WO2017002972A1 - 粒子状吸水剤 - Google Patents
粒子状吸水剤 Download PDFInfo
- Publication number
- WO2017002972A1 WO2017002972A1 PCT/JP2016/069715 JP2016069715W WO2017002972A1 WO 2017002972 A1 WO2017002972 A1 WO 2017002972A1 JP 2016069715 W JP2016069715 W JP 2016069715W WO 2017002972 A1 WO2017002972 A1 WO 2017002972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- absorbing agent
- particulate water
- less
- weight
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 226
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 164
- 239000002245 particle Substances 0.000 claims abstract description 177
- 239000002250 absorbent Substances 0.000 claims abstract description 116
- 230000002745 absorbent Effects 0.000 claims abstract description 84
- 150000003839 salts Chemical class 0.000 claims abstract description 49
- 230000000704 physical effect Effects 0.000 claims abstract description 43
- 238000011084 recovery Methods 0.000 claims abstract description 29
- 239000011347 resin Substances 0.000 claims description 102
- 229920005989 resin Polymers 0.000 claims description 102
- 238000010521 absorption reaction Methods 0.000 claims description 90
- 238000000034 method Methods 0.000 claims description 72
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 58
- 239000003431 cross linking reagent Substances 0.000 claims description 37
- 239000011780 sodium chloride Substances 0.000 claims description 34
- 230000008961 swelling Effects 0.000 claims description 27
- 238000009826 distribution Methods 0.000 claims description 18
- 229920002125 Sokalan® Polymers 0.000 claims description 11
- 239000004584 polyacrylic acid Substances 0.000 claims description 9
- 238000004132 cross linking Methods 0.000 abstract description 27
- 229920000058 polyacrylate Polymers 0.000 abstract description 2
- 229920000247 superabsorbent polymer Polymers 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 description 82
- 239000007864 aqueous solution Substances 0.000 description 75
- 239000000178 monomer Substances 0.000 description 60
- 238000005259 measurement Methods 0.000 description 54
- 239000007788 liquid Substances 0.000 description 42
- 230000000052 comparative effect Effects 0.000 description 41
- 239000000499 gel Substances 0.000 description 36
- 238000009792 diffusion process Methods 0.000 description 33
- 238000001035 drying Methods 0.000 description 31
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 28
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- -1 alkali metal salt Chemical class 0.000 description 24
- 239000000843 powder Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000011521 glass Substances 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 230000035699 permeability Effects 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 238000006386 neutralization reaction Methods 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 210000002700 urine Anatomy 0.000 description 14
- 239000004925 Acrylic resin Substances 0.000 description 13
- 229920000178 Acrylic resin Polymers 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 12
- 239000004033 plastic Substances 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 239000000017 hydrogel Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000010935 stainless steel Substances 0.000 description 10
- 239000007863 gel particle Substances 0.000 description 9
- 238000000691 measurement method Methods 0.000 description 9
- 229920006037 cross link polymer Polymers 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 7
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 7
- 150000007514 bases Chemical class 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000002738 chelating agent Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000007602 hot air drying Methods 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000007870 radical polymerization initiator Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 229940048053 acrylate Drugs 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 239000003349 gelling agent Substances 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000010557 suspension polymerization reaction Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 125000004386 diacrylate group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- WZUKKIPWIPZMAS-UHFFFAOYSA-K Ammonium alum Chemical compound [NH4+].O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O WZUKKIPWIPZMAS-UHFFFAOYSA-K 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000011124 aluminium ammonium sulphate Nutrition 0.000 description 2
- 235000011126 aluminium potassium sulphate Nutrition 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229940050271 potassium alum Drugs 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 235000011127 sodium aluminium sulphate Nutrition 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 241001544487 Macromiidae Species 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 239000008156 Ringer's lactate solution Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- ZEMWIYASLJTEHQ-UHFFFAOYSA-J aluminum;sodium;disulfate;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZEMWIYASLJTEHQ-UHFFFAOYSA-J 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000011636 chromium(III) chloride Substances 0.000 description 1
- 235000007831 chromium(III) chloride Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000012632 extractable Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960001781 ferrous sulfate Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- BPLYVSYSBPLDOA-GYOJGHLZSA-N n-[(2r,3r)-1,3-dihydroxyoctadecan-2-yl]tetracosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@H](CO)[C@H](O)CCCCCCCCCCCCCCC BPLYVSYSBPLDOA-GYOJGHLZSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical class COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000012673 precipitation polymerization Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 238000010334 sieve classification Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- GJPYYNMJTJNYTO-UHFFFAOYSA-J sodium aluminium sulfate Chemical compound [Na+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GJPYYNMJTJNYTO-UHFFFAOYSA-J 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000004808 supercritical fluid chromatography Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/245—Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
Definitions
- the present invention relates to a particulate water-absorbing agent. More specifically, the present invention relates to a particulate water-absorbing agent exhibiting very excellent water absorption characteristics and liquid permeability.
- Water-absorbing resin (SAP / Super Absorbent Polymer) is a water-swellable, water-insoluble polymer gelling agent, absorbent articles such as paper diapers and sanitary napkins, water retaining agents for agriculture and horticulture, and industrial waterstops. It is used for various purposes such as agents.
- the water-absorbing agent becomes a soft gel by absorbing water, the amount of the water-absorbing agent per unit volume increases, causing a phenomenon called gel blocking when water is absorbed, dramatically increasing the diffusibility of the liquid in sanitary products. It will decrease.
- the water-absorbing agent placed far from the center of the sanitary product, where the liquid is difficult to reach, does not function effectively, and the effect of increasing the water-absorbing agent content does not appear sufficiently, and the actual usage conditions
- the absorption capacity of sanitary goods below is greatly reduced with respect to the theoretical amount.
- What is used as an index for evaluating the improvement of gel blocking in sanitary products is, for example, water absorption capacity under pressure (Absorbency against Pressure: AAP or Performance Under Pressure: PUP) or saline.
- Examples thereof include flow inductivity (Saline Flow Conductivity: hereinafter abbreviated as SFC / Patent Document 1).
- Known techniques that can improve gel blocking include techniques for changing the crosslink density between the inside and outside of the water-absorbing agent by surface treatment, surface treatment, and inorganic fine particles and polyvalent metal salts as liquid permeability improvers.
- a technique for combining an inorganic compound and a cationic polymer compound, a technique for improving water absorption performance, in particular, a liquid diffusibility, and a technique for controlling the reaction environment of the surface crosslinking treatment are known (Patent Documents 1 to 39).
- the problem to be solved by the present invention is that the water-absorbent resin is used a plurality of times without impairing the absorbent performance of absorbent articles such as paper diapers, and even when used under high loads,
- An object of the present invention is to provide a particulate water-absorbing agent capable of maintaining the water absorption capacity under pressure.
- the present inventors have intensively studied, and as a result, in the particulate water-absorbing agent having a specific particle size distribution, the water absorption ratio in physiological saline and the saline again after swelling with pure water.
- the present inventors have found that a particulate water-absorbing agent that maintains the liquid take-up speed and has a small liquid return amount can be obtained, thereby completing the present invention.
- the particulate water-absorbing agent according to the present invention comprises a polyacrylic acid (salt) water-absorbing resin as a main component, is surface-crosslinked, and satisfies the following physical properties (1) to (3). It is an agent.
- the absorber which concerns on this invention is an absorber containing said particulate water absorbing agent.
- the absorbent article according to the present invention is an absorbent article containing the particulate water-absorbing agent.
- the particulate water-absorbing agent according to the present invention exhibits high water absorption capacity and liquid permeability under high pressure even after passing through swelling with pure water. As described above, the particulate water-absorbing agent according to the present invention, and the absorbent body and absorbent article using the particulate water-absorbing agent are not collected even after being swollen once or under high load. The effect that it is possible to provide absorbent articles such as paper diapers, sanitary napkins and medical blood-collecting agents having more excellent physical properties because the filling speed is maintained and the return of liquid is low. Play.
- AAP absorption capacity under pressure
- Rec Rec. It is sectional drawing of the apparatus used for the measurement of AAP (recovery AAP).
- SFC saline flow inductive
- Rec It is sectional drawing of the apparatus used for a measurement of SFC (recovery SFC).
- SFC saline flow inductive
- Rec It is sectional drawing of the apparatus used for a measurement of SFC (recovery SFC).
- It is the schematic shows the structure of the measuring apparatus used for the measurement of diffusion absorption time.
- FIG. 6 (a) is a top view of the upper lid
- FIG. 6 (b) is a side view of the upper lid
- FIG. 6 (c) is a top view of the tray
- FIG. 6 (d) is a side view of the tray. is there. Rec. It is a graph which shows the correlation with CRC / CRC (recovery rate) and EMI (elastic modulus index).
- the present invention is not limited to the following embodiments, and various modifications can be made within the scope shown in the claims, and technical means disclosed in different embodiments can be appropriately combined. The obtained embodiment is also included in the technical scope of the present invention.
- Water absorbent resin The “water-absorbing resin” in the present invention means a water-swellable water-insoluble polymer gelling agent.
- water swellability means that the CRC (centrifuge retention capacity) specified by ERT441.2-02 is 5 g / g or more, and “water-insoluble” means ERT470.2. It means that Ext (water-soluble content) specified by ⁇ 02 is 50% by weight or less.
- the water-absorbent resin can be appropriately designed according to its use and is not particularly limited, but is a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group. Is preferred.
- the total amount (100% by weight) is not limited to a polymer form, and may be a composition containing a surface-crosslinked one, an additive, or the like within a range that maintains the above performance.
- the “water-absorbing resin” is a resin obtained by pulverizing the hydrophilic crosslinked polymer, and for convenience, in this specification, the water-absorbing resin before surface treatment or surface crosslinking is referred to as “water-absorbing resin”.
- the water-absorbing resin is different in shape obtained in each step (the shape includes, for example, a sheet shape, a fiber shape, a film shape, a gel shape, etc.), the water-absorbing resin composition containing an additive or the like Even a product is collectively referred to as “water-absorbing resin” in the present specification. Further, the water absorbent resin as the final product is referred to as “particulate water absorbent”.
- Polyacrylic acid (salt) “Polyacrylic acid (salt)” “Polyacrylic acid (salt)” in the present invention includes a graft component as necessary, and as a repeating unit, acrylic acid, a salt thereof, or a combination thereof (in the present specification, these are collectively referred to as “acrylic acid”). It is a polymer mainly composed of “acid (salt)”.
- the “polyacrylic acid (salt)” in the present invention is essentially 50 mol% to 100 mol of acrylic acid (salt) among the total monomers (excluding the internal crosslinking agent) used in the polymerization. %, Preferably 70 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, particularly preferably substantially 100 mol%.
- a polyacrylate when used as the polymer, it always contains a water-soluble salt, and the main component of the water-soluble salt (neutralized salt) is preferably a monovalent salt, such as an alkali metal salt or ammonium. Salts are more preferred, alkali metal salts are more preferred, and sodium salts are particularly preferred.
- EDANA European Disposables and Nonwovens Associations
- ERT a method for measuring water-absorbent resin (EDANA Recommended Test Methods) which is a European standard (almost world standard). Abbreviation. In the present invention, unless otherwise specified, measurement is performed in accordance with the ERT original (known document: revised in 2002).
- CRC Centrifugation Retention Capacity (centrifuge retention capacity) and means the water absorption capacity of the water absorbent resin under no pressure (sometimes referred to as “water absorption capacity”). Specifically, after 0.20 g of the water-absorbing resin is put in a non-woven bag, it is immersed in a large excess of 0.9 wt% sodium chloride aqueous solution for 30 minutes to freely swell, and then a centrifugal separator (250G ) Is the water absorption capacity (unit: g / g) after draining for 3 minutes.
- AAP is an abbreviation for Absorption against Pressure, which means the water absorption capacity of a water absorbent resin under pressure. Specifically, the water absorption capacity (unit: 0.90 g of a water-absorbing resin was swollen under a load of 2.06 kPa (0.3 psi) for 1 hour with a large excess of 0.9 wt% sodium chloride aqueous solution. G / g). In ERT442.2-02, “Absorption Under Pressure” is described, but the contents are substantially the same. Also, the load condition may be changed to 4.83 kPa (0.7 psi) depending on the purpose.
- Extractables is an abbreviation for Extractables, which means the water-soluble component (water-soluble component amount) of the water-absorbent resin. Specifically, 1.0 g of water-absorbing resin is added to 200 ml of 0.9 wt% sodium chloride aqueous solution, stirred for 16 hours at 500 rpm, and then the amount of substance dissolved in the aqueous solution (unit: wt%). . PH titration is used to measure the water-soluble content.
- PSD is an abbreviation for Particle Size Distribution, and means a particle size distribution of a water-absorbent resin measured by sieving classification.
- the weight average particle diameter (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are described in US Pat. No. 7,638,570 “(3) Mass-Average Particle Diameter (D50) and Logical Standard Deviation ( ⁇ ) of”. It measures by the method similar to "Particle Diameter Distribution.”
- SFC is an abbreviation for “Saline Flow Conductivity”, and the permeability (unit: ⁇ 10) of a 0.69 wt% sodium chloride aqueous solution to a water absorbent resin at a load of 2.07 kPa. ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ). The larger the SFC value, the higher the water-absorbent resin has liquid permeability. It is measured according to the SFC test method described in US Pat. No. 5,849,405.
- FSR Free Swell Rate (free swelling rate), and the rate (unit; g / (g ⁇ g ⁇ )) when 1 g of water absorbent resin absorbs 20 g of 0.9 wt% sodium chloride aqueous solution. s)).
- Vortex “Vortex” in the present invention is a water absorption time determined according to “Water absorption rate test method for highly water-absorbent resin” described in JIS K7224, and 2 g of water-absorbent resin is 50 g of 0.9 wt% sodium chloride aqueous solution. The time (unit: seconds) required to absorb water.
- Rec. CRC recovery CRC
- water-absorbent resin is once swollen with pure water, then drained (or air-dried after ethanol substitution) using a centrifuge, and then 0. It refers to the water absorption capacity (unit: g / g) under no pressure when swollen again with a 9% by weight sodium chloride aqueous solution. A specific measurement method will be described in Examples.
- the ratio (Rec. CRC / CRC) with the CRC is referred to as “recovery rate”.
- Rec. AAP refers to a water absorption capacity (unit: g / g) under pressure with respect to a 0.9 wt% sodium chloride aqueous solution of a water absorbent resin that has been swollen with pure water. .
- a specific measurement method will be described in Examples.
- Rec. SFC refers to the water permeability of a 0.69 wt% aqueous sodium chloride solution with respect to the water absorbent resin at a load of 2.07 kPa. ; ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ). A specific measurement method will be described in Examples.
- the “elastic modulus index” in the present invention is a value obtained by correcting the elastic modulus with the theoretical surface area and CRC of the swollen gel particles, and is a value serving as an index for judging the performance of the water absorbent resin.
- the elastic modulus index may be abbreviated as “EMI”.
- the “swelled gel particles” are swollen gel particles obtained by swelling a water-absorbing resin with pure water. A specific measurement method will be described in Examples.
- the “diffusion absorption time” in the present invention is the water absorption time under pressure of a water absorbent resin or a water absorbent resin that has been swollen with a 0.9 wt% sodium chloride aqueous solution to 75 g of a 0.9 wt% sodium chloride aqueous solution (unit: ; Seconds).
- the time during which the aqueous solution is completely absorbed by the water-absorbing resin that has not been swollen is the first diffusion absorption time, and after 10 minutes from the start of the first addition of the aqueous solution, the second aqueous solution is added, and the aqueous solution
- the time when all of the water-absorbing resin that has undergone one-time swelling is absorbed is the second diffusion absorption time
- the aqueous solution is added at intervals of 10 minutes, and the aqueous solution absorbs water that has undergone twice-swelling.
- the time when all the resin was absorbed was defined as the third diffusion absorption time.
- X to Y indicating a range means “X or more and Y or less”.
- T (ton) which is a unit of weight means “Metric ton”, and unless otherwise noted, “ppm” means “ppm by weight”.
- Weight” and “mass”, “wt%” and “mass%”, “part by weight” and “part by mass” are treated as synonyms.
- ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
- (meth) acryl means “acryl and / or methacryl”.
- the particulate water-absorbing agent according to the present invention comprises a polyacrylic acid (salt) -based water-absorbing resin as a main component, is surface-crosslinked, and has the following (1) to (3) It is a particulate water-absorbing agent that satisfies physical properties.
- Ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m; 90% by weight or more Elastic modulus index (EMI) of particles having a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m; 5500 or more (3) Rec. Recovery rate specified by CRC / CRC; 1.05-1.20
- EMI Elastic modulus index
- the CRC of the particulate water-absorbing agent according to the present invention is preferably 23 g / g or more, more preferably 25 g / g or more, and still more preferably 26 g / g or more.
- the upper limit is preferably not particularly limited as the value is higher, but is preferably 50 g / g or less, more preferably 40 g / g or less, from the viewpoint of balance with other physical properties.
- the CRC in the present invention can be appropriately selected within the above upper and lower limits.
- Examples thereof include 23 g / g to 50 g / g, 23 g / g to 40 g / g, 25 g / g to 40 g / g, and 26 g / g to 50 g / g.
- the CRC when the CRC is 23 g / g or more, the amount of absorption increases, and it is suitable as an absorbent body for absorbent articles such as paper diapers. Further, by setting the CRC to 45 g / g or less, the speed of absorbing body fluids such as urine and blood is increased, which makes it suitable for use in high water absorption speed type paper diapers and the like.
- the CRC can be controlled by an internal crosslinking agent, a surface crosslinking agent, or the like.
- the AAP of the particulate water-absorbing agent according to the present invention is preferably 15 g / g or more, more preferably 17 g / g or more, still more preferably 20 g / g or more, particularly preferably 22 g / g or more, and most preferably 23 g / g or more. It is.
- the upper limit is preferably not particularly limited as it is higher, but is preferably 30 g / g or less from the viewpoint of balance with other physical properties.
- the AAP in the present invention can be appropriately selected within the above upper and lower limits.
- Examples thereof include 15 g / g to 30 g / g, 17 g / g to 30 g / g, 20 g / g to 30 g / g, 23 g / g to 30 g / g, and the like.
- the AAP is 15 g / g or more because the return of the liquid when the pressure is applied to the particulate water-absorbing agent (commonly called Re-Wet) is reduced.
- the AAP can be controlled by particle size, surface cross-linking agent, and the like.
- the Ext of the particulate water-absorbing agent according to the present invention is usually 50% by weight or less, preferably 35% by weight or less, more preferably 25% by weight or less, and further preferably 15% by weight or less. Although it does not specifically limit about a lower limit, Preferably it is 0 weight%, More preferably, it is about 0.1 weight%.
- the Ext in the present invention can be appropriately selected within the above upper and lower limits.
- 0 wt% to 50 wt%, 0 wt% to 25 wt%, 0.1 wt% to 35 wt%, 0.1 wt% to 15 wt% and the like can be mentioned.
- the Ext is 50% by weight or less, the gel strength is high and the liquid permeability is excellent. Further, when it is used as an absorbent body for absorbent articles such as paper diapers, it becomes a particulate water-absorbing agent with little liquid return (Re-Wet) when pressure is applied to the absorbent body.
- the Ext can be controlled with an internal cross-linking agent or the like.
- the proportion of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m is 90% by weight or more, preferably 95% by weight or more, more preferably 97% by weight or more, and still more preferably 98%.
- % By weight (the upper limit is 100% by weight).
- the proportion of particles having a particle size of 150 ⁇ m or more and less than 710 ⁇ m is preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 97% by weight or more, and particularly preferably 98% by weight (the upper limit is 100% by weight). %).
- the proportion of particles having a particle size of 150 ⁇ m or more and less than 300 ⁇ m is 5% by weight or more, preferably 7% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight (the upper limit is 50% by weight). %).
- the proportion of particles having a particle size of 300 ⁇ m or more and less than 425 ⁇ m is 10% by weight or more, preferably 12% by weight or more, more preferably 15% by weight or more, and further preferably 20% by weight (the upper limit is 60% by weight).
- the proportion of particles having a particle size of 425 ⁇ m or more and less than 500 ⁇ m is 5% by weight or more, preferably 7% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight (the upper limit is 50% by weight).
- the proportion of particles having a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m is 5% by weight or more, preferably 7% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight (the upper limit is 50% by weight).
- the proportion of particles having a particle size of 600 ⁇ m or more and less than 850 ⁇ m is 0.1% by weight or more, preferably 0.3% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight (the upper limit is 50%). % By weight).
- the total ratio of the particles having the above-mentioned particle diameters is preferably 90% by weight to 100% by weight, and more preferably 95% by weight to 100% by weight.
- the proportion of particles having a particle size of less than 150 ⁇ m is preferably 5% by weight or less, more preferably 4% by weight or less, and still more preferably 3% by weight or less.
- the term “particles having a particle diameter of less than 150 ⁇ m” refers to a particulate water-absorbing agent that can pass through a JIS standard sieve having a mesh size of 150 ⁇ m (specified in JIS Z8801-1 (2000)).
- the proportion of particles having a particle size of 850 ⁇ m or more is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight or less.
- D50 weight average particle diameter
- D50 is preferably set within a range of preferably 200 ⁇ m to 600 ⁇ m, more preferably 300 ⁇ m to 500 ⁇ m, still more preferably 320 ⁇ m to 480 ⁇ m, and particularly preferably 340 ⁇ m to 460 ⁇ m.
- D50 weight average particle diameter
- ⁇ logarithmic standard deviation of the particle size distribution
- ⁇ is preferably 0.20 to 0.50, more preferably 0.25 to 0.45, still more preferably 0.27 to 0.43, and particularly preferably 0.8. It is appropriately set within the range of 29 to 0.41.
- the ⁇ logarithmic standard deviation of particle size distribution
- ⁇ logarithmic standard deviation of particle size distribution
- the SFC of the particulate water-absorbing agent according to the present invention is preferably 10 or more, more preferably 20 or more, still more preferably 30 or more, still more preferably 50 or more, particularly preferably 70 or more, and most preferably 90 or more. Although it does not specifically limit about an upper limit, Preferably it is 3000 or less, More preferably, it is 2000 or less.
- the SFC in the present invention can be appropriately selected within the above upper and lower limits.
- 10 to 3000, 30 to 3000, 70 to 2000 and the like can be mentioned.
- the SFC When the SFC is 10 or more, it is preferable because a liquid absorbent having a high liquid permeability and a particulate water-absorbing agent with a higher liquid uptake rate can be obtained when used in an absorber.
- the unit of SFC is ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ).
- the FSR of the particulate water-absorbing agent according to the present invention is preferably 0.28 or more, more preferably 0.30 or more, and still more preferably 0.35 or more.
- the upper limit value is preferably as high as possible and is not particularly limited, but is preferably 1.0 or less from the viewpoint of balance with other physical properties.
- the FSR in the present invention can be appropriately selected within the above upper and lower limits.
- examples thereof include 0.28 to 1.0, 0.35 to 1.0, and the like.
- the particulate water-absorbing agent is used for the absorber because the liquid is more sufficiently absorbed and does not leak.
- the unit of FSR is g / (g ⁇ s).
- Vortex of the particulate water-absorbing agent according to the present invention is preferably 42 seconds or less, more preferably 40 seconds or less, still more preferably 35 seconds or less, particularly preferably 30 seconds or less, and most preferably 25 seconds or less.
- the lower limit value is not particularly limited as long as it exceeds 0 seconds, but is preferably 5 seconds or more, more preferably 10 seconds or more.
- the Vortex in the present invention can be appropriately selected within the above upper and lower limits. For example, more than 0 seconds and 42 seconds or less, 5 seconds to 40 seconds, 10 seconds to 30 seconds, and the like.
- the particulate water-absorbing agent is used for the absorber because the liquid is more sufficiently absorbed and does not leak.
- CRC (recovery CRC) Rec.
- CRC is preferably 24 g / g or more, more preferably 26 g / g or more, and still more preferably 27 g / g or more.
- the upper limit is preferably as high as possible but is not particularly limited. However, from the viewpoint of balance with other physical properties, it is preferably 54 g / g or less, more preferably 48 g / g or less, still more preferably 47 g / g or less, particularly preferably 42 g / g. g or less.
- the CRC can be appropriately selected within the above upper and lower limits. Examples thereof include 24 g / g to 54 g / g, 26 g / g to 48 g / g, 27 g / g to 47 g / g, and 27 g / g to 42 g / g.
- the above Rec. By setting the CRC to 24 g / g or more, the amount of absorption increases, and it is suitable as an absorbent body for absorbent articles such as paper diapers. In addition, the above Rec. By setting the CRC to 54 g / g or less, the speed of absorbing body fluids such as urine and blood is increased, which is suitable for use in high water absorption speed type paper diapers and the like.
- AAP Recovery AAP Rec.
- AAP is preferably 10 g / g or more, more preferably 12 g / g or more, and still more preferably 15 g / g or more.
- the upper limit is preferably as high as possible, but is not particularly limited, but is preferably 30 g / g or less, more preferably 25 g / g or less, from the viewpoint of balance with other physical properties.
- AAP can be appropriately selected within the above upper and lower limits. Examples thereof include 10 g / g to 30 g / g, 12 g / g to 30 g / g, 12 g / g to 25 g / g, 15 g / g to 25 g / g, and the like.
- the liquid returns (commonly called Re-Wet) when the pressure is applied to the particulate water-absorbing agent even after being swollen once.
- SFC Recovery SFC Rec.
- SFC is preferably 5 or more, more preferably 7 or more, still more preferably 8 or more, and particularly preferably 10 or more.
- the unit of SFC is ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ).
- CRC / CRC (recovery rate) Rec.
- CRC / CRC is preferably 1.05 or more, more preferably 1.06 or more, still more preferably 1.07 or more, and particularly preferably 1.08 or more.
- the upper limit is preferably 1.20 or less, more preferably 1.18 or less, still more preferably 1.16 or less, and particularly preferably 1.15 or less.
- Rec. CRC / CRC can be appropriately selected within the above upper and lower limits. Examples thereof include 1.05 to 1.20, 1.05 to 1.16, 1.06 to 1.16, 1.08 to 1.15, and the like.
- the particulate water-absorbing agent according to the present invention is rich in elasticity, has a good recovery rate, and is excellent in water absorption characteristics and liquid permeability. Therefore, it is preferable to evaluate the “elasticity” using the “elastic modulus”. However, it has been found that the elastic modulus changes depending on the water absorption rate of the particulate water-absorbing agent. For this reason, the elasticity of the particulate water-absorbing agent is preferably an index that takes into account the influence of the water absorption magnification.
- the elastic modulus in the present invention is measured by sandwiching the swelling gel particles to be measured between the dish surface of the rheometer and the parallel plate surface, and applying a load.
- the particle size distribution is present in the gel particles, the swollen gel particles having a large particle diameter come into contact with each other first, so that the swollen gel particles having a small particle diameter are not sandwiched, and there is a problem that an accurate elastic modulus cannot be measured.
- the present inventors have determined that the parameter “EMI (elastic modulus index)” obtained by correcting the above elastic modulus using the water absorption ratio of the particulate water absorbing agent and the theoretical surface area of the swollen gel particles is the particulate water absorption according to the present invention.
- the present inventors have found that the elasticity of the agent can be accurately expressed and is a value correlated with the water absorption performance of the particulate water absorbing agent.
- exponent) is demonstrated in an Example.
- the particulate water-absorbing agent to be measured is classified once, and after the particle diameters are made uniform, the elastic modulus is measured for each particle size, and the EMI (elastic modulus index) is calculated.
- the EMI elastic modulus index
- the EMI is preferably as high as possible within a range where the recovery rate (Rec. CRC / CRC) satisfies 1.05 to 1.20 at each particle size. .
- AAP and Rec. SFC also increases. That is, the particulate water-absorbing agent of the present invention maintains water absorption characteristics and liquid permeability even after having been swollen with water.
- the EMI (elastic modulus index) of the particles having a particle diameter of 600 ⁇ m or more and less than 710 ⁇ m obtained by classification operation at the time of elastic modulus measurement is preferably 5500 or more, more preferably 6000 or more, still more preferably 6500 or more, particularly preferably. Is 7000 or more, most preferably 7500 or more.
- the upper limit is preferably 15500 or less, more preferably 11500 or less, still more preferably 9500 or less, particularly preferably 8500 or less, and most preferably 8000 or less.
- the EMI (elastic modulus index) of the particles having a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m obtained by classification operation at the time of elastic modulus measurement is 5500 or more, preferably 6000 or more, more preferably 6500 or more, and further preferably 7000 or more. It is.
- the upper limit is preferably 15000 or less, more preferably 11000 or less, still more preferably 9500 or less, still more preferably 9000 or less, particularly preferably 8000 or less, and most preferably 7500 or less.
- the EMI (elastic modulus index) of the particles having a particle size of 425 ⁇ m or more and less than 500 ⁇ m obtained by classification operation at the time of elastic modulus measurement is preferably 4500 or more, more preferably 5000 or more, still more preferably 5500 or more, particularly preferably. Is 6000 or more, most preferably 6500 or more.
- the upper limit is preferably 14500 or less, more preferably 10500 or less, still more preferably 8500 or less, particularly preferably 7500 or less, and most preferably 7000 or less.
- the EMI (elastic modulus index) of the particles having a particle diameter of 300 ⁇ m or more and less than 425 ⁇ m obtained by classification operation at the time of elastic modulus measurement is preferably 3500 or more, more preferably 4000 or more, still more preferably 4500 or more, particularly preferably. Is 5000 or more, most preferably 6000 or more.
- the upper limit is preferably 14,000 or less, more preferably 10,000 or less, still more preferably 8000 or less, particularly preferably 7000 or less, and most preferably 6500 or less.
- the EMI (elastic modulus index) of the particles having a particle diameter of 150 ⁇ m or more and less than 300 ⁇ m obtained by classification operation at the time of elastic modulus measurement is preferably 3500 or more, more preferably 4000 or more.
- the upper limit is preferably 13500 or less, more preferably 9500 or less, and still more preferably 4500 or less.
- the ratio of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m is 90% by weight or more, and (2) EMI of particles having a particle size of 500 ⁇ m or more and less than 600 ⁇ m.
- Elastic modulus index is 5500 or more
- Rec. When CRC / CRC is 1.05 to 1.20, physical property deterioration after swelling with pure water is suppressed as much as possible.
- AAP of 15 g / g or more, Rec. SFC has excellent physical properties of 5 ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 or more.
- the first diffusion absorption time of the particulate water-absorbing agent according to the present invention is preferably 26 seconds or less, more preferably 24 seconds or less under a 2.07 kPa load.
- the diffusion absorption time is preferably 37 seconds or less, more preferably 35 seconds or less, and the third diffusion absorption time is preferably 67 seconds or less, more preferably 65 seconds or less.
- the first diffusion absorption time under a load of 6.21 kPa is preferably 39 seconds or less, more preferably 35 seconds or less, and the second diffusion absorption time is preferably 75 seconds or less, more preferably 70 seconds or less.
- the third diffusion absorption time is preferably 160 seconds or shorter, more preferably 140 seconds or shorter.
- the production method is not particularly limited as long as the above-described particulate water-absorbing agent can be obtained.
- a monomer aqueous solution containing acrylic acid (salt) as a main component is polymerized to form a hydrous gel.
- the production method includes a polymerization step in which a crosslinked polymer is obtained.
- Monomer aqueous solution preparation step This step is a step of preparing an aqueous solution containing acrylic acid (salt) as a main component (hereinafter referred to as “monomer aqueous solution”).
- monomer aqueous solution an aqueous solution containing acrylic acid (salt) as a main component
- the slurry liquid of a monomer can also be used in the range in which the water absorption performance of the obtained particulate water-absorbing agent does not deteriorate, in this section, the monomer aqueous solution will be described for convenience.
- the “main component” means that the amount of acrylic acid (salt) used (content) is usually 50 mol% or more based on the total amount of monomers (excluding the internal crosslinking agent) subjected to the polymerization reaction. , Preferably 70 mol% or more, more preferably 90 mol% or more (the upper limit is 100 mol%).
- acrylic acid (salt) acrylic acid and / or acrylate
- acrylic acid (salt) is preferably used as the monomer from the viewpoints of physical properties and productivity of the obtained particulate water-absorbing agent.
- the acrylic acid known acrylic acid is used.
- the known acrylic acid is obtained by collecting gaseous acrylic acid obtained by a catalytic gas phase oxidation method with a solvent such as water and then purifying it using distillation and / or crystallization. Yes, it contains trace components such as polymerization inhibitors and impurities.
- the polymerization inhibitor is not particularly limited, but preferably methoxyphenols, more preferably p-methoxyphenols.
- the polymerization inhibitor is preferably 200 ppm or less, more preferably 10 ppm to 160 ppm, and still more preferably 20 ppm to 100 ppm as a concentration in acrylic acid from the viewpoint of the polymerizability of acrylic acid and the color tone of the particulate water-absorbing agent. Is set as appropriate.
- the impurities are not particularly limited, but in addition to organic compounds such as acetic acid, propionic acid, and furfural, impurities in acrylic acid described in US Patent Application Publication No. 2008/0161512 are also applicable to the present invention.
- the acrylic acid salt is obtained by neutralizing the acrylic acid with the following basic compound, but may be a commercially available acrylic acid salt (for example, sodium acrylate). It may be obtained by neutralization.
- the “basic compound” refers to a compound showing basicity, and examples thereof include sodium hydroxide.
- commercially available sodium hydroxide contains heavy metals such as zinc, iron, lead and the like as impurities in the order of ppm. Strictly speaking, it can be called a basic composition, but in the present invention, a basic compound is used. It shall be included in the category.
- the basic compound examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
- a basic compound exhibiting strong basicity is preferably selected. That is, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are preferable, and sodium hydroxide is more preferable.
- the neutralization may be a continuous type or a batch type, and is not particularly limited, but is preferably a continuous type from the viewpoint of production efficiency and the like.
- the neutralization rate is not particularly limited, but is preferably 10 mol% to 100 mol%, more preferably 30 mol, based on the acid group of the monomer. % To 95 mol%, more preferably 45 mol% to 90 mol%, particularly preferably 60 mol% to 80 mol%.
- the preferable range of the neutralization rate is applied before, during, and after the polymerization.
- the neutralization apparatus and neutralization conditions such as neutralization temperature and residence time, the contents described in International Publication No. 2009/123197 and US Patent Application Publication No. 2008/0194863 are also included in the present invention. Applied.
- the usage-amount is suitably set within the range of 30 mol% or less with respect to the whole monomer, More preferably, 10 mol% or less.
- Internal crosslinking agent As the internal cross-linking agent of the present invention, the internal cross-linking agent described in US Pat. No. 6,241,928 is applied to the present invention. Among these, one or more internal cross-linking agents are selected in consideration of reactivity.
- a compound having two or more polymerizable unsaturated groups more preferably a compound exhibiting thermal decomposability at the following drying temperature, more preferably (poly).
- a compound having two or more polymerizable unsaturated groups having an alkylene glycol structural unit is used as the internal crosslinking agent.
- the polymerizable unsaturated group is not particularly limited, but preferably an allyl group, a (meth) acrylate group, and more preferably a (meth) acrylate group.
- the (poly) alkylene glycol structural unit is not particularly limited, but is preferably polyethylene glycol, and the n number is preferably selected within the range of 2 to 100, more preferably 6 to 50.
- the internal cross-linking agent is preferably water-soluble, and preferably exhibits a solubility of 0.1 g or more, more preferably 1 g or more with respect to 100 g of water at 25 ° C.
- the internal cross-linking agent used in the present invention is preferably (poly) alkylene glycol di (meth) acrylate or (poly) alkylene glycol tri (meth) acrylate, more preferably (poly) ethylene glycol di (meth). Acrylate.
- the amount of the internal crosslinking agent used is preferably 0.001 mol% to 5 mol%, more preferably 0.002 mol% to 2 mol%, still more preferably 0.04 mol%, based on the entire monomer. It is appropriately set within a range of ⁇ 1 mol%, particularly preferably 0.06 mol% to 0.5 mol%, most preferably 0.07 mol% to 0.2 mol%.
- the desired particulate water-absorbing agent can be obtained by setting the amount used within the above range.
- the said usage-amount is less than 0.001 mol%, since it exists in the tendency for gel strength to fall and a water soluble content to increase, it is unpreferable.
- the said usage-amount exceeds 5 mol%, since there exists a tendency for a water absorption magnification to fall, it is unpreferable.
- a method in which a predetermined amount of an internal cross-linking agent is previously added to a monomer aqueous solution and a cross-linking reaction is performed simultaneously with polymerization is preferably applied.
- a method of adding an internal cross-linking agent during or after polymerization and post-crosslinking a method of radical cross-linking using a radical polymerization initiator, radiation using active energy rays such as electron beams and ultraviolet rays
- a method of crosslinking and the like can also be employed. Moreover, these methods can be used in combination.
- hydrophilic polymer such as starch, starch derivative, cellulose, cellulose derivative, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) cross-linked product, preferably 50% by weight or less, more preferably Is added in an amount of 20% by weight or less, more preferably 10% by weight or less, particularly preferably 5% by weight or less (lower limit is 0% by weight), foaming agents such as carbonates, azo compounds and bubbles, surfactants, chains.
- a transfer agent or the like is preferably added at 5% by weight or less, more preferably 1% by weight or less, still more preferably 0.5% by weight or less (the lower limit is 0% by weight).
- a chelating agent preferably a chelating agent, ⁇ -A hydroxycarboxylic acid compound, an inorganic reducing agent, more preferably a chelating agent may be added during preparation of the aqueous monomer solution.
- the amount of the chelating agent used is suitably set within the range of preferably 10 ppm to 5000 ppm, more preferably 10 ppm to 1000 ppm, still more preferably 50 ppm to 1000 ppm, and particularly preferably 100 ppm to 1000 ppm with respect to the particulate water absorbing agent.
- chelating agent specifically, chelating agents disclosed in US Pat. No. 6,599,989 and International Publication No. 2008/090961 are applied to the present invention. Of these, aminocarboxylic acid metal chelating agents or polyvalent phosphoric acid compounds are preferably used.
- the above substances may be added not only in the form added to the monomer aqueous solution, but also in the form added during the polymerization, or these forms may be used in combination.
- a graft polymer or a water-absorbing resin composition eg, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
- a graft polymer or a water-absorbing resin composition eg, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
- each of the above substances is added when preparing the aqueous monomer solution.
- the concentration of the monomer component in the monomer aqueous solution is not particularly limited, but is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 75% by weight, from the viewpoint of the physical properties of the particulate water-absorbing agent. More preferably, it is appropriately set within the range of 30 wt% to 70 wt%, particularly preferably 40 wt% to 60 wt%.
- a solvent other than water can be used in combination as required.
- the type of solvent is not particularly limited.
- the “monomer component concentration” is a value obtained by the following (formula 1), and the weight of the monomer aqueous solution includes the hydrophobicity in the graft component, the water-absorbing resin, and the reverse phase suspension polymerization. Solvent weight is not included.
- a monomer aqueous solution containing acrylic acid (salt) as a main component obtained in the monomer aqueous solution preparation step is polymerized to form a hydrogel crosslinked polymer (hereinafter referred to as “water-containing gel-like crosslinked polymer”). , Referred to as “water-containing gel”).
- radical polymerization initiators such as potassium persulfate, ammonium persulfate, sodium persulfate, t-butyl hydroperoxide, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, etc.
- active energy rays such as ultraviolet rays and electron beams can be used.
- redox polymerization may be performed by using a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid, etc., but preferably an azo compound or a peroxide.
- a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid, etc.
- an azo compound or a peroxide preferably an azo compound or a peroxide.
- a water-soluble polymerization initiator soluble in 100 g of water at 25 ° C., preferably 1 g or more, more preferably 10 g or more is used.
- the radical initiator is preferably added to the reaction system of the polymerization process.
- the “reaction system of the polymerization step” means a reaction system in which polymerization of a water-soluble unsaturated monomer can occur, and can generate a hydrous gel. Therefore, the constitution of the “reaction system of the polymerization step” is not particularly limited as long as it contains a water-soluble unsaturated monomer, and is not limited to an internal crosslinking agent, a chain transfer agent, ⁇ -hydroxycarboxylic acid (salt), etc. May be included.
- the timing of adding the radical polymerization initiator is before the polymerization step and / or during the polymerization step, and is not included after the polymerization step.
- before the polymerization step means before the polymerization of the monomer is started.
- the term “in the middle of the polymerization process” means a period from the start to the end of the polymerization of the monomer.
- after the polymerization step means after the completion of the polymerization of the monomer.
- Whether or not the polymerization of the monomer has started can be determined from the temperature rise of the polymer caused by the polymerization. Specifically, when the temperature rise is 3 ° C. or higher (preferably 5 ° C. or higher), it can be determined that the polymerization of the monomer has started.
- the amount of these radical polymerization initiators used is preferably 0.051 mol% to 1.000 mol%, more preferably 0.054 mol%, based on the total monomers. It is appropriately set within the range of ⁇ 0.2000 mol%, more preferably 0.058 mol% to 0.1000 mol%.
- polymerization form In the above polymerization step in the present invention, bulk polymerization, reverse phase suspension polymerization, or precipitation polymerization can be performed. From the viewpoint of performance and ease of control of polymerization, an aqueous monomer solution or aqueous dispersion is used. It is preferable to perform aqueous solution polymerization.
- Such polymerization methods include, for example, U.S. Pat. Nos. 4,462,001, 4,769,427, 4,873,299, 4,093,763, 4,367,323, 4,446,261, 4,683,274, 4,690,996, No. 4721647, No. 4738867, No. 4748076, US Patent Application Publication No. 2002/40095, and the like.
- a particulate hydrous gel may be obtained by spray droplet polymerization or reverse phase suspension polymerization.
- the liquid permeability (SFC) and water absorption rate of the resulting particulate water-absorbing agent From the viewpoint of FSR) and ease of polymerization control, aqueous solution polymerization is preferably employed.
- the aqueous solution polymerization may be tank type (silo type) non-stir polymerization, but is preferably kneader polymerization or belt polymerization, more preferably continuous aqueous solution polymerization, further preferably high concentration continuous aqueous solution polymerization, particularly preferably high concentration / high temperature. Initiated continuous aqueous polymerization is employed.
- stirring polymerization means superposing
- the monomer aqueous solution (with a polymerization rate of 0 to less than 10 mol%) may be appropriately stirred.
- continuous aqueous solution polymerization examples include continuous kneader polymerization described in US Pat. Nos. 6,987,171 and 6,710,141, US Pat. Nos. 4,893,999, 6,241,928, US Patent Application Publication No. 2005/215734, and the like. Continuous belt polymerization. By these aqueous solution polymerizations, the particulate water-absorbing agent can be produced with high productivity.
- the monomer concentration (solid content) is preferably 35% by weight or more, more preferably 40% by weight or more, and further preferably 45% by weight or more (the upper limit is a saturated concentration). Is set as appropriate. Further, in the high temperature initiated continuous aqueous solution polymerization, the polymerization initiation temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, further preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher (the upper limit is the boiling point). Is set. High concentration, high temperature starting continuous aqueous solution polymerization is a combination of these polymerizations.
- the high concentration / high temperature starting continuous aqueous solution polymerization is disclosed in US Pat. Nos. 6,906,159 and 7,091,253. This polymerization method is preferable because a particulate water-absorbing agent with high whiteness can be obtained and production on an industrial scale is easy.
- the polymerization method in the production method of the present invention is preferably applied to a production apparatus on a huge scale with a large production amount per line.
- the production amount is suitably set within a range of preferably 0.5 t / hr or more, more preferably 1 t / hr or more, still more preferably 5 t / hr or more, and particularly preferably 10 t / hr or more.
- the polymerization can be carried out in an air atmosphere, but from the viewpoint of preventing coloring, it can be carried out in an inert gas atmosphere (for example, oxygen concentration of 1% by volume or less) such as water vapor, nitrogen or argon. preferable. Furthermore, it is preferable to perform polymerization after replacing (degassing) the dissolved oxygen in the monomer or the solution containing the monomer with an inert gas (for example, less than 1 mg / l of oxygen). Even if such deaeration is performed, the monomer stability is excellent, gelation before polymerization does not occur, and a particulate water-absorbing agent having higher physical properties and higher whiteness can be provided.
- an inert gas atmosphere for example, oxygen concentration of 1% by volume or less
- an inert gas for example, less than 1 mg / l of oxygen
- the amount of the inert gas used is preferably 0.005% to 0.2% by weight, more preferably 0.01% to 0.1% by weight, still more preferably 0.005% by weight, based on the total amount of monomers. It is appropriately set within the range of 015 wt% to 0.5 wt%. Moreover, as an inert gas used, nitrogen is preferable.
- a surfactant and / or a dispersant may be used as necessary.
- a surfactant and / or a dispersant bubbles can be stably suspended in the water-absorbing resin during polymerization.
- the particulate water absorbing agent which has a desired physical property can be obtained by adjusting suitably the kind or quantity of surfactant and / or a dispersing agent.
- the surfactant is preferably a non-polymer surfactant and the dispersant is preferably a polymer dispersant.
- the surfactant and / or the dispersant is added at a stage before polymerization or before the temperature of the monomer aqueous solution at the time of polymerization reaches 50 ° C. or more.
- the usage-amount of surfactant and / or a dispersing agent can be suitably determined according to a kind.
- a method of performing thin layer polymerization using a monomer aqueous solution containing a high concentration of monomer (Method 1) and a method of performing foaming polymerization under reduced pressure (Method 2) are performed. May be.
- Method 1 if thin-layer polymerization is performed using a high concentration monomer aqueous solution, the temperature can be easily controlled, and as a result, the molecular weight of the hydrogel crosslinked polymer can be easily made uniform, and the above-mentioned physical properties can be obtained. A water-absorbing agent can be obtained more efficiently.
- the concentration of the monomer in the monomer aqueous solution is appropriately set within a range of preferably 35% by weight or more, more preferably 40% by weight or more, and still more preferably 45% by weight or more.
- the distance between the glass plates (that is, the thickness of the monomer aqueous solution layer) is suitably set within a range of preferably 1 mm to 10 mm, more preferably 3 mm to 7 mm.
- the temperature at which the polymerization is performed is suitably set within a range of preferably 40 ° C. to 70 ° C., more preferably 50 ° C. to 60 ° C.
- the polymerization step is preferably performed in a sealed container.
- the pressure in the sealed container is suitably set within a range of preferably 95 kPa or less, more preferably 90 kPa or less, still more preferably 85 kPa or less, and particularly preferably 80 kPa or less.
- the water-containing gel obtained in the above polymerization step can be dried as it is, but at the time of polymerization or after polymerization, if necessary, gel pulverization using a gel pulverizer (kneader, meat chopper, cutter mill, etc.) Is done.
- a gel pulverizer kneader, meat chopper, cutter mill, etc.
- This step is a step of obtaining a dry polymer by drying the particulate hydrogel obtained in the gel pulverization step to a desired range of resin solids.
- the “resin solid content” is a value determined from loss on drying (weight change when 1 g of sample is heated at 180 ° C. for 3 hours), preferably 90% by weight or more, more preferably 95% by weight or more. It is.
- the drying method in this step is not particularly limited, but is heat drying, hot air drying, vacuum drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, drying by azeotropic dehydration with a hydrophobic organic solvent, high temperature drying.
- a drying method such as high-humidity drying using steam is employed.
- hot air drying is preferable, and band drying in which hot air drying is performed on a ventilation belt is more preferable.
- the air volume of the hot air is suitably set within a range of preferably 0.01 m / second to 10 m / second, more preferably 0.1 m / second to 5 m / second.
- drying temperature in this step is suitably set within the range of preferably 100 ° C. to 250 ° C., more preferably 130 ° C. to 220 ° C., and still more preferably 150 ° C. to 200 ° C.
- the drying temperature is 100 ° C. or higher, the polymer chain inside the water-absorbent resin can be changed, and various physical properties of the resulting particulate water-absorbing agent can be improved. Moreover, by making the said drying temperature into 250 degrees C or less, the damage to water absorbing resin can be reduced and the raise of the water soluble part of the particulate water absorbing agent obtained as a result can be suppressed.
- drying time in this step is suitably set within a range of preferably 10 minutes to 120 minutes, more preferably 20 minutes to 90 minutes, and further preferably 30 minutes to 60 minutes.
- the drying time is 10 minutes or longer, the polymer chain inside the water-absorbent resin can be changed, and various physical properties of the resulting particulate water-absorbing agent can be improved. Moreover, the damage to water absorbing resin can be reduced by making the said drying time into 120 minutes or less, and the raise of the water soluble part of the particulate water absorbing agent obtained as a result can be suppressed.
- the above drying temperature and drying time are appropriately selected so that the water content of the obtained particulate water-absorbing agent falls within a desired range depending on the surface area, water content, and type of dryer of the particulate water-containing gel.
- the said drying temperature is prescribed
- the drying temperature may be a constant temperature or may be changed as appropriate during the drying.
- step 3 Grinding step and classification step
- the dry polymer obtained in the drying step is pulverized (pulverization step), adjusted to a desired particle size (classification step), and water-absorbing resin powder It is the process of obtaining.
- This step is performed so that the PSD (particle size distribution) of the particulate water-absorbing agent satisfies the above range (2-4). Further, this step is different from the (3-2) gel pulverization step in that the object to be pulverized has undergone a drying step.
- the equipment (pulverizer) used at the time of pulverization of the dry polymer is not particularly limited.
- a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, a pin mill, a vibration mill, a knuckle type pulverizer, A cylindrical mixer etc. are mentioned, and it is used together as needed.
- a roll mill is preferable from the viewpoint of controlling the particle size distribution.
- the particle size adjustment method (classification method) after pulverization is not particularly limited, and examples thereof include sieve classification using JIS standard sieve (JIS Z8801-1 (2000)) and airflow classification.
- a surface-crosslinked water-absorbent resin can improve AAP and SFC even if it is swelled and pressure is applied after the swelling.
- the particulate water-absorbing agent according to the present invention.
- the particulate water-absorbing agent is used in the absorbent body of the absorbent article, the amount of liquid returned (rewetting) when pressure is applied is small, Furthermore, since the absorber which is excellent in the uptake
- Covalent bonding surface cross-linking agent Although it does not specifically limit as a surface crosslinking agent used by this invention, An organic or inorganic surface crosslinking agent is mentioned. Among these, from the viewpoint of the physical properties of the particulate water-absorbing agent and the handleability of the surface cross-linking agent, an organic surface cross-linking agent that reacts with a carboxyl group (dehydration condensation surface cross-linking agent) is preferable. Examples thereof include one or more surface cross-linking agents disclosed in US Pat. No. 7,183,456.
- a polyhydric alcohol compound an epoxy compound, a haloepoxy compound, a polyvalent amine compound or a condensate with the haloepoxy compound, an oxazoline compound, an oxazolidinone compound, an alkylene carbonate compound, a cyclic urea compound, and the like can be given.
- at least one dehydrating ester reactive surface crosslinking agent selected from a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound.
- the use amount of the surface cross-linking agent (the total use amount when a plurality of surface cross-linking agents are used) is preferably 0.001 to 10 parts by weight with respect to 100 parts by weight of the water absorbent resin powder. Preferably, it is appropriately set within the range of 0.01 to 5 parts by weight.
- the surface cross-linking agent is preferably added as an aqueous solution to the water absorbent resin powder.
- the amount of water used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the water absorbent resin powder. Part, more preferably within the range of 0.5 to 10 parts by weight.
- a hydrophilic organic solvent may be used in combination, and the amount used is preferably 10 parts by weight or less, more preferably 5 parts by weight or less with respect to 100 parts by weight of the water-absorbent resin powder. Is set as appropriate.
- hydrophilic organic solvent examples include lower alcohols such as methyl alcohol; ketones such as acetone; ethers such as dioxane; amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; ethylene glycol And other polyhydric alcohols.
- the polyvalent metal salt added in the “polyvalent metal salt addition step” described below is preferably within 5 parts by weight or less with respect to 100 parts by weight of the water-absorbent resin powder, and the surface crosslinking agent (aqueous solution). Or can be added separately in the mixing step.
- This step is a step of obtaining a humidified mixture by mixing the water absorbent resin powder and the surface cross-linking agent.
- the mixing method is not particularly limited.
- a surface crosslinking agent solution is prepared in advance, and the solution is preferably sprayed or dropped onto the water-absorbent resin powder, and more preferably sprayed and mixed. The method of doing is mentioned.
- the apparatus for performing the mixing is not particularly limited, but a high-speed stirring type mixer is preferable, and a high-speed stirring type continuous mixer is more preferable.
- the rotational speed of the mixer is suitably set within a range of preferably 100 rpm to 10,000 rpm, more preferably 300 rpm to 2000 rpm.
- the residence time of the humidified mixture in the mixing apparatus is preferably set appropriately within 180 seconds, more preferably within the range of 0.1 second to 60 seconds, and even more preferably within the range of 1 second to 30 seconds.
- This step is a step of heating the humidified mixture discharged from the mixing step to cause a crosslinking reaction on the surface of the water absorbent resin powder.
- the apparatus for performing the crosslinking reaction is not particularly limited, but preferably includes a paddle dryer.
- the heating temperature during the heat treatment in the crosslinking reaction is appropriately set according to the type of the surface crosslinking agent used, but is preferably in the range of 40 ° C. to 250 ° C., more preferably in the range of 150 ° C. to 250 ° C. Is set as appropriate.
- the heat treatment temperature is 40 ° C. or higher, water absorption characteristics such as AAP and SFC can be further improved. Moreover, if the said heat processing temperature is 250 degrees C or less, degradation of a water absorbent resin powder and the fall of various physical properties accompanying it can be prevented.
- the heat treatment time during the heat treatment in the crosslinking reaction is suitably set within a range of preferably 1 minute to 2 hours, more preferably 5 minutes to 1 hour.
- This step is an optional step that is installed as necessary after the heat treatment step, and is a step of forcibly cooling the heat-treated mixture to a predetermined temperature.
- the apparatus for performing the cooling is not particularly limited, but it is preferable to use an apparatus having the same specifications as the heat treatment step, and a paddle dryer is more preferable. It is because it can be used as a cooling device by changing the heat medium to a refrigerant.
- the heat-treated mixture is forcibly cooled in the cooling step, if necessary, preferably in the range of 40 to 80 ° C., more preferably 50 to 70 ° C.
- a classification process it is preferable to cool so that the conditions described in the said classification process may be satisfied.
- the heat-treated mixture is referred to as “water absorbent resin particles” for convenience.
- This step is a step of adding a polyvalent metal salt to the water-absorbent resin particles obtained through the surface cross-linking step. This step is preferably performed at the time of surface crosslinking or after surface crosslinking.
- a polyvalent metal salt preferably a trivalent water-soluble polyvalent metal salt
- a particulate water-absorbing agent with improved SFC can be obtained without greatly reducing AAP. preferable.
- the polyvalent metal salt is preferably added as an aqueous solution.
- the concentration of the polyvalent metal salt in the aqueous solution is preferably 50% or more, more preferably 60% or more, and more preferably 60% or more with respect to the saturated concentration in order to suppress penetration and diffusion into the water absorbent resin.
- it is appropriately set within a range of 70% or more, particularly preferably 80% or more, and most preferably 90% or more (the upper limit is a saturated concentration).
- hydrophilic organic solvent an organic acid such as lactic acid, or a salt thereof can coexist in the aqueous solution of the polyvalent metal salt.
- Examples of the polyvalent metal salt used in this step include a metal sulfate selected from Zn, Be, Mg, Ca, Sr, Al, Fe, Mn, Ti, Zr, Ce, Ru, Y, Cr, and the like. Examples thereof include nitrates, carbonates, phosphates, organic acid salts, halides (such as chlorides), and the like. Furthermore, the polyvalent metal salts disclosed in JP-A-2005-11317 are also applied to the present invention.
- the trivalent water-soluble polyvalent metal salt examples include aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum sulfate, sodium aluminum sulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate, and chloride.
- Iron (III), cerium (III) chloride, ruthenium (III) chloride, yttrium chloride (III), chromium (III) chloride and the like can be mentioned.
- a salt having crystal water aluminum compounds such as aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium bissulfate aluminum, sodium aluminum bissulfate, potassium alum, ammonium alum, sodium alum, and sodium aluminate are preferable, and aluminum sulfate is more preferable. More preferred is an aqueous solution of aluminum sulfate. In addition, when using aluminum sulfate aqueous solution, it is especially preferable that the density
- the addition amount of the polyvalent metal salt is preferably within a range of 0.001 wt% to 5 wt%, more preferably 0.01 wt% to 1 wt% with respect to 100 parts by weight of the water absorbent resin particles. Set as appropriate.
- particulate water-absorbing agent is not particularly limited, but preferably includes absorbent body use for absorbent articles such as paper diapers, sanitary napkins, and incontinence pads. Among them, when used for “high-concentration diapers” in which the amount of water-absorbing resin used per sheet of diaper is large, excellent performance is exhibited.
- the “absorber” includes at least the particulate water-absorbing agent according to the present invention, and optionally includes other absorbent materials (for example, fibrous materials such as pulp fibers). The thing that becomes.
- the content of the water absorbent resin in the absorbent body is preferably 30% by weight to 100 wt%, more preferably 40 wt% to 100 wt%, still more preferably 50 wt% to 100 wt%, even more preferably 60 wt% to 100 wt%, particularly preferably 70 wt% to 100 wt%, Preferably, it is appropriately set within the range of 75 wt% to 95 wt%.
- a particulate water-absorbing agent comprising a polyacrylic acid (salt) -based water-absorbing resin as a main component, surface-crosslinked, and satisfying the following physical properties (1) to (3).
- the particulate water-absorbing agent according to any one of 1 to 9, further satisfying the following physical property (4): (4) Elastic modulus index (EMI) of particles having a particle size of 425 ⁇ m or more and less than 500 ⁇ m; Ten particulate water-absorbing agents that further satisfy the following physical properties (5).
- EMI Elastic modulus index
- A the proportion of particles having a particle size of 150 ⁇ m or more and less than 300 ⁇ m is 5 wt% to 50 wt%
- B the proportion of particles having a particle size of 300 ⁇ m or more and less than 425 ⁇ m is 10 wt% to 60 wt%
- C The proportion of particles having a particle size of 425 ⁇ m or more and less than 500 ⁇ m is 5 wt% to 50 wt%
- D The proportion of particles having a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m is 5 wt% to 50 wt%
- E The proportion of particles having a particle size of 600 ⁇ m or more and less than 850 ⁇ m is 0.1 wt% to 50 wt%
- An absorbent comprising the particulate water-absorbing agent according to any one of 1 to 13.
- the electric equipment presented in the examples and comparative examples used a power supply of 200 V or 100 V, 60 Hz.
- “liter” may be described as “L”
- “wt%” may be described as “wt%”.
- those equivalent to ISO 03696 Grade 2 were used unless otherwise specified.
- CRC centrifuge retention capacity
- AAP absorption capacity under pressure
- PSD particle size distribution
- D50 weight average particle size
- ⁇ logarithmic standard deviation of particle size distribution
- the PSD of the particulate water-absorbing agent according to the present invention was measured according to the EDANA method (ERT420.2-02). Further, D50 and ⁇ were measured according to “(3) Mass-Average Particle Diameter (D50) and Logical Standard Deviation ( ⁇ ) of Particle Diameter” described in US Pat. No. 7,638,570.
- FSR free swelling rate
- Vortex of the particulate water-absorbing agent according to the present invention was measured by the following procedure.
- CRC recovery CRC
- the particulate water-absorbing agent was weighed and evenly placed in a non-woven bag (80 mm ⁇ 100 mm) made of the same material as that used in the above (1) CRC measurement and heat-sealed. Then, it immersed in the pure water adjusted to 25 degreeC +/- 3 degreeC. After 90 minutes, the bag containing the particulate water-absorbing agent was pulled up, and drained at 250 G for 3 minutes using a centrifuge (Centrifuge / Type: H-122 manufactured by Kokusan Co., Ltd.).
- the bag containing the drained particulate water-absorbing agent was immersed in 1000 ml of a 0.9 wt% sodium chloride aqueous solution adjusted to 25 ° C. ⁇ 3 ° C. After 1 hour, the bag containing the particulate water-absorbing agent was pulled up and immersed in another 500 ml of a 0.9 wt% sodium chloride aqueous solution. This operation was repeated until the total immersion time was 3 hours. Thereafter, the bag containing the particulate water-absorbing agent was pulled up, and drained at 250 G for 3 minutes using the centrifuge. Subsequently, the weight W3 (g) of the bag containing the particulate water-absorbing agent was measured.
- AAP Rec. AAP (Recovery AAP) Rec. Of the particulate water-absorbing agent according to the present invention. AAP was measured by the following procedure using the apparatus (FIG. 1) used in the above (2) AAP measurement.
- the measuring apparatus was allowed to stand for 1 hour in a plastic container (length 9 cm ⁇ width 14 cm ⁇ height 5 cm) containing 400 ml of pure water. By this operation, the particulate water-absorbing agent is immersed in pure water for 1 hour.
- the cylindrical cell 101 is taken out from the plastic container with the weight 105 placed thereon, and transferred to another plastic container (9 cm long ⁇ 14 cm wide ⁇ 5 cm high) containing 100 ml of ethanol (special grade), and left for 12 hours. I put it. By this operation, the particulate water-absorbing agent was immersed in ethanol for 12 hours.
- the cylindrical cell 101 was taken out from the plastic container with the weight 105 placed thereon, and a filter paper having a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm. , The retained particle diameter of 5 ⁇ m) was moved onto a stack of 20 sheets and allowed to stand for 3 days.
- a filter paper having a diameter of 90 mm ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm. , The retained particle diameter of 5 ⁇ m) was moved onto a stack of 20 sheets and allowed to stand for 3 days.
- the glass filter 107 was placed in the metal vat 106, and 0.9% sodium chloride aqueous solution 109 was poured up to the height of the glass filter.
- the filter paper 108 is placed on the glass filter 107, and the cylindrical cell 101 containing the particulate water-absorbing agent that has been swelled with pure water and contracted with ethanol is placed on the glass filter 107 with the weight 105 placed thereon, and a normal AAP measurement is performed. It was swollen with a 0.9% sodium chloride aqueous solution for 1 hour in the same manner as the method. After the measurement was completed, the weight Wb (g) of the measuring device was measured.
- a particulate water-absorbing agent is evenly sprayed on a plastic cylindrical cell 251 having a diameter of 60 mm to which a stainless steel 400 mesh wire mesh 252 shown in FIG. 2 is attached, and a stainless steel 400 mesh wire mesh is applied to the bottom surface.
- the measurement apparatus was immersed in a plastic container (length 9 cm ⁇ width 14 cm ⁇ height 5 cm) containing 400 ml of pure water for 1 hour. Thereafter, the measuring device was transferred to a plastic container (length 9 cm ⁇ width 14 cm ⁇ height 5 cm) containing 100 ml of ethanol (special grade) and allowed to stand for 12 hours.
- the measuring device After standing in ethanol, the measuring device is taken out from the plastic container, and a filter paper having a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm, reserved particle diameter 5 ⁇ m. ) was moved onto a stack of 20 sheets and allowed to stand for 3 days. Thereafter, the glass filter 263 was placed in the metal vat 262, and artificial urine 264 having the following composition was poured to the height of the glass filter. On the glass filter 263, the cylindrical cell 251 containing the particulate water-absorbing agent subjected to the above-described swelling with pure water and shrinking with ethanol was placed with the weight 261 placed thereon and allowed to swell for 1 hour.
- a filter paper having a diameter of 90 mm ADVANTEC Toyo Co., Ltd., product name: (JIS P 3801, No. 2), thickness 0.26 mm, reserved particle diameter 5 ⁇ m.
- the artificial urine is composed of 0.25 g of calcium chloride dihydrate, 2.0 g of potassium chloride, 0.50 g of magnesium chloride hexahydrate, 2.0 g of sodium sulfate, 0.85 g of ammonium dihydrogen phosphate, phosphoric acid. A mixture of 0.15 g of hydrogen diammonium and 994.25 g of pure water was used.
- a measuring device was placed on the support base 253, and the resin pipe 204 was inserted into the cylindrical cell 251 from the lid 260.
- the resin pipe 204 is connected to a container 201 closed with a rubber stopper through which a glass tube 202 having a diameter of 5 mm passes, and the container 201 is filled with a 0.69% sodium chloride aqueous solution 203.
- the support base 253 is adjusted so that the height difference between the lower surface of the cylindrical cell 251 and the lower portion of the glass tube 202 is 5 cm.
- the cock 205 is opened, 0.69% chloride is formed from the lower surface of the cylindrical cell 251 to a height of 5 cm.
- the sodium aqueous solution 203 is adjusted to be poured.
- the resin pipe 204 was inserted into the cylindrical cell 251, the cock 205 was opened and a 0.69% sodium chloride aqueous solution was poured. SFC was measured.
- CRC / CRC (recovery rate) Rec.
- CRC / CRC is the CRC obtained by the method described in (1) above, and the Rec. Value obtained by the method described in (8) above. Based on the CRC (Calculation 4), the calculation was performed.
- EMI elastic modulus index
- Elastic modulus [Elastic modulus] (Procedure 1. Classification of particulate water-absorbing agent) Using 6 JIS standard sieves (THE IIDA TESTING SIEVE; diameter 8 cm) having openings of 710 ⁇ m, 600 ⁇ m, 500 ⁇ m, 425 ⁇ m, 300 ⁇ m and 150 ⁇ m, 10 g of the particulate water-absorbing agent was classified. Classification was performed by sieving for 5 minutes with a vibration classifier (IIDA SIEVE SHAKER / Type; ES-65 type, rotation speed: 60 Hz, 230 rpm, impact number: 60 Hz, 130 rpm / SER No. 0501).
- IIDA SIEVE SHAKER / Type ES-65 type, rotation speed: 60 Hz, 230 rpm, impact number: 60 Hz, 130 rpm / SER No. 0501
- the procedure 1 a particulate water-absorbing agent classified according to particle size was obtained.
- the particulate water-absorbing agent remaining on the JIS standard sieve having an opening of 500 ⁇ m has a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m.
- the CRCdw used in the above (1) CRC measurement uses pure water instead of 0.9 wt% sodium chloride aqueous solution, the sample amount is changed from 0.2 g to 0.05 g, and the immersion time is 30 minutes. It is calculated
- the swollen gel 302 obtained in the above procedure 2 is put together with the swelling liquid (pure water) into the dish 301 (inner diameter: 51 mm, depth: 10 mm / aluminum) of the rheometer 300, and the swollen gel 302 is dished. Aligned evenly within 301.
- the dish 301 is fixed to the rheometer 300, and the rheometer 300 and the dish 301 are installed so as to be strictly horizontal.
- Measurement mode Vibration (dynamic) measurement Strain: 0.02% Angular frequency: 10 rad / s
- Vertical load: 10N to 40N / discontinuous load Increase by 5N each time the measurement time passes 100 seconds Measurement interval; 5 seconds Number of measurement points; 20 points X7 load condition Measurement time: 700 seconds ( 5 seconds x 20 points x 7 load conditions).
- the above measurement was performed on the particulate water-absorbing agent of each particle size obtained in Procedure 1.
- the dish 301 and the parallel plate 303 used in the above measurement use a new one each time, or wash thoroughly after use and polish the dried one (cloth made by Trusco Nakayama Co., Ltd., base material; cotton, polishing) Agent: A polishing material (particle size: # 15000) with wax was used, and then washed again.
- the arithmetic average value of the total 20 measured values obtained in a measurement time of 600 seconds to 700 seconds (40 N as a load) is used as the elastic modulus G ′ ( Unit: Pa).
- EMI Elastic Modulus Index
- CRC is the value measured about the particulate water absorbing agent before performing the procedure 1 in the measurement of the said elasticity modulus,
- the measuring method is as having described in (1).
- the “swelling gel” is obtained by the procedure 2 in the measurement of the elastic modulus.
- the diffusion / absorption time of the particulate water-absorbing agent according to the present invention is determined by the following method using a diffusion / absorption time measuring device (FIGS. 5 and 6). Was measured. For the measurement, a diffusion absorption time measuring device whose outline is shown in FIG. 5 was used.
- the inner dimension is 401 mm wide, 151 mm long, 30 mm high, and the outer dimension is 411 mm wide, 161 mm long, 35 mm high.
- a 300 mm double-sided tape (manufactured by Nichiban Co., Ltd., double-sided tape Nystack NW-10) 402 was attached along each inner wall in the horizontal direction.
- a tissue paper (thickness of 0.1 mm, width 300 mm, length 150 mm) (Nippon Paper Crecia Kimwipe L-100 cut into the above dimensions) 403 was affixed without wrinkles.
- 2.7 g of pulverized wood pulp was humidified by spraying mist for 5 seconds using an ultrasonic humidifier (NP-408, manufactured by Nippon Co., Ltd .; atomization ability: 600 g / hr).
- the humidified pulp and 13.5 g ⁇ 0.010 g of the particulate water-absorbing agent were placed in a food processor (MK-K48P manufactured by Panasonic) and pulverized and mixed for 5 seconds to obtain an absorbent body.
- MK-K48P manufactured by Panasonic
- the absorbent body obtained by the above operation was spread uniformly on the tissue paper 403 in a range of 15 mm inside, 300 mm wide, and 120 mm long from each inner wall of the acrylic resin tray 401 in the horizontal direction.
- the antistatic treatment was performed on the wall surface of the acrylic resin tray 401 so as not to generate static electricity.
- a top sheet 405 was placed on the dispersed absorbent body 404.
- the position of the top sheet 405 was arranged such that the distance from the inner wall of the acrylic resin tray 401 was the same in the horizontal direction and the same in the vertical direction.
- top sheet 405 a sheet taken from Unicharm Co., Ltd., trade name Mummy Pokotape type, L size (purchased in Japan in June 2014, package bottom number: 4040888043) was used.
- the taken-out sheet had a size of 14 cm long and 39 cm wide and a weight of 3.3 g to 3.6 g. Since the pulp in the diaper was adhered by the adhesive, it was used after sufficiently removing.
- a wire mesh 406 JIS wire mesh, stainless steel, 20 mesh
- An acrylic resin top lid 408 400 mm wide, 150 mm long, 20 mm thick, 100 mm high cylindrical portion having a cylindrical insertion hole 407 with an inner diameter of 30 mm was placed on the wire mesh 406 at the center.
- FIG. 6 is a view showing the outer appearance of the upper lid and tray of the measuring apparatus used for measuring the diffusion absorption time, (a) is a top view of the upper lid, (b) is a side view of the upper lid, and (c) is It is a top view of a tray, (d) is a side view of a tray.
- a represents the inner diameter of the insertion hole 407
- b and c represent the horizontal and vertical dimensions of the upper lid 408, respectively.
- d corresponds to the height of the cylindrical portion of the insertion hole 407
- e corresponds to the thickness of the upper lid 408.
- FIG. 6 shows the positional relationship of the tissue paper 403 in the acrylic resin tray 401.
- f and g indicate that the tissue paper 403 is located in a portion inside 50.5 mm from the inner wall in the longitudinal direction
- h indicates the horizontal dimension (300 mm) of the tissue paper 403.
- “i” indicates a horizontal internal dimension (401 mm) of the acrylic resin tray 401
- “j” indicates a vertical internal dimension of the acrylic resin tray 401 and a vertical dimension (151 mm) of the tissue paper 403.
- k indicates a difference (5 mm) between the inner dimension and the outer dimension in the horizontal direction of the acrylic resin tray 401.
- l indicates the difference (5 mm) between the inner dimension and the outer dimension in the vertical direction of the acrylic resin tray 401.
- m indicates the lateral outer dimension (411 mm) of the acrylic resin tray 401
- n indicates the height (35 mm) of the acrylic resin tray 401.
- a weight 409 was placed on the upper lid 408 so that the absorber 404 was equally loaded. At this time, the weight of the weight 409 was adjusted so that the total weight of the wire mesh 406, the acrylic resin upper lid 408, and the weight 409 was 7485 g or 22770 g (the pressure of the load was relative to the installation area of the absorber). Are 2.07 kPa and 6.21 kPa).
- 0.9 wt% aqueous sodium chloride solution adjusted to 37 ⁇ 0.5 ° C. from the inlet hole 407 of the diffusion absorption time measuring device 400 (preferably colored with blue No. 1 of 0.04 g per 1000 g) 75g) was charged in 5 seconds.
- the introduced sodium chloride aqueous solution diffused on the wire mesh 406 while passing through the wire mesh 406 and was absorbed by the absorber 404.
- the time when all the liquid retained between the mesh openings on the metal mesh 406 was absorbed was defined as the first diffusion absorption time [sec].
- the second aqueous solution is introduced, and the time during which all the aqueous solution held between the mesh openings of the wire mesh 406 is absorbed is the second time.
- the diffusion absorption time was [sec].
- the above-mentioned aqueous solution was added at 10-minute intervals, and the time during which all of the aqueous solution held between the mesh openings of the metal mesh 406 was absorbed was defined as the third diffusion absorption time [sec].
- Example 1 In a polypropylene container having an inner diameter of 50 mm and a capacity of 120 mL, acrylic acid 23.2 g, polyethylene glycol diacrylate (weight average molecular weight (Mw) 523) 0.135 g (0.080 mol%), 2.0 wt% diethylenetriaminepentaacetic acid A solution (A) was prepared by mixing 0.071 g of a trisodium aqueous solution, 22.2 g of ion-exchanged water, and 9.6 g of a 48.5 wt% sodium hydroxide aqueous solution.
- Mw weight average molecular weight
- the size of the stainless steel petri dish was 88 mm in inner diameter and 20 mm in height.
- the surface temperature of the stainless steel petri dish was preheated to 50 ° C. using a hot plate (NEO HOTPLATE H1-1000, manufactured by Inoue Seieido Co., Ltd.).
- the stainless steel petri dish was immediately covered with a glass container having an exhaust port, and sucked with a vacuum pump so that the pressure in the case was 85 kPa as a gauge pressure.
- the pressure outside the case was 101.3 kPa (normal pressure).
- reaction solution (1) was poured into the stainless steel petri dish, polymerization started after a while.
- the polymerization proceeded while expanding and foaming in all directions while generating water vapor, and then contracted to a size slightly larger than the bottom surface. This expansion and contraction was completed within about 1 minute.
- hydrogel a hydrogel crosslinked polymer
- the obtained hydrogel (1) was subjected to gel pulverization using a screw extruder (meet chopper) having the following specifications.
- the screw extruder was provided with a porous plate at the tip, and the diameter of the porous plate was 82 mm, the hole diameter was 8.0 mm, the number of holes was 33, and the thickness was 9.5 mm.
- gel pulverization was performed while adding hydrous gel (1) at about 360 g / min and adding 90 ° C. deionized water at 50 g / min in parallel with the gel input.
- the gel-pulverized hydrous gel (1) was spread on a stainless steel wire mesh having an opening of 850 ⁇ m, and hot-air drying was performed at 190 ° C. for 30 minutes. Subsequently, the dried polymer (1) obtained by the drying operation was pulverized with a roll mill (manufactured by Inoguchi Giken Co., Ltd., WML type roll pulverizer), and then a JIS standard sieve having an opening of 710 ⁇ m and an opening of 175 ⁇ m was used. And classified.
- an irregularly crushed water-absorbent resin powder (1) having a solid content of 96.4% by weight, a weight average particle diameter (D50) of 395 ⁇ m, and a logarithmic standard deviation ( ⁇ ) of 0.35 of the particle size distribution was obtained.
- the water-absorbent resin powder (1) has a CRC (centrifuge retention capacity) of 38.6 g / g, an Ext (water-soluble content) of 10.8% by weight, and the proportion of particles having a particle diameter of less than 150 ⁇ m is 1. It was 2% by weight.
- the obtained humidified mixture (1) is put in a sealed container and kept at 80 ° C. for 6 hours, and then the CRC of the resulting water-absorbent resin particles is 26.7 g / g to 27.27 for about 35 minutes at 212 ° C. It heat-processed so that it might become in the range of 7 g / g.
- the obtained water-absorbent resin particles were pulverized until they passed through a JIS standard sieve having an opening of 850 ⁇ m to obtain surface-crosslinked water-absorbent resin particles (1).
- the powder After the above addition, after drying at 60 ° C. for 30 minutes under windless conditions, the powder is crushed until it passes through a JIS standard sieve having an aperture of 850 ⁇ m, and 30 g of the crushed particles are 6 cm in diameter and 11 cm in height.
- 10 g of glass beads having a diameter of 6 mm were added and attached to a paint shaker (Toyo Seisakusho, product No. 488, details of the device disclosed in Japanese Patent Laid-Open No. 9-235378), and 10 at 800 cycle / min (CPM). Shake for minutes.
- the glass beads were removed with a JIS standard sieve having an opening of 2 mm to obtain a particulate water-absorbing agent (1).
- Example 2 In Example 1, the amount of polyethylene glycol diacrylate (weight average molecular weight (Mw) 523) was changed from 0.135 g (0.080 mol%) to 0.101 g (0.060 mol%), and water absorption obtained Except that the heat treatment was performed so that the CRC of the resin particles was in the range of 29.5 g / g to 30.5 g / g, the same operation as in Example 1 was performed to obtain the particulate water-absorbing agent (2). Obtained.
- Mw weight average molecular weight
- Example 1 In Example 1, except having changed the pressure in a case into a normal pressure (101.3 kPa), operation similar to Example 1 was performed and the comparative particulate water absorbing agent (1) was obtained.
- Example 2 In Example 1, the amount of polyethylene glycol diacrylate (weight average molecular weight (Mw) 523) was changed from 0.135 g (0.080 mol%) to 0.338 g (0.200 mol%), and the surface treatment step The comparative particulate water-absorbing agent (2) was obtained by performing the same operation as in Example 1 except that the above was not performed.
- Mw weight average molecular weight
- Example 9 In Example 1, the obtained humidified mixture (1) was not kept at 80 ° C. for 6 hours, but quickly at 212 ° C. for about 35 minutes. The resulting water-absorbent resin particles had a CRC of 26.7 g / g to 27.7 g.
- a comparative particulate water-absorbing agent (9) was obtained in the same manner as in Example 1 except that the heat treatment was performed so as to be within the range of / g. With respect to the obtained comparative particulate water-absorbing agent (9), “Rec. CRC / CRC”, “Rec. AAP”, “Rec. SFC” and “EMI” were measured and calculated. The results are shown in Table 1. In addition, Table 12 shows the elastic modulus measurement results for each particle size.
- Example 3 The diffusion absorption time was measured using the particulate water-absorbing agent (1) obtained in Example 1. Table 13 shows the measurement results.
- Comparative Example 10 The diffusion absorption time was measured using the comparative particulate water-absorbing agent (1) obtained in Comparative Example 1. Table 13 shows the measurement results.
- FIG. 7 is a graph in which “Rec. CRC / CRC” is plotted on the horizontal axis and “EMI (600/500)” is plotted on the vertical axis for each particulate water-absorbing agent obtained in Examples and Comparative Examples. In addition, the notation of each plot has shown actual; Example, ratio; Comparative example, "Rec.AAP” value / "Rec.SFC” value.
- the “EMI (600/500)” means an elastic modulus index for particles having a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m.
- the particulate water-absorbing agent (real 1, real 2) according to the present invention has a recovery rate (Rec. CRC / CRC) in the range of 1.05 to 1.20, and an elastic modulus index. (EMI) (600/500) indicates 5500 or more.
- AAP 15 g / g or more, Rec.
- the SFC is an excellent value of 5 ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 or more.
- Rec. AAP and Rec. Since SFC is once swollen with pure water, the swelling ratio under pressure and liquid permeability after the surface cross-linked layer is damaged through a swelling ratio extremely higher than actual use are evaluated. That is, Rec. AAP and Rec. It is considered that the particulate water-absorbing agent having a high SFC suppresses a decrease in water-absorbing performance even when urine is absorbed a plurality of times and even when a paper diaper once used is washed with water.
- Comparative Example 10 and Comparative Example 11 the particulate absorbent of the present invention is 22 kg or more. It can be seen that the diffusion absorption rate is excellent even under a high load.
- the particulate water-absorbing agent obtained by the method of the present invention has a recovery rate (Rec. CRC / CRC) of 1.05 to 1.20, and an elastic modulus index (EMI) of particles having a particle diameter of 500 ⁇ m or more and less than 600 ⁇ m.
- Rec. CRC / CRC recovery rate
- EMI elastic modulus index
- Example 3 Comparative Example 10, and Comparative Example 11, when the particulate water-absorbing agent of Example 3 that satisfies all the above conditions is used for the absorbent body, it is possible to suppress a decrease in water absorption performance even under high loads. I understand.
- the particulate water-absorbing agent of the present invention when used for the absorber, it is possible to provide a high-performance absorber that is excellent in liquid uptake even under high pressure.
- the particulate water-absorbing agent according to the present invention and the particulate water-absorbing agent produced by the production method according to the present invention are useful for absorbent articles of absorbent articles such as paper diapers, sanitary napkins and medical blood-collecting agents. is there. Also, pet urine absorbent, urine gelling agent for mobile toilets and freshness-preserving agent such as fruits and vegetables, drip absorbent for meat and seafood, cold insulation agent, disposable warmer, gelling agent for batteries, water retention agent for plants and soil, etc. It can also be used in various applications such as anti-condensation agents, water-stopping agents and packing agents, and artificial snow.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Materials Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
(2)粒子径が500μm以上600μm未満である粒子の弾性率指数(EMI);5500以上
(3)Rec.CRC/CRCで規定されるリカバリー率;1.05~1.20
また、本発明に係る吸収体は、上記の粒子状吸水剤を含有する吸収体である。
(1-1)「吸水性樹脂」
本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味する。ここで、「水膨潤性」とは、ERT441.2-02にて規定されるCRC(遠心分離機保持容量)が5g/g以上であることをいい、「水不溶性」とは、ERT470.2-02にて規定されるExt(水可溶分)が50重量%以下であることをいう。
本発明における「ポリアクリル酸(塩)」とは、グラフト成分を必要に応じて含んでおり、繰り返し単位として、アクリル酸、その塩、またはその組み合わせ(本明細書中ではこれらをまとめて「アクリル酸(塩)」と称する)を主成分とする重合体を意味する。
「EDANA」とは、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」とは、欧州標準(ほぼ世界標準)である吸水性樹脂の測定方法(EDANA Recommended Test Methods)の略称である。なお、本発明においては、特に断りのない限り、ERT原本(公知文献:2002年改定)に準拠して測定を行う。
「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下での吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.20gを不織布製の袋に入れた後、大過剰の0.9重量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)のことをいう。
「AAP」は、Absorption Against Pressureの略称であり、吸水性樹脂の加圧下での吸水倍率を意味する。具体的には、吸水性樹脂0.90gを大過剰の0.9重量%塩化ナトリウム水溶液に対して、1時間、2.06kPa(0.3psi)荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。なお、ERT442.2-02では、Absorption Under Pressureと表記されているが、実質的に同一内容である。また、荷重条件を、目的に応じて4.83kPa(0.7psi)に変更することもある。
「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(水可溶成分量)を意味する。具体的には、吸水性樹脂1.0gを0.9重量%塩化ナトリウム水溶液200mlに添加し、500rpmで16時間攪拌した後、水溶液に溶解した物質の量(単位;重量%)のことをいう。水可溶分の測定には、pH滴定が用いられる。
「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される、吸水性樹脂の粒度分布を意味する。なお、重量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された「(3)Mass-Average Particle Diameter(D50) and Logarithmic Standard Deviation(σζ) of Particle Diameter Distribution」と同様の方法で測定する。
(1-4-1)「SFC」
本発明における「SFC」とは、Saline Flow Conductivity(食塩水流れ誘導性)の略称であり、荷重2.07kPaにおける吸水性樹脂に対する0.69重量%塩化ナトリウム水溶液の通液性(単位;×10-7・cm3・s・g-1)を意味する。SFCの値が大きいほど、吸水性樹脂は、高い液透過性を有することとなる。米国特許第5849405号明細書に記載されたSFC試験方法に準じて測定される。
本発明における「FSR」とは、Free Swell Rate(自由膨潤速度)の略称であり、吸水性樹脂1gが0.9重量%塩化ナトリウム水溶液20gを吸水するときの速度(単位;g/(g・s))を意味する。
本発明における「Vortex」とは、JIS K7224に記載の「高吸水性樹脂の吸水速度試験法」に準じて求めた吸水時間であり、吸水性樹脂2gが0.9重量%塩化ナトリウム水溶液50gを吸水するのに要する時間(単位;秒)のことをいう。
本発明における「Rec.CRC(リカバリーCRC)」とは、吸水性樹脂を一度、純水で膨潤させた後、遠心分離機を用いて水切り(又はエタノール置換した後に風乾)し、その後、0.9重量%の塩化ナトリウム水溶液で再度膨潤させたときの、無加圧下吸水倍率(単位;g/g)のことをいう。なお、具体的な測定方法は実施例で説明する。
本発明における「Rec.AAP(リカバリーAAP)」とは、純水での膨潤を経た吸水性樹脂の0.9重量%塩化ナトリウム水溶液に対する加圧下吸水倍率(単位;g/g)のことをいう。なお、具体的な測定方法は実施例で説明する。
本発明における「Rec.SFC(リカバリーSFC)」とは、純水での膨潤を経た吸水性樹脂の、荷重2.07kPaにおける吸水性樹脂に対する0.69重量%塩化ナトリウム水溶液の通液性(単位;×10-7・cm3・s・g-1)のことをいう。なお、具体的な測定方法は実施例で説明する。
本発明における「弾性率指数」とは、弾性率を膨潤ゲル粒子の理論表面積及びCRCで補正した値であり、吸水性樹脂の性能を判断する指標となる値である。また、本明細書では、弾性率指数を「EMI」と略記する場合もある。なお、上記「膨潤ゲル粒子」とは、吸水性樹脂を純水によって膨潤させて得られた膨潤ゲルの粒子である。また、具体的な測定方法は実施例で説明する。
本発明における「拡散吸収時間」とは、吸水性樹脂または、0.9重量%塩化ナトリウム水溶液での膨潤を経た吸水性樹脂の、0.9重量%塩化ナトリウム水溶液75gに対する加圧下吸水時間(単位;秒)のことをいう。上記水溶液が、膨潤を経ていない吸水性樹脂に全て吸収された時間を1回目の拡散吸収時間、1回目の上記水溶液の投入開始から10分後に、2回目の上記水溶液の投入を行い、上記水溶液が、一度の膨潤を経た吸水性樹脂に全て吸収された時間を2回目の拡散吸収時間、同様に、10分間隔で上記水溶液の投入を行い、上記水溶液が、二度の膨潤を経た吸水性樹脂に全て吸収された時間を3回目の拡散吸収時間とした。なお、具体的な測定方法は実施例で説明する。
本明細書中において、範囲を示す「X~Y」は、「X以上、Y以下」を意味する。重量の単位である「t(トン)」は、「Metric ton(メトリック トン)」を意味し、更に、特に注釈のない限り、「ppm」は「重量ppm」を意味する。「重量」と「質量」、「重量%」と「質量%」、「重量部」と「質量部」は同義語として扱う。更に、「~酸(塩)」は「~酸及び/又はその塩」を意味し、「(メタ)アクリル」は「アクリル及び/又はメタクリル」を意味する。
本発明に係る粒子状吸水剤は、ポリアクリル酸(塩)系吸水性樹脂を主成分とし、表面架橋されていると共に、下記(1)~(3)の物性を満たす、粒子状吸水剤である。
(2)粒子径が500μm以上600μm未満である粒子の弾性率指数(EMI);5500以上
(3)Rec.CRC/CRCで規定されるリカバリー率;1.05~1.20
以下、本発明に係る粒子状吸水剤の物性について、詳細に説明する。
本発明に係る粒子状吸水剤のCRCは、好ましくは23g/g以上、より好ましくは25g/g以上、更に好ましくは26g/g以上である。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは50g/g以下、より好ましくは40g/g以下である。
本発明に係る粒子状吸水剤のAAPは、好ましくは15g/g以上、より好ましくは17g/g以上、更に好ましくは20g/g以上、特に好ましくは22g/g以上、最も好ましくは23g/g以上である。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは30g/g以下である。
本発明に係る粒子状吸水剤のExtは、通常50重量%以下であり、好ましくは35重量%以下、より好ましくは25重量%以下、更に好ましくは15重量%以下である。下限値については特に限定されないが、好ましくは0重量%、より好ましくは0.1重量%程度である。
本発明に係る粒子状吸水剤のPSDとして、粒子径が150μm以上850μm未満である粒子の割合は、90重量%以上、好ましくは95重量%以上、より好ましくは97重量%以上、更に好ましくは98重量%(上限は100重量%)である。また、粒子径が150μm以上710μm未満である粒子の割合は、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは97重量%以上、特に好ましくは98重量%(上限は100重量%)である。
本発明に係る粒子状吸水剤のSFCは、好ましくは10以上、より好ましくは20以上、更に好ましくは30以上、更により好ましくは50以上、特に好ましくは70以上、最も好ましくは90以上である。上限値については特に限定されないが、好ましくは3000以下、より好ましくは2000以下である。
本発明に係る粒子状吸水剤のFSRは、好ましくは0.28以上、より好ましくは0.30以上、更に好ましくは0.35以上である。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは1.0以下である。
本発明に係る粒子状吸水剤のVortexは、好ましくは42秒以下、より好ましくは40秒以下、更に好ましくは35秒以下、特に好ましくは30秒以下、最も好ましくは25秒以下である。下限値は、0秒超であればよく特に限定されないが、好ましくは5秒以上、より好ましくは10秒以上である。
本発明に係る粒子状吸水剤のRec.CRCは、好ましくは24g/g以上、より好ましくは26g/g以上、更に好ましくは27g/g以上である。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは54g/g以下、より好ましくは48g/g以下、更に好ましくは47g/g以下、特に好ましくは42g/g以下である。
本発明に係る粒子状吸水剤のRec.AAPは、好ましくは10g/g以上、より好ましくは12g/g以上、更に好ましくは15g/g以上である。上限値は、高値ほど好ましく特に限定されないが、他の物性とのバランスの観点から、好ましくは30g/g以下、より好ましくは25g/g以下である。
本発明に係る粒子状吸水剤のRec.SFCは、好ましくは5以上、より好ましくは7以上、更に好ましくは8以上、特に好ましくは10以上である。
本発明に係る粒子状吸水剤のRec.CRC/CRCは、好ましくは1.05以上、より好ましくは1.06以上、更に好ましくは1.07以上、特に好ましくは1.08以上である。上限値は、好ましくは1.20以下、より好ましくは1.18以下、更に好ましくは1.16以下、特に好ましくは1.15以下である。
本発明に係る粒子状吸水剤は、弾性に富み、良好なリカバリー率を有し、吸水特性及び通液性に優れている。したがって、当該「弾性」について、「弾性率」を用いて評価することが好ましい。しかしながら、当該弾性率は、粒子状吸水剤の吸水倍率によって変化することが判明している。そのため、粒子状吸水剤の弾性は、吸水倍率の影響を考慮した指標とすることが好ましい。
弾性率測定時の分級操作で得られた、粒子径が600μm以上710μm未満である粒子のEMI(弾性率指数)は、好ましくは5500以上、より好ましくは6000以上、更に好ましくは6500以上、特に好ましくは7000以上、最も好ましくは7500以上である。上限値は、好ましくは15500以下、より好ましくは11500以下、更に好ましくは9500以下、特に好ましくは8500以下、最も好ましくは8000以下である。
弾性率測定時の分級操作で得られた、粒子径が500μm以上600μm未満である粒子のEMI(弾性率指数)は、5500以上、好ましくは6000以上、より好ましくは6500以上、更に好ましくは7000以上である。上限値は、好ましくは15000以下、より好ましくは11000以下、更に好ましくは9500以下、より更に好ましくは9000以下、特に好ましくは8000以下、最も好ましくは7500以下である。
弾性率測定時の分級操作で得られた、粒子径が425μm以上500μm未満である粒子のEMI(弾性率指数)は、好ましくは4500以上、より好ましくは5000以上、更に好ましくは5500以上、特に好ましくは6000以上、最も好ましくは6500以上である。上限値は、好ましくは14500以下、より好ましくは10500以下、更に好ましくは8500以下、特に好ましくは7500以下、最も好ましくは7000以下である。
弾性率測定時の分級操作で得られた、粒子径が300μm以上425μm未満である粒子のEMI(弾性率指数)は、好ましくは3500以上、より好ましくは4000以上、更に好ましくは4500以上、特に好ましくは5000以上、最も好ましくは6000以上である。上限値は、好ましくは14000以下、より好ましくは10000以下、更に好ましくは8000以下、特に好ましくは7000以下、最も好ましくは6500以下である。
弾性率測定時の分級操作で得られた、粒子径が150μm以上300μm未満である粒子のEMI(弾性率指数)は、好ましくは3500以上、より好ましくは4000以上である。上限値は、好ましくは13500以下、より好ましくは9500以下、更に好ましくは4500以下である。
本発明に係る粒子状吸水剤の1回目の拡散吸収時間は、2.07kPa荷重下において、好ましくは26秒以下、より好ましくは24秒以下であり、2回目の拡散吸収時間は、好ましくは37秒以下、より好ましくは35秒以下であり、3回目の拡散吸収時間は、好ましくは67秒以下、より好ましくは65秒以下である。6.21kPa荷重下における1回目の拡散吸収時間は、好ましくは39秒以下、より好ましくは35秒以下であり、2回目の拡散吸収時間は、好ましくは75秒以下、より好ましくは70秒以下であり、3回目の拡散吸収時間は、好ましくは160秒以下、より好ましくは140秒以下である。拡散吸収時間を比較することで、高圧力下での液の取込み性の評価を行うことができる。拡散吸収時間がより短い場合、膨潤を経た後であっても高い加圧下吸水倍率を示すことがわかる。
以下、本発明の粒子状吸水剤の製造方法について説明する。当該製造方法は、上述した粒子状吸水剤が得られる製造方法であればよく、特に限定されないが、例えば、アクリル酸(塩)を主成分とする単量体水溶液を重合して、含水ゲル状架橋重合体が得られる重合工程が含まれる製造方法であることが好ましい。当該製造方法によって、上述した物性を有する粒子状吸水剤が効率よく得られる。
本工程は、アクリル酸(塩)を主成分として含む水溶液(以下、「単量体水溶液」と称する)を作製する工程である。なお、得られる粒子状吸水剤の吸水性能が低下しない範囲で、単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液について説明する。
本発明では、得られる粒子状吸水剤の物性及び生産性の観点から、単量体として好ましくはアクリル酸及び/又はアクリル酸塩(以下、「アクリル酸(塩)」と称する)が用いられる。
本発明において「塩基性化合物」とは、塩基性を示す化合物を指し、例えば、水酸化ナトリウム等が挙げられる。なお、例えば、市販の水酸化ナトリウムには、不純物として亜鉛、鉄、鉛等の重金属がppmオーダーで含まれており、厳密には塩基性組成物ということもできるが、本発明では塩基性化合物の範疇に含まれるものとする。
上記アクリル酸塩として、粒子状吸水剤の製造プラント内でアクリル酸を中和したものを使用する場合、当該中和を行う時機としては特に限定されず、アクリル酸に対する中和(重合前)、又は、アクリル酸の架橋重合中での中和(重合中)、アクリル酸を架橋重合して得られる含水ゲル状架橋重合体に対する中和(重合後)の何れかを選択又は併用することができる。なお、上記中和は、連続式でもバッチ式でもよく特に限定されないが、生産効率等の観点から、連続式が好ましい。
本発明においては、上述したアクリル酸(塩)に加えて、米国特許出願公開第2005/0215734号に記載された単量体(以下、「他の単量体」と称する)を、必要に応じて、アクリル酸(塩)と併用することができる。当該他の単量体としては、特に限定されないが、水溶性又は疎水性の不飽和単量体が挙げられる。
本発明の内部架橋剤として、米国特許第6241928号に記載された内部架橋剤が本発明に適用される。これらの中から反応性を考慮して1種又は2種以上の内部架橋剤が選択される。
本発明において、得られる粒子状吸水剤の物性向上の観点から、下記の物質を単量体水溶液の作製時に添加することもできる。
本工程において、単量体水溶液を作製する際に、上記の各物質が添加される。当該単量体水溶液中の単量体成分の濃度としては特に限定されないが、粒子状吸水剤の物性の観点から、好ましくは10重量%~80重量%、より好ましくは20重量%~75重量%、更に好ましくは30重量%~70重量%、特に好ましくは40重量%~60重量%の範囲内で適宜設定される。
本発明における上記重合工程では、バルク重合、逆相懸濁重合、又は沈澱重合を行うことも可能であるが、性能面や重合の制御の容易さから、単量体の水溶液又は水分散液を用いて水溶液重合を行うことが好ましい。かかる重合方法は、例えば、米国特許第4625001号、同第4769427号、同第4873299号、同第4093776号、同第4367323号、同第4446261号、同第4683274号、同第4690996号、同第4721647号、同第4738867号、同第4748076号、米国特許出願公開第2002/40095号等に記載されている。
本工程は、上記重合工程で得られた含水ゲルをゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る、任意の工程である。
本工程は、上記ゲル粉砕工程で得られた粒子状含水ゲルを所望する範囲の樹脂固形分まで乾燥させて、乾燥重合体を得る工程である。
本工程は、上記乾燥工程で得られた乾燥重合体を粉砕(粉砕工程)し、所望する範囲の粒度に調整(分級工程)して、吸水性樹脂粉末を得る工程である。なお、粒子状吸水剤のPSD(粒度分布)が上記(2-4)の範囲を満たすように、本工程が行われる。また、本工程は、粉砕対象物が乾燥工程を経ている点で、上記(3-2)ゲル粉砕工程と異なる。
本工程は、上述した工程を経て得られる吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmまでの部分)に、更に架橋密度の高い部分を設ける工程であり、混合工程、加熱処理工程及び冷却工程(任意)から構成されている。当該表面架橋工程において、吸水性樹脂粉末の表面でラジカル架橋や表面重合、表面架橋剤との架橋反応等が行われ、表面架橋された吸水性樹脂粉末(以下、「吸水性樹脂粒子」と称する)が得られる。
本発明で使用される表面架橋剤としては、特に限定されないが、有機又は無機の表面架橋剤が挙げられる。中でも、粒子状吸水剤の物性や表面架橋剤の取扱性の観点から、カルボキシル基と反応する有機表面架橋剤(脱水縮合性表面架橋剤)が好ましい。例えば、米国特許第7183456号に開示される1種又は2種以上の表面架橋剤が挙げられる。より具体的には、多価アルコール化合物、エポキシ化合物、ハロエポキシ化合物、多価アミン化合物又はそのハロエポキシ化合物との縮合物、オキサゾリン化合物、オキサゾリジノン化合物、アルキレンカーボネート化合物、環状尿素化合物等が挙げられる。中でも、本発明の効果の観点から、多価アルコール化合物、アルキレンカーボネート化合物、オキサゾリジノン化合物から選択される少なくとも1種の脱水エステル反応性表面架橋剤を使用することが好ましい。
本工程は、上記吸水性樹脂粉末と上記表面架橋剤とを混合して加湿混合物を得る工程である。当該混合方法については特に限定されないが、例えば、予め表面架橋剤溶液を作製しておき、当該溶液を吸水性樹脂粉末に対して、好ましくは噴霧又は滴下して、より好ましくは噴霧して、混合する方法が挙げられる。
本工程は、上記混合工程から排出された加湿混合物を加熱して、吸水性樹脂粉末の表面上で架橋反応を起こさせる工程である。
本工程は、上記加熱処理工程後に必要に応じて設置される任意の工程であり、加熱処理された混合物を所定の温度まで強制冷却する工程である。
上記の表面架橋剤を用いる表面架橋に代わって、ラジカル重合開始剤を用いる表面架橋方法(米国特許第4783510号、国際公開第2006/062258号)、又は吸水性樹脂の表面で単量体を重合する表面架橋方法(米国出願公開第2005/048221号、同第2009/0239966号、国際公開第2009/048160号)を用いることもできる。
本工程は、上記表面架橋工程を経て得られた吸水性樹脂粒子に、多価金属塩を添加する工程である。本工程は、上記表面架橋時又は表面架橋後に行うことが好ましい。吸水性樹脂粒子に、多価金属塩、好ましくは3価の水溶性多価金属塩を添加することで、AAPを大きく低下させることなく、SFCを向上させた粒子状吸水剤が得られるため、好ましい。
本発明に係る粒子状吸水剤の用途は、特に限定されないが、好ましくは紙オムツ、生理用ナプキン、失禁パット等の吸収性物品の吸収体用途が挙げられる。中でも、紙オムツ1枚あたりの吸水性樹脂の使用量が多い「高濃度オムツ」に使用される場合、優れた性能を発揮する。
すなわち、本発明は以下の態様であり得る。
1.ポリアクリル酸(塩)系吸水性樹脂を主成分とし、表面架橋されていると共に、下記(1)~(3)の物性を満たす、粒子状吸水剤。
(1)粒子径が150μm以上850μm未満である粒子の割合;90重量%以上
(2)粒子径が500μm以上600μm未満である粒子の弾性率指数(EMI);5500以上
(3)Rec.CRC/CRCで規定されるリカバリー率;1.05~1.20
2.上記(3)におけるリカバリー率が1.05~1.16である、1の粒子状吸水剤。
3.上記(2)における弾性率指数(EMI)が6000~9500である、1又は2の粒子状吸水剤。
4.AAP(加圧下吸水倍率)が20g/g以上である、1~3の何れか1つの粒子状吸水剤。
5.SFC(食塩水流れ誘導性)が10×10-7・cm3・s・g-1以上である、1~4の何れか1つの粒子状吸水剤。
6.ボルテックス法による吸水時間が42秒以下である、1~5の何れか1つの粒子状吸水剤。
7.FSR(自由膨潤速度)が0.28g/(g・s)以上である、1~6の何れか1つの粒子状吸水剤。
8.共有結合性表面架橋剤によって表面架橋されている、1~7の何れか1つの粒子状吸水剤。
9.粒子径が150μm未満である粒子の割合が5重量%以下である、1~8の何れか1つの粒子状吸水剤。
10.下記(4)の物性を更に満たす、1~9の何れか1つの粒子状吸水剤。
(4)粒子径が425μm以上500μm未満である粒子の弾性率指数(EMI);4500以上
11.下記(5)の物性を更に満たす、10の粒子状吸水剤。
(5)粒子径が300μm以上425μm未満である粒子の弾性率指数(EMI);3500以上
12.(a)粒子径が150μm以上300μm未満である粒子の割合が5重量%~50重量%、
(b)粒子径が300μm以上425μm未満である粒子の割合が10重量%~60重量%、
(c)粒子径が425μm以上500μm未満である粒子の割合が5重量%~50重量%、
(d)粒子径が500μm以上600μm未満である粒子の割合が5重量%~50重量%、
(e)粒子径が600μm以上850μm未満である粒子の割合が0.1重量%~50重量%
であり、上記(a)~(e)にそれぞれ示す粒子径の粒子の割合の合計が90重量%~100重量%である、1~11の何れか1つの粒子状吸水剤。
13.重量平均粒子径(D50)が300μm~500μmであり、粒度分布の対数標準偏差(σζ)が0.25~0.45であることを特徴とする1~12の何れか1つの粒子状吸水剤。
14.1~13の何れか1つの粒子状吸水剤を含有する、吸収体。
15.1~13の何れか1つの粒子状吸水剤を含有する、吸収性物品。
以下、本発明に係る粒子状吸水剤について、その物性の測定方法を説明する。なお、測定対象が、粒子状吸水剤以外である場合、例えば、吸水性樹脂粉末である場合は、物性測定の説明中の「粒子状吸水剤」を「吸水性樹脂粉末」に読み替えて適用する。
本発明に係る粒子状吸水剤のCRCは、EDANA法(ERT441.2-02)に準拠して測定した。
本発明に係る粒子状吸水剤のAAPは、EDANA法(ERT442.2-02)に準拠して、装置(図1)を利用して、測定した。なお、荷重条件を4.83kPa(0.7psi)に変更して測定した。
本発明に係る粒子状吸水剤のExtは、EDANA法(ERT470.2-02)に準拠して測定した。
本発明に係る粒子状吸水剤のPSDは、EDANA法(ERT420.2-02)に準拠して測定した。また、D50及びσζは、米国特許第7638570号に記載された「(3)Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution」に準拠して測定した。
本発明に係る粒子状吸水剤のSFCは、米国特許第5669894号に開示された測定方法に準拠して、装置(図2)を利用して、測定した。
本発明に係る粒子状吸水剤のFSRは、国際公開第2009/016055号に開示された測定方法に準拠して測定した。
本発明に係る粒子状吸水剤のVortexは、以下の手順により測定した。
本発明に係る粒子状吸水剤のRec.CRCは、以下の手順により測定した。
本発明に係る粒子状吸水剤のRec.CRC/CRCは、上記(1)に記載された手法により求めたCRC、及び上記(8)に記載された手法により求めたRec.CRCから、下記(式4)に基づいて、算出した。
[弾性率]
(手順1.粒子状吸水剤の分級)
目開きが710μm、600μm、500μm、425μm、300μm、150μmである6つのJIS標準篩(THE IIDA TESTING SIEVE;径8cm)を用いて、粒子状吸水剤10gを分級した。分級は、振動分級機(IIDA SIEVE SHAKER/Type;ES-65型、回転数;60Hz、230rpm、衝撃数;60Hz、130rpm/SER.No.0501)で5分間篩い分けることで実施した。
上記手順1で得られた粒度別に分級された粒子状吸水剤について、下記(式5)に従って算出して得られた量(添加量)を、容量10mlのプラスチック製容器に入れ、純水8.0gを加えて16時間浸漬させて膨潤した。
上記手順2で得られた膨潤した粒子状吸水剤(以下、「膨潤ゲル」と称する)について、レオメーター(アントンパール社製;MCR301)(図4参照)を用いて、当該膨潤ゲルの弾性率を測定した。以下、図4を用いて、測定方法を詳細に説明する。
測定モード ;振動(動的)測定
歪み(strain);0.02%
角周波数 ;10rad/s
測定開始時 ;パラレルプレート52が膨潤ゲル51に接触した時点
垂直荷重 ;10N~40N/非連続的に荷重
測定時間が100秒経過するごとに5Nずつ増加させる
測定間隔 ;5秒
測定点数 ;20点×7荷重条件
測定時間 ;700秒(=5秒×20点×7荷重条件)。
上記CRC、CRCdw及び弾性率の値を用いて、下記(式6)~(式14)に基づいて、弾性率指数(EMI)を算出した。当該弾性率指数は、弾性率G’を膨潤ゲルの理論表面積及びCRCで補正した値であり、粒子状吸水剤の性能を判断する指標となる値である。以下、弾性率指数をEMIと略記する。
本発明に係る粒子状吸水剤の拡散吸収時間は、拡散吸収時間測定装置(図5および図6)を利用して、以下に記載する方法によって、拡散吸収時間[sec]を測定した。測定には、図5に外観の概略を示す拡散吸収時間測定装置を用いた。
内径50mm、容量120mLのポリプロピレン製容器にアクリル酸23.2g、ポリエチレングリコールジアクリレート(重量平均分子量(Mw)523)0.135g(0.080モル%)、2.0重量%のジエチレントリアミン5酢酸・3ナトリウム水溶液0.071g、イオン交換水22.2g及び48.5重量%の水酸化ナトリウム水溶液9.6gを混合し、溶液(A)を作製した。
実施例1において、ポリエチレングリコールジアクリレート(重量平均分子量(Mw)523)の量を0.135g(0.080モル%)から0.101g(0.060モル%)に変更し、得られる吸水性樹脂粒子のCRCが29.5g/g~30.5g/gの範囲内となるように加熱処理を行った以外は、実施例1と同様の操作を行って、粒子状吸水剤(2)を得た。
実施例1において、ケース内の圧力を常圧(101.3kPa)に変更した以外は、実施例1と同様の操作を行って、比較粒子状吸水剤(1)を得た。
実施例1において、ポリエチレングリコールジアクリレート(重量平均分子量(Mw)523)の量を0.135g(0.080モル%)から0.338g(0.200モル%)に変更し、更に表面処理工程を行わなかった以外は、実施例1と同様の操作を行って、比較粒子状吸水剤(2)を得た。
2013年5月に日本で購入した紙オムツ(プロクター・アンド・ギャンブル社製:商品名「Pampers さらさらケアパンツ」)から吸水性樹脂を取り出し、比較粒子状吸水剤(3)とした。
2014年12月にパキスタンで購入した紙オムツ(オンテックス社製:商品名「Canbebe」)から吸水性樹脂を取り出し、比較粒子状吸水剤(4)とした。
2013年6月にベルギーで購入した紙オムツ(プロクター・アンド・ギャンブル社製:商品名「Pampers Easy Up Pants」、サイズ4Maxi)から吸水性樹脂を取り出し、比較粒子状吸水剤(5)とした。
2013年2月にポーランドで購入した紙オムツ(プロクター・アンド・ギャンブル社製:商品名「Pampers Cruisers」、サイズ4Maxi)から吸水性樹脂を取り出し、比較粒子状吸水剤(6)とした。
2011年10月にインドネシアで購入した紙オムツ(ユニ・チャーム社製:商品名「Mamy Poko Pants」、サイズL)から吸水性樹脂を取り出し、比較粒子状吸水剤(7)とした。
2013年4月にトルコで購入した紙オムツ(キンバリー・クラーク社製:商品名「HUGGIES」、サイズ4Maxi)から吸水性樹脂を取り出し、比較粒子状吸水剤(8)とした。
実施例1において、得られた加湿混合物(1)を80℃で6時間保温せずに速やかに212℃で35分間程度、得られる吸水性樹脂粒子のCRCが26.7g/g~27.7g/gの範囲内になるように加熱処理した以外は実施例1と同様の操作を行って、比較粒子状吸水剤(9)を得た。上記得られた比較粒子状吸水剤(9)について、「Rec.CRC/CRC」、「Rec.AAP」、「Rec.SFC」及び「EMI」を測定、算出した。その結果を表1に示す。また、粒度別の弾性率測定結果を表12に示す。
実施例1で得られた粒子状吸水剤(1)を用いて拡散吸収時間を測定した。測定結果を表13に示す。
比較例1で得られた比較粒子状吸水剤(1)を用いて拡散吸収時間を測定した。測定結果を表13に示す。
比較例9で得られた比較粒子状吸水剤(9)を用いて拡散吸収時間を測定した。測定結果を表13に示す。
図7は、実施例及び比較例で得られた各粒子状吸水剤について、横軸に「Rec.CRC/CRC」、縦軸に「EMI(600/500)」をプロットしたグラフである。なお、各プロットの表記は、実;実施例、比;比較例、「Rec.AAP」の値/「Rec.SFC」の値を示している。また、上記「EMI(600/500)」は、粒子径が500μm以上600μm未満である粒子についての弾性率指数を意味する。
101;円筒セル
102;金網
103;粒子状吸水剤
104;ピストン
105;錘
106;金属バット
107;グラスフィルター
108;濾紙
109;0.9%塩化ナトリウム水溶液
200;測定装置
201;容器
202;ガラス管
203;0.69%塩化ナトリウム水溶液
204;樹脂製配管
205;コック
250;測定装置
251;円筒セル
252;金網
254;粒子状吸水剤
255;金網
256;ピストン
257;穴
260;蓋
261;錘
262;金属バット
263;グラスフィルター
264;人工尿
300;レオメーター
301;ディッシュ(収容部)
302;膨潤ゲル
303;パラレルプレート(板状体)
304;回転軸
400;拡散吸収時間測定装置
401;アクリル樹脂製トレー
402;両面テープ
403;ティッシュペーパー
404;吸収体
405;トップシート
406;金網
407;投入孔
408;上蓋
409;錘
Claims (15)
- ポリアクリル酸(塩)系吸水性樹脂を主成分とし、表面架橋されていると共に、下記(1)~(3)の物性を満たす、粒子状吸水剤。
(1)粒子径が150μm以上850μm未満である粒子の割合;90重量%以上
(2)粒子径が500μm以上600μm未満である粒子の弾性率指数(EMI);5500以上
(3)Rec.CRC/CRCで規定されるリカバリー率;1.05~1.20 - 上記(3)におけるリカバリー率が1.05~1.16である、請求項1に記載の粒子状吸水剤。
- 上記(2)における弾性率指数(EMI)が6000~9500である、請求項1又は2に記載の粒子状吸水剤。
- AAP(加圧下吸水倍率)が20g/g以上である、請求項1~3の何れか1項に記載の粒子状吸水剤。
- SFC(食塩水流れ誘導性)が10×10-7・cm3・s・g-1以上である、請求項1~4の何れか1項に記載の粒子状吸水剤。
- ボルテックス法による吸水時間が42秒以下である、請求項1~5の何れか1項に記載の粒子状吸水剤。
- FSR(自由膨潤速度)が0.28g/(g・s)以上である、請求項1~6の何れか1項に記載の粒子状吸水剤。
- 共有結合性表面架橋剤によって表面架橋されている、請求項1~7の何れか1項に記載の粒子状吸水剤。
- 粒子径が150μm未満である粒子の割合が5重量%以下である、請求項1~8の何れか1項に記載の粒子状吸水剤。
- 下記(4)の物性を更に満たす、請求項1~9の何れか1項に記載の粒子状吸水剤。
(4)粒子径が425μm以上500μm未満である粒子の弾性率指数(EMI);4500以上 - 下記(5)の物性を更に満たす、請求項10に記載の粒子状吸水剤。
(5)粒子径が300μm以上425μm未満である粒子の弾性率指数(EMI);3500以上 - (a)粒子径が150μm以上300μm未満である粒子の割合が5重量%~50重量%、
(b)粒子径が300μm以上425μm未満である粒子の割合が10重量%~60重量%、
(c)粒子径が425μm以上500μm未満である粒子の割合が5重量%~50重量%、
(d)粒子径が500μm以上600μm未満である粒子の割合が5重量%~50重量%、
(e)粒子径が600μm以上850μm未満である粒子の割合が0.1重量%~50重量%
であり、上記(a)~(e)にそれぞれ示す粒子径の粒子の割合の合計が90重量%~100重量%である、請求項1~11の何れか1項に記載の粒子状吸水剤。 - 重量平均粒子径(D50)が300μm~500μmであり、粒度分布の対数標準偏差(σζ)が0.25~0.45であることを特徴とする請求項1~12の何れか1項に記載の粒子状吸水剤。
- 請求項1~13の何れか1項に記載の粒子状吸水剤を含有する、吸収体。
- 請求項1~13の何れか1項に記載の粒子状吸水剤を含有する、吸収性物品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/739,798 US10532341B2 (en) | 2015-07-01 | 2016-07-01 | Particulate water absorbing agent |
EP16818080.0A EP3318324B1 (en) | 2015-07-01 | 2016-07-01 | Particulate water absorbing agent |
JP2017526458A JP6774946B2 (ja) | 2015-07-01 | 2016-07-01 | 粒子状吸水剤 |
CN201680038020.5A CN107847905A (zh) | 2015-07-01 | 2016-07-01 | 颗粒状吸水剂 |
KR1020187002593A KR102528087B1 (ko) | 2015-07-01 | 2016-07-01 | 입자상 흡수제 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015132985 | 2015-07-01 | ||
JP2015-132985 | 2015-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002972A1 true WO2017002972A1 (ja) | 2017-01-05 |
Family
ID=57608523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069715 WO2017002972A1 (ja) | 2015-07-01 | 2016-07-01 | 粒子状吸水剤 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10532341B2 (ja) |
EP (1) | EP3318324B1 (ja) |
JP (1) | JP6774946B2 (ja) |
KR (1) | KR102528087B1 (ja) |
CN (1) | CN107847905A (ja) |
WO (1) | WO2017002972A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020184398A1 (ja) * | 2019-03-08 | 2020-09-17 | ||
WO2020184394A1 (ja) * | 2019-03-08 | 2020-09-17 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、吸水性樹脂粒子の通液維持率の測定方法、及び吸水性樹脂粒子の製造方法 |
JPWO2021140905A1 (ja) * | 2020-01-06 | 2021-07-15 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020500693A (ja) * | 2016-10-26 | 2020-01-16 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 超吸収体粒子をサイロから排出して、バルクコンテナに充填する方法 |
SG11202009108TA (en) | 2018-03-28 | 2020-10-29 | Sumitomo Seika Chemicals | Water-absorbing resin particles |
CN108553220A (zh) * | 2018-05-15 | 2018-09-21 | 杭州考拉之屋实业有限公司 | 一种卫生用品吸水芯体及其制备工艺 |
KR102457690B1 (ko) * | 2019-01-17 | 2022-10-21 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
JP7561117B2 (ja) * | 2019-03-08 | 2024-10-03 | 住友精化株式会社 | 吸水性樹脂粒子 |
CN115348897A (zh) * | 2020-03-31 | 2022-11-15 | 株式会社日本触媒 | 颗粒状吸水剂 |
KR102543031B1 (ko) | 2020-12-18 | 2023-06-14 | 현대제철 주식회사 | 부생가스 혼합 이송 시스템 및 이의 제어 방법 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175319A (ja) * | 1990-07-17 | 1992-06-23 | Sanyo Chem Ind Ltd | 吸水性樹脂の製造法 |
JPH05112654A (ja) * | 1991-04-10 | 1993-05-07 | Nippon Shokubai Co Ltd | 粒子状含水ゲル状重合体および吸水性樹脂の製造方法 |
JPH0788171A (ja) * | 1993-06-18 | 1995-04-04 | Sanyo Chem Ind Ltd | 紙おむつ用吸収剤組成物 |
KR20060072148A (ko) | 2003-09-19 | 2006-06-27 | 가부시키가이샤 닛폰 쇼쿠바이 | 수분 흡수제와 그 제조방법 |
JP2009531467A (ja) * | 2006-03-27 | 2009-09-03 | 株式会社日本触媒 | 内部構造が改善された吸水性樹脂、およびその製造方法 |
WO2011040530A1 (ja) * | 2009-09-30 | 2011-04-07 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
WO2014041969A1 (ja) * | 2012-09-11 | 2014-03-20 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤 |
WO2016006132A1 (ja) * | 2014-07-11 | 2016-01-14 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
WO2016052537A1 (ja) * | 2014-09-29 | 2016-04-07 | 株式会社日本触媒 | 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法 |
Family Cites Families (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US655239A (en) | 1899-05-29 | 1900-08-07 | Thomas Jespersen | Process of bleaching by electrolytic chlorin water. |
US4755562A (en) | 1986-06-10 | 1988-07-05 | American Colloid Company | Surface treated absorbent polymers |
US4734478A (en) * | 1984-07-02 | 1988-03-29 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Water absorbing agent |
US4783510A (en) | 1986-06-04 | 1988-11-08 | Taiyo Fishery Co., Ltd. | Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process |
JPH0446617A (ja) | 1990-06-08 | 1992-02-17 | Proizv Ob Elektrostaltyazhmasch | 管用冷間圧延スタンドの駆動装置 |
DE4020780C1 (ja) | 1990-06-29 | 1991-08-29 | Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De | |
EP0467073B1 (en) | 1990-07-17 | 1995-04-12 | Sanyo Chemical Industries Ltd. | Process for producing water-absorbing resins |
US5250640A (en) | 1991-04-10 | 1993-10-05 | Nippon Shokubai Co., Ltd. | Method for production of particulate hydrogel polymer and absorbent resin |
EP0629411B1 (en) | 1993-06-18 | 2001-10-31 | SANYO CHEMICAL INDUSTRIES, Ltd. | Absorbent composition and disposable diaper containing the same |
DE4333056C2 (de) | 1993-09-29 | 1998-07-02 | Stockhausen Chem Fab Gmbh | Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel |
US5610208A (en) | 1994-02-17 | 1997-03-11 | Nippon Shokubai Co., Ltd. | Water-absorbent agent, method for production thereof, and water-absorbent composition |
WO1998049221A1 (en) | 1997-04-29 | 1998-11-05 | The Dow Chemical Company | Superabsorbent polymers having improved processability |
DE19807502B4 (de) | 1998-02-21 | 2004-04-08 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung |
US6265488B1 (en) | 1998-02-24 | 2001-07-24 | Nippon Shokubai Co., Ltd. | Production process for water-absorbing agent |
EP0940149A1 (en) | 1998-03-04 | 1999-09-08 | Nippon Shokubai Co., Ltd. | "Water-absorbing agent and production process therefor" |
JPH11279287A (ja) | 1998-03-31 | 1999-10-12 | Nippon Shokubai Co Ltd | 吸水剤組成物および吸水剤の製造方法 |
TW506119B (en) | 1998-05-25 | 2002-10-11 | United Microelectronics Corp | Manufacturing method of well |
US6297319B1 (en) | 1998-11-05 | 2001-10-02 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production process therefor |
DE19854573A1 (de) | 1998-11-26 | 2000-05-31 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen |
DE19854574A1 (de) | 1998-11-26 | 2000-05-31 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen |
US6297335B1 (en) | 1999-02-05 | 2001-10-02 | Basf Aktiengesellschaft | Crosslinked, hydrophilic, highly swellable hydrogels, production thereof and use thereof |
DE19909653A1 (de) | 1999-03-05 | 2000-09-07 | Stockhausen Chem Fab Gmbh | Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE19909838A1 (de) | 1999-03-05 | 2000-09-07 | Stockhausen Chem Fab Gmbh | Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung |
US6239230B1 (en) | 1999-09-07 | 2001-05-29 | Bask Aktiengesellschaft | Surface-treated superabsorbent polymer particles |
CN100471526C (zh) | 2000-03-31 | 2009-03-25 | 施托克赫森有限公司 | 包括在表面上交联的粉末聚合物的吸液吸收层 |
DE10016041A1 (de) | 2000-03-31 | 2001-10-04 | Stockhausen Chem Fab Gmbh | Pulverförmige an der Oberfläche vernetzte Polymerisate |
DE10043710B4 (de) | 2000-09-04 | 2015-01-15 | Evonik Degussa Gmbh | Verwendung pulverförmiger an der Oberfläche nachvernetzter Polymerisate und Hygieneartikel |
DE10043706A1 (de) | 2000-09-04 | 2002-04-25 | Stockhausen Chem Fab Gmbh | Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung |
US6720389B2 (en) | 2000-09-20 | 2004-04-13 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
US6809158B2 (en) | 2000-10-20 | 2004-10-26 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and process for producing the same |
US7507475B2 (en) | 2001-03-07 | 2009-03-24 | Evonik Stockhausen Gmbh | Pulverulent polymers crosslinked on the surface |
US7312278B2 (en) | 2001-06-08 | 2007-12-25 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production process therefor, and sanitary material |
JP4630547B2 (ja) | 2001-07-12 | 2011-02-09 | ディーエックスオー ラブズ | 幾何学的歪みに関係するフォーマットされた情報を出力する方法およびシステム |
CN100346843C (zh) * | 2003-02-10 | 2007-11-07 | 株式会社日本触媒 | 吸水剂 |
DE602004028080D1 (de) | 2003-08-27 | 2010-08-26 | Nippon Catalytic Chem Ind | Verfahren zur Herstellung von oberflächenbehandelten wasserabsorbierenden Harzteilchen |
JP2005111024A (ja) * | 2003-10-09 | 2005-04-28 | Sanyo Chem Ind Ltd | 再利用可能な衛材用吸収性物品及びその再利用方法 |
BRPI0417388B1 (pt) * | 2003-12-12 | 2014-11-18 | Nippon Catalytic Chem Ind | Agente para absorção de água e método de fabricação do mesmo |
DE102004009438A1 (de) | 2004-02-24 | 2005-09-15 | Basf Ag | Verfahren zur Oberflächennachvernetzung wasserabsorbierender Polymere |
EP1730218B1 (en) * | 2004-03-29 | 2010-12-22 | Nippon Shokubai Co.,Ltd. | Particulate water absorbing agent with irregularly pulverized shape |
US8846823B2 (en) * | 2004-05-07 | 2014-09-30 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
CN1993176A (zh) * | 2004-08-06 | 2007-07-04 | 株式会社日本触媒 | 以吸水树脂为主成分的颗粒吸水剂、其生产方法、和吸水性物品 |
CN101031608B (zh) | 2004-09-24 | 2010-12-08 | 株式会社日本触媒 | 含作为主要组分的吸水树脂的颗粒状吸水剂 |
TW200619280A (en) | 2004-12-10 | 2006-06-16 | Nippon Catalytic Chem Ind | Method for production of modified water absorbent resin |
CN101160355B (zh) * | 2005-04-12 | 2011-08-10 | 株式会社日本触媒 | 包括聚丙烯酸(聚丙烯酸盐)基吸水树脂作为主要成分的粒状吸水剂、其制造方法、吸水芯,和使用该粒状吸水剂的吸收制品 |
CN101321785B (zh) | 2005-12-05 | 2011-11-16 | 巴斯夫欧洲公司 | 制备具有高吸收容量和高渗透性的吸水性聚合物的方法 |
CN102698719B (zh) | 2006-03-27 | 2016-04-27 | 株式会社日本触媒 | 吸水剂、使用所述吸水剂的吸水芯片以及制备吸水剂的方法 |
US9115235B2 (en) * | 2006-08-31 | 2015-08-25 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
JP5415256B2 (ja) * | 2006-08-31 | 2014-02-12 | 株式会社日本触媒 | 粒子状吸水剤およびその製造方法 |
WO2008092842A1 (de) | 2007-01-29 | 2008-08-07 | Basf Se | VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT |
EP2115019B2 (de) | 2007-01-29 | 2019-07-10 | Basf Se | VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT |
WO2008108343A1 (ja) * | 2007-03-05 | 2008-09-12 | Nippon Shokubai Co., Ltd. | 吸水剤及びその製造方法 |
US20100323885A1 (en) | 2007-03-12 | 2010-12-23 | Basf Se A German Corporation | Process for Producing Re-Moisturised Surface-Crosslinked Superabsorbents |
SA08290402B1 (ar) * | 2007-07-04 | 2014-05-22 | نيبون شوكوباي كو. ، ليمتد | عامل دقائقي ماص للماء وطريقة لتصنيعه |
US20100261604A1 (en) | 2007-12-19 | 2010-10-14 | Norbert Herfert | Process for Producing Surface Crosslinked Superabsorbents |
US9051067B2 (en) * | 2008-03-13 | 2015-06-09 | Nippon Shokubai Co., Ltd. | Method for producing particulate water-absorbing agent composed principally of water-absorbing resin |
JP5390511B2 (ja) | 2008-04-11 | 2014-01-15 | 株式会社日本触媒 | 吸水性樹脂の表面処理方法および吸水性樹脂の製造方法 |
WO2010003897A1 (de) | 2008-07-09 | 2010-01-14 | Basf Se | Verfahren zur oberflächennachvernetzung wasserabsorbierender polymerpartikel |
KR101350958B1 (ko) | 2009-11-04 | 2014-01-24 | 주식회사 엘지화학 | 높은 생산성을 갖는 흡수성수지의 제조방법 |
WO2011117263A1 (en) | 2010-03-24 | 2011-09-29 | Basf Se | A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution |
EP3115382B1 (en) * | 2010-04-07 | 2019-07-10 | Nippon Shokubai Co., Ltd. | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
US9669386B2 (en) * | 2010-09-30 | 2017-06-06 | Nippon Shokubai Co., Ltd. | Particulate water-absorbing agent and production method for the same |
KR101191051B1 (ko) | 2011-04-13 | 2012-10-15 | 주식회사이지무브 | 긴급구난 및 피난용 계단이송의자 |
US8802786B2 (en) * | 2011-04-21 | 2014-08-12 | Evonik Corporation | Particulate superabsorbent polymer composition having improved performance properties |
JP6013729B2 (ja) * | 2011-12-27 | 2016-10-25 | 株式会社リブドゥコーポレーション | 吸水性樹脂粉末およびこれを用いた吸収体、吸収性物品 |
WO2014021432A1 (ja) * | 2012-08-01 | 2014-02-06 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
CN109608665A (zh) * | 2012-08-30 | 2019-04-12 | 株式会社日本触媒 | 颗粒状吸水剂及其制造方法 |
JP2017006808A (ja) * | 2013-11-14 | 2017-01-12 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
JP6557721B2 (ja) | 2015-03-30 | 2019-08-07 | 株式会社日本触媒 | 粒子状吸水剤 |
KR101824910B1 (ko) | 2017-05-23 | 2018-02-02 | 주식회사 레딕스 | 조사 방향 조절이 가능한 led 조명 장치 및 그 제어 방법 |
-
2016
- 2016-07-01 CN CN201680038020.5A patent/CN107847905A/zh active Pending
- 2016-07-01 US US15/739,798 patent/US10532341B2/en active Active
- 2016-07-01 KR KR1020187002593A patent/KR102528087B1/ko active Active
- 2016-07-01 JP JP2017526458A patent/JP6774946B2/ja active Active
- 2016-07-01 WO PCT/JP2016/069715 patent/WO2017002972A1/ja active Application Filing
- 2016-07-01 EP EP16818080.0A patent/EP3318324B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175319A (ja) * | 1990-07-17 | 1992-06-23 | Sanyo Chem Ind Ltd | 吸水性樹脂の製造法 |
JPH05112654A (ja) * | 1991-04-10 | 1993-05-07 | Nippon Shokubai Co Ltd | 粒子状含水ゲル状重合体および吸水性樹脂の製造方法 |
JPH0788171A (ja) * | 1993-06-18 | 1995-04-04 | Sanyo Chem Ind Ltd | 紙おむつ用吸収剤組成物 |
KR20060072148A (ko) | 2003-09-19 | 2006-06-27 | 가부시키가이샤 닛폰 쇼쿠바이 | 수분 흡수제와 그 제조방법 |
US20100308263A1 (en) | 2003-09-19 | 2010-12-09 | Kazushi Torii | Water absorbent and producing method of same |
JP2009531467A (ja) * | 2006-03-27 | 2009-09-03 | 株式会社日本触媒 | 内部構造が改善された吸水性樹脂、およびその製造方法 |
WO2011040530A1 (ja) * | 2009-09-30 | 2011-04-07 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
WO2014041969A1 (ja) * | 2012-09-11 | 2014-03-20 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤 |
WO2016006132A1 (ja) * | 2014-07-11 | 2016-01-14 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
WO2016052537A1 (ja) * | 2014-09-29 | 2016-04-07 | 株式会社日本触媒 | 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3318324A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020184398A1 (ja) * | 2019-03-08 | 2020-09-17 | ||
WO2020184394A1 (ja) * | 2019-03-08 | 2020-09-17 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、吸水性樹脂粒子の通液維持率の測定方法、及び吸水性樹脂粒子の製造方法 |
JP7588579B2 (ja) | 2019-03-08 | 2024-11-22 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、吸水性樹脂粒子の通液維持率の測定方法、及び吸水性樹脂粒子の製造方法 |
JPWO2021140905A1 (ja) * | 2020-01-06 | 2021-07-15 | ||
WO2021140905A1 (ja) * | 2020-01-06 | 2021-07-15 | 株式会社日本触媒 | 吸収体、吸水性樹脂、及び吸収性物品 |
JP7387765B2 (ja) | 2020-01-06 | 2023-11-28 | 株式会社日本触媒 | 吸収体、吸水性樹脂、及び吸収性物品 |
Also Published As
Publication number | Publication date |
---|---|
KR20180022883A (ko) | 2018-03-06 |
US20180161756A1 (en) | 2018-06-14 |
EP3318324A1 (en) | 2018-05-09 |
US10532341B2 (en) | 2020-01-14 |
KR102528087B1 (ko) | 2023-05-03 |
EP3318324A4 (en) | 2018-11-14 |
CN107847905A (zh) | 2018-03-27 |
EP3318324B1 (en) | 2021-08-25 |
JP6774946B2 (ja) | 2020-10-28 |
JPWO2017002972A1 (ja) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017002972A1 (ja) | 粒子状吸水剤 | |
US10525445B2 (en) | Particulate water absorbing agent and water absorbent article | |
JP6340348B2 (ja) | 内部構造が改善された吸水性樹脂の製造方法 | |
JP6557721B2 (ja) | 粒子状吸水剤 | |
JP6532894B2 (ja) | 吸水剤及びその製造方法、並びに評価方法及び測定方法 | |
JP6441374B2 (ja) | 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法 | |
JP5128098B2 (ja) | 粒子状吸水剤の製造方法および粒子状吸水剤 | |
JP4380873B2 (ja) | 吸水性樹脂粉末およびその用途 | |
US10196500B2 (en) | Particulate water absorbing agent and process for producing same | |
JP6980398B2 (ja) | 吸水剤及びその製造方法 | |
JP2009209373A (ja) | 吸水剤およびその製造方法、並びに、衛生材料 | |
JP7299958B2 (ja) | 粒子状吸水剤 | |
JP4722545B2 (ja) | 吸水性樹脂組成物とその製造方法 | |
JP4722546B2 (ja) | 吸水性樹脂組成物とその製造方法 | |
JP2000000463A (ja) | 吸水剤、吸収体、吸収性物品、および吸収特性の測定方法 | |
JP2023088497A (ja) | 表面架橋された(メタ)アクリル酸(塩)系吸水性樹脂を含む吸水剤および(メタ)アクリル酸(塩)系吸水性樹脂の製造方法 | |
JP2010214371A (ja) | 吸水剤、吸収体、吸収性物品、および吸収特性の測定方法 | |
JP2018065905A (ja) | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16818080 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017526458 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15739798 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187002593 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016818080 Country of ref document: EP |