when inspecting a substrate provided with a substrate surface and a wiring layer on both sides of the conductor layer, the inspection on one side of the conductor layer and the inspection on the other side are performed in parallel. Therefore, it is easy to shorten the inspection time.
 すなわち、このような構成の検査指示情報生成装置、検査指示情報生成方法、及び検査指示情報生成プログラムは、基板の検査時間を短縮することが容易な検査箇所を示す検査指示情報を生成することができる。また、このような構成の基板検査システムは、基板の検査時間を短縮することが容易である。 That is, the inspection instruction information generating apparatus, the inspection instruction information generating method, and the inspection instruction information generating program having such a configuration can generate the inspection instruction information indicating the inspection location where the inspection time of the board can be easily reduced. it can. In addition, the board inspection system having such a configuration can easily reduce the board inspection time.
 この出願は、2018年9月14日に出願された日本国特許出願特願2018-172302を基礎とするものであり、その内容は、本願に含まれるものである。なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、本発明は、そのような具体例にのみ限定して狭義に解釈されるべきものではない。 This application is based on Japanese Patent Application No. 2018-172302 filed on Sep. 14, 2018, the contents of which are included in the present application. It should be noted that the specific embodiments or examples made in the section of the modes for carrying out the invention clarify the technical contents of the present invention, and the present invention is not limited to such specific examples. It should not be construed in a narrow sense in a limited sense.
1    基板検査システム
2    基板検査装置
3    検査指示情報生成装置
4U,4L  測定治具
12  測定ブロック
13  スキャナ部
20  制御部
21  検査処理部
22  記憶部
31  検査指示情報生成部
32  記憶部
110      基板固定装置
112      筐体
121,122    測定部
125      移動機構
B,B1~B5    基板
BS,BS1      基板面
BS2      接触面
CS,CM  電源部
D1,D1´,D1´´  導電構造情報
D2  検査指示情報
F1,F2  基板面
Fip1,Fip2      フラグ
I,I,I    電流
IP,IPa,IPd    面状導体
L,L1,L2,L4    配線層
Lc  導体層
LL1      第一選択層
LL2      第二選択層
LT1,LT2    検査層
M,M11~M14,M21~M23,M41~M47,Mr1~Mr6      枝
MB  中間基板
MP  金属板
N,N11,N12,N21,N41,N42      ノード
NR  根ノード
P,P1~P7,P11~P17      導電部
PA,PB,PA1~PF1,PA2~PF2      導電部
Pr  プローブ
RA~RF  ビア
T1  一端
T2  他端
V,V11~V17,V21~V27,V31~V36,V41~V45,V51~V57,Vc  ビア
VM  電圧検出部
W,W11,W12,W21,W22,W41~W45    配線
WB  多層基板
WB1,WB2    基板
REFERENCE SIGNS LIST 1 board inspection system 2 board inspection device 3 inspection instruction information generation device 4U, 4L measurement jig 12 measurement block 13 scanner unit 20 control unit 21 inspection processing unit 22 storage unit 31 inspection instruction information generation unit 32 storage unit 110 substrate fixing device 112 Cases 121, 122 Measuring unit 125 Moving mechanism B, B1 to B5 Substrate BS, BS1 Substrate surface BS2 Contact surface CS, CM Power supply units D1, D1 ', D1 "Conductive structure information D2 Inspection instruction information F1, F2 Substrate surface Fip1 , FIP2 flag I, I 1, I 2 current IP, IPa, IPd planar conductors L, L1, L2, L4 wiring layer Lc conductor layer LL1 first-layer LL2 second-layer LT1, LT2 inspection layer M, M11 ~ M14, M21 to M23, M41 to M47, Mr1 to Mr6 Branch MB Inter-substrate MP Metal plate N, N11, N12, N21, N41, N42 Node NR Root nodes P, P1 to P7, P11 to P17 Conductive parts PA, PB, PA1 to PF1, PA2 to PF2 Conductive part Pr Probe RA to RF Via T1 One end T2 Other end V, V11 to V17, V21 to V27, V31 to V36, V41 to V45, V51 to V57, Vc Via VM Voltage detector W, W11, W12, W21, W22, W41 to W45 Wiring WB Multilayer substrate WB1, WB2 substrate

Claims (18)

  1.  面状又はメッシュ状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報を記憶する記憶部と、
     前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記導電構造情報に基づいて、当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を、検査指示情報として記録する検査指示情報生成処理を実行する検査指示情報生成部とを備える検査指示情報生成装置。
    A conductor layer, which is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, a substrate surface on which a plurality of conductive portions are provided, and laminated between the conductor layer and the substrate surface The surface of the substrate including a wiring layer that is a layer, a via that connects the wiring of the wiring layer and the plurality of conductive portions, and a via that connects the wiring of the wiring layer and the planar conductor of the conductor layer. A conductive unit, the conductive unit, the wiring, and the via, a storage unit that stores conductive structure information indicating how conductively connected,
    When there are a plurality of groups of the conductive parts that are electrically connected to each other via the wiring of the wiring layer, based on the conductive structure information, select one pair of the conductive parts from each group as a first selected conductive part, An inspection instruction information generating apparatus comprising: an inspection instruction information generating unit that executes an inspection instruction information generating process of recording information indicating the selected plurality of pairs of the first selected conductive units as inspection instruction information.
  2.  前記検査指示情報生成処理は、
     (a)前記導電構造情報に基づいて、前記配線層の配線を介して互いに導通する前記導電部同士をグループ化する工程と、
     (b)前記グループ化された複数のグループについて、当該各グループに含まれる導電部の中から二つの導電部を前記一対の第一選択導電部として選択し、当該選択された複数対の第一選択導電部を、並行して検査可能な検査箇所として前記検査指示情報に記録する工程とを含む請求項1に記載の検査指示情報生成装置。
    The inspection instruction information generation processing includes:
    (A) a step of grouping the conductive portions that are conductive to each other via a wiring of the wiring layer based on the conductive structure information;
    (B) for the plurality of grouped groups, selecting two conductive parts from among the conductive parts included in each group as the pair of first selected conductive parts; 2. The inspection instruction information generating apparatus according to claim 1, further comprising a step of recording the selected conductive portion as an inspection location that can be inspected in parallel in the inspection instruction information.
  3.  前記(b)工程は、さらに、前記第一選択導電部として選択されなかった導電部を有するグループがある場合、そのグループに対し、その第一選択導電部として選択されなかった導電部を含む二つの導電部を、前記複数対の第一選択導電部とは非並行に検査すべき一対の第二選択導電部として前記検査指示情報に記録する請求項2に記載の検査指示情報生成装置。 The step (b) further includes, if there is a group having a conductive part that is not selected as the first selected conductive part, the group including a conductive part that is not selected as the first selected conductive part. The inspection instruction information generating apparatus according to claim 2, wherein one conductive section is recorded in the inspection instruction information as a pair of second selected conductive sections to be inspected non-parallel to the plurality of pairs of first selected conductive sections.
  4.  前記基板は、前記配線層を複数層備え、前記複数の配線層間を接続する複数のビアをさらに備え、
     前記検査指示情報生成部は、
     (d)複数の前記配線層の配線が並列に接続されている場合、前記(a)工程より前に、当該並列接続された複数の配線を、その各配線のうち最も前記基板面に近い一つの配線に置き換えるように、前記導電構造情報を変更する工程をさらに実行し、
     前記(d)工程で変更された導電構造情報に基づいて前記検査指示情報生成処理を実行する請求項2又は3に記載の検査指示情報生成装置。
    The substrate includes a plurality of wiring layers, and further includes a plurality of vias connecting the plurality of wiring layers,
    The inspection instruction information generation unit,
    (D) When the wirings of the plurality of wiring layers are connected in parallel, prior to the step (a), the plurality of wirings connected in parallel are connected to one of the wirings closest to the substrate surface. Further performing a step of changing the conductive structure information so as to replace the two wirings,
    The inspection instruction information generation device according to claim 2, wherein the inspection instruction information generation processing is performed based on the conductive structure information changed in the step (d).
  5.  前記検査指示情報生成部は、
     (e)前記配線と前記面状導体とによって、前記ビア又はビアの列が並列接続されている場合、前記(a)工程より前に、当該並列接続されたビア又はビアの列を、一つ又は一列のビアに置き換えるように、前記(d)工程で変更された導電構造情報を変更する工程をさらに実行し、
     前記(e)工程で変更された導電構造情報に基づいて前記検査指示情報生成処理を実行する請求項4に記載の検査指示情報生成装置。
    The inspection instruction information generation unit,
    (E) When the vias or the row of vias are connected in parallel by the wiring and the planar conductor, before the step (a), one of the vias or the row of vias connected in parallel is reduced to one. Or further performing a step of changing the conductive structure information changed in the step (d) so as to replace the row of vias with a row of vias;
    The inspection instruction information generation device according to claim 4, wherein the inspection instruction information generation processing is performed based on the conductive structure information changed in the step (e).
  6.  前記基板は、前記配線層を複数層備え、前記複数の配線層間を接続する複数のビアをさらに備え、
     前記検査指示情報生成部は、
     (f)前記複数の配線層のうち、最も前記基板面に近い配線層を処理対象として前記(a)及び(b)工程を実行し、
     (g)前記最も前記基板面に近い配線層を除く他の配線層に対して、当該他の配線層それぞれを処理対象として、
       (g1)前記処理対象となる前記配線層の配線毎に、その一つの配線に対応して、その一つの配線の前記導体層から遠ざかる側に接続されたビア一つに対して、その一つのビアのその配線とは逆側で電気的に接続された前記導電部を一つ選択することにより、対応する前記配線毎に、前記選択された導電部をグループ化し、
       (g2)前記(g1)工程においてグループ化されたグループに対して、前記(b)工程を実行し、
     前記(b)工程は、前記処理対象の配線層と対応付けて前記各対の第一選択導電部を前記検査指示情報に記録する請求項2~5のいずれか1項に記載の検査指示情報生成装置。
    The substrate includes a plurality of wiring layers, and further includes a plurality of vias connecting the plurality of wiring layers,
    The inspection instruction information generation unit,
    (F) performing the steps (a) and (b) with the wiring layer closest to the substrate surface among the plurality of wiring layers as a processing target;
    (G) With respect to the other wiring layers except for the wiring layer closest to the substrate surface, each of the other wiring layers is processed,
    (G1) For each wiring of the wiring layer to be processed, corresponding to one of the wirings, one of the vias connected to a side of the one wiring away from the conductor layer is connected to one of the vias. By selecting one of the conductive parts electrically connected on the side opposite to the wiring of the via, grouping the selected conductive part for each corresponding wiring,
    (G2) performing the step (b) on the groups grouped in the step (g1);
    The inspection instruction information according to any one of claims 2 to 5, wherein in the step (b), the first selection conductive portion of each pair is recorded in the inspection instruction information in association with the wiring layer to be processed. Generator.
  7.  前記(b)工程は、前記(f)及び(g)工程において、前記基板面に近い配線層を処理対象として選択されたものから順に、前記複数対の第一選択導電部を前記配線層毎に順序付けて前記検査指示情報に記録する請求項6に記載の検査指示情報生成装置。 In the step (b), in the steps (f) and (g), the plurality of pairs of the first selected conductive portions are arranged for each of the wiring layers in order from the one selected as a processing target for the wiring layer near the substrate surface. 7. The inspection instruction information generating apparatus according to claim 6, wherein the inspection instruction information is recorded in the inspection instruction information in an order.
  8.  (h)前記面状導体の一方の側に接続されたビア毎に、前記面状導体とは逆側で電気的に接続された前記導電部を一つ選択することにより当該選択された導電部を前記面状導体の一方の側に対応する導電部としてグループ化し、当該グループ化された導電部の中から二つの導電部を一対の第一選択導電部として選択し、当該選択された一対の第一選択導電部を前記検査指示情報に記録する請求項1~7のいずれか1項に記載の検査指示情報生成装置。 (H) For each via connected to one side of the planar conductor, one of the conductive portions electrically connected to the opposite side of the planar conductor is selected to select the conductive portion. Are grouped as a conductive part corresponding to one side of the planar conductor, and two conductive parts are selected as a pair of first selected conductive parts from the grouped conductive parts, and the selected pair of conductive parts is selected. The inspection instruction information generating device according to any one of claims 1 to 7, wherein a first selection conductive unit is recorded in the inspection instruction information.
  9.  前記検査指示情報生成処理は、
     (j)前記第一選択導電部の対に挟まれず、かつ前記第二選択導電部の対に挟まれない前記配線を探索する工程と、
     (k)前記探索された配線の一端に対してその配線を介さず導通する導電部と、その配線の他端に対してその配線を介さず導通する導電部とを、前記複数対の第一選択導電部とは非並行に検査すべき一対の第三選択導電部として前記検査指示情報に記録する工程とをさらに含む請求項3に記載の検査指示情報生成装置。
    The inspection instruction information generation processing includes:
    (J) a step of searching for the wiring that is not sandwiched between the pair of the first selected conductive portions and that is not sandwiched between the pair of the second selected conductive portions;
    (K) a conductive part that conducts to one end of the searched wiring without passing through the wiring and a conductive part that conducts to the other end of the wiring without passing through the wiring, The inspection instruction information generating apparatus according to claim 3, further comprising a step of recording the inspection instruction information as a pair of third selected conductive parts to be inspected non-parallel to the selected conductive part.
  10.  前記基板面及び前記配線層は、前記導体層の両側にそれぞれ設けられ、
     前記検査指示情報生成部は、前記検査指示情報生成処理を、前記導体層の両側に対して実行する請求項1~9のいずれか1項に記載の検査指示情報生成装置。
    The substrate surface and the wiring layer are provided on both sides of the conductor layer, respectively.
    10. The inspection instruction information generating apparatus according to claim 1, wherein the inspection instruction information generating unit executes the inspection instruction information generating process on both sides of the conductor layer.
  11.  前記基板は、複数の前記導体層と、前記複数の導体層の前記面状導体同士を接続するビアとを備え、
     前記検査指示情報生成処理は、
     (l)前記両側の基板面における一方の基板面の導電部のうち一つと、他方の基板面の導電部のうち一つとを、前記複数対の第一選択導電部とは非並行に検査すべき一対の第四選択導電部として前記検査指示情報に記録する工程をさらに含む請求項10に記載の検査指示情報生成装置。
    The substrate includes a plurality of the conductor layers and a via connecting the planar conductors of the plurality of conductor layers,
    The inspection instruction information generation processing includes:
    (L) inspecting one of the conductive portions on one substrate surface and one of the conductive portions on the other substrate surface on the both substrate surfaces non-parallel to the plurality of pairs of the first selected conductive portions; The inspection instruction information generating apparatus according to claim 10, further comprising a step of recording the inspection instruction information as a pair of fourth selection conductive units to be performed.
  12.  前記検査指示情報生成部は、
     (m)前記ビアをノード、前記配線を枝、前記面状導体を根ノードに対応させることによって、前記導電構造情報を木構造のデータ構造に変換する工程をさらに実行し、
     前記(m)工程で木構造に変換された導電構造情報に基づいて前記検査指示情報生成処理を実行する請求項1~11のいずれか1項に記載の検査指示情報生成装置。
    The inspection instruction information generation unit,
    (M) converting the conductive structure information into a tree-structured data structure by associating the via with a node, the wiring with a branch, and the planar conductor as a root node;
    The inspection instruction information generating apparatus according to any one of claims 1 to 11, wherein the inspection instruction information generating process is performed based on the conductive structure information converted into a tree structure in the step (m).
  13.  請求項1~12のいずれか1項に記載の検査指示情報生成装置と、
     前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、
     前記検査処理部は、
     (c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行する基板検査システム。
    An inspection instruction information generating device according to any one of claims 1 to 12,
    An inspection processing unit that inspects the substrate based on the inspection instruction information,
    The inspection processing unit,
    (C1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and A board inspection system for detecting a voltage between the first selection conductive parts, and inspecting a via and a wiring of a current path between the pair of first selection conductive parts based on the current and the voltage. .
  14.  請求項3に記載の検査指示情報生成装置と、
     前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、
     前記検査処理部は、
     (c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程と、
     (c2)前記検査指示情報によって示される対となる第二選択導電部間に、前記第一電流供給処理とは非並行に電流を流す第二電流供給処理を実行し、その対となる第二選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記対となる第二選択導電部間の電流経路のビアと配線とを検査する工程とを実行する基板検査システム。
    An inspection instruction information generating device according to claim 3,
    An inspection processing unit that inspects the substrate based on the inspection instruction information,
    The inspection processing unit,
    (C1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and Detecting the voltage between the first selected conductive portion, based on the current and the voltage, inspecting the vias and wiring of the current path between the first selected conductive portion of each pair,
    (C2) performing a second current supply process of flowing a current between the second selected conductive portions indicated by the inspection instruction information in a non-parallel manner with the first current supply process, and Detecting a voltage between the selected conductive portions and, based on the current and the voltage, testing a via and a wiring of a current path between the pair of second selected conductive portions.
  15.  請求項7に記載の検査指示情報生成装置と、
     前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、
     前記検査処理部は、
     前記検査指示情報によって示される順序に従い前記配線層毎に、
     (c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行し、
     前記(c1)工程の検査の結果が不良であった場合、前記順序が次以降の配線層に対する前記(c1)工程を実行しない基板検査システム。
    An inspection instruction information generating device according to claim 7,
    An inspection processing unit that inspects the substrate based on the inspection instruction information,
    The inspection processing unit,
    For each of the wiring layers according to the order indicated by the inspection instruction information,
    (C1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and Detecting the voltage between the first selection conductive part, based on the current and the voltage, performing a step of inspecting the via and wiring of the current path between the first selection conductive part of each pair,
    A board inspection system that does not execute the step (c1) for the wiring layer in the next order if the result of the inspection in the step (c1) is defective.
  16.  請求項10に記載の検査指示情報生成装置と、
     前記検査指示情報に基づいて前記基板を検査する検査処理部とを含み、
     前記検査処理部は、
     (c1)前記検査指示情報によって示される複数対の第一選択導電部に対して、対となる第一選択導電部間に電流を流す第一電流供給処理を並行して実行し、その対となる第一選択導電部間の電圧を検出し、その電流と電圧とに基づいて、前記各対の第一選択導電部間の電流経路のビアと配線とを検査する工程を実行し、
     前記(c1)工程において、前記検査指示情報によって前記導体層の一方の側に対応付けられた前記複数対の第一選択導電部に対する前記第一電流供給処理と、前記導体層の他方の側に対応付けられた前記複数対の第一選択導電部に対する前記第一電流供給処理とを並行して実行する基板検査システム。
    An inspection instruction information generating device according to claim 10,
    An inspection processing unit that inspects the substrate based on the inspection instruction information,
    The inspection processing unit,
    (C1) For a plurality of pairs of first selected conductive portions indicated by the inspection instruction information, a first current supply process for flowing a current between the paired first selected conductive portions is performed in parallel, and Detecting the voltage between the first selection conductive part, based on the current and the voltage, performing a step of inspecting the via and wiring of the current path between the first selection conductive part of each pair,
    In the step (c1), the first current supply processing to the plurality of pairs of the first selected conductive portions associated with one side of the conductor layer by the inspection instruction information; A board inspection system that executes the first current supply processing for the plurality of pairs of the first selection conductive units associated with each other in parallel.
  17.  面状又はメッシュ状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報に基づいて、
     前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を、検査指示情報として生成する検査指示情報生成処理を実行する検査指示情報生成工程を含む検査指示情報生成方法。
    A conductor layer, which is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, a substrate surface on which a plurality of conductive portions are provided, and laminated between the conductor layer and the substrate surface The surface of the substrate including a wiring layer that is a layer, a via that connects the wiring of the wiring layer and the plurality of conductive portions, and a via that connects the wiring of the wiring layer and the planar conductor of the conductor layer. -Shaped conductor, the conductive portion, the wiring, and the via, based on the conductive structure information indicating how conductively connected,
    When there are a plurality of groups of the conductive portions that are electrically connected to each other via the wiring of the wiring layer, the conductive portions are selected as a first selected conductive portion from each of the groups, and the selected plurality of pairs are selected. An inspection instruction information generating method including an inspection instruction information generating step of executing an inspection instruction information generating process of generating information indicating a first selected conductive unit as inspection instruction information.
  18.  面状又はメッシュ状に拡がる導電性の面状導体が設けられた層である導体層と、複数の導電部が設けられた基板面と、前記導体層と前記基板面との間に積層された層である配線層と、前記配線層の配線と前記複数の導電部とを接続するビアと、前記配線層の配線と前記導体層の面状導体とを接続するビアとを備える基板における前記面状導体、前記導電部、前記配線、及び前記ビアが、どのように導通接続されているかを示す導電構造情報に基づいて、
     前記配線層の配線を介して互いに導通する前記導電部同士のグループが複数ある場合に、前記当該各グループから前記導電部を第一選択導電部として一対ずつ選択し、当該選択された複数対の第一選択導電部を示す情報を検査指示情報として生成する検査指示情報生成処理を、コンピュータに実行させる検査指示情報生成プログラム。
    A conductor layer, which is a layer provided with a conductive planar conductor that spreads in a planar or mesh shape, a substrate surface on which a plurality of conductive portions are provided, and laminated between the conductor layer and the substrate surface The surface of the substrate including a wiring layer that is a layer, a via that connects the wiring of the wiring layer and the plurality of conductive portions, and a via that connects the wiring of the wiring layer and the planar conductor of the conductor layer. -Shaped conductor, the conductive portion, the wiring, and the via, based on the conductive structure information indicating how conductively connected,
    When there are a plurality of groups of the conductive portions that are electrically connected to each other via the wiring of the wiring layer, the conductive portions are selected as a first selected conductive portion from each of the groups, and the selected plurality of pairs are selected. An inspection instruction information generation program for causing a computer to execute inspection instruction information generation processing for generating information indicating a first selected conductive unit as inspection instruction information.
PCT/JP2019/028270 2018-09-14 2019-07-18 Inspection instruction information generation device, substrate inspection system, inspection instruction information generation method, and inspection instruction information generation program WO2020054214A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217011041A KR102707838B1 (en) 2018-09-14 2019-07-18 Inspection instruction information generation device, board inspection system, inspection instruction information generation method and inspection instruction information generation program
JP2020546728A JP7352840B2 (en) 2018-09-14 2019-07-18 Inspection instruction information generation device, board inspection system, inspection instruction information generation method, and inspection instruction information generation program
CN201980060230.8A CN112689769B (en) 2018-09-14 2019-07-18 Inspection instruction information generating device and method, substrate inspection system and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172302 2018-09-14
JP2018172302 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054214A1 true WO2020054214A1 (en) 2020-03-19

Family

ID=69776558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028270 WO2020054214A1 (en) 2018-09-14 2019-07-18 Inspection instruction information generation device, substrate inspection system, inspection instruction information generation method, and inspection instruction information generation program

Country Status (5)

Country Link
JP (1) JP7352840B2 (en)
KR (1) KR102707838B1 (en)
CN (1) CN112689769B (en)
TW (1) TWI846729B (en)
WO (1) WO2020054214A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805017B (en) * 2021-10-07 2023-06-11 祁昌股份有限公司 Test method and test equipment for printed circuit board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100475A (en) * 1989-09-13 1991-04-25 Nec Corp Data forming system for conduction test of multilayer substrate
JP2005326193A (en) * 2004-05-13 2005-11-24 Hitachi Ltd Substrate testing method
JP2007285882A (en) * 2006-04-17 2007-11-01 Nidec-Read Corp Board inspection contact, tool, and system
JP2010034260A (en) * 2008-07-29 2010-02-12 Kyocera Corp Wiring substrate, method of manufacturing the same, and mounting structure
JP2010107265A (en) * 2008-10-29 2010-05-13 Hioki Ee Corp Device and method for generating data
JP2012117991A (en) * 2010-12-03 2012-06-21 Hioki Ee Corp Circuit board inspection device
JP2015072122A (en) * 2013-10-01 2015-04-16 日置電機株式会社 Processor, processing method, and processing program
WO2017170535A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Circuit module

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599986B2 (en) * 1997-12-19 2004-12-08 松下電器産業株式会社 Flip chip bonding inspection method and inspection device
JP4544810B2 (en) * 2002-04-23 2010-09-15 日本特殊陶業株式会社 Substrate manufacturing method
JP3793945B2 (en) * 2002-05-30 2006-07-05 松下電器産業株式会社 Voltage probe, semiconductor device inspection method using the same, and semiconductor device with monitor function
JP2004163318A (en) * 2002-11-14 2004-06-10 Ngk Spark Plug Co Ltd Electric characteristics measuring method for high frequency laminated substrate, inspection and manufacturing method for the same and measuring device for the same
EP1607751A1 (en) * 2003-03-26 2005-12-21 JSR Corporation Connector for measurement of electric resistance, connector device for measurement of electric resistance and production process thereof, and measuring apparatus and measuring method of electric resistance for circuit board
JP2007212194A (en) * 2006-02-07 2007-08-23 Nidec-Read Corp Substrate inspecting apparatus and method
JP4731339B2 (en) * 2006-02-02 2011-07-20 日置電機株式会社 Inspection device
JP2008008773A (en) * 2006-06-29 2008-01-17 Nidec-Read Corp Substrate inspection method and substrate inspecting device
TWI356480B (en) * 2007-05-07 2012-01-11 Siliconware Precision Industries Co Ltd Semiconductor package substrate
US8249827B2 (en) * 2009-11-09 2012-08-21 Delphi Technologies, Inc. Method and system for heater signature detection diagnostics of a particulate matter sensor
JP5538107B2 (en) * 2010-07-09 2014-07-02 日置電機株式会社 Circuit board inspection probe unit and circuit board inspection apparatus
KR101849248B1 (en) * 2010-07-20 2018-04-16 히오끼 덴끼 가부시끼가이샤 Circuit board inspection device
JP5949759B2 (en) * 2011-05-24 2016-07-13 日本電気株式会社 Wiring check device and wiring check system
JP2013135080A (en) * 2011-12-26 2013-07-08 Ngk Spark Plug Co Ltd Manufacturing method of multilayer wiring board
JP5895635B2 (en) * 2012-03-16 2016-03-30 富士通株式会社 Wiring board manufacturing method, wiring board and via structure
JP6024227B2 (en) * 2012-06-11 2016-11-09 日本電産リード株式会社 Electrical property detector
JP5913055B2 (en) * 2012-11-09 2016-04-27 日本特殊陶業株式会社 Wiring board
TWI487436B (en) * 2013-05-10 2015-06-01 Unimicron Technology Corp Carrier substrate and manufacturing method thereof
JP6368927B2 (en) * 2014-02-18 2018-08-08 日本電産リード株式会社 Single layer inspection object inspection apparatus and inspection method
JP6375121B2 (en) * 2014-02-27 2018-08-15 新光電気工業株式会社 WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
JP6375661B2 (en) * 2014-03-26 2018-08-22 日本電産リード株式会社 Resistance measuring device, substrate inspection device, inspection method, and maintenance method for inspection jig
CN107076790B (en) * 2014-10-29 2019-12-13 日本电产理德股份有限公司 Substrate inspection apparatus and substrate inspection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100475A (en) * 1989-09-13 1991-04-25 Nec Corp Data forming system for conduction test of multilayer substrate
JP2005326193A (en) * 2004-05-13 2005-11-24 Hitachi Ltd Substrate testing method
JP2007285882A (en) * 2006-04-17 2007-11-01 Nidec-Read Corp Board inspection contact, tool, and system
JP2010034260A (en) * 2008-07-29 2010-02-12 Kyocera Corp Wiring substrate, method of manufacturing the same, and mounting structure
JP2010107265A (en) * 2008-10-29 2010-05-13 Hioki Ee Corp Device and method for generating data
JP2012117991A (en) * 2010-12-03 2012-06-21 Hioki Ee Corp Circuit board inspection device
JP2015072122A (en) * 2013-10-01 2015-04-16 日置電機株式会社 Processor, processing method, and processing program
WO2017170535A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Circuit module

Also Published As

Publication number Publication date
CN112689769A (en) 2021-04-20
CN112689769B (en) 2025-03-04
JP7352840B2 (en) 2023-09-29
JPWO2020054214A1 (en) 2021-09-09
TWI846729B (en) 2024-07-01
KR102707838B1 (en) 2024-09-23
KR20210060542A (en) 2021-05-26
TW202018314A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
JP3285568B2 (en) Board wiring inspection apparatus and wiring inspection method
WO2020054214A1 (en) Inspection instruction information generation device, substrate inspection system, inspection instruction information generation method, and inspection instruction information generation program
JP6829371B2 (en) Resistance measuring device and resistance measuring method
WO2020135258A1 (en) Addressable test chip capable of improving resistance measurement accuracy and test system thereof
JP7384169B2 (en) Inspection instruction information generation device, board inspection system, inspection instruction information generation method, and inspection instruction information generation program
WO2008001651A1 (en) Board inspecting method and board inspecting device
JP6885612B2 (en) Resistance measuring device and resistance measuring method
WO2007138831A1 (en) Board examination method and board examination device
JP5160332B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2020128881A (en) Short circuit inspection system, and short circuit inspection method
TWI847758B (en) Measuring method for measuring overlay shift and non-transient computer readable storage medium
JP6696523B2 (en) Resistance measuring method, resistance measuring device, and board inspection device
JP2009264834A (en) Insulation inspection apparatus and insulation inspection method
KR20080079051A (en) A semiconductor memory device including an operating speed measurement circuit and a measurement circuit of a semiconductor memory device.
TW202503932A (en) Measuring method for measuring overlay shift and non-transient computer readable storage medium
JPH0684146A (en) Wafer for magnetoresistance effect element
JP5818513B2 (en) Insulation inspection device and insulation inspection method
TW202144790A (en) Test electrode set and test system
JP2006079758A (en) Semiconductor integrated circuit
JP2006112942A (en) Semiconductor device and mounting inspection method using it
JP2004193253A (en) Method and arrangement for inspecting probe for inspecting semiconductor wafer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020546728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011041

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19859404

Country of ref document: EP

Kind code of ref document: A1