[go: up one dir, main page]

WO2019135323A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2019135323A1
WO2019135323A1 PCT/JP2018/041900 JP2018041900W WO2019135323A1 WO 2019135323 A1 WO2019135323 A1 WO 2019135323A1 JP 2018041900 W JP2018041900 W JP 2018041900W WO 2019135323 A1 WO2019135323 A1 WO 2019135323A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
positive electrode
battery
electrolyte material
Prior art date
Application number
PCT/JP2018/041900
Other languages
English (en)
French (fr)
Inventor
真志 境田
哲也 浅野
晃暢 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880081113.5A priority Critical patent/CN111480258B/zh
Priority to EP18898795.2A priority patent/EP3736899A4/en
Priority to JP2019563938A priority patent/JP7281672B2/ja
Publication of WO2019135323A1 publication Critical patent/WO2019135323A1/ja
Priority to US16/914,330 priority patent/US11515565B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to batteries.
  • Patent Document 1 discloses an all-solid-state battery using a sulfide solid electrolyte.
  • Patent Document 2 discloses an all-solid-state battery using a halide containing indium as a solid electrolyte.
  • JP 2011-129312 A Japanese Patent Application Publication No. 2006-244734
  • a battery according to an aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode, and the electrolyte layer includes a first electrolyte layer and a second electrolyte layer.
  • the first electrolyte layer includes a first solid electrolyte material
  • the second electrolyte layer includes a second solid electrolyte material that is different from the first solid electrolyte material
  • the first solid electrolyte includes The material includes lithium, at least one selected from the group consisting of metal elements and metalloid elements other than lithium, and at least one selected from the group consisting of chlorine, bromine, and iodine, and Contains no sulfur
  • the occurrence of a short circuit can be suppressed.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of battery 1000 in the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of battery 1100 in the first embodiment.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of battery 1200 in the first embodiment.
  • FIG. 4 is a graph showing the initial charge characteristics of the batteries in Example 2 and Comparative Example 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of battery 1000 in the first embodiment.
  • Battery 1000 in the first embodiment includes positive electrode 201, negative electrode 202, and electrolyte layer 100.
  • the electrolyte layer 100 is a layer provided between the positive electrode 201 and the negative electrode 202.
  • the electrolyte layer 100 includes a first electrolyte layer 101 and a second electrolyte layer 102.
  • the first electrolyte layer 101 contains a first solid electrolyte material.
  • the second electrolyte layer 102 contains a second solid electrolyte material.
  • the second solid electrolyte material is a material different from the first solid electrolyte material.
  • the first solid electrolyte material is a material represented by the following composition formula (1).
  • ⁇ , ⁇ and ⁇ are values larger than 0.
  • M includes at least one of a metal element other than Li and a metalloid element.
  • X is one or more elements selected from the group consisting of Cl, Br and I.
  • the occurrence of a short circuit can be suppressed. That is, it is possible to reduce the risk of short circuiting due to precipitation of lithium metal at the time of overcharging or the like. This can improve the safety. This is considered to be due to the fact that when the ternary or higher halide electrolyte comes in contact with lithium metal, it is partially reduced to consume lithium metal and to suppress the growth of further lithium metal.
  • a "metalloid element” is B, Si, Ge, As, Sb, and Te.
  • metal element refers to all elements contained in Groups 1 to 12 of the periodic table excluding hydrogen, and all the metalloid elements and all elements except C, N, P, O, S, and Se. It is an element contained in Groups 13 to 16. That is, it is an element group that can be a cation when forming an inorganic compound with a halogen compound.
  • the first solid electrolyte material may contain Y as a metal element.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • Me Li , at least one metal element and metalloid elements other than Y
  • the compound may be a compound represented by the composition formula (m) (valence number of Me).
  • any of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, Nb, or a mixture thereof may be used.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • M may contain Fe.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be Li 3 YI 6 or Li 3 YCl 6 or Li 3.1 Y 0.9 Ca 0.1 Br 6 or Li 2 FeCl 4 . .
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A1). Li 6-3d Y d X 6 Formula (A1) Here, in the composition formula (A1), X is two or more elements selected from the group consisting of Cl, Br, and I.
  • composition formula (A1) 0 ⁇ d ⁇ 2 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A2). Li 3 YX 6 ⁇ Formula (A2)
  • X is two or more elements selected from the group consisting of Cl, Br, and I.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A3). Li 3-3 ⁇ Y 1 + ⁇ Cl 6 formula (A3) Here, in the composition formula (A3), 0 ⁇ ⁇ 0.15 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A4). Li 3-3 ⁇ Y 1 + ⁇ Br 6 ⁇ Formula (A4) Here, in the composition formula (A4), 0 ⁇ ⁇ 0.25 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A5). Li 3-3 ⁇ + a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y formula (A5)
  • Me is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
  • composition formula (A5) -1 ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ + a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, (X + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A6). Li 3 -3 ⁇ Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A6)
  • Me is one or more elements selected from the group consisting of Al, Sc, Ga and Bi.
  • composition formula (A6) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, (X + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A7). Li 3-3 ⁇ -a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A7)
  • Me is one or more elements selected from the group consisting of Zr, Hf, and Ti.
  • composition formula (A7) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, (X + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A8). Li 3-3 ⁇ -2a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A8)
  • Me is one or more elements selected from the group consisting of Ta and Nb.
  • composition formula (A8) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, (X + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. , May be used.
  • the first electrolyte layer 101 may contain the first solid electrolyte material as a main component. That is, the first electrolyte layer 101 may contain, for example, 50% or more (50% by weight or more) of the weight ratio of the first solid electrolyte material to the entire first electrolyte layer 101.
  • the charge and discharge characteristics of the battery can be further improved. Furthermore, the occurrence of a short circuit can be further suppressed.
  • the first electrolyte layer 101 may contain, for example, 70% or more (70% by weight or more) of the weight ratio of the first solid electrolyte material to the entire first electrolyte layer 101.
  • the charge and discharge characteristics of the battery can be further improved. Furthermore, the occurrence of a short circuit can be further suppressed.
  • the first electrolyte layer 101 further contains unavoidable impurities or starting materials and by-products and decomposition used when synthesizing the first solid electrolyte material while containing the first solid electrolyte material as a main component. Products, etc. may be included.
  • the first electrolyte layer 101 may contain, for example, 100% (100% by weight) of the weight of the first solid electrolyte material with respect to the whole of the first electrolyte layer 101 except for impurities which are inevitably mixed. .
  • the charge and discharge characteristics of the battery can be further improved. Furthermore, the occurrence of a short circuit can be further suppressed.
  • the first electrolyte layer 101 may be made of only the first solid electrolyte material.
  • the second solid electrolyte material for example, a sulfide solid electrolyte, an oxide solid electrolyte, an organic polymer solid electrolyte, and the like can be used.
  • Li 2 S-P 2 S 5 Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc. may be used.
  • the second solid electrolyte material may be a sulfide solid electrolyte.
  • the sulfide solid electrolyte may contain lithium sulfide and phosphorus sulfide.
  • the sulfide solid electrolyte may be Li 2 S—P 2 S 5 .
  • the ion conductivity between the positive electrode 201 and the negative electrode 202 can be further improved.
  • a NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product, (LaLi) TiO 3 -based perovskite-type solid electrolyte, Li 14 ZnGe 4 O 16 , Li 4 SiO 4 LISICON type solid electrolyte represented by LiGeO 4 and its element substituted body, Garnet type solid electrolyte represented by Li 7 La 3 Zr 2 O 12 and its element substituted body, Li 3 N and its H substituted body, Li 3 PO 4 and its N-substituted, etc. can be used.
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. By having an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further enhanced.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • a lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • the second electrolyte layer 102 may contain the second solid electrolyte material as a main component. That is, the second electrolyte layer 102 may contain, for example, 50% or more (50% by weight or more) of the second solid electrolyte material in a weight ratio to the entire second electrolyte layer 102.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 102 may contain, for example, 70% or more (70% by weight or more) of the weight ratio of the second solid electrolyte material to the entire second electrolyte layer 102.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 102 contains, as a main component, the second solid electrolyte material, and further includes unavoidable impurities or starting materials and by-products and decomposition used when synthesizing the second solid electrolyte material. Products, etc. may be included.
  • the second electrolyte layer 102 may contain, for example, 100% (100% by weight) of the weight of the second solid electrolyte material with respect to the whole of the second electrolyte layer 102 except for impurities which are inevitably mixed. .
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 102 may be made of only the second solid electrolyte material.
  • the first electrolyte layer 101 and the second electrolyte layer 102 may contain two or more of the materials listed as the solid electrolyte material. The same material may be contained in the first electrolyte layer 101 and the second electrolyte layer 102. Different materials may be used depending on the properties of each layer.
  • the thickness of the electrolyte layer 100 may be 1 ⁇ m or more and 100 ⁇ m or less. When the thickness of the electrolyte layer 100 is thinner than 1 ⁇ m, the possibility of short circuit between the positive electrode 201 and the negative electrode 202 is increased. In addition, when the thickness of the electrolyte layer 100 is thicker than 100 ⁇ m, operation at high output may be difficult.
  • the positive electrode 201 includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • the positive electrode 201 includes, for example, a positive electrode active material (for example, positive electrode active material particles 211).
  • positive electrode active materials include lithium-containing transition metal oxides (eg, Li (NiCoAl) O 2 , LiCoO 2 , etc.), transition metal fluorides, polyanions and fluorinated polyanion materials, and transition metal sulfides, transitions Metal oxyfluorides, transition metal oxysulfides, transition metal oxynitrides, etc. may be used.
  • the positive electrode active material may be lithium cobaltate.
  • the positive electrode active material may be LiCoO 2 .
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode is smaller than 10 ⁇ m, it may be difficult to secure sufficient energy density of the battery. When the thickness of the positive electrode is greater than 500 ⁇ m, operation at high output may be difficult.
  • the negative electrode 202 includes a material having a property of inserting and extracting metal ions (eg, lithium ions).
  • the negative electrode 202 contains, for example, a negative electrode active material.
  • metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. may be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal, lithium alloy, and the like.
  • carbon materials include natural graphite, coke, graphitized carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, and a tin compound can be suitably used.
  • the thickness of the negative electrode 202 may be 10 ⁇ m or more and 500 ⁇ m or less. If the thickness of the negative electrode is smaller than 10 ⁇ m, it may be difficult to secure sufficient energy density of the battery. In addition, when the thickness of the negative electrode is greater than 500 ⁇ m, operation at high output may be difficult.
  • the positive electrode 201 may include the above-mentioned sulfide solid electrolyte or oxide solid electrolyte or organic polymer solid electrolyte for the purpose of enhancing the ion conductivity.
  • a non-aqueous electrolyte solution, a gel electrolyte, and an ionic liquid may be contained in at least one of the positive electrode 201 and the electrolyte layer 100 for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery. .
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, fluorine solvents, and the like may be used.
  • cyclic carbonate solvents include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • chain carbonate solvents include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and the like.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and the like.
  • the chain ether solvents include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • cyclic ester solvents examples include ⁇ -butyrolactone and the like.
  • linear ester solvents include methyl acetate and the like.
  • fluorine solvents include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, fluorodimethylene carbonate, and the like.
  • non-aqueous solvent one non-aqueous solvent selected therefrom can be used alone.
  • the non-aqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate and fluorodimethylene carbonate.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • concentration of the lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the gel electrolyte one in which a non-aqueous electrolyte is contained in a polymer material can be used.
  • a polymer material polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, a polymer having an ethylene oxide bond, and the like may be used.
  • the cations constituting the ionic liquid are aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like And nitrogen-containing heterocyclic aromatic cations such as cyclic ammonium, pyridiniums, and imidazoliums.
  • aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like
  • nitrogen-containing heterocyclic aromatic cations such as cyclic ammonium, pyridiniums, and imidazoliums.
  • Anions constituting the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) ⁇ , C (SO 2 CF 3 ) 3 ⁇ or the like.
  • the ionic liquid may also contain a lithium salt.
  • a binder may be contained in at least one of the positive electrode 201, the electrolyte layer 100, and the negative electrode 202 for the purpose of improving the adhesion between the particles.
  • the binder is used to improve the binding properties of the material constituting the electrode.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butad
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, hexadiene Copolymers of two or more selected materials can be used. Moreover, 2 or more types selected from these may be mixed and it may be used as a binding agent.
  • At least one of the positive electrode 201 and the negative electrode 202 may contain a conductive aid, as necessary.
  • the conductive aid is used to reduce the electrode resistance.
  • Conductive aids include graphites of natural graphite or artificial graphite, carbon blacks such as acetylene black and ketjen black, conductive fibers such as carbon fibers or metal fibers, metal powders such as fluorinated carbon and aluminum, Examples thereof include conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymer compounds such as polyaniline, polypyrrole and polythiophene.
  • cost reduction can be implement
  • the first electrolyte layer 101 may be provided between the positive electrode 201 and the second electrolyte layer 102.
  • the ion conductivity between the positive electrode 201 and the negative electrode 202 can be further improved. Furthermore, the occurrence of a short circuit can be further suppressed.
  • the first electrolyte layer 101 may be positioned without being in contact with the negative electrode 202.
  • the ion conductivity between the positive electrode 201 and the negative electrode 202 can be further improved. Furthermore, the occurrence of a short circuit can be further suppressed.
  • the positive electrode 201 may contain the first solid electrolyte material.
  • the ion conductivity between the positive electrode 201 and the negative electrode 202 can be further improved.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of battery 1100 in the first embodiment.
  • positive electrode 201 includes a mixed material of first solid electrolyte particles 111 and positive electrode active material particles 211.
  • the first solid electrolyte particles 111 may be particles composed of the first solid electrolyte material or the first solid electrolyte material as a main component (for example, 50% or more (50% by weight of the total weight of the first solid electrolyte particles 111). % Or more)), containing particles.
  • the shape of the first solid electrolyte particle 111 in the first embodiment is not particularly limited, and may be, for example, a needle shape, a spherical shape, an elliptical shape, or the like.
  • the shape of the first solid electrolyte particles 111 may be particles.
  • the median diameter may be 100 ⁇ m or less. If the median diameter is larger than 100 ⁇ m, there is a possibility that the positive electrode active material particles 211 and the first solid electrolyte particles 111 can not form a good dispersed state in the positive electrode material. Therefore, the charge and discharge characteristics are degraded. In the first embodiment, the median diameter may be 10 ⁇ m or less.
  • the positive electrode active material particles 211 and the first solid electrolyte particles 111 can form a good dispersed state.
  • the first solid electrolyte particles 111 may be smaller than the median diameter of the positive electrode active material particles 211.
  • the first solid electrolyte particles 111 and the positive electrode active material particles 211 can form a better dispersed state in the electrode.
  • the median diameter of the positive electrode active material particles 211 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material particles 211 is smaller than 0.1 ⁇ m, there is a possibility that the positive electrode active material particles 211 and the first solid electrolyte particles 111 can not form a good dispersed state in the positive electrode. As a result, the charge and discharge characteristics of the battery are degraded. In addition, when the median diameter of the positive electrode active material particles 211 is larger than 100 ⁇ m, lithium diffusion in the positive electrode active material particles 211 is delayed. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the positive electrode active material particles 211 may be larger than the median diameter of the first solid electrolyte particles 111. Thereby, a favorable dispersed state of the positive electrode active material particles 211 and the first solid electrolyte particles 111 can be formed.
  • the positive electrode 201 may include a plurality of first solid electrolyte particles 111 and a plurality of positive electrode active material particles 211.
  • the content of the first solid electrolyte particles 111 and the content of the positive electrode active material particles 211 in the positive electrode 201 may be the same as or different from each other.
  • the volume ratio “v: 100 ⁇ v” of the positive electrode active material and the first solid electrolyte material contained in the positive electrode 201 may be 30 ⁇ v ⁇ 95.
  • v ⁇ 30 it may be difficult to secure sufficient energy density of the battery.
  • v> 95 operation at high output may be difficult.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of battery 1200 in the first embodiment.
  • electrolyte layer 100 includes a third electrolyte layer 103.
  • the third electrolyte layer 103 is provided between the positive electrode 201 and the first electrolyte layer 101.
  • the positive electrode 201 and the third electrolyte layer 103 include a sulfide solid electrolyte.
  • the ion conductivity between the positive electrode 201 and the negative electrode 202 can be further improved.
  • the battery in Embodiment 1 can be configured as a battery of various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • the first solid electrolyte material in Embodiment 1 can be produced, for example, by the following method.
  • LiCl and YCl 3 are prepared in a molar ratio of 3: 1.
  • “M”, “Me”, and “X” in the above-described composition formula can be determined by selecting the type of the raw material powder.
  • the above-mentioned values “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “d”, “ ⁇ ”, “a”, “a”, “x” and “y” can be adjusted by adjusting the raw materials, blending ratio and synthesis process. Can be adjusted.
  • the raw material powders are thoroughly mixed, the raw material powders are mixed, pulverized and reacted using a method of mechanochemical milling. Alternatively, the raw material powder may be well mixed and then sintered in vacuum.
  • composition (crystal structure) of the crystal phase in the solid electrolyte material can be determined by adjusting the reaction method and reaction conditions of the raw material powders.
  • Example 1 Preparation of first solid electrolyte material
  • LPS solid electrolyte material Li 2 S—P 2 S 5
  • the first solid electrolyte material Li 3 YI 6 produced by the above method and LiCoO 2 (hereinafter referred to as LCO) which is a positive electrode active material were weighed at a volume ratio of 50:50.
  • LCO LiCoO 2
  • the insulating outer cylinder 200 ⁇ m equivalent of the LPS prepared by the above method, 200 ⁇ m equivalent of the first solid electrolyte material Li 3 YI 6 prepared by the above method, 15.4 mg of the positive electrode mixture It laminated in order.
  • the positive electrode and the solid electrolyte layer were obtained by pressure-molding this at a pressure of 360 MPa.
  • the battery was charged at a constant current at a current value of 0.05 C rate (20 hours rate) with respect to the theoretical capacity of the battery, and the charging was finished at a voltage of 4.2 V.
  • the battery was discharged at a current value of 0.05 C rate, and the discharge was finished at a voltage of 2.5 V.
  • Li 3.1 Y 0.9 Ca 0.1 Br 6 was used as the first solid electrolyte material instead of Li 3 YI 6 . Except for this, preparation of a secondary battery and a charge / discharge test were conducted in the same manner as in Example 1.
  • FIG. 4 is a graph showing the initial charge characteristics of the batteries in Example 2 and Comparative Example 1.
  • a first solid electrolyte material of Li 2 FeCl 4 was obtained by the same method as Example 1 except for the above.
  • LPS was used instead of Li 3 YI 6 as a solid electrolyte in the positive electrode mixture.
  • a 100 ⁇ m equivalent of LPS, a 200 ⁇ m equivalent of Li 2 FeCl 4 prepared by the above method, a 100 ⁇ m equivalent of LPS, and 14.2 mg of a positive electrode mixture were sequentially laminated.
  • a secondary battery was manufactured in the same manner as in Example 1 except for the above.
  • the temperature of the thermostat was 85 ° C.
  • the charge and discharge test was performed in the same manner as in Example 1 except for the above.
  • a first solid electrolyte material of Li 3 YCl 6 was obtained in the same manner as in Example 1 except for the above.
  • Li 3 YCl 6 was used as a first solid electrolyte material instead of Li 3 YI 6 . Except for this, preparation of a secondary battery and a charge / discharge test were conducted in the same manner as in Example 1.
  • Comparative Example 1 A sulfide solid electrolyte LPS was used as an electrolyte material.
  • the electrolyte layer was only one layer having a thickness of 600 ⁇ m. Except for this, preparation of a secondary battery and a charge / discharge test were performed in the same manner as in Example 1.
  • Comparative Example 1 The initial charge characteristics of the battery in Comparative Example 1 are shown in FIG. In Comparative Example 1, a short circuit occurred during initial charging.
  • the all-solid-state battery by this invention is a battery in which the internal short circuit by lithium metal deposition is prevented, and it is a battery with high safety.
  • the battery of the present disclosure can be utilized, for example, as an all solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

電池(1000)は、正極(201)と、負極(202)と、電解質層(111)と、を備える。電解質層(111)は、第1電解質層(101)と第2電解質層(102)とを含む。第1電解質層(101)は、第1固体電解質材料(111)を含み、第2電解質層(102)は、第1固体電解質材料(111)とは異なる第2固体電解質材料を含む。第1固体電解質材料(111)は、リチウムと、リチウム以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、塩素、臭素、およびヨウ素からなる群より選択される少なくとも1種と、を含み、かつ、硫黄を含まない。

Description

電池
 本開示は、電池に関する。
 特許文献1には、硫化物固体電解質を用いた全固体電池が開示されている。
 特許文献2には、インジウムを含むハロゲン化物を固体電解質として用いた全固体電池が開示されている。
特開2011-129312号公報 特開2006-244734号公報
 従来技術においては、短絡の発生の抑制が望まれる。
 本開示の一態様に係る電池は、正極と、負極と、前記正極と前記負極との間に配置された電解質層と、を備え、前記電解質層は、第1電解質層と第2電解質層とを含み、前記第1電解質層は、第1固体電解質材料を含み、前記第2電解質層は、前記第1固体電解質材料とは異なる材料である第2固体電解質材料を含み、前記第1固体電解質材料は、リチウムと、リチウム以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、塩素、臭素、およびヨウ素からなる群より選択される少なくとも1種と、を含み、かつ、硫黄を含まない。
 本開示によれば、短絡の発生を抑制できる。
図1は、実施の形態1における電池1000の概略構成を示す断面図である。 図2は、実施の形態1における電池1100の概略構成を示す断面図である。 図3は、実施の形態1における電池1200の概略構成を示す断面図である。 図4は、実施例2および比較例1における電池の初期充電特性を示すグラフである。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1における電池1000の概略構成を示す断面図である。
 実施の形態1における電池1000は、正極201と、負極202と、電解質層100と、を備える。
 電解質層100は、正極201と負極202との間に設けられる層である。
 電解質層100は、第1電解質層101と第2電解質層102とを含む。
 第1電解質層101は、第1固体電解質材料を含む。
 第2電解質層102は、第2固体電解質材料を含む。第2固体電解質材料は、第1固体電解質材料とは異なる材料である。
 第1固体電解質材料は、下記の組成式(1)により表される材料である。
 Liαβγ ・・・式(1)
ここで、αとβとγとは、0より大きい値である。
Mは、Li以外の金属元素と半金属元素とのうちの少なくとも1つを含む。
Xは、Cl、Br、Iからなる群より選ばれる1種または2種以上の元素である。
 以上の構成によれば、短絡の発生を抑制できる。すなわち、過充電時等にリチウム金属が析出して短絡が起こるリスクを低減できる。これにより、安全性を向上させることができる。これは、3元系以上のハロゲン化物電解質がリチウム金属と接触した際に、部分的に還元されることでリチウム金属を消費し、それ以上のリチウム金属の成長を抑えるためであると考えられる。
 なお、「半金属元素」とは、B、Si、Ge、As、Sb、Teである。
 また、「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、及び、前記の半金属元素とC、N、P、O、S、Seを除く全ての13族から16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 なお、組成式(1)においては、Mは、Y(=イットリウム)を含んでもよい。
 すなわち、第1固体電解質材料は、金属元素としてYを含んでもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 Yを含む第1固体電解質材料として、例えば、LiMe(a+mb+3c=6、かつ、c>0を満たす)(Me:Li、Y以外の金属元素と半金属元素の少なくとも1つ)(m:Meの価数)の組成式で表される化合物であってもよい。
 Meとして、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、Nbのいずれか、もしくはこれらの混合物を用いてもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上することができる。
 なお、組成式(1)においては、Mは、Feを含んでもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、LiYI、または、LiYCl、または、Li3.10.9Ca0.1Br、または、LiFeCl、であってもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3d ・・・式(A1)
 ここで、組成式(A1)においては、Xは、Cl、Br、I、からなる群より選択される二種以上の元素である。
 また、組成式(A1)においては、0<d<2、を満たす。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A2)により表される材料であってもよい。
 LiYX ・・・式(A2)
 ここで、組成式(A2)においては、Xは、Cl、Br、I、からなる群より選択される二種以上の元素である。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl ・・・式(A3)
 ここで、組成式(A3)においては、0<δ≦0.15、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr ・・・式(A4)
 ここで、組成式(A4)においては、0<δ≦0.25、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeCl6-x-yBr ・・・式(A5)
 ここで、組成式(A5)においては、Meは、Mg、Ca、Sr、Ba、Znからなる群より選択される1種または2種以上の元素である。
 また、組成式(A5)においては、
-1<δ<2、
0<a<3、
0<(3-3δ+a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeCl6-x-yBr ・・・式(A6)
 ここで、組成式(A6)においては、Meは、Al、Sc、Ga、Biからなる群より選択される1種または2種以上の元素である。
 また、組成式(A6)においては、
-1<δ<1、
0<a<2、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeCl6-x-yBr ・・・式(A7)
 ここで、組成式(A7)においては、Meは、Zr、Hf、Tiからなる群より選択される1種または2種以上の元素である。
 また、組成式(A7)においては、
-1<δ<1、
0<a<1.5、
0<(3-3δ-a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeCl6-x-yBr ・・・式(A8)
 ここで、組成式(A8)においては、Meは、Ta、Nbからなる群より選択される1種または2種以上の元素である。
 また、組成式(A8)においては、
-1<δ<1、
0<a<1.2、
0<(3-3δ-2a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料として、例えば、LiYX、LiMgX、LiFeX、Li(Al、Ga、In)X、Li(Al、Ga、In)X、など、が用いられうる。
 なお、第1電解質層101は、第1固体電解質材料を、主成分として、含んでもよい。すなわち、第1電解質層101は、第1固体電解質材料を、例えば、第1電解質層101の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。さらに、短絡の発生を、より抑制できる。
 なお、第1電解質層101は、第1固体電解質材料を、例えば、第1電解質層101の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。さらに、短絡の発生を、より抑制できる。
 なお、第1電解質層101は、第1固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、第1固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 なお、第1電解質層101は、第1固体電解質材料を、例えば、混入が不可避的な不純物を除いて、第1電解質層101の全体に対する重量割合で100%(100重量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。さらに、短絡の発生を、より抑制できる。
 なお、第1電解質層101は、第1固体電解質材料のみから構成されていてもよい。
 第2固体電解質材料としては、例えば、硫化物固体電解質、酸化物固体電解質、有機ポリマー固体電解質、など、が用いられうる。
 硫化物固体電解質として、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。
 すなわち、第2固体電解質材料は、硫化物固体電解質であってもよい。このとき、硫化物固体電解質は、硫化リチウムと硫化リンとを含んでもよい。例えば、硫化物固体電解質は、LiS-Pであってもよい。
 以上の構成によれば、正極201と負極202との間のイオン導電率を、より向上することができる。
 酸化物固体電解質として、LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO系のペロブスカイト型固体電解質、Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、LiNおよびそのH置換体、LiPOおよびそのN置換体、など、が用いられうる。
 有機ポリマー固体電解質として、例えば高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 なお、第2電解質層102は、第2固体電解質材料を、主成分として、含んでもよい。すなわち、第2電解質層102は、第2固体電解質材料を、例えば、第2電解質層102の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2電解質層102は、第2固体電解質材料を、例えば、第2電解質層102の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2電解質層102は、第2固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、第2固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 なお、第2電解質層102は、第2固体電解質材料を、例えば、混入が不可避的な不純物を除いて、第2電解質層102の全体に対する重量割合で100%(100重量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2電解質層102は、第2固体電解質材料のみから構成されていてもよい。
 なお、第1電解質層101と第2電解質層102とは、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。また、第1電解質層101と第2電解質層102とには、同一の材料が含まれてもよい。それぞれの層の特性に合わせて異なる材料が用いられてもよい。
 電解質層100の厚みは、1μm以上かつ100μm以下であってもよい。電解質層100の厚みが1μmより薄い場合には、正極201と負極202とが短絡する可能性が高まる。また、電解質層100の厚みが100μmより厚い場合には、高出力での動作が困難となる可能性がある。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。正極201は、例えば、正極活物質(例えば、正極活物質粒子211)を含む。
 正極活物質には、例えば、リチウム含有遷移金属酸化物(例えば、Li(NiCoAl)O、LiCoO、など)、遷移金属フッ化物、ポリアニオンおよびフッ素化ポリアニオン材料、および、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物、など、が用いられうる。
 なお、正極活物質は、コバルト酸リチウムであってもよい。例えば、正極活物質は、LiCoOであってもよい。これにより、電池の充放電効率を、より向上させることができる。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。なお、正極の厚みが10μmより薄い場合には、十分な電池のエネルギー密度の確保が困難となる可能性がある。なお、正極の厚みが500μmより厚い場合には、高出力での動作が困難となる可能性がある。
 負極202は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。負極202は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、錫化合物、を好適に使用できる。
 負極202の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みが10μmより薄い場合には、十分な電池のエネルギー密度の確保が困難となる可能性がある。また、負極の厚みが500μmより厚い場合には、高出力での動作が困難となる可能性がある。
 正極201には、イオン伝導性を高める目的で、上述の硫化物固体電解質または酸化物固体電解質または有機ポリマー固体電解質が含まれてもよい。
 正極201と電解質層100とのうちの少なくとも1つには、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解質液、ゲル電解質、イオン液体が含まれてもよい。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。非水溶媒としては、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、フッ素溶媒、など、が使用されうる。環状炭酸エステル溶媒の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、など、が挙げられる。鎖状炭酸エステル溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、など、が挙げられる。環状エーテル溶媒の例としては、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、など、が挙げられる。鎖状エーテル溶媒としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、など、が挙げられる。環状エステル溶媒の例としては、γ-ブチロラクトン、など、が挙げられる。鎖状エステル溶媒の例としては、酢酸メチル、など、が挙げられる。フッ素溶媒の例としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネート、など、が挙げられる。非水溶媒として、これらから選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらから選択される2種以上の非水溶媒の組み合わせが、使用されうる。非水電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.5~2mol/リットルの範囲にある。
 ゲル電解質は、ポリマー材料に非水電解液を含ませたものを用いることができる。ポリマー材料として、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、エチレンオキシド結合を有するポリマー、など、が用いられてもよい。
 イオン液体を構成するカチオンは、テトラアルキルアンモニウム、テトラアルキルホスホニウムなどの脂肪族鎖状4級塩類、ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、ピペリジニウム類などの脂肪族環状アンモニウム、ピリジニウム類、イミダゾリウム類などの含窒ヘテロ環芳香族カチオンなどであってもよい。イオン液体を構成するアニオンは、PF 、BF 、SbF6- 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、C(SOCF などであってもよい。また、イオン液体はリチウム塩を含有してもよい。
 正極201と電解質層100と負極202とのうちの少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 また、正極201および負極202のうちの少なくとも一方は、必要に応じて、導電助剤を含んでもよい。
 導電助剤は、電極抵抗を低減するために、用いられる。導電助剤としては、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が挙げられる。なお、導電助剤として、炭素導電助剤を用いることで、低コスト化が実現できる。
 なお、図1に示されるように、第1電解質層101は、正極201と第2電解質層102との間に設けられてもよい。
 以上の構成によれば、正極201と負極202との間のイオン導電率を、より向上することができる。さらに、短絡の発生を、より抑制できる。
 なお、図1に示されるように、第1電解質層101は、負極202とは接触せずに位置してもよい。
 以上の構成によれば、正極201と負極202との間のイオン導電率を、より向上することができる。さらに、短絡の発生を、より抑制できる。
 なお、正極201は、第1固体電解質材料を含んでもよい。
 以上の構成によれば、正極201と負極202との間のイオン導電率を、より向上することができる。
 図2は、実施の形態1における電池1100の概略構成を示す断面図である。
 実施の形態1における電池1100においては、正極201は、第1固体電解質粒子111と正極活物質粒子211との混合材料を含む。
 第1固体電解質粒子111は、第1固体電解質材料からなる粒子、または、第1固体電解質材料を、主たる成分として(例えば、第1固体電解質粒子111の全体に対する重量割合で50%以上(50重量%以上))、含む粒子である。
 また、実施の形態1における、第1固体電解質粒子111の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、第1固体電解質粒子111の形状は、粒子であってもよい。
 例えば、実施の形態1における第1固体電解質粒子111の形状が粒子状(例えば、球状)の場合、メジアン径は、100μm以下であってもよい。メジアン径が100μmより大きいと、正極活物質粒子211と第1固体電解質粒子111とが、正極材料において良好な分散状態を形成できない可能性が生じる。このため、充放電特性が低下する。また、実施の形態1においては、メジアン径は10μm以下であってもよい。
 以上の構成によれば、正極201において、正極活物質粒子211と第1固体電解質粒子111とが、良好な分散状態を形成できる。
 また、実施の形態1においては、第1固体電解質粒子111は、正極活物質粒子211のメジアン径より小さくてもよい。
 以上の構成によれば、電極において第1固体電解質粒子111と正極活物質粒子211とが、より良好な分散状態を形成できる。
 正極活物質粒子211のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 正極活物質粒子211のメジアン径が0.1μmより小さいと、正極において、正極活物質粒子211と第1固体電解質粒子111とが、良好な分散状態を形成できない可能性が生じる。この結果、電池の充放電特性が低下する。また、正極活物質粒子211のメジアン径が100μmより大きいと、正極活物質粒子211内のリチウム拡散が遅くなる。このため、電池の高出力での動作が困難となる場合がある。
 正極活物質粒子211のメジアン径は、第1固体電解質粒子111のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子211と第1固体電解質粒子111との良好な分散状態を形成できる。
 また、正極201は、複数の第1固体電解質粒子111と、複数の正極活物質粒子211と、を含んでもよい。
 また、正極201における、第1固体電解質粒子111の含有量と正極活物質粒子211の含有量とは、互いに、同じであってもよいし、異なってもよい。
 正極201に含まれる、正極活物質と第1固体電解質材料の体積比率「v:100-v」について、30≦v≦95であってもよい。v<30では、十分な電池のエネルギー密度確保が困難となる可能性がある。また、v>95では、高出力での動作が困難となる可能性がある。
 図3は、実施の形態1における電池1200の概略構成を示す断面図である。
 実施の形態1における電池1200においては、電解質層100は、第3電解質層103を含む。
 第3電解質層103は、正極201と第1電解質層101との間に設けられる。
 正極201と第3電解質層103とは、硫化物固体電解質を含む。
 以上の構成によれば、正極201と負極202との間のイオン導電率を、より向上することができる。
 なお、実施の形態1における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 <第1固体電解質材料の製造方法>
 実施の形態1における第1固体電解質材料は、例えば、下記の方法により、製造されうる。
 目的とする組成の配合比となるような二元系ハロゲン化物の原料粉を用意する。例えば、LiYClを作製する場合には、LiClとYClを、3:1のモル比で用意する。
 このとき、原料粉の種類を選択することで、上述の組成式における「M」と「Me」と「X」とを決定することができる。また、原料と配合比と合成プロセスを調整することで、上述の値「α」と「β」と「γ」と「d」と「δ」と「a」と「x」と「y」とを調整できる。
 原料粉をよく混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合・粉砕・反応させる。もしくは、原料粉をよく混合した後、真空中で焼結してもよい。
 これにより、前述したような結晶相を含む固体電解質材料が得られる。
 なお、固体電解質材料における結晶相の構成(結晶構造)は、原料粉どうしの反応方法および反応条件の調整により、決定することができる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 <実施例1>
 [第1固体電解質材料の作製]
 露点-30℃以下のドライ雰囲気で、原料粉LiIとYIとを、モル比でLiI:YI=3:1となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 これにより、結晶相を含むハロゲン化物固体電解質である第1固体電解質材料LiYIの粉末を得た。
 [第2固体電解質材料の作製]
 露点-60℃以下のAr雰囲気のアルゴングローブボックス内で、LiSとPとを、モル比でLiS:P=75:25となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、10時間、510rpmでミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中で、270度で、2時間熱処理した。
 これにより、ガラスセラミックス状の硫化物固体電解質である第2固体電解質材料LiS-P(以下、LPSと表記する)を得た。
 [二次電池の作製]
 アルゴングローブボックス内で、上述の方法で作製した第1固体電解質材料LiYIと、正極活物質であるLiCoO(以下、LCOと表記する)を、50:50の体積比率で秤量した。これらをメノウ乳鉢で混合することで、実施例1の正極合剤を作製した。
 絶縁性外筒の中で、上述の方法で作成したLPSを200μm厚相当分、上述の方法で作製した第1固体電解質材料LiYIを200μm厚相当分、正極合剤を15.4mgの順に積層した。これを360MPaの圧力で加圧成型することで、正極と固体電解質層を得た。
 次に、固体電解質層の正極と接する側とは反対側のLPS上に、金属リチウム(厚さ300μm)を積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、電池を作製した。
 [充放電試験]
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値で、定電流充電し、電圧4.2Vで充電を終了した。
 次に、同じく0.05Cレートとなる電流値で、放電し、電圧2.5Vで放電を終了した。
 短絡は発生せず、初期充電容量は0.23mAhであった。
 <実施例2>
 第1固体電解質材料の原料粉として、LiBrとYBrとCaBrとを用い、LiBr:YBr:CaBr=3.1:0.9:0.1のモル比で混合した。これ以外は、上記の実施例1と同様の方法で、Li3.10.9Ca0.1Brの第1固体電解質材料を得た。
 第1固体電解質材料として、LiYIの代わりに、Li3.10.9Ca0.1Brを用いた。これ以外は、実施例1と同様の方法で、二次電池の作製と充放電試験を実施した。
 図4は、実施例2および比較例1における電池の初期充電特性を示すグラフである。
 短絡は発生せず、初期充電容量は0.55mAhであった。
 <実施例3>
 第1固体電解質材料の原料粉として、LiClとFeClとを用い、LiCl:FeCl=2:1のモル比で混合した。これ以外は、上記の実施例1と同様の方法で、LiFeClの第1固体電解質材料を得た。
 正極合剤中の固体電解質として、LiYIの代わりに、LPSを用いた。LPSを100μm厚相当分、上述の方法で作製したLiFeClを200μm厚相当分、LPSを100μm厚相当分、正極合剤を14.2 mgを順に積層した。これ以外は、実施例1と同様の方法で、二次電池の作製を行った。
 恒温槽の温度を85℃とした。これ以外は、実施例1と同じ方法で、充放電試験を実施した。
 短絡は発生せず、初期充電容量は1.47mAhだった。
 <実施例4>
 第1固体電解質材料の原料粉として、LiClとYClとを用い、LiCl:YCl=3:1のモル比で混合した。これ以外は、上記の実施例1と同様の方法で、LiYClの第1固体電解質材料を得た。
 第1固体電解質材料として、LiYIの代わりに、LiYClを用いた。これ以外は、実施例1と同様の方法で、二次電池の作製と充放電試験を実施した。
 短絡は発生せず、初期充電容量は0.58mAhだった。
 <比較例1>
 電解質材料として、硫化物固体電解質LPSを用いた。電解質層を厚み600μmの1層のみにした。これ以外は、実施例1と同様に、二次電池の作製と充放電試験を実施した。
 図4には、比較例1における電池の初期充電特性が、示される。比較例1においては、初期充電中に短絡が発生した。
 上述の実施例1~4および比較例1における初期充電特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4と比較例1とを比較すると、実施例1~4の電池は短絡せずに充電が完了しているのに対し、比較例1においては充電途中で短絡が発生した。
 以上により、本発明による全固体電池は、リチウム金属析出による内部短絡が防止されており、安全性が高い電池であることが示される。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
 100 電解質層
 101 第1電解質層
 102 第2電解質層
 103 第3電解質層
 111 第1固体電解質粒子
 201 正極
 202 負極
 211 正極活物質粒子
 1000、1100、1200 電池

Claims (11)

  1.  正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
    を備え、
     前記電解質層は、第1電解質層と第2電解質層とを含み、
     前記第1電解質層は、第1固体電解質材料を含み、
     前記第2電解質層は、前記第1固体電解質材料とは異なる材料である第2固体電解質材料を含み、
     前記第1固体電解質材料は、
      リチウムと、
      リチウム以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、
      塩素、臭素、およびヨウ素からなる群より選択される少なくとも1種と、を含み、かつ、
      硫黄を含まない、
     電池。
  2.  前記第1固体電解質材料は、組成式Liαβγで表され、
     ここで、αとβとγは、いずれも0より大きい値であり、
     Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1種であり、
     Xは、Cl、Br、及びIからなる群より選ばれる少なくとも1種である、
    請求項1に記載の電池。
  3.  前記第1固体電解質材料は、イットリウムまたは鉄を含む、
    請求項1または2に記載の電池。
  4.  前記第1固体電解質材料は、LiYI、LiYCl、Li3.10.9Ca0.1Br、または、LiFeCl、である、
    請求項3に記載の電池。
  5.  前記第1電解質層は、前記正極と前記第2電解質層との間に配置されている、
    請求項1から4のいずれかに記載の電池。
  6.  前記第1電解質層は、前記負極とは接触しない、
    請求項5に記載の電池。
  7.  前記第2固体電解質材料は、硫化物固体電解質である、
    請求項1から6のいずれかに記載の電池。
  8.  前記硫化物固体電解質は、硫化リチウムと硫化リンとを含む、
    請求項7に記載の電池。
  9.  前記硫化物固体電解質は、LiS-Pである、
    請求項8に記載の電池。
  10.  前記正極は、前記第1固体電解質材料を含む、
    請求項1から9のいずれかに記載の電池。
  11.  前記電解質層は、第3電解質層を含み、
     前記第3電解質層は、前記正極と前記第1電解質層との間に配置され、
     前記正極と前記第3電解質層とは、硫化物固体電解質を含む、
    請求項1から10のいずれかに記載の電池。
PCT/JP2018/041900 2018-01-05 2018-11-13 電池 WO2019135323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880081113.5A CN111480258B (zh) 2018-01-05 2018-11-13 电池
EP18898795.2A EP3736899A4 (en) 2018-01-05 2018-11-13 BATTERY
JP2019563938A JP7281672B2 (ja) 2018-01-05 2018-11-13 電池
US16/914,330 US11515565B2 (en) 2018-01-05 2020-06-27 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018000432 2018-01-05
JP2018-000432 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/914,330 Continuation US11515565B2 (en) 2018-01-05 2020-06-27 Battery

Publications (1)

Publication Number Publication Date
WO2019135323A1 true WO2019135323A1 (ja) 2019-07-11

Family

ID=67144156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041900 WO2019135323A1 (ja) 2018-01-05 2018-11-13 電池

Country Status (5)

Country Link
US (1) US11515565B2 (ja)
EP (1) EP3736899A4 (ja)
JP (1) JP7281672B2 (ja)
CN (1) CN111480258B (ja)
WO (1) WO2019135323A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075191A1 (ja) * 2019-10-17 2021-04-22
WO2021157361A1 (ja) * 2020-02-05 2021-08-12 パナソニック株式会社 正極材料および電池
WO2021177212A1 (ja) * 2020-03-06 2021-09-10 トヨタ自動車株式会社 固体電池
KR20210131726A (ko) * 2020-04-24 2021-11-03 한양대학교 산학협력단 리튬할라이드계 고체전해질, 이의 제조방법 및 이를 포함하는 전고체전지
WO2022019099A1 (ja) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 正極材料および電池
DE102021132964A1 (de) 2020-12-22 2022-06-23 Toyota Jidosha Kabushiki Kaisha Festkörperbatterie
WO2022145645A1 (ko) * 2020-12-30 2022-07-07 한국전자기술연구원 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
EP4037039A1 (en) 2021-01-28 2022-08-03 Toyota Jidosha Kabushiki Kaisha All solid state battery
DE102022108703A1 (de) 2021-04-20 2022-10-20 Panasonic Holdings Corporation Batterie
WO2022224611A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 正極材料および電池
WO2022224506A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 電池
WO2022224505A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 正極材料および電池
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
KR20230013888A (ko) * 2021-07-20 2023-01-27 한국과학기술연구원 리튬 이온 전도성을 가진 할로겐계 고체전해질 및 이의 제조방법
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2024096113A1 (ja) 2022-11-04 2024-05-10 住友化学株式会社 電池及び積層体
WO2024096107A1 (ja) 2022-11-04 2024-05-10 住友化学株式会社 電池

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736826A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
CN111295720B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
EP3736829A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
CN111316378B (zh) * 2018-01-05 2021-09-28 松下知识产权经营株式会社 固体电解质材料和电池
WO2019135343A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135318A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736899A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. BATTERY
CN111279432B (zh) 2018-01-05 2022-09-09 松下知识产权经营株式会社 固体电解质材料和电池
WO2019135328A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135347A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135346A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2019146219A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111587508A (zh) * 2018-01-26 2020-08-25 松下知识产权经营株式会社 电池
WO2019146292A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
CN111566853B (zh) 2018-01-26 2024-04-19 松下知识产权经营株式会社 正极材料和使用该正极材料的电池
US11984552B2 (en) * 2018-11-16 2024-05-14 Samsung Electronics Co., Ltd. Phase-transition solid electrolyte material and all solid secondary battery including the same
JP7429870B2 (ja) 2018-11-29 2024-02-09 パナソニックIpマネジメント株式会社 負極材料、および電池
JP7429869B2 (ja) 2018-11-29 2024-02-09 パナソニックIpマネジメント株式会社 負極材料、および、電池
KR20210113878A (ko) 2020-03-09 2021-09-17 삼성전자주식회사 전고체 이차 전지 및 그 제조방법
CN112216863A (zh) * 2020-09-03 2021-01-12 北京当升材料科技股份有限公司 一种卤化固态电解质材料、柔性固态电解质膜和锂电池及其制备方法
US11928472B2 (en) 2020-09-26 2024-03-12 Intel Corporation Branch prefetch mechanisms for mitigating frontend branch resteers
KR20220048298A (ko) * 2020-10-12 2022-04-19 삼성에스디아이 주식회사 전고체이차전지 및 그 제조방법
EP4238164A4 (en) * 2020-10-30 2025-04-30 President and Fellows of Harvard College Batteries with solid state electrolyte multilayers
US12062755B2 (en) 2021-01-15 2024-08-13 Samsung Electronics Co., Ltd. Composite solid electrolyte, method of preparing the same, and electrochemical device including the same
US12182317B2 (en) 2021-02-13 2024-12-31 Intel Corporation Region-based deterministic memory safety
US12235791B2 (en) 2021-08-23 2025-02-25 Intel Corporation Loop driven region based frontend translation control for performant and secure data-space guided micro-sequencing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2015030052A1 (ja) * 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 全固体電池
JP2015056349A (ja) * 2013-09-13 2015-03-23 富士通株式会社 リチウム電池
CN105254184A (zh) * 2015-11-27 2016-01-20 宁波大学 一种稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法
JP2017152324A (ja) * 2016-02-26 2017-08-31 富士通株式会社 全固体電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352869A (en) 1980-12-24 1982-10-05 Union Carbide Corporation Solid state electrolytes
DE3171075D1 (en) 1980-12-24 1985-07-25 Union Carbide Corp Composition for use as solid state electrolyte and solid state cell employing same
US5714279A (en) 1989-10-24 1998-02-03 The United States Of America As Represented By The Secretary Of The Navy Non-aqueous lithium cells
JP3151925B2 (ja) 1992-05-07 2001-04-03 松下電器産業株式会社 非晶質リチウムイオン伝導性固体電解質並びにその合成法
US5506073A (en) 1992-06-22 1996-04-09 Arizona State University (Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University) Lithium ion conducting electrolytes
JPH08171938A (ja) 1994-12-15 1996-07-02 Mitsubishi Cable Ind Ltd Li二次電池及びその正極
JPH09293516A (ja) 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd 全固体リチウム電池
JPH11238528A (ja) 1998-02-20 1999-08-31 Ngk Insulators Ltd リチウム二次電池
JP2001052733A (ja) 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
KR100513726B1 (ko) 2003-01-30 2005-09-08 삼성전자주식회사 고체 전해질, 이를 채용한 전지 및 그 고체 전해질의 제조방법
JP2005108638A (ja) * 2003-09-30 2005-04-21 Matsushita Electric Ind Co Ltd リチウムイオン導電体
JP5076134B2 (ja) 2004-06-08 2012-11-21 国立大学法人東京工業大学 リチウム電池素子
JP4945182B2 (ja) 2006-07-13 2012-06-06 シャープ株式会社 リチウム二次電池及びその製造方法
JP2009054484A (ja) * 2007-08-28 2009-03-12 Seiko Epson Corp 全固体リチウム二次電池およびその製造方法
JP5448038B2 (ja) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 硫化物固体電解質材料
JP2011065982A (ja) 2009-08-18 2011-03-31 Seiko Epson Corp リチウム電池用電極体及びリチウム電池
CN102959646B (zh) 2010-06-29 2016-02-24 丰田自动车株式会社 硫化物固体电解质材料的制造方法、锂固体电池的制造方法
JP5349427B2 (ja) * 2010-08-26 2013-11-20 トヨタ自動車株式会社 硫化物固体電解質材料、正極体およびリチウム固体電池
WO2012102037A1 (ja) 2011-01-27 2012-08-02 出光興産株式会社 アルカリ金属硫化物と導電剤の複合材料
JP5721540B2 (ja) 2011-05-30 2015-05-20 株式会社オハラ リチウムイオン伝導性無機物質
JP2013073791A (ja) 2011-09-28 2013-04-22 Panasonic Corp 非水電解質二次電池
US9843071B2 (en) * 2012-07-11 2017-12-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and method for manufacturing the same
FR3004467B1 (fr) 2013-04-12 2016-05-27 Saint-Gobain Cristaux Et Detecteurs Fabrication d'une elpasolite stoechiometrique
FR3005207B1 (fr) 2013-04-24 2016-06-24 Batscap Sa Electrode positive pour batterie lithium
JP6003831B2 (ja) 2013-06-28 2016-10-05 トヨタ自動車株式会社 硫化物固体電解質材料、硫化物ガラス、リチウム固体電池、および、硫化物固体電解質材料の製造方法
WO2015011937A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2015032529A (ja) 2013-08-06 2015-02-16 トヨタ自動車株式会社 硫化物系固体電解質
WO2015049986A1 (ja) 2013-10-04 2015-04-09 独立行政法人産業技術総合研究所 非晶質性の(リチウム)ニオブ硫化物又は(リチウム)チタンニオブ硫化物
US10141602B2 (en) * 2013-12-26 2018-11-27 Toyota Jidosha Kabushiki Kaisha Lithium solid battery, lithium solid battery module, and producing method for lithium solid battery
CN104953175A (zh) 2014-03-28 2015-09-30 比亚迪股份有限公司 一种锂离子电池固体电解质及其制备方法和锂离子电池
JP5873533B2 (ja) 2014-07-16 2016-03-01 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN109065837B (zh) 2014-11-10 2021-08-24 株式会社村田制作所 锂离子导体、电池及电子装置
JP6222134B2 (ja) 2015-02-25 2017-11-01 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10218032B2 (en) 2015-03-10 2019-02-26 Tdk Corporation Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
JP6672848B2 (ja) 2015-03-10 2020-03-25 Tdk株式会社 ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
JP2016207354A (ja) * 2015-04-17 2016-12-08 出光興産株式会社 硫化物固体電解質の製造方法
JP2016219130A (ja) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
US10446872B2 (en) 2015-08-04 2019-10-15 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP2017059342A (ja) 2015-09-15 2017-03-23 トヨタ自動車株式会社 全固体電池の製造方法
JP6288033B2 (ja) * 2015-10-05 2018-03-07 トヨタ自動車株式会社 全固体電池
JP2017091953A (ja) 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091955A (ja) 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP6384467B2 (ja) * 2015-12-18 2018-09-05 トヨタ自動車株式会社 リチウム固体電池
JP6611949B2 (ja) 2015-12-22 2019-11-27 トヨタ・モーター・ヨーロッパ 固体電解質用材料
JP6881892B2 (ja) 2015-12-25 2021-06-02 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質、全固体電池及び固体電解質の製造方法
US11245131B2 (en) * 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
WO2017154922A1 (ja) 2016-03-08 2017-09-14 株式会社村田製作所 固体電解質、全固体電池、固体電解質の製造方法及び全固体電池の製造方法
JP6658127B2 (ja) 2016-03-10 2020-03-04 セイコーエプソン株式会社 固体電解質、固体電解質の製造方法およびリチウムイオン電池
WO2017176936A1 (en) 2016-04-05 2017-10-12 Massachusetts Institute Of Technology Lithium metal electrodes and batteries thereof
CN105680048B (zh) 2016-04-05 2019-05-17 惠州亿纬锂能股份有限公司 一种包含氮掺杂石墨烯的正极、其制备方法及采用该正极的锂电池
JP2017224474A (ja) 2016-06-15 2017-12-21 出光興産株式会社 正極合材
CN106299467A (zh) * 2016-09-13 2017-01-04 清华大学 复合固态电解质和柔性全固态电池及制备方法、可穿戴电子设备
CN108258358B (zh) * 2016-12-28 2022-11-11 松下知识产权经营株式会社 电池
WO2019135318A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135343A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736899A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. BATTERY
EP3736826A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
WO2019135328A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111279432B (zh) 2018-01-05 2022-09-09 松下知识产权经营株式会社 固体电解质材料和电池
CN111316378B (zh) 2018-01-05 2021-09-28 松下知识产权经营株式会社 固体电解质材料和电池
EP3736829A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
EP3736825A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
WO2019135347A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135346A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
CN111295720B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
CN111295719B (zh) 2018-01-05 2022-03-29 松下知识产权经营株式会社 固体电解质材料和电池
WO2019146219A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111566757B (zh) 2018-01-26 2022-08-12 松下知识产权经营株式会社 固体电解质材料和电池
JP7182196B2 (ja) 2018-01-26 2022-12-02 パナソニックIpマネジメント株式会社 電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2015030052A1 (ja) * 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 全固体電池
JP2015056349A (ja) * 2013-09-13 2015-03-23 富士通株式会社 リチウム電池
CN105254184A (zh) * 2015-11-27 2016-01-20 宁波大学 一种稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法
JP2017152324A (ja) * 2016-02-26 2017-08-31 富士通株式会社 全固体電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOHNSACK, A. ET AL.: "Ternary chlorides of the rare-earth elements with lithium, Li3MCl6(M=Tb-Lu , Y, Sc): Synthesis, crystal structures, and ionic motion", JOURNAL OF INORGANIC AND GENERAL CHEMISTRY, vol. 623, no. 7, July 1997 (1997-07-01), pages 1067 - 1073, XP055600040, DOI: doi:10.1002/chin.199739018 *
See also references of EP3736899A4

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114556654B (zh) * 2019-10-17 2025-06-10 松下知识产权经营株式会社 电池
WO2021075191A1 (ja) * 2019-10-17 2021-04-22 パナソニックIpマネジメント株式会社 電池
JPWO2021075191A1 (ja) * 2019-10-17 2021-04-22
JP7624631B2 (ja) 2019-10-17 2025-01-31 パナソニックIpマネジメント株式会社 電池
US12237466B2 (en) 2019-10-17 2025-02-25 Panasonic Intellectual Property Management Co., Ltd. Battery
CN114556654A (zh) * 2019-10-17 2022-05-27 松下知识产权经营株式会社 电池
WO2021157361A1 (ja) * 2020-02-05 2021-08-12 パナソニック株式会社 正極材料および電池
JPWO2021157361A1 (ja) * 2020-02-05 2021-08-12
JP7606475B2 (ja) 2020-02-05 2024-12-25 パナソニックホールディングス株式会社 正極材料および電池
JPWO2021177212A1 (ja) * 2020-03-06 2021-09-10
WO2021177212A1 (ja) * 2020-03-06 2021-09-10 トヨタ自動車株式会社 固体電池
JP7522182B2 (ja) 2020-03-06 2024-07-24 トヨタ自動車株式会社 固体電池
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11978847B2 (en) 2020-04-14 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material, electrolyte including ion conductive material, and methods of forming
US11973186B2 (en) 2020-04-14 2024-04-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including halide material, electrolyte including the same, and methods of forming the same
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US12095089B2 (en) 2020-04-23 2024-09-17 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11984598B2 (en) 2020-04-23 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
KR20210131726A (ko) * 2020-04-24 2021-11-03 한양대학교 산학협력단 리튬할라이드계 고체전해질, 이의 제조방법 및 이를 포함하는 전고체전지
KR102428607B1 (ko) * 2020-04-24 2022-08-02 한양대학교 산학협력단 리튬할라이드계 고체전해질, 이의 제조방법 및 이를 포함하는 전고체전지
WO2022019099A1 (ja) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 正極材料および電池
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11978849B2 (en) 2020-08-07 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US12027665B2 (en) 2020-12-22 2024-07-02 Toyota Jidosha Kabushiki Kaisha All solid state battery
DE102021132964A1 (de) 2020-12-22 2022-06-23 Toyota Jidosha Kabushiki Kaisha Festkörperbatterie
US12249687B2 (en) * 2020-12-22 2025-03-11 Toyota Jidosha Kabushiki Kaisha All solid state battery
KR20220090414A (ko) 2020-12-22 2022-06-29 도요타 지도샤(주) 전고체전지
WO2022145645A1 (ko) * 2020-12-30 2022-07-07 한국전자기술연구원 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
US12334545B2 (en) 2021-01-28 2025-06-17 Toyota Jidosha Kabushiki Kaisha All solid state battery
EP4037039A1 (en) 2021-01-28 2022-08-03 Toyota Jidosha Kabushiki Kaisha All solid state battery
WO2022224505A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 正極材料および電池
WO2022224506A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 電池
WO2022224611A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 正極材料および電池
DE102022108703A1 (de) 2021-04-20 2022-10-20 Panasonic Holdings Corporation Batterie
KR20220145271A (ko) 2021-04-20 2022-10-28 도요타 지도샤(주) 전지
KR102779203B1 (ko) * 2021-04-20 2025-03-13 도요타 지도샤(주) 전지
US12308384B2 (en) 2021-05-17 2025-05-20 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
KR20230013888A (ko) * 2021-07-20 2023-01-27 한국과학기술연구원 리튬 이온 전도성을 가진 할로겐계 고체전해질 및 이의 제조방법
KR102597452B1 (ko) 2021-07-20 2023-11-03 한국과학기술연구원 리튬 이온 전도성을 가진 할로겐계 고체전해질 및 이의 제조방법
WO2024096107A1 (ja) 2022-11-04 2024-05-10 住友化学株式会社 電池
WO2024096113A1 (ja) 2022-11-04 2024-05-10 住友化学株式会社 電池及び積層体

Also Published As

Publication number Publication date
CN111480258B (zh) 2024-05-24
JP7281672B2 (ja) 2023-05-26
JPWO2019135323A1 (ja) 2021-02-18
CN111480258A (zh) 2020-07-31
US11515565B2 (en) 2022-11-29
EP3736899A4 (en) 2021-03-10
US20200328465A1 (en) 2020-10-15
EP3736899A1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP7281672B2 (ja) 電池
JP7182114B2 (ja) 固体電解質材料、および、電池
JP7316564B2 (ja) 電池
JP7145439B6 (ja) 電池
JP7417927B2 (ja) 固体電解質材料、および、電池
JP7349645B2 (ja) 電極材料、および、電池
JP7417925B2 (ja) 固体電解質材料、および、電池
JP7417923B2 (ja) 固体電解質材料、および、電池
WO2019146219A1 (ja) 固体電解質材料、および、電池
WO2019135346A1 (ja) 正極材料、および、電池
WO2019135322A1 (ja) 正極材料、および、電池
WO2019146294A1 (ja) 電池
WO2019135336A1 (ja) 固体電解質材料、および、電池
WO2019146236A1 (ja) 正極材料、および、電池
WO2019146296A1 (ja) 正極材料およびそれを用いた電池
JP7486092B2 (ja) 正極材料、および、電池
WO2023286614A1 (ja) 正極材料および電池
US20240291026A1 (en) Battery
WO2023286512A1 (ja) 電池
WO2023074143A1 (ja) 固体電解質材料および電池
US20240021801A1 (en) Positive electrode material and battery
WO2023162758A1 (ja) 固体電解質材料
CN115552681A (zh) 固体电解质材料及使用了其的电池
CN116615813A (zh) 固体电解质材料及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898795

Country of ref document: EP

Effective date: 20200805