WO2015022767A1 - 光媒体再生装置および光媒体再生方法 - Google Patents
光媒体再生装置および光媒体再生方法 Download PDFInfo
- Publication number
- WO2015022767A1 WO2015022767A1 PCT/JP2014/003412 JP2014003412W WO2015022767A1 WO 2015022767 A1 WO2015022767 A1 WO 2015022767A1 JP 2014003412 W JP2014003412 W JP 2014003412W WO 2015022767 A1 WO2015022767 A1 WO 2015022767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical medium
- signal
- unit
- pattern
- equalization
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 135
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000001514 detection method Methods 0.000 claims abstract description 51
- 230000003044 adaptive effect Effects 0.000 claims description 69
- 238000012545 processing Methods 0.000 claims description 49
- 230000004044 response Effects 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000007476 Maximum Likelihood Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 6
- 230000004075 alteration Effects 0.000 description 36
- 206010010071 Coma Diseases 0.000 description 34
- 230000000007 visual effect Effects 0.000 description 24
- 230000008859 change Effects 0.000 description 19
- 239000011159 matrix material Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 208000001644 thecoma Diseases 0.000 description 7
- 102100031830 Afadin- and alpha-actinin-binding protein Human genes 0.000 description 4
- 101710182459 Afadin- and alpha-actinin-binding protein Proteins 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 102100040370 5-hydroxytryptamine receptor 5A Human genes 0.000 description 3
- 101000964048 Homo sapiens 5-hydroxytryptamine receptor 5A Proteins 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10009—Improvement or modification of read or write signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10009—Improvement or modification of read or write signals
- G11B20/10046—Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/13—Optical detectors therefor
- G11B7/131—Arrangement of detectors in a multiple array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
Definitions
- the present disclosure relates to an optical medium reproducing apparatus and an optical medium reproducing method for reproducing an optical medium such as an optical disc.
- Patent Document 1 describes that crosstalk is canceled by supplying reproduction signals of a track to be reproduced and tracks on both sides thereof to an adaptive equalizer unit and controlling tap coefficients of the adaptive equalizer unit. It is done.
- Patent Document 1 three beams are required to simultaneously read a track to be reproduced and a track on both sides. It was necessary to match the phase of the reproduced signal read by the three beams. It is also possible that one beam sequentially reproduces three tracks and synchronize the reproduction signal. A memory is required to synchronize. Therefore, the one described in Patent Document 1 has a problem that the configuration of the optical pickup becomes complicated, the phase alignment becomes complicated, and the circuit scale becomes large. Furthermore, the one described in Patent Document 1 does not mention the use of densification in the linear density direction.
- an object of the present disclosure is to provide an optical medium reproducing apparatus and an optical medium reproducing method capable of canceling crosstalk using a reproduction signal of one track and achieving high density in the linear density direction. It is to provide.
- the present disclosure is an optical medium reproducing apparatus for optically reproducing an optical medium in which a plurality of tracks are formed, At least one channel corresponding to the radially outer area of the cross section of the beam, at least one channel corresponding to different areas located in the tangential direction, and one channel corresponding to the other area, which are returned from the optical medium And a detection unit that forms a detection signal of each of the channels.
- It has a plurality of equalizer units to which detection signals of a plurality of channels are respectively supplied, calculates the outputs of the plurality of equalizer units and outputs it as an equalizing signal, and the phase difference between two regions is set to a predetermined one Multi-input equalizer unit, And a binarization unit for performing binarization processing on the equalized signal to obtain binary data.
- crosstalk can be canceled using only the read output of the track to be reproduced. Therefore, it is not necessary to use three beams for reading, and furthermore, it is not necessary to reproduce three tracks consecutively by one beam and to synchronize by memory. Therefore, there is an advantage that the configuration of the optical pickup does not become complicated, phase alignment becomes unnecessary, and memory does not increase. Thus, it is possible to achieve high density of the optical disc with a simpler configuration. Furthermore, the present disclosure can achieve densification in the radial and linear density directions. In addition, the effect described here is not necessarily limited and may be any effect described in the present disclosure.
- FIG. 1 is a block diagram showing a configuration of an optical disc device according to an embodiment of the present disclosure. It is a basic diagram which shows the structure of the optical pick-up in one embodiment of this indication. It is a block diagram of an example of a data detection processing part in one embodiment. It is a block diagram of an example of the multi-input adaptive equalizer in a data detection process part.
- FIG. 7 is a block diagram of an example of a multi-input adaptive equalizer.
- FIG. 7 is a block diagram of an example of an equalization error computing unit. It is a basic diagram for explaining a plurality of examples of a pattern of field division. It is a graph showing the frequency amplitude characteristic about pattern R2. It is a graph showing the tap coefficient and frequency phase characteristic about pattern R2.
- An optical disk apparatus to which the present disclosure is applied includes, as shown in FIG. 1, an optical pickup 101 for recording and reproducing information on an optical disk 100 as an optical recording medium, and a spindle motor 102 for rotating the optical disk 100.
- a thread (feed motor) 103 is provided in order to move the optical pickup 101 in the radial direction of the optical disc 100.
- a high density optical disc such as BD (Blu-ray (registered trademark) Disc) can be used.
- BD is a high-density optical disc having a recording capacity of about 25 G bytes in a single-sided single layer and about 50 G bytes in two-sided single layer.
- the light source wavelength is set to 405 nm, and the numerical aperture NA (Numerical Aperture) of the objective lens is increased to 0.85.
- the spot diameter can be narrowed to 0.58 ⁇ m.
- BD Blu-ray (registered trademark) Disc
- the channel bit length that is, the mark length is shortened, the density is increased in the linear density direction, and 100GB in three layers and 128GB in four layers.
- BDXL registered trademark
- an optical disc adopting a method of recording data on both a groove track and a land track (referred to as a land / groove recording method as appropriate).
- the groove is referred to as a groove
- the track formed by the groove is referred to as a groove track.
- the grooves are defined as portions irradiated with laser light when an optical disc is manufactured, an area between adjacent grooves is referred to as a land, and a track formed by the land is referred to as a land track.
- the recording capacity can be further increased.
- optical disc 100 capable of high density recording
- it is rotationally driven at a constant linear velocity (CLV) or a constant angular velocity (CAV) by the spindle motor 102 at the time of recording / reproducing.
- CLV constant linear velocity
- CAV constant angular velocity
- reading of mark information recorded on a track on the optical disc 100 is performed by the optical pickup (optical head) 101.
- user data is recorded as a phase change mark or a pigment change mark on a track on the optical disc 100 by the optical pickup 101.
- phase change mark In the case of a recordable disc, a recording mark by a phase change mark is recorded on the track formed by the wobbling groove, but the phase change mark is RLL (1, 7) PP modulation method (RLL; Run Length Limited, PP) Recording is performed at a linear density of 0.12 ⁇ m / bit and 0.08 ⁇ m / channel bit in the case of 23.3 GB of BD per layer by, for example, Parity preserve / Prohibit rmtr (repeated minimum transition run-length).
- optical disc 100 In the inner circumferential area of the optical disc 100, physical information of the disc, for example, is recorded as emboss pits or wobbling grooves as reproduction-only management information. Reading of these pieces of information is also performed by the optical pickup 101. Further, reading of ADIP information embedded as wobbling of a groove track on the optical disc 100 is also performed by the optical pickup 101.
- the laser light is irradiated to the disk recording surface through a laser diode as a laser light source, a photodetector for detecting reflected light, an objective lens as an output end of the laser light, and an objective lens
- An optical system or the like for guiding the reflected light to the photodetector is configured.
- the objective lens is held movably in the tracking direction and the focus direction by a biaxial mechanism.
- the entire optical pickup 101 is movable by the sled mechanism 103 in the radial direction of the disc.
- the drive current from the laser driver 113 is supplied to the laser diode of the optical pickup 101, and the laser diode generates a laser.
- Reflected light from the optical disc 100 is detected by a photodetector, converted into an electrical signal according to the amount of light received, and supplied to the matrix circuit 104.
- the matrix circuit 104 is provided with a current-voltage conversion circuit, a matrix operation / amplification circuit, and the like corresponding to output currents from a plurality of light receiving elements as photodetectors, and generates necessary signals by matrix operation processing.
- the current-voltage conversion circuit may be formed in the photodetector element in consideration of the signal transmission quality. For example, a reproduction information signal (RF signal) corresponding to reproduction data, a focus error signal for servo control, a tracking error signal and the like are generated. Furthermore, a push-pull signal is generated as a signal related to groove wobbling, that is, a signal for detecting wobbling.
- the reproduction information signal output from the matrix circuit 104 is supplied to the data detection processing unit 105, the focus error signal and the tracking error signal are supplied to the optical block servo circuit 111, and the push-pull signal is supplied to the wobble signal processing circuit 106. .
- the data detection processing unit 105 performs binarization processing of the reproduction information signal. For example, the data detection processing unit 105 performs A / D conversion processing of an RF signal, reproduction clock generation processing by PLL, PR (Partial Response) equalization processing, Viterbi decoding (maximum likelihood decoding), etc. A binary data string is obtained by (PRML detection method: Partial Response Maximum Likelihood detection method). The data detection processing unit 105 supplies a binary data string as information read from the optical disc 100 to the encode / decode unit 107 in the subsequent stage.
- PRML detection method Partial Response Maximum Likelihood detection method
- the encoding / decoding unit 107 performs demodulation of reproduction data at the time of reproduction and modulation of recording data at the time of recording. That is, at the time of reproduction, data demodulation, deinterleaving, ECC decoding, address decoding and the like are performed, and at the time of recording, ECC encoding, interleaving, data modulation and the like are performed.
- the binary data string decoded by the data detection processing unit 105 is supplied to the encoding / decoding unit 107.
- the encode / decode unit 107 demodulates the binary data string to obtain reproduction data from the optical disc 100. That is, for example, demodulation processing for data recorded on the optical disc 100 with run length limited code modulation such as RLL (1, 7) PP modulation and ECC decoding processing for performing error correction is performed. Get playback data from.
- the data decoded to reproduction data by the encode / decode unit 107 is transferred to the host interface 108, and transferred to the host device 200 based on an instruction of the system controller 110.
- the host device 200 is, for example, a computer device or an AV (Audio-Visual) system device.
- processing of ADIP information is performed. That is, the push-pull signal output from the matrix circuit 104 as a signal related to groove wobbling is converted to wobble data digitized by the wobble signal processing circuit 106. PLL processing generates a clock synchronized with the push-pull signal.
- the wobble data is demodulated into a data stream constituting an ADIP address by the ADIP demodulation processing unit 116 and supplied to the address decoder 109.
- the address decoder 109 decodes the supplied data, obtains an address value, and supplies it to the system controller 110.
- recording data is transferred from the host device 200, but the recording data is supplied to the encoding / decoding unit 107 via the host interface 108.
- the encoding / decoding unit 107 performs error correction code addition (ECC encoding), interleaving, subcode addition, and the like as encoding processing of recording data.
- ECC encoding error correction code addition
- Run-length limited code modulation such as RLL (1-7) PP method is performed on the data subjected to these processes.
- the recording data processed by the encode / decode unit 107 is supplied to the write strategy unit 114.
- the write strategy unit 114 adjusts the laser drive pulse waveform with respect to the characteristics of the recording layer, the spot shape of the laser beam, the recording linear velocity, and the like as the recording compensation processing. Then, the laser drive pulse is output to the laser driver 113.
- the laser driver 113 causes a current to flow to the laser diode in the optical pickup 101 based on the laser drive pulse subjected to the recording compensation processing to emit a laser. As a result, a mark corresponding to the recording data is formed on the optical disc 100.
- the optical block servo circuit 111 generates various servo drive signals of focus, tracking, and sled from the focus error signal and the tracking error signal from the matrix circuit 104 to execute the servo operation. That is, the focus drive signal and the tracking drive signal are generated according to the focus error signal and the tracking error signal, and the driver 118 drives the focus coil and the tracking coil of the biaxial mechanism in the optical pickup 101.
- an optical pickup 101, a matrix circuit 104, an optical block servo circuit 111, a driver 118, and a tracking servo loop and a focus servo loop by a two-axis mechanism are formed.
- the optical block servo circuit 111 turns off the tracking servo loop in response to the track jump command from the system controller 110 and outputs a jump drive signal to execute a track jump operation. Furthermore, the optical block servo circuit 111 generates a thread drive signal based on a thread error signal obtained as a low-frequency component of the tracking error signal, access execution control from the system controller 110, etc. Drive.
- the spindle servo circuit 112 controls the spindle motor 102 to perform CLV rotation or CAV rotation.
- the spindle servo circuit 112 obtains a clock generated by the PLL for the wobble signal as rotational speed information of the present spindle motor 102, and generates a spindle error signal by comparing this with predetermined reference speed information. Further, at the time of data reproduction, since the reproduction clock generated by the PLL in the data detection processing unit 105 becomes the current rotational speed information of the spindle motor 102, the spindle is compared with predetermined reference speed information. An error signal is generated. The spindle servo circuit 112 outputs a spindle drive signal generated according to the spindle error signal, and causes the spindle driver 117 to execute CLV rotation or CAV rotation of the spindle motor 102.
- the spindle servo circuit 112 generates a spindle drive signal in accordance with a spindle kick / brake control signal from the system controller 110, and also performs operations such as start, stop, acceleration, and deceleration of the spindle motor 102.
- the various operations of the servo system and the recording and reproducing system as described above are controlled by a system controller 110 formed by a microcomputer.
- the system controller 110 executes various processing in response to a command from the host device 200 given via the host interface 108. For example, when a write command (write command) is issued from the host device 200, the system controller 110 first moves the optical pickup 101 to an address to be written. Then, the encoding / decoding unit 107 causes the encoding process to be performed on the data (for example, video data, audio data, etc.) transferred from the host device 200 as described above. Then, recording is performed by the laser driver 113 driving laser light emission according to the encoded data.
- a write command write command
- the system controller 110 first moves the optical pickup 101 to an address to be written.
- the encoding / decoding unit 107 causes the encoding process to be performed on the data (for example, video data, audio data, etc.) transferred from the host device 200 as described above.
- recording is performed by the
- the system controller 110 when a read command for transferring certain data recorded on the optical disc 100 is supplied from the host device 200, the system controller 110 first performs seek operation control for the designated address. That is, a command is issued to the optical block servo circuit 111, and the access operation of the optical pickup 101 with the address specified by the seek command as the target is executed. Thereafter, operation control necessary to transfer data of the instructed data section to the host device 200 is performed. That is, data reading from the optical disc 100 is performed, reproduction processing in the data detection processing unit 105 and the encoding / decoding unit 107 is executed, and requested data is transferred.
- FIG. 1 has been described as an optical disc apparatus connected to the host device 200, the optical disc apparatus may have a form not connected to another apparatus.
- the operation unit and the display unit are provided, and the configuration of the data input / output interface portion is different from that in FIG. That is, recording and reproduction may be performed according to the user's operation, and a terminal portion for input / output of various data may be formed.
- the optical disk apparatus there are various other possible configuration examples of the optical disk apparatus.
- the optical pickup 101 uses, for example, a laser beam (beam) having a wavelength ⁇ of 405 nm to record information on the optical disc 100 and reproduce information from the optical disc 100.
- Laser light is emitted from a semiconductor laser (LD: Laser Diode) 1.
- a laser beam passes through a collimator lens 2, a polarizing beam splitter (PBS) 3, and an objective lens 4, and is irradiated onto the optical disc 100.
- the polarization beam splitter 3 has, for example, a separation surface that transmits approximately 100% of P-polarized light and reflects approximately 100% of S-polarized light. Reflected light from the recording layer of the optical disc 100 returns along the same optical path and enters the polarization beam splitter 3. By interposing a ⁇ / 4 element (not shown), the incident laser light is reflected approximately 100% by the polarization beam splitter 3.
- the laser beam reflected by the polarization beam splitter 3 is condensed on the light receiving surface of the photodetector 6 through the lens 5.
- the photodetector 6 has a light receiving cell on the light receiving surface for photoelectrically converting the incident light.
- the light receiving cell is divided into a plurality of regions by a dividing line extending in the radial direction (disk radial direction) and / or the tangential direction (track direction) of the optical disc 100.
- the photodetector 6 outputs electrical signals of a plurality of channels in accordance with the amount of light received in each region of the light receiving cell. The method of dividing the area will be described later.
- the configuration of the optical pickup 101 in FIG. 2 shows the minimum components for explaining the present disclosure, and a focus error signal and a tracking error output to the optical block servo circuit 111 via the matrix circuit 104.
- a signal, a signal for generating a push-pull signal output to the wobble signal processing circuit 106 through the matrix circuit 104, and the like are omitted.
- various configurations other than the configuration shown in FIG. 2 are possible.
- the cross section of the light beam of the return beam from the optical disc 100 is divided into a plurality of areas, and reproduction information signals of a plurality of channels corresponding to the respective areas are obtained.
- a method of obtaining the reproduction information signal for each area a method other than the method of dividing the photodetector 6 can be used.
- a method of arranging an optical path conversion element for separating a plurality of regions in the optical path passing through the objective lens 4 to the photodetector 6 and supplying a plurality of beams separated by the optical path conversion element to different photodetectors is described. You may use it.
- a diffractive element such as a holographic optical element, or a refractive element such as a micro lens array or a micro prism can be used.
- the optical pickup 101 reproduces from the optical disc 100, detection signals corresponding to the respective areas are supplied to the matrix circuit 104, and reproduced information signals of a plurality of channels corresponding to the respective areas.
- the data detection processing unit 105 has an A / D converter 11 to which the reproduction information signal supplied from the matrix circuit 104 is supplied as shown in FIG.
- FIGS. 3 and 4 show examples in which the cross section of the light beam of the return beam from the optical disc 100 is divided into three regions, and from the matrix circuit 104, reproduction information signals of three channels can be obtained.
- a clock for the A / D converter 11 is formed by the PLL 12.
- the reproduction information signal supplied from the matrix circuit 104 is converted into digital data by the A / D converter 11.
- the digitized reproduction information signals of the three channels A to C are denoted as Sa to Sc.
- a signal obtained by adding the reproduction information signals Sa to Sc by the addition circuit 17 is supplied to the PLL 12.
- the data detection processing unit 105 includes a multi-input adaptive equalizer unit 13, a binarization detector 14, a PR convolution unit 15, and an equalization error computing unit 16.
- the multi-input adaptive equalizer unit 13 performs PR adaptive equalization processing on the reproduction information signals Sa to Sc. That is, the reproduction information signals Sa to Sc are equalized so as to approximate the target PR waveform. The equalized outputs are added and an equalized signal y0 is output.
- the output of the multi-input adaptive equalizer unit may be used as a signal to be input to the PLL 12. In this case, the initial coefficient of the multi-input adaptive equalizer is set to a predetermined value.
- the binarization detector 14 is, for example, a Viterbi decoder, and maximum likelihood decoding processing is performed on the PR equalized equalization signal y0 to obtain binarized data DT.
- the binarized data DT is supplied to the encode / decode unit 107 shown in FIG. 1 to perform reproduction data demodulation processing.
- the Viterbi decoding uses a Viterbi detector composed of a plurality of states composed of consecutive bits of a predetermined length and a branch represented by a transition between them, and uses all possible bit sequences. Among them, the configuration is configured to efficiently detect a desired bit sequence.
- a register for storing partial response series up to the state called path metric register and path metric of the signal, and a flow of bit series up to the state called path memory register Two registers of registers for storing are provided. Furthermore, for each branch, there is provided an operation unit called branch metric unit that calculates a partial response sequence at that bit and a path metric of the signal.
- various bit sequences can be associated in a one-to-one relationship by one of the paths passing through the state.
- the path metric between the partial response sequence passing through these paths and the actual signal (reproduction signal) is the inter-state transition constituting the above path, that is, the above-mentioned branch metric in the branch It is obtained by adding.
- the PR convolver 15 performs a convolution process of the binarization result to generate a target signal Zk, as shown in the following equation.
- the target signal Zk is an ideal signal without noise because it is a convolution of the binary detection result.
- PR (1, 2, 2, 2, 1) the value P for each channel clock is (1, 2, 2, 2, 1).
- the restraint length is five.
- PR (1, 2, 3, 3, 3, 2, 1) the value P for each channel clock is (1, 2, 3, 3, 3, 2, 1).
- the restraint length is seven.
- the partial response constraint length 5 If the detection capability is not increased by increasing the length to 7, detection will be difficult.
- d represents binarized data.
- the equalization error computing unit 16 obtains an equalization error ek from the equalization signal y0 from the multi-input adaptive equalizer unit 13 and the target signal Zk, and controls the tap coefficient of the equalization error ek to the multi-input adaptive equalizer unit 13. Supply for.
- the equalization error calculator 16 includes a subtractor 25 and a coefficient multiplier 26.
- the subtractor 25 subtracts the target signal Zk from the equalized signal y0.
- An equalization error ek is generated by multiplying the subtraction result by a predetermined coefficient a by the coefficient multiplier 26.
- the multi-input adaptive equalizer unit 13 includes adaptive equalizer units 21, 22, 23 and an adder 24.
- the reproduction information signal Sa described above is input to the adaptive equalizer unit 22, the reproduction information signal Sa is input to the adaptive equalizer unit 21, and the reproduction information signal Sc is input to the adaptive equalizer unit 23.
- the configuration of the multi-input adaptive equalizer unit 13 when the number of area divisions is three is shown.
- An adaptive equalizer unit is provided corresponding to the number of area divisions.
- Each of the adaptive equalizer units 21, 22, and 23 has parameters of the number of FIR (Finite Impulse Response) filter taps, the calculation accuracy (bit resolution), and the update gain of the adaptive calculation, and an optimum value is set for each. .
- the equalization error ek is supplied to each of the adaptive equalizer units 21, 22, 23 as a coefficient control value for adaptive control.
- the outputs y1, y2, y3 of the adaptive equalizer units 21, 22, 23 are added by the adder 24 and output as the equalized signal y0 of the multi-input adaptive equalizer unit 13.
- An output target of the multi-input adaptive equalizer unit 13 is an ideal PR waveform in which a binary detection result is convoluted into PR (partial response).
- the adaptive equalizer unit 21 is composed of, for example, an FIR filter as shown in FIG.
- the adaptive equalizer unit 21 is a filter having taps of n + 1 stages including delay elements 30-1 to 30-n, coefficient multipliers 31-0 to 31-n, and an adder.
- the coefficient multipliers 31-0 to 31-n multiply tap coefficients C0 to Cn with respect to the input x at each point in time.
- the outputs of the coefficient multipliers 31-0 to 31-n are added by the adder 34 and taken out as an output y.
- Control of tap coefficients C0 to Cn is performed in order to perform adaptive equalization processing.
- arithmetic units 32-0 to 32-n are provided which are input with equalization errors ek and respective tap inputs.
- integrators 33-0 to 33-n are provided which integrate the outputs of the computing units 32-0 to 32-n. In each of the computing units 32-0 to 32-n, for example, an operation of -1 ⁇ ek ⁇ x is performed.
- the outputs of the arithmetic units 32-0 to 32-n are integrated by the integrators 33-0 to 33-n, and the tap coefficients C0 to Cn of the coefficient multipliers 31-0 to 31-n are changed and controlled by the integration result. Ru.
- the integration of the integrators 33-0 to 33-n is performed to adjust the response of the adaptive coefficient control.
- decoding of binarized data is performed after unnecessary signals such as crosstalk are reduced.
- the adaptive equalizer units 22 and 23 also have the same configuration as the adaptive equalizer unit 21.
- a common equalization error ek is supplied to the adaptive equalizer units 21, 22, and 23 to perform adaptive equalization. That is, the adaptive equalizer units 21, 22, 23 optimize the error and phase distortion of the input signal frequency components of the reproduction information signals Sa, Sb, Sc, that is, perform the adaptive PR equalization. That is, the tap coefficients C0 to Cn are adjusted in accordance with the calculation result of ⁇ 1 ⁇ ek ⁇ x in the arithmetic units 32-0 to 32-n. This means that the tap coefficients C0 to Cn are adjusted in the direction of eliminating the equalization error.
- the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristic using the equalization error ek.
- the equalized signal y0 of the multi-input adaptive equalizer unit 13 obtained by adding the outputs y1, y2, y3 of the adaptive equalizer units 21, 22, 23 by the adder 24 is a signal with reduced crosstalk and the like.
- FIG. 7 there are a plurality of patterns for dividing the area of the cross section of the light flux of the beam returning from the optical disk 100. Each pattern will be described.
- the circle in the figure indicates the outer periphery of the cross section of the beam.
- the square represents, for example, the area of the light receiving cell of the photodetector for detection.
- the vertical direction of the region division diagram corresponds to the tangential direction of the returned light flux, and the horizontal direction corresponds to the radial direction.
- the area division pattern shown in FIG. 7 is an example, and patterns other than those shown in FIG. 7 are also possible.
- the dividing line is not limited to a straight line, and may be a curved line such as an arc.
- the electric signals corresponding to the light reception signals in the regions B1 and B2 are added to be one channel signal. That is, the example of FIG. 3 is an example of two channels of an inner channel (area A) and an outer channel (area B1 + B2).
- Such area division is referred to as a pattern R2.
- Pattern H4C In the pattern H4C, the upper and lower areas C1 and C2 of the pattern H3A are further divided into two in the tangential direction to form areas D1 and D2.
- Pattern Hi3A In the pattern H3A, in the upper and lower regions C1 and C2, one dividing line in the tangential direction is used, and the region C2 is not provided. As a result, three channels of signals are obtained, including the central position of the central region A being shifted downward in the tangential direction with respect to the central position of the beam cross section, and two channels having different central positions in the tangential direction.
- ⁇ Pattern Hi3B Region division similar to that of the pattern Hi3A is performed. However, the width of the upper region C1 is wider than that of the pattern Hi3A.
- ⁇ Pattern HT4A The area C2 of the pattern H3A is set as the area D of the fourth channel. It is a pattern in which the beam cross section is divided into four of the region A, the region (B1 + B2), the region C, and the region D. A four-channel signal is obtained, which corresponds to four regions and includes three channels having different center positions in the tangential direction.
- ⁇ HTR5A Two channels B1 and B2 on the radially outer side in the pattern HT4A are used as different channel areas to obtain 5-channel signals.
- ⁇ Pattern T4A The upper and lower areas C and D of the pattern HT4A are extended so as to cover the areas B1 and B2, respectively.
- a four-channel signal is obtained, which corresponds to four regions and includes three channels having different center positions in the tangential direction.
- Pattern Hi4A In the pattern HT4A, the region D is provided adjacent to the lower side of the region C. As a result, the central position of the central region A is shifted downward in the tangential direction with respect to the central position of the beam cross section. Four channels of signals are obtained, including three channels with different center positions in the tangential direction.
- Regions E and F adjacent to the lower side of regions C and D above and below the pattern HT4A are provided. From each of the regions A to F, six channels of signals are obtained, including five channels having different center positions in the tangential direction.
- Adaptive filter characteristics in pattern R2 As a comparative example to the present disclosure, adaptive filter characteristics in the case of the low linear density of the pattern R2 will be described.
- the region division position in the radial direction is a position that is ⁇ 0.55 when the pupil radius is 1.0.
- reproduction information signals of a plurality of channels are processed in the multi-input adaptive equalizer unit 13.
- the multi-input adaptive equalizer unit 13 has an adaptive equalizer unit equal to the number of channels.
- the adaptive equalizer unit is configured as an FIR filter, and each tap coefficient is adaptively controlled.
- the frequency amplitude characteristics of the simulation result for the pattern R2 are shown in FIG.
- the characteristic L1 is the frequency amplitude characteristic of the channel corresponding to the outer region B
- the characteristic L2 is the frequency amplitude characteristic of the channel corresponding to the inner region A.
- the characteristic is an example of the characteristic at the perturbation origin.
- the term "perturbation origin" as used herein means that defocusing, disk skew, etc. are all at the origin, and basically the best result can be obtained basically when adaptive control is performed.
- the horizontal axis is n / (256T) (n: value on the horizontal axis).
- n 64
- (64 / 256T) (1 / 4T).
- the mark length is from 2T to 8T, where the channel clock cycle is "T”.
- (1 / 4T) is a frequency when the 2T mark repeats.
- the mark of 2T is a frequency range that can not be reproduced, and the characteristic of the mark of 3T can be reproduced.
- FIG. 9A shows tap coefficients of each channel of the pattern R2. For example, the number of taps of the FIR filter is 31.
- FIG. 9B shows frequency phase characteristics of each channel. The frequency phase characteristic represents the phase difference between the two channels. As shown in FIG. 9B, the phase difference between the two channels is small.
- FIG. 10 and FIG. 10 show the simulation results of the reproduction performance for the pattern R2 in the case of low linear density.
- the linear density is expressed by using a surface capacity when the track pitch Tp is 0.32 ⁇ m and the diameter is 120 mm.
- the margin width for e-MLSE ⁇ 15% is nil without division (graph represented as e-MLSE), but as shown in FIG. 10, the defocus margin W20 has a total width 0.21 (equivalent to ⁇ 0.18 ⁇ m). As shown in FIG. 11, the radial coma aberration margin W31 has a full width of 0.25 (equivalent to ⁇ 0.44 deg).
- the horizontal axis of the graph of FIG. 10 is the defocus amount normalized by the wavelength.
- a value of 0 means that the defocus amount is 0.
- the defocus margin corresponds to the width of the range in which the value of e-MLSE is approximately 0.15 or less. The larger the width, the larger the defocus margin.
- FIG. 11 shows a margin for third-order coma aberration W31 (aberration coefficient normalized with wavelength) corresponding to the skew in the radial direction of the disc.
- W31 abbreviation coefficient normalized with wavelength
- the coma aberration margin corresponds to the width in the range in which the value of e-MLSE is approximately 0.15 or less. The larger the width, the larger the radial disc skew margin.
- the vertical axes of the graphs in FIG. 10 and FIG. 11 are indices for representing the reproduction performance.
- the value of i-MLSE is known as an index.
- MLSE Maximum Likelihood Sequence Error
- BDXL® calculations are performed using a method called i-MLSE to weight some error prone data patterns.
- BDXL registered trademark
- BDXL registered trademark
- a signal evaluation value different from i-MLSE is added for the purpose of explaining the effect by adding a new data pattern, which is required to improve the accuracy of the signal index value at a higher linear density. It is used for Hereinafter, a new index value with improved accuracy is called e-MLSE.
- the data patterns added in e-MLSE are the following three types.
- the bit in which 1 of the pattern sequence is written indicates the position where bit inversion occurs in the error pattern with respect to the detection pattern.
- e-MLSE and i-MLSE almost match at the same linear density as the conventional BDXL (registered trademark) where the accuracy of i-MLSE is sufficient, and the difference of error improvement appears at higher linear density.
- the theoretical correlation between the index values and the error rate, which is important in practical use, is the same for both. Therefore, although there is a difference in calculation and a difference in the range of applied linear density, the evaluation values of the signal quality indicated by both may be taken in the same sense.
- an index other than e-MLSE may be used.
- the amplitude phase characteristic originally possessed by the crosstalk component is utilized as it is, and the signal characteristic is improved by using the interchannel balance of the amplitude characteristic while hardly changing the phase difference between the channels.
- the pattern R2 is divided inward and outward in the radial direction, and has an effect of suppressing crosstalk from an adjacent track generated when the track pitch is narrowed. Therefore, in the example in which area division is performed only in the radial direction as in the pattern R2, there is a problem that it is not possible to sufficiently cope with signal deterioration due to intersymbol interference in the tangential direction or the like.
- the present disclosure described below takes such points into consideration.
- FIG. 12 is a graph of (normalized defocus amount versus index).
- FIG. 13 is a graph of (normalized radial skew amount versus index).
- FIG. 14 is a graph of (normalized tangential direction skew amount vs. index).
- the defocus margin W20 has an overall width of 0.27 (equivalent to ⁇ 0.23 ⁇ m).
- the radial coma aberration margin W31 has a total width of 0.30 (corresponding to ⁇ 0.53 deg).
- the defocus margin W20 has an overall width of 0.275 (equivalent to ⁇ 0.235 ⁇ m).
- the radial coma aberration margin W31 has a total width of 0.30 (corresponding to ⁇ 0.53 deg).
- the reproduction performance can be further enhanced as compared with the division only in the radial direction.
- the tap coefficients of the adaptive equalizer unit are adaptively controlled.
- the adaptive type is excellent in terms of performance, it is possible to simplify processing and hardware since it is good because adaptive control of tap coefficients is not performed. Further, it is also possible to use a fixed type equalizer unit for some of the plurality of channels and use an adaptive equalizer unit for the other channels.
- the adaptive electro-optical filter characteristic in the case of the low linear density of the pattern H3A will be described.
- the frequency amplitude characteristics of the simulation result are shown in FIG.
- the characteristic L1 is the frequency amplitude characteristic of the channel corresponding to the region B in the radial direction
- the characteristic L2 is the frequency amplitude characteristic of the channel corresponding to the region C in the tangential direction
- the characteristic L3 is the central region It is a frequency amplitude characteristic of a channel corresponding to A.
- the characteristic is an example of the characteristic at the perturbation origin.
- FIG. 16A shows tap coefficients of respective channels of the pattern H3A.
- the number of taps of the FIR filter is 31.
- FIG. 16B shows the frequency phase characteristics of each channel.
- the frequency phase characteristic represents the phase difference between two of the three channels.
- a characteristic L11 is a phase difference between reproduction information signals of channels corresponding to the region C on the outer side in the tangential direction and the region B on the outer side in the radial direction.
- a characteristic L12 is a phase difference between reproduction information signals of channels corresponding to the central area A and the radial outer area B, respectively.
- a characteristic L13 is a phase difference between reproduction information signals of channels corresponding respectively to the region C outside the tangential direction and the region A at the center.
- the filter characteristics of H3A have the following features.
- a filter having frequency characteristics with largely different amplitudes and phases can be configured for each of the three channels, and good reproduction signal reproduction can be realized.
- the frequency band corresponding to the 3T signal near the value 43 of the horizontal axis enclosed by a broken line
- the phase of the region C outside the tangential direction and the region B outside the radial direction are shifted by 180 degrees with respect to the central region.
- the central region has a characteristic of blocking a frequency band corresponding to the 4T signal (near the value 32 of the horizontal axis enclosed by a broken line) to suppress a false signal due to crosstalk.
- the tangential direction outer side should contribute to the reproduction of the short mark, and cuts off the frequency band corresponding to the 8T signal (near the value 16 of the horizontal axis shown by the broken line).
- a high pass filter, a low pass filter, a band pass filter, a band stop (or notch) filter, and the like are configured for each region, and filter characteristics that can not be realized by only optics or only electricity are realized.
- Hi3B the characteristics can be improved even by optimizing the division position in the tangential direction. Assuming that e-MLSE ⁇ 10% at the perturbation center, the patterns R2 and H3A are up to LD38 GB. On the other hand, Hi3B, HT4A and Hi4A can be up to LD41 GB.
- FIG. 18 is a graph of (normalized defocus amount versus index).
- FIG. 19 is a graph of (normalized radial skew amount versus index).
- e-MLSE changes around 15% in patterns R2 and H3A in which the central position in the tangential direction does not have different channels.
- the patterns Hi3A, Hi3B, HT4A, and Hi4A having channels having different central positions in the tangential direction, it is possible to secure a sufficient margin width of e-MLSE ⁇ 15%.
- the pattern HT4A has a margin width equivalent to the pattern H3A in the LD 35.18 GB in the LD 41 GB.
- a characteristic L21 is a frequency amplitude characteristic of the channel corresponding to the region B on the radially outer side
- a characteristic L22 is a frequency amplitude characteristic of the channel corresponding to the region C on the tangential direction outer side
- a characteristic L23 is a frequency amplitude characteristic of the channel corresponding to the central region A
- a characteristic L24 is a frequency amplitude characteristic of the channel corresponding to the region D outside the tangential direction.
- the characteristic is an example of the characteristic at the perturbation origin.
- FIG. 21A shows tap coefficients of each channel of the pattern HT4A.
- the number of taps of the FIR filter is 31.
- FIG. 21B shows frequency phase characteristics of each channel.
- the frequency phase characteristic represents the phase difference between the channel corresponding to the region C outside the tangential direction and the channel corresponding to the region D outside the tangential direction.
- the filter characteristics of HT4A have the following characteristics. ⁇ Similar to the pattern H3A, the central region has a low-pass characteristic, and the tangential direction outer region has a high-pass characteristic (here, high-pass is more within the frequency band contributing to signal reproduction) The band pass characteristic which passes the band corresponding to the short mark is expressed as a relatively high pass). -Furthermore, in the pattern H4TA, the outer region in the tangential direction is independently two channels, and the two regions are 120 to 90 degrees in the frequency band corresponding to 3T and 4T (near the values of 43 and 32 in the horizontal axis) The filter is configured to have a degree of phase difference (for two clocks, as can be seen from the tap coefficients). This enables more sensitive detection of the short mark with respect to the reproduction amplitude by the simple sum signal. With regard to short mark reproduction, good reproduction signal characteristics in the high linear density area are realized by utilizing the phase difference between the areas.
- FIG. 22 shows some specific examples of area division. If the linear density (area capacity) to be emphasized more as a system is determined, it is possible to optimize the division pattern for that.
- FIG. 23 shows expansion of the radial coma aberration margin due to the change of the division position.
- the division positions are ⁇ 0.55 in the radial direction and ⁇ 0.65 in the tangential direction for the patterns HT4A and H3A.
- the patterns T4A and T3A have a radial direction of ⁇ 0.7 and a tangential direction of ⁇ 0.6, and the division shape is also changed at four corners.
- the pattern HT4A has an overall width 0.32 (corresponding to ⁇ 0.56 deg) of the radial coma margin W31.
- the pattern T4A has an overall width 0.34 (corresponding to ⁇ 0.60 deg) of the radial coma margin W31.
- the pattern H3A has an overall width 0.30 (corresponding to ⁇ 0.53 deg) of the radial coma margin W31.
- the pattern T3A has an overall width 0.32 (corresponding to ⁇ 0.56 deg) of the radial coma margin W31.
- FIG. 24 shows a pattern in which only the radial direction is divided to form three regions, and the field of view moves in accordance with the lens shift of the objective lens (referred to as LS in the figure) in a pseudo manner.
- LS lens shift of the objective lens
- FIG. 26A shows a 0.2 shift and FIG. 26C shows no shift.
- FIG. 26A when the division width is optimized, it is possible to suppress the change in the margin width of radial coma aberration due to the movement of the visual field.
- FIG. 27A The change in radial coma aberration characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern T4A is shown in FIG. 27A.
- FIG. 27B shows a 0.2 shift and
- FIG. 27C shows no shift.
- the margin width can be secured by the movement of the visual field.
- the center is slightly shifted.
- FIG. 28A shows changes in radial coma aberration characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift).
- FIG. 28B shows a 0.2 shift and
- FIG. 28C shows no shift.
- the margin width due to the movement of the visual field is sharply narrowed. Therefore, in the case of the pattern T3A, it is necessary to suppress the visual field movement amount.
- FIG. 29A shows a change in defocus margin width due to the movement of the visual field.
- FIG. 29B shows a 0.2 shift and FIG. 29C shows no shift.
- FIG. 29A by optimizing the division width, it is possible to suppress the change in the defocus margin width due to the movement of the visual field.
- FIG. 30A shows a 0.2 shift and FIG. 30C shows no shift.
- FIG. 30A shows the defocus margin width due to the movement of the visual field.
- FIG. 31A shows a 0.2 shift and FIG. 31C shows no shift.
- FIG. 31A shows a 0.2 shift and FIG. 31C shows no shift.
- the defocus margin width due to the movement of the visual field is sharply narrowed. Therefore, in the case of the pattern T3A, it is necessary to suppress the visual field movement amount.
- the pattern R3 is strong against lens shift in three channels as compared to the pattern T3A. That is, the radial coma aberration margin is ⁇ 0.125 (equivalent to ⁇ 0.44 deg) without lens shift, and the lens shift is ⁇ 0.125 (equivalent to ⁇ 0.44 deg) at 0.2.
- Hi3A is a three-channel pattern that is resistant to lens shift.
- FIG. 32A shows changes in radial coma aberration characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) for the pattern Hi3A.
- FIG. 32B shows a 0.2 shift and
- FIG. 32C shows no shift.
- the margin width due to the movement of the visual field can be secured to the same extent as that of the 4-channel pattern T4A (see FIG. 27). That is, the radial coma aberration margin is ⁇ 0.16 (equivalent to ⁇ 0.56 deg) without lens shift, and the lens shift is 0.2, ⁇ 0.155 to +0.12 ( ⁇ 0.54 deg to +0.42 deg) Equivalent).
- FIG. 33A shows a 0.2 shift and FIG. 33C shows no shift.
- the margin width due to the movement of the visual field can be secured to the same extent as that of the 4-channel pattern T4A (see FIG. 29). That is, the defocus margin is 0.25 (equivalent to ⁇ 0.21 ⁇ m) without lens shift, and the lens shift is 0.2 and 0.24 (equivalent to ⁇ 0.20 ⁇ m).
- the pattern T4A is more resistant to lens shift than the pattern T3A in four channels. That is, the radial coma aberration margin is ⁇ 0.17 (equivalent to ⁇ 0.60 deg) without lens shift, and the lens shift is 0.2, ⁇ 0.17 to +0.135 ( ⁇ 0.60 deg to +0.47 deg) Equivalent).
- FIG. 34A shows changes in radial coma aberration characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) for the pattern X4A.
- FIG. 34B shows a 0.2 shift and
- FIG. 34C shows no shift.
- the radial coma aberration margin is ⁇ 0.17 (equivalent to ⁇ 0.60 deg) without lens shift, and the lens shift is ⁇ 0.16 (equivalent to ⁇ 0.56 deg) at 0.2.
- FIG. 35A shows a 0.2 shift and FIG. 35C shows no shift.
- the change in defocus margin due to the movement of the visual field is small. That is, the defocus margin is 0.265 (equivalent to ⁇ 0.225 ⁇ m) without lens shift, and the lens shift is 0.2 (equivalent to ⁇ 0.21 ⁇ m) at 0.2.
- FIG. 36 shows patterns HT4A, HTR5A, L6A and LR7A.
- the radial coma aberration characteristics of these patterns are shown in FIG. 37 and FIG.
- FIG. 37 shows the radial coma aberration characteristics of the patterns HT4A and HTR5A when the regions are not divided.
- FIG. 38 shows the radial coma aberration characteristics of the patterns LR7A and L9A when the area division is not performed.
- the radial coma aberration margin can be expanded by combining with tangential direction division.
- An optical medium reproducing apparatus for optically reproducing an optical medium in which a plurality of tracks are formed, comprising: At least one channel corresponding to the radially outer area of the cross section of the beam, at least one channel corresponding to different areas located in the tangential direction, and one channel corresponding to the other area, which are returned from the optical medium And a detection unit that divides each of the channels and forms a detection signal of each of the channels; It has a plurality of equalizer units to which detection signals of the plurality of channels are respectively supplied, calculates the outputs of the plurality of equalizer units, and outputs as an equalization signal, and the phase difference between the two regions is a predetermined one And a multi-input equalizer set to An optical medium reproducing apparatus comprising: a binarization unit for performing binarization processing on the equalized signal to obtain binary data.
- the multi-input equalizer unit is configured as a multi-input adaptive equalizer unit, An equalization target signal obtained based on the binary detection result of the binarization unit; An equalization error calculating unit which obtains an equalization error from the equalization signal output from the multi-input adaptive equalizer unit and supplies the equalization error to the adaptive equalizer unit as a control signal for adaptive equalization; Optical medium reproducing apparatus having the same.
- the multi-input adaptive equalizer unit performs partial response equalization processing on detection signals of each of the plurality of regions,
- the binarization unit performs maximum likelihood decoding processing as binarization processing on the equalization signal of the multi-input adaptive equalizer unit,
- the equalization error calculation unit is an equalization target signal obtained by convolution processing of the binary detection result by the maximum likelihood decoding;
- the optical medium reproducing apparatus according to claim 2 wherein an equalization error is obtained by calculation using an equalization signal output from the multi-input adaptive equalizer unit.
- the detection unit has a detector divided corresponding to the plurality of areas, The optical medium reproducing apparatus according to (1), wherein detection signals of the plurality of areas are taken out from the light detector.
- an optical path conversion element for separating the plurality of regions is disposed;
- the optical medium has lands and grooves alternately formed, The optical medium reproducing apparatus according to (1), wherein information is recorded on both the land and the groove.
- An optical medium reproducing method for optically reproducing an optical medium in which a plurality of tracks are formed comprising: At least one channel corresponding to the radially outer area of the cross section of the beam, at least one channel corresponding to different areas located in the tangential direction, and one channel corresponding to the other area, which are returned from the optical medium , And the detection unit forms a detection signal of each of the channels, The outputs of the plurality of equalizer units to which detection signals of the plurality of channels are respectively supplied are calculated by the multi-input equalizer unit and output as an equalized signal, and the phase difference between the two regions is set to a predetermined one , An optical medium reproducing method, wherein a binarizing unit performs binarization processing on the equalized signal to obtain binary data.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Optical Recording Or Reproduction (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Optical Head (AREA)
Abstract
Description
光媒体から戻る、ビームの断面をラジアル方向の外側領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、チャンネルのそれぞれの検出信号を形成する検出部と、
複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、複数のイコライザユニットの出力を演算して等化信号として出力し、二つの領域間の位相差が所定のものに設定される多入力イコライザ部と、
等化信号について2値化処理を行って2値データを得る2値化部と
を有する光媒体再生装置である。
なお、本開示の説明は、下記の順序にしたがってなされる。
<1.一実施の形態>
<2.変形例>
「光ディスク装置」
本開示を適用した光ディスク装置は、図1に示すように、光記録媒体としての光ディスク100に対して情報の記録再生を行う光ピックアップ101と、光ディスク100を回転させるスピンドルモータ102とを備える。光ピックアップ101を光ディスク100の径方向に移動させるために、スレッド(送りモータ)103が設けられている。
次に、上述した光ディスク装置に用いられる光ピックアップ101について、図2を用いて説明する。光ピックアップ101は、例えば波長λが405nmのレーザ光(ビーム)を用いて、光ディスク100に情報を記録し、光ディスク100から情報を再生する。レーザ光は、半導体レーザ(LD:Laser Diode)1から出射される。
上述したように、光ピックアップ101により光ディスク100から再生され、各領域に対応する検出信号がマトリクス回路104に供給され、各領域に対応する複数チャンネルの再生情報信号とされる。データ検出処理部105は、図3に示すように、マトリクス回路104から供給される再生情報信号が供給されるA/Dコンバータ11を有する。なお、図3および図4は、例えば光ディスク100からの戻りビームの光束の断面を3個の領域に分割し、マトリクス回路104からは、3チャンネルの再生情報信号が得られる例である。
なお、PLL12へ入力する信号として、多入力適応イコライザ部の出力を用いても良い。この場合には、多入力適応イコライザの初期係数をあらかじめ定められた値に設定しておく。
最初に本明細書における領域分割のパターンの例について説明する。図7に示すように、光ディスク100から戻るビームの光束の断面の領域を分割するパターンとしては、複数のものがある。各パターンについて説明する。なお、図中の円がビーム光束の断面の外周を示している。正方形は、例えば検出用のフォトディテクタの受光セルのエリアを表している。なお、領域分割図の上下方向が戻り光束のタンジェンシャル方向、左右方向がラジアル方向にそれぞれ対応している。さらに、図7に示す領域分割パターンは、一例であって、図7に示す以外のパターンも可能である。例えば分割線は、直線に限らず、円弧のような曲線であっても良い。
パターンR2は、ビームをタンジェンシャル方向に延長する2本の分割線によって、領域Aと領域B(=B1+B2)とラジアル方向に二つに分割する例である。領域B1およびB2の受光信号に応じた電気信号は、加算されて1チャンネルの信号とされる。すなわち、図3の例は、内側チャンネル(領域A)と外側チャンネル(領域B1+B2)の2チャンネルの例である。このような領域分割をパターンR2と称する。
・パターンR3
パターンR2において、外側の二つの領域をBとCと別のチャンネルの領域として扱う。このような領域分割のパターンをR3と称する。3個の領域に対応する3チャンネルの信号が得られる。
パターンH3Aは、パターンR2に対して、ラジアル方向に延びる分割線によって、領域Aの上下を区切り、タンジェンシャル方向の上下に領域C1およびC2を形成し、残りの中央の領域をAとするものである。すなわち、領域A、領域(B1+B2)、領域C(=C1+C2)の3個に分割するパターンである。3個の領域に対応する3チャンネルの信号が得られる。
・パターンH4C
パターンH4Cは、パターンH3Aの上下の領域C1およびC2をさらに、タンジェンシャル方向に2分割して領域D1およびD2を形成するものである。すなわち、領域A、領域(B1+B2)、領域C(=C1+C2)、領域D(=D1+D2)の4個に分割するパターンである。4個の領域に対応する4チャンネルの信号が得られる。
・パターンT3A
パターンT3Aは、パターンH3Aの上下の領域C1およびC2を領域B1およびB2をそれぞれ覆うように延長したパターンである。領域A、領域(B1+B2)、領域C(=C1+C2)の3個に分割するパターンである。3個の領域に対応する3チャンネルの信号が得られる。
・パターンX4A
パターンX4Aは、パターンH3Aにおいて、領域Aをタンジェンシャル方向に分割する分割線を延長して4隅の領域B2、B3、C2、C3を形成するものである。領域A、領域(B1+B2+B3)、領域C(=C1+C2+C3)、領域D(D1+D2)の4個にビーム断面を分割するパターンである。4個の領域に対応する4チャンネルの信号が得られる。
パターンH3Aにおいて、上下の領域C1およびC2の内で、タンジェンシャル方向の分割線を1本とし、領域C2を設けないパターンである。その結果、中央の領域Aの中心位置がビーム断面の中心位置に対してタンジェンシャル方向で下方にずれ、タンジャンシャル方向の中心位置の異なる2チャンネルを含む、3チャンネルの信号が得られる。
・パターンHi3B
パターンHi3Aと同様の領域分割を行うものである。但し、上側の領域C1の幅がパターンHi3Aに比して広いものとされている。
パターンH3Aの領域C2を第4のチャンネルの領域Dとするものである。領域A、領域(B1+B2)、領域C、領域Dの4個にビーム断面を分割するパターンである。4個の領域に対応し、タンジャンシャル方向の中心位置の異なる3チャンネルを含む、4チャンネルの信号が得られる。
・HTR5A
パターンHT4Aにおけるラジアル方向外側の二つの領域B1およびB2を別のチャンネルの領域として5チャンネルの信号を得るものである。
・パターンT4A
パターンHT4Aの上下の領域CおよびDを領域B1およびB2をそれぞれ覆うように延長したパターンである。領域A、領域(B1+B2)、領域C、領域Dの4個に分割するパターンである。4個の領域に対応し、タンジャンシャル方向の中心位置の異なる3チャンネルを含む、4チャンネルの信号が得られる。
・パターンHi4A
パターンHT4Aにおいて、領域Cの下側に隣接して領域Dを設けるパターンである。その結果、中央の領域Aの中心位置がビーム断面の中心位置に対してタンジェンシャル方向で下方にずれている。タンジャンシャル方向の中心位置の異なる3チャンネルを含む、4チャンネルの信号が得られる。
パターンHT4Aの上下の領域CおよびDのそれぞれの下側に隣接する領域EおよびFを設ける。領域A~Fのそれぞれからタンジャンシャル方向の中心位置の異なる5チャンネルを含む、6チャンネルの信号が得られる。
・パターンLR7A
パターンL6Aにおいて、領域B1を領域Bとし、領域B2を領域Gとする。領域A~Gのそれぞれから7チャンネルの信号が得られる。
・Tp=0.225μm(ランド、グランドのそれぞれが) ・NA=0.85 ・PR(1233321)
・評価指標:e-MLSE(後述する)
・マーク幅=Tp×0.7 ・Disc Noise, Amp Noiseあり
また、線密度は直径が120mmディスクでトラックピッチTp=0.32μmのときの面容量を用いて表すこととする。
特に、「低線密度」としている場合、
・LD35.18(GB)・・・0.053μm/channel bit、 Tp=0.32μmのとき面容量35.18GBとなる。
・Tp=0.225μm (ランド、グランドのそれぞれが)の場合、LD35.18GBとあわせ、面容量50.0GB となる。
また、「高線密度」としている場合、
・LD41(GB)・・・0.04547μm/channel bit、 Tp=0.32μmのとき面容量41GBとなる。
・Tp=0.225μm(ランド、グルーブのそれぞれが)の場合、LD41GBとあわせ、面容量58.3GBとなる。
本開示に対する比較例として、パターンR2の低線密度の場合の適応型フィルタ特性について説明する。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置とした。上述したように、複数のチャンネルの再生情報信号が多入力適応イコライ ザ部13において処理される。多入力適応イコライザ部13は、チャンネル数に等しい適応イコライザユニットを有している。適応イコライザユニットは、FIRフィルタの構成とされており、それぞれのタップ係数が適応的に制御される。
パターンR2に関しての再生性能のシミュレーション結果を図10および図11に示す。これらの図は、低線密度の場合でパターンR2の領域分割の効果を示す。
線密度は直径が120mmディスクでトラックピッチTp=0.32μmのときの面容量を用いて表すこととする。
・LD35.18(GB)・・・0.053μm/channel bit、 Tp=0.32μmのとき面容量35.18GBとなる。
・Tp=0.225μm(ランド、グランドのそれぞれが)の場合、LD35.18GBとあわせ、面容量50.0GBとなる。
・NA=0.85 ・PR(1233321) ・評価指標:e-MLSE
・マーク幅=Tp×0.7 ・Disc Noise, Amp Noiseあり
・ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置とした。
e-MLSE≦15%となるマージン幅は、分割なし(e-MLSEと表すグラフ)では皆無なのに対して、図10に示すように、デフォーカスマージン W20全幅 0.21 (±0.18μm相当)となる。図11に示すように、ラジアルコマ収差マージンW31全幅 0.25 (±0.44deg相当)となる。
パターン列の1が記されているビットが、検出パターンに対し、誤りパターンでビット反転が起こる箇所を示している。
追加パターン(2):1011110111101
追加パターン(3):10111100111101
タンジェンシャル方向にさらに領域分割を行う例として、パターンH3AおよびH4C(図7参照)の再生性能を図12、図13および図14に示す。図12は、(正規化されたデフォーカス量対指標)のグラフである。図13は、(正規化されたラジアル方向のスキュー量対指標)のグラフである。図14は、(正規化されたタンジェンシャル方向のスキュー量対指標)のグラフである。
シミュレーションは、下記の条件で行った。
・LD35.18(GB)・・・0.053μm/channel bit
・Tp=0.225μm(ランド、グルーブのそれぞれが)面容量50.0GBとなる。
・NA=0.85 ・PR(1233321 ・評価指標:e-MLSE
・マーク幅=Tp×0.7 ・Disc Noise, Amp Noiseあり
・ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置で共通とし、タンジェンシャル方向の領域分割位置は、±0.65,±0.30となる位置とした。
デフォーカスマージン W20全幅 0.27 (±0.23μm相当)となる。ラジアルコマ収差マージンW31全幅 0.30(±0.53deg相当)となる。
デフォーカスマージン W20全幅 0.275 (±0.235μm相当)となる。ラジアルコマ収差マージンW31全幅 0.30(±0.53deg相当)となる。
パターンH3Aの低線密度の場合の適応型電気光学フィルタ特性について説明する。パターンH3A(図7参照)に関して、シミュレーションの結果の周波数振幅特性を図15に示す。特性L1は、ラジアル方向外側の領域Bに対応するチャンネルの周波数振幅特性であり、特性L2は、タンジェンシャル方向外側の領域Cに対応するチャンネルの周波数振幅特性であり、特性L3は、中央の領域Aに対応するチャンネルの周波数振幅特性である。なお、特性は、摂動原点での特性例である。
・3チャネルの各領域ごとに、振幅、位相ともに大きく異なる周波数特性をもつフィルタを構成し、良好な再生信号再生を実現することができる。
・3T信号に相当する周波数帯(破線で囲んで示す横軸の値43の近傍)では、中央領域に対して、タンジェンシャル方向外側の領域Cと、ラジアル方向外側の領域Bの位相を180deg ずらしている。
・中央領域は4T信号に相当する周波数帯(破線で囲んで示す横軸の値32の近傍)を遮断する特性とし、クロストークによる偽信号を抑制している。
・タンジェンシャル方向外側は、短マーク再生に寄与すべきであり、8T信号に相当する周波数帯(破線で囲んで示す横軸の値16の近傍)を遮断している。
このように、領域ごとに、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、バンドストップ(またはノッチ)フィルタ等を構成し、光学だけでも電気だけでも実現しえないフィルタ特性を実現している。
パターンH3A、Hi3A、Hi3B、HT4A、Hi4Aと比較用のパターンR2およびH3A(図7参照)の再生性能を図18および図19に示す。図18は、(正規化されたデフォーカス量対指標)のグラフである。図19は、(正規化されたラジアル方向のスキュー量対指標)のグラフである。
シミュレーションは、下記の条件で行った。
・LD41(GB)・・・0.04547μm/channel bit
・Tp=0.225μm(ランド、グルーブのそれぞれが)の場合、LD41(GB)とあわせ、面容量58.3GBとなる。
・NA=0.85 ・PR(1233321 ・評価指標:e-MLSE
・マーク幅=Tp×0.7 ・Disc Noise, Amp Noiseあり
・ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置で共通とし、タンジェンシャル方向の領域分割位置は、±0.30および±0.65となる位置とした。
パターンHT4A(図7参照)の高線密度の場合の適応型電気光学フィルタ特性について説明する。パターンHT4Aに関してシミュレーションの結果の周波数振幅特性を図20に示す。特性L21は、ラジアル方向外側の領域Bに対応するチャンネルの周波数振幅特性であり、特性L22は、タンジェンシャル方向外側の領域Cに対応するチャンネルの周波数振幅特性である。特性L23は、中央の領域Aに対応するチャンネルの周波数振幅特性であり、特性L24は、タンジェンシャル方向外側の領域Dに対応するチャンネルの周波数振幅特性である。なお、特性は、摂動原点での特性例である。
・パターンH3Aと同様に、中央領域はローパス的特性に、タンジェンシャル方向外側領域はハイパス的特性となっている(ここでいうハイパス的とは、信号再生に寄与している周波数帯域内で、より短いマークに対応する帯域を通すバンドパス特性を、相対的にハイパス的と表現している)。
・さらに、パターンH4TAでは、タンジェンシャル方向の外側領域が独立に2チャネルとなっており、その2領域が3T、4T相当の周波数帯(横軸の43、32の値の近傍)で120~90deg程度の位相差となるようなフィルタを構成している(タップ係数を見てもわかるように、2クロック分)。これにより、単純な総和信号による再生振幅に対して、短マークに関して、より感度の高い検出が可能となっている。短マーク再生に関して、領域間の位相差も活用することで、高線密度領域における良好な再生信号特性を実現している。
次に、良好な特性が得られる分割パターンの種類が多い低線密度の場合を例に、分割パターンの最適化について示す。
・LD35.18(GB)・・・0.053μm/channel bit ・Tp=0.225μm (Land、 Grooveそれぞれが) 面容量が50GBとなる。
・NA=0.85 ・PR(1233321) ・評価指標:e-MLSE
・マーク幅=Tp×0.7 ・Disc Noise, Amp Noiseあり
図24は、ラジアル方向のみを分割して3個の領域を形成するパターンであって、疑似的に対物レンズのレンズシフト(図ではLSと表記する)に応じて視野が移動した場合を示す。パターンとしては、R2(領域A、B1、B2)およびR3(領域A、B、C)を想定する。レンズシフトがラジアル方向に0.2(ビーム光束の断面の直径を2.0としているので、0.2は、10%)発生したものとしている。
これらのパターンに関して、ラジアルコマ収差のマージンのシミュレーション結果を図25のグラフに示す。図25からR2(LS 0.2)のパターンのコマ収差のマージンが低下している。すなわち、ラジアル方向に分割して場合、外側の二つの領域を独立にする方が視野移動の影響を少なくすることができる。なお、視野移動に強くする手法は、後述するように、他のものがある。
パターンR3に関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるラジアルコマ収差特性変化を図26Aに示す。図26Bは、0.2シフトを示し、図26Cは、シフト無しを示す。図26Aから分かるように、分割幅を最適化すれば、視野移動によるラジアルコマ収差のマージン幅の変化を抑えることができる。
パターンR3に関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるデフォーカス特性変化を図29Aに示す。図29Bは、0.2シフトを示し、図29Cは、シフト無しを示す。図29Aから分かるように、分割幅を最適化すれば、視野移動によるデフォーカスマージン幅の変化を抑えることができる。
上述した図26Aに示す特性から分かるように、パターンR3は、3チャンネルでパターンT3Aに比較してレンズシフトに対して強いものである。すなわち、ラジアルコマ収差マージンがレンズシフト無しで、±0.125(±0.44deg相当)となり、レンズシフトが0.2で、±0.125(±0.44deg相当)となる。
上述した図27Aに示す特性から分かるように、パターンT4Aは、4チャンネルでパターンT3Aに比較してレンズシフトに対して強いものである。すなわち、ラジアルコマ収差マージンがレンズシフト無しで、±0.17(±0.60deg相当)となり、レンズシフトが0.2で、-0.17~+0.135(-0.60deg~+0.47deg相当)となる。
図36は、パターンHT4A、HTR5A、L6AおよびLR7Aを示す。これらのパターンのラジアルコマ収差特性を図37および図38に示す。図37は、領域分割をしない場合、パターンHT4A、HTR5Aのそれぞれのラジアルコマ収差特性を示す。図38は、領域分割をしない場合、パターンLR7A、L9Aのそれぞれのラジアルコマ収差特性を示す。図37および図38から分かるように、タンジェンシャル方向分割と組み合わせることによって、ラジアルコマ収差マージンを拡大することができる。
(1)
複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
光媒体から戻る、ビームの断面をラジアル方向の外側領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、前記チャンネルのそれぞれの検出信号を形成する検出部と、
前記複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、複数の前記イコライザユニットの出力を演算して等化信号として出力し、二つの前記領域間の位相差が所定のものに設定される多入力イコライザ部と、
前記等化信号について2値化処理を行って2値データを得る2値化部と
を有する光媒体再生装置。
(2)
前記多入力イコライザ部が多入力適応イコライザ部の構成とされ、
前記2値化部の2値検出結果に基づいて得られる等化目標信号と、
前記多入力適応イコライザ部から出力される等化信号とから等化誤差を求め、該等化誤差を、前記適応イコライザユニットに適応等化のための制御信号として供給する等化誤差演算部と
を有する光媒体再生装置。
(3)
前記多入力適応イコライザ部は、前記複数の領域のそれぞれの検出信号についてパーシャルレスポンス等化処理を行い、
前記2値化部は、前記多入力適応イコライザ部の等化信号についての2値化処理として最尤復号処理を行い、
前記等化誤差演算部は、前記最尤復号による2値検出結果の畳込処理で得られる等化目標信号と、
前記多入力適応イコライザ部から出力される等化信号とを用いた演算により等化誤差を求める請求項2に記載の光媒体再生装置。
(4)
前記検出部は、前記複数の領域と対応して分割されたディテクタを有し、
前記光検出器から前記複数の領域の検出信号を取り出すようになされた(1)に記載の光媒体再生装置。
(5)
対物レンズを通過し、ディテクタに至る光路中に、前記複数の領域を分離するための光路変換素子を配置し、
前記光路変換素子によって分離された複数のビームを異なるディテクタにそれぞれ入力する(1)に記載の光媒体再生装置。
(6)
前記光媒体は、ランドおよびグルーブが交互に形成されており、
前記ランドおよび前記グルーブの両方に情報を記録する(1)記載の光媒体再生装置。
(7)
複数トラックが形成される光媒体を光学的に再生する光媒体再生方法であって、
光媒体から戻る、ビームの断面をラジアル方向の外側領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、検出部によって前記チャンネルのそれぞれの検出信号を形成し、
多入力イコライザ部によって、前記複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットの出力を演算して等化信号として出力し、二つの前記領域間の位相差が所定のものに設定され、
前記等化信号について2値化部によって2値化処理を行って2値データを得る
光媒体再生方法。
以上、本開示の実施の形態について具体的に説明したが、上述の各実施の形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述したレーザ光源の波長、トラックピッチ、記録線密度の数値等は、一例であって、他の数値を使用しても良い。さらに、再生性能を評価するための指標としては、上述したもの以外を使用しても良い。さらに、光ディスクに対して記録および再生の一方のみを行う光ディスク装置に対しても本開示を適用できる。
14・・・2値化検出器
15・・・PR畳込器
21~23・・・適応イコライザユニット
100・・・光ディスク
101・・・光ピックアップ
105・・・データ検出処理部
Claims (7)
- 複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
光媒体から戻る、ビームの断面をラジアル方向の外側領域に対応する少なくとも一つのチャンネルと、
タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、
前記チャンネルのそれぞれの検出信号を形成する検出部と、
前記複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、複数の前記イコライザユニットの出力を演算して等化信号として出力し、二つの前記領域間の位相差が所定のものに設定される多入力イコライザ部と、
前記等化信号について2値化処理を行って2値データを得る2値化部と
を有する光媒体再生装置。 - 前記多入力イコライザ部が多入力適応イコライザ部の構成とされ、
前記2値化部の2値検出結果に基づいて得られる等化目標信号と、
前記多入力適応イコライザ部から出力される等化信号とから等化誤差を求め、該等化誤差を、前記適応イコライザユニットに適応等化のための制御信号として供給する等化誤差演算部と
を有する請求項1に記載の光媒体再生装置。 - 前記多入力適応イコライザ部は、前記複数の領域のそれぞれの検出信号についてパーシャルレスポンス等化処理を行い、
前記2値化部は、前記多入力適応イコライザ部の等化信号についての2値化処理として最尤復号処理を行い、
前記等化誤差演算部は、前記最尤復号による2値検出結果の畳込処理で得られる等化目標信号と、前記多入力適応イコライザ部から出力される等化信号とを用いた演算により等化誤差を求める請求項2に記載の光媒体再生装置。 - 前記検出部は、前記複数の領域と対応して分割されたディテクタを有し、
前記光検出器から前記複数の領域の検出信号を取り出すようになされた請求項1に記載の光媒体再生装置。 - 対物レンズを通過し、ディテクタに至る光路中に、前記複数の領域を分離するための光路変換素子を配置し、
前記光路変換素子によって分離された複数のビームを異なるディテクタにそれぞれ入力する請求項1に記載の光媒体再生装置。 - 前記光媒体は、ランドおよびグルーブが交互に形成されており、
前記ランドおよび前記グルーブの両方に情報を記録する請求項1記載の光媒体再生装置。 - 複数トラックが形成される光媒体を光学的に再生する光媒体再生方法であって、
光媒体から戻る、ビームの断面をラジアル方向の外側領域に対応する少なくとも一つのチャンネルと、
タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、検出部によって前記チャンネルのそれぞれの検出信号を形成し、
多入力イコライザ部によって、前記複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットの出力を演算して等化信号として出力し、二つの前記領域間の位相差が所定のものに設定され、
前記等化信号について2値化部によって2値化処理を行って2値データを得る
光媒体再生方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/910,396 US9843389B2 (en) | 2013-08-14 | 2014-06-26 | Optical medium reproduction device and optical medium reproduction method |
JP2015531721A JP6428619B2 (ja) | 2013-08-14 | 2014-06-26 | 光媒体再生装置および光媒体再生方法 |
CN201480044917.XA CN105453177B (zh) | 2013-08-14 | 2014-06-26 | 光学介质再现装置及光学介质再现方法 |
EP14836827.7A EP3035332B1 (en) | 2013-08-14 | 2014-06-26 | Optical medium reproduction device and optical medium reproduction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-168485 | 2013-08-14 | ||
JP2013168485 | 2013-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022767A1 true WO2015022767A1 (ja) | 2015-02-19 |
Family
ID=52468163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003412 WO2015022767A1 (ja) | 2013-08-14 | 2014-06-26 | 光媒体再生装置および光媒体再生方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9843389B2 (ja) |
EP (1) | EP3035332B1 (ja) |
JP (1) | JP6428619B2 (ja) |
CN (1) | CN105453177B (ja) |
TW (1) | TWI647696B (ja) |
WO (1) | WO2015022767A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017135000A1 (ja) * | 2016-02-05 | 2018-11-29 | ソニー株式会社 | 情報処理装置、および情報処理方法、並びにプログラム |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6201377B2 (ja) | 2013-04-01 | 2017-09-27 | ソニー株式会社 | 光記録媒体 |
US9531472B2 (en) * | 2013-05-06 | 2016-12-27 | Huawei Technologies Co., Ltd. | Coherent waveform conversion in optical networks |
US10134438B2 (en) | 2013-06-28 | 2018-11-20 | Sony Corporation | Optical medium reproduction apparatus and method of reproducing optical medium |
JP6167918B2 (ja) | 2013-08-14 | 2017-07-26 | ソニー株式会社 | 光媒体再生装置および光媒体再生方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03156729A (ja) * | 1989-11-15 | 1991-07-04 | Nec Corp | 光記録再生装置 |
JPH05242512A (ja) * | 1991-12-19 | 1993-09-21 | Matsushita Electric Ind Co Ltd | 光ディスク装置 |
JPH0793757A (ja) * | 1993-09-22 | 1995-04-07 | Sanyo Electric Co Ltd | 光記録媒体及びその記録再生方法 |
JPH08249664A (ja) * | 1995-03-08 | 1996-09-27 | Nippon Telegr & Teleph Corp <Ntt> | 光ビームを用いたデータ再生方法及びその装置 |
JP2000048488A (ja) * | 1998-07-27 | 2000-02-18 | Pioneer Electron Corp | クロストーク除去回路を有する記録情報再生装置 |
JP2001034969A (ja) * | 1999-07-08 | 2001-02-09 | Samsung Electronics Co Ltd | 光ディスクドライバーのトラッキングエラー検出方法及びそれに適した装置 |
JP2012079385A (ja) | 2010-10-04 | 2012-04-19 | Sony Corp | データ検出装置、再生装置、データ検出方法 |
Family Cites Families (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2266932B1 (ja) | 1973-03-02 | 1977-09-02 | Thomson Brandt | |
JPS57111838A (en) | 1980-12-27 | 1982-07-12 | Olympus Optical Co Ltd | Optical information reader |
DE68921173T2 (de) | 1988-12-21 | 1995-09-21 | Matsushita Electric Ind Co Ltd | Datenaufzeichnungs-wiedergabegerät auf einer Aufzeichnungsscheibe. |
JP2723986B2 (ja) | 1989-08-02 | 1998-03-09 | 株式会社日立製作所 | 光ディスク原盤の作製方法 |
JP2923331B2 (ja) | 1990-06-12 | 1999-07-26 | オリンパス光学工業株式会社 | 光記録媒体及びその再生装置 |
US5400189A (en) | 1992-03-19 | 1995-03-21 | Hitachi, Ltd. | Magnetic recording and reproducing apparatus, reproduction signal processing apparatus, and reproduction signal processing method |
JP3186221B2 (ja) | 1992-06-02 | 2001-07-11 | パイオニア株式会社 | 光学式記録情報再生装置 |
JP3166322B2 (ja) | 1992-06-15 | 2001-05-14 | ソニー株式会社 | 再生方法、再生装置 |
JP3267748B2 (ja) | 1993-06-08 | 2002-03-25 | パイオニア株式会社 | 情報再生方法及び光検出器 |
JPH07234382A (ja) | 1994-02-24 | 1995-09-05 | Matsushita Electric Ind Co Ltd | 超解像走査光学装置 |
DE69621678T2 (de) | 1995-03-14 | 2002-11-28 | Kabushiki Kaisha Toshiba, Kawasaki | Lichtdetektor |
US5621717A (en) | 1995-06-07 | 1997-04-15 | International Business Machines Corporation | Reading optical disks having substrates with diverse axial thicknesses |
US5907530A (en) | 1995-08-30 | 1999-05-25 | Samsung Electronics Co., Ltd. | Optical pickup device |
KR100200868B1 (ko) | 1995-12-22 | 1999-06-15 | 윤종용 | 광픽업 장치 |
JP3563210B2 (ja) | 1996-02-14 | 2004-09-08 | 富士通株式会社 | 光ディスク装置用光学装置及び光ディスク装置 |
US6992965B1 (en) | 1997-08-26 | 2006-01-31 | D Data Inc. | Reading method and apparatus for a three-dimensional information carrier |
JPH11176019A (ja) | 1997-10-06 | 1999-07-02 | Fujitsu Ltd | 光学的情報記憶装置 |
CN1197062C (zh) * | 1998-08-04 | 2005-04-13 | 索尼公司 | 集成光学元件及光学拾波器以及光盘装置 |
US6577568B1 (en) * | 1999-03-30 | 2003-06-10 | Matsushita Electric Industrial Co., Ltd. | Optical disk apparatus using tilt and aberration correction control system |
KR100289726B1 (ko) | 1999-04-22 | 2001-05-15 | 윤종용 | 신호간 간섭 및/또는 크로스토크 감소 장치 및 방법 |
US20050068864A1 (en) | 1999-07-08 | 2005-03-31 | Samsung Electronics Co., Ltd. | Method and apparatus for tracking error detection in optical disk driver |
KR100644581B1 (ko) * | 1999-10-30 | 2006-11-13 | 삼성전자주식회사 | 트랙킹 에러신호 검출장치 및 재생신호 검출장치 |
JP2001256731A (ja) | 2000-01-07 | 2001-09-21 | Sony Corp | 情報記録媒体、情報再生装置、情報再生方法、情報記録装置及び情報記録方法 |
KR100636121B1 (ko) | 2000-05-23 | 2006-10-18 | 삼성전자주식회사 | 광픽업장치 |
KR100819625B1 (ko) | 2000-07-12 | 2008-04-04 | 소니 가부시끼 가이샤 | 광 픽업 장치, 광 디스크 장치 및 트랙 인식 신호 검출방법 |
US6836456B2 (en) | 2000-07-27 | 2004-12-28 | Victor Company Of Japan, Ltd. | Information reproducing apparatus |
JP4085812B2 (ja) | 2000-09-06 | 2008-05-14 | 株式会社日立製作所 | 光ヘッドおよび光ディスク装置 |
KR100403622B1 (ko) | 2001-04-12 | 2003-10-30 | 삼성전자주식회사 | 광픽업장치 및 광스폿의 최적 포커싱 방법 |
JP2003030848A (ja) | 2001-07-18 | 2003-01-31 | Matsushita Electric Ind Co Ltd | 光ディスク再生装置 |
JP2003223761A (ja) * | 2002-01-25 | 2003-08-08 | Hitachi Ltd | 等化器、情報記録装置、情報再生装置及び記録媒体 |
JP3659922B2 (ja) * | 2002-02-12 | 2005-06-15 | 旭電化工業株式会社 | 光学記録材料 |
JP4024559B2 (ja) * | 2002-03-04 | 2007-12-19 | 独立行政法人産業技術総合研究所 | 光再生装置および光再生方法 |
JP2004281026A (ja) | 2002-08-23 | 2004-10-07 | Matsushita Electric Ind Co Ltd | 光ピックアップヘッド装置及び光情報装置及び光情報再生方法 |
JP4023365B2 (ja) | 2003-04-14 | 2007-12-19 | ソニー株式会社 | 記録及び/又は再生装置、光学ヘッド、トラック誤差信号検出方法 |
JP2005332453A (ja) | 2004-05-19 | 2005-12-02 | Hitachi Ltd | 情報再生装置及び情報再生方法 |
EP1756814A1 (en) | 2004-06-01 | 2007-02-28 | Koninklijke Philips Electronics N.V. | Radial to focus cross talk cancellation in optical storage systems. |
JP2006127679A (ja) * | 2004-10-29 | 2006-05-18 | Toshiba Corp | 光ディスク装置及び光ディスク再生方法 |
JP2006146979A (ja) | 2004-11-16 | 2006-06-08 | Tdk Corp | 光ヘッドの焦点ズレ誤差信号検出方法及びそれを用いた光ヘッド並びに光記録再生装置 |
US20060114791A1 (en) | 2004-11-30 | 2006-06-01 | Charles Marshall | Ultra-high data density optical media system |
JP2006338782A (ja) | 2005-06-02 | 2006-12-14 | Ricoh Co Ltd | 光ピックアップ装置と情報記録再生装置 |
JP2006344338A (ja) | 2005-06-10 | 2006-12-21 | Sony Corp | 評価装置、評価方法、光ディスク製造方法 |
EP1912211B1 (en) | 2005-08-01 | 2009-12-30 | NEC Corporation | Method for reproducing optical disc signal, and optical disc device |
JP2007058887A (ja) | 2005-08-22 | 2007-03-08 | Hitachi Ltd | 光ディスク装置及び再生信号処理回路 |
JP2007122801A (ja) | 2005-10-27 | 2007-05-17 | Nidec Sankyo Corp | 光記録ディスク装置 |
WO2007066489A1 (ja) | 2005-12-09 | 2007-06-14 | Nec Corporation | 光ヘッド装置及びこれを備えた光学式情報記録再生装置 |
US20100157749A1 (en) * | 2006-01-17 | 2010-06-24 | Masatsugu Ogawa | Information Recording/Reproducing Apparatus and Track Offset Adjusting Method of Information Recording Medium |
JP4830655B2 (ja) | 2006-06-13 | 2011-12-07 | ソニー株式会社 | 再生装置、再生方法 |
JP2008021369A (ja) * | 2006-07-13 | 2008-01-31 | Tdk Corp | 光記録媒体の再生方法、光記録媒体、光記録媒体の再生装置 |
KR101039194B1 (ko) | 2006-07-27 | 2011-06-03 | 미쓰비시덴키 가부시키가이샤 | 광디스크 매체 및 광디스크 장치 |
KR100772413B1 (ko) | 2006-09-05 | 2007-11-01 | 삼성전자주식회사 | 트랙킹 에러 신호 생성 장치 및 방법 |
JP4634991B2 (ja) * | 2006-10-24 | 2011-02-16 | 株式会社リコー | 情報再生装置、情報再生方法 |
JP2008204517A (ja) | 2007-02-19 | 2008-09-04 | Hitachi Media Electoronics Co Ltd | 光ヘッドおよび光学的情報記録再生装置 |
US20080239428A1 (en) | 2007-04-02 | 2008-10-02 | Inphase Technologies, Inc. | Non-ft plane angular filters |
TWI440019B (zh) | 2008-03-20 | 2014-06-01 | Sunplus Technology Co Ltd | 一種補償光碟機像散差的方法與裝置 |
JP5081737B2 (ja) | 2008-06-18 | 2012-11-28 | 株式会社日立製作所 | 光学的情報記録方法、光学的情報再生方法、および光ディスク装置 |
US8111477B2 (en) | 2008-07-11 | 2012-02-07 | Sony Corporation | Recording medium, recording apparatus, reproducing apparatus, and reproducing method |
JP2010244672A (ja) | 2009-03-16 | 2010-10-28 | Sony Optiarc Inc | ディスク状記録媒体、光スポット位置制御装置、光スポット位置制御方法 |
JP5172755B2 (ja) | 2009-03-24 | 2013-03-27 | ソニーオプティアーク株式会社 | 光スポット位置制御装置、光スポット位置制御方法 |
JP2011081865A (ja) | 2009-10-07 | 2011-04-21 | Sony Corp | 光記録媒体、記録方法 |
JP2011216171A (ja) | 2010-04-02 | 2011-10-27 | Sony Corp | 光学ピックアップ、光学ドライブ装置、光照射方法 |
JP2011227979A (ja) | 2010-04-02 | 2011-11-10 | Sony Corp | 光学ピックアップ、光学ドライブ装置、光照射方法 |
JP5726557B2 (ja) | 2010-04-19 | 2015-06-03 | ソニー株式会社 | 光記録媒体 |
JP2012018712A (ja) | 2010-07-06 | 2012-01-26 | Sony Corp | 光情報記録再生装置及び光情報記録再生方法 |
JP2012094219A (ja) | 2010-10-28 | 2012-05-17 | Sony Corp | 光記録媒体、記録装置 |
JP5501217B2 (ja) | 2010-12-27 | 2014-05-21 | 日立コンシューマエレクトロニクス株式会社 | 光情報再生装置及び光情報再生方法 |
JP2012243363A (ja) | 2011-05-20 | 2012-12-10 | Sony Corp | 再生方法、再生装置 |
JP2013186910A (ja) | 2012-03-06 | 2013-09-19 | Sony Corp | 光記録媒体駆動装置、クロストラック信号生成方法 |
JP2013251019A (ja) | 2012-05-30 | 2013-12-12 | Sony Corp | 光情報記録媒体および光情報記録媒体再生装置 |
JP6003366B2 (ja) | 2012-08-06 | 2016-10-05 | ソニー株式会社 | 再生装置、再生方法 |
JP2014035775A (ja) | 2012-08-08 | 2014-02-24 | Sony Corp | 光記録媒体および光記録媒体の製造方法 |
WO2014054246A1 (ja) | 2012-10-05 | 2014-04-10 | パナソニック株式会社 | 情報再生装置及び情報再生方法 |
US8923105B2 (en) | 2012-10-11 | 2014-12-30 | Panasonic Corporation | Optical information device, cross-talk reduction method, computer, player, and recorder |
JP6201377B2 (ja) | 2013-04-01 | 2017-09-27 | ソニー株式会社 | 光記録媒体 |
JP2014216038A (ja) | 2013-04-26 | 2014-11-17 | ソニー株式会社 | 光記録媒体 |
US10134438B2 (en) | 2013-06-28 | 2018-11-20 | Sony Corporation | Optical medium reproduction apparatus and method of reproducing optical medium |
JP6167918B2 (ja) | 2013-08-14 | 2017-07-26 | ソニー株式会社 | 光媒体再生装置および光媒体再生方法 |
CN106575512B (zh) | 2014-07-11 | 2019-09-27 | 索尼公司 | 光学介质再现装置及光学介质再现方法 |
-
2014
- 2014-06-26 JP JP2015531721A patent/JP6428619B2/ja active Active
- 2014-06-26 WO PCT/JP2014/003412 patent/WO2015022767A1/ja active Application Filing
- 2014-06-26 CN CN201480044917.XA patent/CN105453177B/zh active Active
- 2014-06-26 US US14/910,396 patent/US9843389B2/en active Active
- 2014-06-26 EP EP14836827.7A patent/EP3035332B1/en active Active
- 2014-07-15 TW TW103124312A patent/TWI647696B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03156729A (ja) * | 1989-11-15 | 1991-07-04 | Nec Corp | 光記録再生装置 |
JPH05242512A (ja) * | 1991-12-19 | 1993-09-21 | Matsushita Electric Ind Co Ltd | 光ディスク装置 |
JPH0793757A (ja) * | 1993-09-22 | 1995-04-07 | Sanyo Electric Co Ltd | 光記録媒体及びその記録再生方法 |
JPH08249664A (ja) * | 1995-03-08 | 1996-09-27 | Nippon Telegr & Teleph Corp <Ntt> | 光ビームを用いたデータ再生方法及びその装置 |
JP2000048488A (ja) * | 1998-07-27 | 2000-02-18 | Pioneer Electron Corp | クロストーク除去回路を有する記録情報再生装置 |
JP2001034969A (ja) * | 1999-07-08 | 2001-02-09 | Samsung Electronics Co Ltd | 光ディスクドライバーのトラッキングエラー検出方法及びそれに適した装置 |
JP2012079385A (ja) | 2010-10-04 | 2012-04-19 | Sony Corp | データ検出装置、再生装置、データ検出方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3035332A4 |
TOSHIYASU YOSHIZAWA: "Track Pitch o Tsumete Kiroku Mitsudo o 2 Bai ni shita Hikari Jiki Disk Sochi o Shisaku", NIKKEI ELECTRONICS, 19 March 1990 (1990-03-19), XP008182350 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017135000A1 (ja) * | 2016-02-05 | 2018-11-29 | ソニー株式会社 | 情報処理装置、および情報処理方法、並びにプログラム |
EP3413313A4 (en) * | 2016-02-05 | 2019-03-06 | Sony Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROCESS AND PROGRAM |
US10373640B2 (en) | 2016-02-05 | 2019-08-06 | Sony Corporation | Information processing device, information processing method, and program |
TWI715706B (zh) * | 2016-02-05 | 2021-01-11 | 日商新力股份有限公司 | 資訊處理裝置、及資訊處理方法、以及電腦程式 |
Also Published As
Publication number | Publication date |
---|---|
TWI647696B (zh) | 2019-01-11 |
CN105453177A (zh) | 2016-03-30 |
EP3035332B1 (en) | 2021-04-07 |
US9843389B2 (en) | 2017-12-12 |
EP3035332A4 (en) | 2017-08-09 |
CN105453177B (zh) | 2019-06-28 |
EP3035332A1 (en) | 2016-06-22 |
JPWO2015022767A1 (ja) | 2017-03-02 |
JP6428619B2 (ja) | 2018-11-28 |
US20160218808A1 (en) | 2016-07-28 |
TW201513110A (zh) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6167918B2 (ja) | 光媒体再生装置および光媒体再生方法 | |
JP6489126B2 (ja) | 光媒体再生装置および光媒体再生方法 | |
JP6504245B2 (ja) | データ検出装置、再生装置、データ検出方法 | |
WO2015022767A1 (ja) | 光媒体再生装置および光媒体再生方法 | |
JP6311711B2 (ja) | 光媒体再生装置および光媒体再生方法 | |
JP6123821B2 (ja) | 光媒体再生装置及び光媒体再生方法 | |
JP6551418B2 (ja) | 光媒体再生装置及び光媒体再生方法 | |
JP6597779B2 (ja) | 光ディスク装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480044917.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14836827 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015531721 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14910396 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014836827 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |