WO2014196020A1 - 照明光学系及びプロジェクタ - Google Patents
照明光学系及びプロジェクタ Download PDFInfo
- Publication number
- WO2014196020A1 WO2014196020A1 PCT/JP2013/065477 JP2013065477W WO2014196020A1 WO 2014196020 A1 WO2014196020 A1 WO 2014196020A1 JP 2013065477 W JP2013065477 W JP 2013065477W WO 2014196020 A1 WO2014196020 A1 WO 2014196020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical system
- laser light
- light
- fluorescence
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2013—Plural light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
- F21V14/06—Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/008—Combination of two or more successive refractors along an optical axis
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/141—Beam splitting or combining systems operating by reflection only using dichroic mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/208—Homogenising, shaping of the illumination light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B33/00—Colour photography, other than mere exposure or projection of a colour film
- G03B33/06—Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
Definitions
- the present invention relates to an illumination optical system including a combining optical system that combines laser light emitted from a laser light source and fluorescence emitted from a phosphor, and a projector including the illumination optical system.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2012-141495 (hereinafter referred to as Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-013313 (hereinafter referred to as Patent Document 2), fluorescence that emits fluorescence when irradiated with excitation light.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2012-141495
- Patent Document 2 Japanese Patent Application Laid-Open No. 2011-013313
- Patent Document 1 describes a projector that uses a phosphor that emits yellow fluorescence when irradiated with excitation light, and a laser light source that emits blue laser light.
- the yellow fluorescence emitted from the phosphor includes a red light component and a green light component. Therefore, this projector can project a full-color image on the screen.
- Patent Document 2 describes an illumination optical system that includes a wheel having a first phosphor layer, a second phosphor layer, and a transmission portion, and a laser light source that emits blue laser light.
- the first phosphor When the first phosphor is irradiated with the blue laser light from the laser light source, the first phosphor emits red fluorescence.
- the blue laser light When the blue laser light is irradiated onto the second phosphor, the second phosphor emits green fluorescence.
- the blue laser light is irradiated on the transmission part, the blue laser light passes through the wheel.
- the blue laser light transmitted through the transmission part is combined with red and green fluorescence emitted from the phosphor by the dichroic mirror.
- the emission angle characteristic of fluorescence emitted from a phosphor is different from the emission angle characteristic emitted from a laser light source. Due to the difference in the radiation angle characteristic, a difference is generated between the distribution of the laser light that can be transmitted through the projection lens of the projector and the distribution of the fluorescence that can be transmitted through the projection lens. As a result, when using combined light obtained by combining fluorescence emitted from the phosphor and laser light emitted from the laser light source, color unevenness may occur in the image projected on the screen.
- an illumination optical system includes a laser light source, a fluorescence generation source, a synthesis optical system that combines laser light emitted from the laser light source and fluorescence emitted from the fluorescence generation source, and a first optical system.
- the second lens is provided immediately before the combining optical system on the optical path of the laser light that has passed through the first lens.
- the third lens is provided immediately before the combining optical system on the optical path of the fluorescence emitted from the fluorescence generation source.
- the maximum value of the angle formed between the laser beam passing through the second lens and the optical axis of the second lens is the angle formed between the fluorescence passing through the third lens and the optical axis of the third lens.
- the sum of the focal length of the first lens and the focal length of the second lens is set so as to substantially match the maximum value.
- the above configuration makes it possible to approximate the radiation angle characteristic of the synthesized laser light and the radiation angle characteristic of the fluorescence.
- FIG. 6 is a diagram showing the incident angle dependency (incident angle-light intensity distribution) of the light intensity of yellow light on the incident surface of the light tunnel 54.
- 6 is a diagram illustrating an illuminance distribution of blue laser light on an incident surface of a diffusion plate 46.
- FIG. 6 is a diagram showing the incident angle dependence (incident angle-light intensity distribution) of the light intensity of blue laser light on the incident surface of the diffusion plate 46.
- FIG. 6 is a diagram showing the emission angle dependence (emission angle-light intensity distribution) of the light intensity of blue laser light immediately after exiting from the diffusion plate 46.
- FIG. 4 is a diagram showing the incident angle dependence (incident angle-light intensity distribution) of the light intensity of blue laser light and yellow fluorescence on the incident surface of the light tunnel 54. It is a figure which shows schematic structure of the projector containing the illumination optical system shown in FIG.
- FIG. 1 shows a configuration of an illumination optical system according to an embodiment of the present invention.
- the illumination optical system 1 combines the fluorescence generation source 8, the first laser light source 40 that emits laser light, the laser light emitted from the first laser light source 40 and the fluorescence emitted from the fluorescence generation source 8. And a synthesis optical system 50.
- the fluorescence generation source 8 includes a phosphor 30 that emits fluorescence when irradiated with excitation light, and a second laser light source 10 that emits excitation light applied to the phosphor 30.
- the first laser light source 40 may emit blue laser light having a blue wavelength.
- the phosphor 30 may emit yellow fluorescence having a wavelength band ranging from a green wavelength to a red wavelength.
- the second laser light source 10 may be a plurality of laser diodes arranged on a plane. Each laser diode emits excitation light that excites the phosphor.
- the laser diode is preferably a blue laser diode.
- the blue laser light emitted from the second laser light source 10 is collimated by the lens 12.
- the light collimated (collimated) by the lens 12 is condensed by the condensing lens 14 on the incident side opening of the light tunnel 18.
- a diffusing plate 16 for diffusing laser light is provided between the lens 14 and the light tunnel 18.
- the light tunnel 18 is a hollow optical element, and upper, lower, left and right inner surfaces thereof are reflecting mirrors.
- the blue laser light incident on the light tunnel 18 is reflected a plurality of times on the inner surface of the light tunnel. As a result, the illuminance distribution of the light at the exit portion of the light tunnel 18 is made uniform.
- a glass rod may be used.
- the blue laser light emitted from the light tunnel 18 passes through the lens 21 and then enters the dichroic mirror 22.
- the dichroic mirror 22 reflects light having a blue wavelength and transmits light having a longer wavelength than the green wavelength. Accordingly, the blue laser light is reflected by the dichroic mirror 22.
- the blue laser light reflected by the dichroic mirror 22 is transmitted through the lenses 36, 34 and 32 and illuminates the phosphor 30.
- the phosphor 30 is excited by blue laser light and emits yellow fluorescence.
- Yellow light emitted from the phosphor 30 passes through the lenses 32, 34, and 36 and the dichroic mirror 22 in this order.
- the yellow light that has passed through the dichroic mirror 22 passes through the third lens 38 provided immediately before the combining optical system 50 on the optical path of the fluorescence emitted from the phosphor.
- the yellow light that has passed through the third lens 38 enters the combining optical system 50.
- the third lens 38 preferably converts the fluorescence emitted from the phosphor 30 into parallel light or condensed light.
- the synthesis optical system 50 may have any configuration as long as it can synthesize the laser light emitted from the first laser light source 10 and the fluorescence emitted from the phosphor 30.
- the synthesis optical system is a dichroic mirror that reflects one of the laser light emitted from the laser light source 40 and the fluorescence emitted from the fluorescence and transmits the other of the laser light and the fluorescence. is there. More specifically, the dichroic mirror transmits light having a blue wavelength and reflects light having a longer wavelength than the green wavelength. Accordingly, the dichroic mirror 50 reflects the yellow light emitted from the phosphor 30 and transmits the blue laser light emitted from the first laser light source 10.
- the first laser light source 40 may be composed of a plurality of blue laser diodes arranged on a plane. Laser diodes emit laser light from a light emitting point with a very small area. The blue laser light radiated from the first light source 40 is collimated by the lens 42 and then is collimated by the first lens 44 provided between the first laser light source 40 and the synthesis optical system 50. Focused.
- the illumination optical system 1 preferably includes a diffusion plate 46 that diffuses the laser light emitted from the first laser light source 40.
- the diffusion plate 46 is disposed between the first lens 44 and the second lens 48.
- the second lens 48 is disposed at a distance longer than the focal length of the first lens 44 from the first lens 44.
- the condensing part of the laser light condensed by the first lens 44 is disposed between the first lens 44 and the second lens 48.
- the diffusing plate 46 is preferably provided in the vicinity of the condensing part of the laser light that has passed through the first lens 44, that is, in the vicinity of the focal point of the first lens 44.
- the blue laser light diffused by the diffusion plate 46 passes through the second lens 48 provided immediately before the combining optical system 50 on the optical path of the laser light that has passed through the first lens 44.
- the blue laser light transmitted through the second lens 48 is incident on a dichroic mirror 50 serving as a synthesis optical system.
- the blue laser light passes through the dichroic mirror 50.
- the blue laser light transmitted through the dichroic mirror 50 is combined with yellow fluorescence reflected by the dichroic mirror 50.
- the synthetic optical system is a dichroic mirror
- a dichroic mirror has an incident angle of light deviated from 45 degrees, and its transmission characteristics and reflection characteristics deteriorate. Therefore, in the present embodiment, the second lens 48 and the third lens 48 are set so that the light emitted from the second lens 48 and the third lens 38 has an incident angle of 45 ° ⁇ 10 ° to the dichroic mirror 50.
- the lens 38 is designed.
- the combined light synthesized by the dichroic mirror 50 passes through the condenser lens 52 and enters the integrator 54 that equalizes the illuminance distribution of the combined light.
- the condensing lens 52 condenses the synthesized light on the integrator 54.
- the light tunnel 54 is used as an integrator.
- FIG. 2 shows the incident angle dependency (incident angle-light intensity distribution) of the light intensity of yellow fluorescence on the incident surface of the light tunnel 54.
- incident angle dependency incident angle-light intensity distribution
- normalization is performed so that the peak value of the light intensity becomes “1”.
- the yellow light incident on the light tunnel 54 has an incident angle in the range of ⁇ 24 ° to + 24 °. That is, the incident angle of yellow light on the incident surface of the light tunnel 54 is distributed in an angle range of about 48 °.
- FIG. 3 shows the illuminance distribution of the blue laser light on the incident surface of the diffuser plate 46.
- a bright white region indicates a region where the illuminance of laser light is strong.
- FIG. 4 shows the incident angle dependence (incident angle-light intensity distribution) of the light intensity of the blue laser light on the incident surface of the diffuser plate 46. In the graph shown in FIG. 4, normalization is performed so that the peak value of the light intensity becomes “1”.
- the size (diameter) of the blue laser light on the incident surface of the diffusion plate 46 is about 8 mm ⁇ 8 mm, and the incident angle of the blue laser light is distributed in the range of ⁇ 15 ° to 15 °. .
- FIG. 5 shows the emission angle dependence (emission angle-light intensity distribution) of the light intensity of the blue laser light immediately after the diffusion plate 46 is emitted.
- normalization is performed so that the peak value of the light intensity is “1”.
- the emission angle of the laser light diffused by the diffusion plate 46 is distributed in a range of about 36 °.
- the position of the intensity peak of the laser light diffused by the diffusion plate 46 is substantially the same as that of the laser light before entering the diffusion plate 46. However, the spread of each peak is widened to about 6 ° by being diffused by the diffusion plate 46.
- the focal length of the first lens 44 is f12
- the focal length of the second lens 48 is f13
- the distance S between the first lens 44 and the second lens 48 is “S> f12”. It is preferable to satisfy. Under this condition, a condensing point of blue laser light is formed between the first lens 44 and the second lens 48. This condensing point is imaged at the incident position of the light tunnel 54 by the second lens 48 and the condensing lens 52.
- the condition “f12 + f13 ⁇ S” is satisfied.
- the laser light emitted from the second lens 48 becomes substantially parallel light
- the condition “f12 + f13 ⁇ S” is satisfied, the laser light emitted from the second lens 48. Becomes condensed light.
- the emission angle of the laser light passing through the second lens 48 can be adjusted according to the sum of the focal length f12 of the first lens 44 and the focal length f13 of the second lens 48.
- the maximum value a1 of the angle formed between the laser beam 72 that has passed through the second lens 48 and the optical axis 49 of the second lens is the fluorescence 70 that has passed through the third lens 38 and the first
- the sum “f12 + f13” of the focal length of the first lens 44 and the focal length of the second lens 48 is substantially equal to the maximum value a2 of the angle formed with the optical axis 39 of the third lens. It is set (see FIG. 6).
- the optical axis of the lens means a straight line that is orthogonal to the tangent plane that passes through the spherical vertex of the lens and that passes through the center of the lens, that is, the spherical vertex of the lens.
- the respective light fluxes without the dichroic mirror 50 and the condensing lens 52 are dotted lines. Indicated by.
- FIG. 7 shows the incident angle dependence (incident angle-intensity distribution) of the light intensity at the incident position of the light tunnel 54.
- the light intensity of yellow light emitted from the phosphor 30 is indicated by a dotted line
- the light intensity of laser light emitted from the first laser light source 40 is indicated by a solid line.
- the fluorescence from the phosphor 30 has an angle range of about 40 ° at an intensity of 10% of the peak intensity.
- the laser beam from the first laser light source 40 has an angle range of about 38 ° at an intensity that is 10% of the peak intensity.
- the difference between the angle range of the laser beam and the angle range of the fluorescence is preferably within 10% at the intensity of 10% of the peak intensity. In the present embodiment, as shown in FIG. 7, the difference between the angle range of the laser light and the angle range of the fluorescence is about 5% at the intensity that is 10% of the peak intensity.
- the condensing part in the vicinity of the diffuser plate 46 and the incident position of the light tunnel 54 form an imaging relationship, and the incident angle distribution of the laser beam and the incident angle distribution of the fluorescence are approximately the same at the incident position of the light tunnel 54.
- the first lens 44, the second lens 48, and the condenser lens 52 are arranged.
- the irradiation size shown in FIG. 3 is smaller than the incident aperture size of the light tunnel 54 at the incident position of the light tunnel 54.
- the condensing lens 52 since the condensing lens 52 has a function of condensing the fluorescence from the phosphor 30, it is not a lens that acts only on the laser light from the first light source 40. Therefore, the condensing lens 52 does not have a function of balancing the incident angle distribution of fluorescence and laser light.
- the incident angle distribution of the laser light to the light tunnel 54 substantially matches the incident angle distribution of the fluorescent light to the light tunnel 54 by setting the positional relationship and the focal length of the first lens 44 and the second lens 48. It is adjusted so that. At this time, by using the diffusion characteristic of the diffusion plate 46 provided between the first lens 44 and the second lens 48, the coincidence degree of the incident angle distributions of both can be further improved.
- the lens holder 45 that holds the first lens 44 is movable so that the position of the first lens 44 is variable. Thereby, for example, even if the condensing position of the laser beam is shifted due to the dimensional tolerance of the optical components of the illumination optical system 1 or the holding structure, the condensing position can be easily finely adjusted.
- the laser beam collimated by the lens 42 is focused on the incident side opening of the light tunnel 54.
- the holding portion 45 that holds the first lens 44 has a movable mechanism. By adjusting the position of the first lens 44 by this movable mechanism, the condensing position of the laser light can be adjusted. By adjusting the movable mechanism so that the brightness of the light that has passed through the light tunnel 54 is maximized, it is possible to correct the deviation of the light condensing position.
- FIG. 8 shows an example of the configuration of the projector.
- the projector includes an illumination optical system 1 shown in FIG.
- the light emitted from the light tunnel 54 of the illumination optical system 1 is combined light of yellow light and blue light, that is, white light.
- This white light is transmitted through the lenses 80 and 82, reflected by the mirror 84, and further transmitted through the lens 86.
- the white light transmitted through the lens 86 enters the TIR prism 90.
- the light incident on the TIR prism 90 is totally reflected in the prism and enters the color prism 92.
- the color prism 92 splits white light into green light, red light, and blue light. In FIG. 8, for the sake of convenience, only the optical path of green light split by the color prism 92 is shown.
- the green light dispersed by the color prism 92 is incident on a digital mirror device (DMD) 96 for green light.
- DMD digital mirror device
- red light enters a DMD (not shown) for red light
- blue light enters a DMD (not shown) for blue light.
- the DMD 96 is a semiconductor projection device provided with a large number of micromirrors arranged in a matrix. Each micromirror corresponds to a pixel of the projected image. The angle of each micromirror can be adjusted. Light incident on a minute mirror (ON state) having an angle is reflected toward the projection lens 98 and enlarged and projected onto the screen.
- the green light, red light, and blue light incident on the micro mirror in the ON state are incident on the color prism 92 and synthesized by the color prism 92.
- the synthesized light synthesized by the color prism 92 passes through the TIR prism 90 and the projection lens 98 and is projected onto the screen.
- the light incident on the micro mirror (OFF state) having a different angle is reflected in a direction different from the projection lens 98 and is not projected on the screen.
- the temporal ratio between the ON state and the OFF state in each micromirror By changing the temporal ratio between the ON state and the OFF state in each micromirror, the gradation of each pixel of the image projected on the screen can be adjusted.
- the projection lens 98 projects image light of a plurality of colors formed by DMD onto the screen.
- the angle-intensity distributions of the laser light and the fluorescence synthesized by the synthesis optical system 50 are substantially the same. Accordingly, even after the DMD 96 is reflected, the angular distributions of the red light, the green light, and the blue light are substantially the same.
- the illumination optical system 1 causes the incident angle distributions of red light, green light, and blue light to substantially match, so that such color unevenness can be suppressed.
- the illumination optical system that synthesizes blue laser light and yellow fluorescence has been described.
- the illumination optical system is not limited to this, and may synthesize laser light having an arbitrary wavelength and fluorescence having an arbitrary wavelength.
- the configuration of the fluorescence generation source 8 is not limited to the configuration shown in FIG. 1 as long as arbitrary fluorescence can be emitted.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
第1のレーザ光源40は、青色の波長を有する青色レーザ光を出射するものであって良い。蛍光体30は、緑色の波長から赤色の波長にわたる波長帯を持った黄色の蛍光を発するものであって良い。この黄色の蛍光と青色レーザ光とを合成光学系50で合成することによって、白色光が得られる。
8 蛍光発生源
10 第2の光源
22 ダイクロイックミラー
30 蛍光体
38 第3のレンズ
40 レーザ光源
42 コリメートレンズ
44 第1のレンズ
46 拡散板
48 第2のレンズ
50 合成光学系(ダイクロイックミラー)
52 集光レンズ
54 インテグレータ(ライトトンネル)
Claims (10)
- レーザ光を発するレーザ光源と、
蛍光を発する蛍光発生源と、
前記レーザ光源から発せられた前記レーザ光と前記蛍光発生源から発せられた前記蛍光とを合成する合成光学系と、
前記レーザ光源と前記合成光学系との間に設けられた第1のレンズと、
前記第1のレンズを通過した前記レーザ光の光路上で前記合成光学系の直前に設けられた第2のレンズと、
前記蛍光発生源から発せられた前記蛍光の光路上で前記合成光学系の直前に設けられた第3のレンズと、を有し、
前記第2のレンズを通過した前記レーザ光と前記第2のレンズの光軸との間のなす角度の最大値が、前記第3のレンズを通過した前記蛍光と前記第3のレンズの光軸との間のなす角度の最大値と実質的に一致するように、前記第1のレンズの焦点距離と前記第2のレンズの焦点距離との和が設定されている、照明光学系。 - 請求項1に記載の照明光学系であって、
前記第1のレンズは、前記第1のレーザ光源から発せられたレーザ光を集光し、
前記第2のレンズは、前記第1のレンズから、前記第1のレンズの焦点距離よりも長い距離を隔てて配置されており、
前記第1のレンズの集点付近に拡散板が設けられている、照明光学系。 - 請求項1または2に記載の照明光学系であって、
前記第2のレンズは、前記レーザ光を平行光または集光光に変換し、
前記第3のレンズは、前記蛍光を平行光または集光光に変換する、照明光学系。 - 請求項1から3のいずれか1項に記載の照明光学系であって、
前記レーザ光源は複数配列されたレーザダイオードから構成されている、照明光学系。 - 請求項1から4のいずれか1項に記載の照明光学系であって、
前記第1のレンズと前記第2のレンズの少なくとも一方の位置が調整可能である、照明光学系。 - 請求項1から5のいずれか1項に記載の照明光学系であって、
前記レーザ光と前記蛍光との合成光の照度分布を均一化するインテグレータと、
前記インテグレータの入射位置に前記合成光を集光させる集光レンズと、をさらに有する、照明光学系。 - 請求項1から6のいずれか1項に記載の照明光学系であって、
前記蛍光発生源は、緑色の波長から赤色の波長にわたる波長帯を持った黄色の蛍光を発し、
前記レーザ光源は、青色の波長を有するレーザ光を発する、照明光学系。 - 請求項1から7のいずれか1項に記載の照明光学系であって、
前記合成光学系は、前記レーザ光と前記蛍光のうちの一方を反射し、前記レーザ光と前記蛍光のうちの他方を透過するダイクロイックミラーである、照明光学系。 - 請求項1から8のいずれか1項に記載の照明光学系であって、
前記蛍光発生源は、励起光の照射により前記蛍光を発する蛍光体と、前記蛍光体に照射する前記励起光を発する別のレーザ光源と、を有する、照明光学系。 - 請求項1から9のいずれか1項に記載の照明光学系を含むプロジェクタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/889,175 US20160131967A1 (en) | 2013-06-04 | 2013-06-04 | Illumination optical system and projector |
CN201380077192.XA CN105264437A (zh) | 2013-06-04 | 2013-06-04 | 照明光学系统和投影仪 |
PCT/JP2013/065477 WO2014196020A1 (ja) | 2013-06-04 | 2013-06-04 | 照明光学系及びプロジェクタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/065477 WO2014196020A1 (ja) | 2013-06-04 | 2013-06-04 | 照明光学系及びプロジェクタ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196020A1 true WO2014196020A1 (ja) | 2014-12-11 |
Family
ID=52007696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065477 WO2014196020A1 (ja) | 2013-06-04 | 2013-06-04 | 照明光学系及びプロジェクタ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160131967A1 (ja) |
CN (1) | CN105264437A (ja) |
WO (1) | WO2014196020A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106324958A (zh) * | 2015-06-30 | 2017-01-11 | 海信集团有限公司 | 一种荧光转换系统 |
JP2017009683A (ja) * | 2015-06-18 | 2017-01-12 | セイコーエプソン株式会社 | 光源装置、照明装置およびプロジェクター |
WO2017056479A1 (en) * | 2015-09-28 | 2017-04-06 | Ricoh Company, Ltd. | System |
JP2017067758A (ja) * | 2015-09-28 | 2017-04-06 | 株式会社リコー | システム |
CN106933012A (zh) * | 2015-12-30 | 2017-07-07 | 中强光电股份有限公司 | 照明系统以及投影装置 |
WO2017208313A1 (ja) * | 2016-05-31 | 2017-12-07 | Necディスプレイソリューションズ株式会社 | 光源装置およびプロジェクター |
US9888220B2 (en) | 2015-06-01 | 2018-02-06 | Nec Display Solutions, Ltd. | Light source device, projection-type display device, and light generation method |
WO2021039752A1 (ja) * | 2019-08-28 | 2021-03-04 | パナソニックIpマネジメント株式会社 | 光源照明装置及び投写型画像表示装置 |
JP2022512909A (ja) * | 2019-10-11 | 2022-02-07 | 山西▲漢▼威激光科技股▲ふん▼有限公司 | モジュール化された高効率放熱均一フィールドレーザー光源システム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9797556B2 (en) * | 2013-10-29 | 2017-10-24 | Philips Lighting Holding B.V. | Phosphor based lighting devices and method of generating a light output |
JP6815715B2 (ja) * | 2014-08-29 | 2021-01-20 | 日亜化学工業株式会社 | 光源装置及び該光源装置を備えたプロジェクタ |
US10838289B2 (en) * | 2016-07-12 | 2020-11-17 | Panasonic Intellectual Property Management Co., Ltd. | Light source device and projection display apparatus including plural light sources, and a lens condensing light from the plural light sources into one spot |
CN109557752B (zh) * | 2017-09-26 | 2021-03-02 | 深圳光峰科技股份有限公司 | 光源系统及投影装置 |
CN109557753B (zh) * | 2017-09-26 | 2021-03-02 | 深圳光峰科技股份有限公司 | 光源系统及投影装置 |
CN110032030B (zh) * | 2018-01-11 | 2021-10-26 | 深圳光峰科技股份有限公司 | 波长转换装置及其制备方法、光源装置、投影设备 |
JP6987347B2 (ja) * | 2018-03-29 | 2021-12-22 | マクセル株式会社 | プロジェクタ |
CN110888291B (zh) * | 2018-09-07 | 2021-05-11 | 深圳光峰科技股份有限公司 | 光源系统及投影装置 |
JP6829821B2 (ja) * | 2018-10-01 | 2021-02-17 | カシオ計算機株式会社 | 光源装置及び投影装置 |
CN111766756B (zh) * | 2019-04-01 | 2022-03-11 | 青岛海信激光显示股份有限公司 | 一种激光光源及激光投影设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011013313A (ja) * | 2009-06-30 | 2011-01-20 | Casio Computer Co Ltd | 光源装置及びプロジェクタ |
WO2011118536A1 (ja) * | 2010-03-25 | 2011-09-29 | 三洋電機株式会社 | 投写型映像表示装置および光源装置 |
JP2012128297A (ja) * | 2010-12-17 | 2012-07-05 | Hitachi Consumer Electronics Co Ltd | 光源装置 |
JP2012141495A (ja) * | 2011-01-05 | 2012-07-26 | Seiko Epson Corp | 光源装置及びプロジェクター |
WO2013047542A1 (ja) * | 2011-09-26 | 2013-04-04 | 日立コンシューマエレクトロニクス株式会社 | 光源装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101256341B (zh) * | 1996-08-19 | 2012-10-24 | 精工爱普生株式会社 | 投影式显示装置 |
DE10341626B4 (de) * | 2003-09-10 | 2016-06-02 | Carl Zeiss Jena Gmbh | Beleuchtungsmodul zur Farbbildanzeige |
JP4756403B2 (ja) * | 2009-06-30 | 2011-08-24 | カシオ計算機株式会社 | 光源装置及びプロジェクタ |
JP5617288B2 (ja) * | 2010-03-18 | 2014-11-05 | セイコーエプソン株式会社 | 照明装置及びプロジェクター |
JP5527058B2 (ja) * | 2010-07-06 | 2014-06-18 | セイコーエプソン株式会社 | 光源装置及びプロジェクター |
JP5601092B2 (ja) * | 2010-08-27 | 2014-10-08 | セイコーエプソン株式会社 | 照明装置及びプロジェクター |
JP5699568B2 (ja) * | 2010-11-29 | 2015-04-15 | セイコーエプソン株式会社 | 光源装置、プロジェクター |
JP5508339B2 (ja) * | 2011-05-25 | 2014-05-28 | 富士フイルム株式会社 | 内視鏡用投光ユニット |
JP5834723B2 (ja) * | 2011-09-30 | 2015-12-24 | カシオ計算機株式会社 | 光源装置及びプロジェクタ装置 |
JP5979365B2 (ja) * | 2011-10-06 | 2016-08-24 | パナソニックIpマネジメント株式会社 | 光源装置及び画像表示装置 |
JP5799756B2 (ja) * | 2011-11-02 | 2015-10-28 | セイコーエプソン株式会社 | プロジェクター |
JP2013228530A (ja) * | 2012-04-25 | 2013-11-07 | Seiko Epson Corp | プロジェクター |
JP5962904B2 (ja) * | 2012-04-26 | 2016-08-03 | パナソニックIpマネジメント株式会社 | 光源装置及び該光源装置を備える投写型表示装置 |
CN104583864B (zh) * | 2012-08-21 | 2016-05-18 | Nec显示器解决方案株式会社 | 照明光学系统、投影仪和投影仪系统 |
WO2014068742A1 (ja) * | 2012-11-01 | 2014-05-08 | 日立マクセル株式会社 | 光源装置及び投写型映像表示装置 |
-
2013
- 2013-06-04 US US14/889,175 patent/US20160131967A1/en not_active Abandoned
- 2013-06-04 WO PCT/JP2013/065477 patent/WO2014196020A1/ja active Application Filing
- 2013-06-04 CN CN201380077192.XA patent/CN105264437A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011013313A (ja) * | 2009-06-30 | 2011-01-20 | Casio Computer Co Ltd | 光源装置及びプロジェクタ |
WO2011118536A1 (ja) * | 2010-03-25 | 2011-09-29 | 三洋電機株式会社 | 投写型映像表示装置および光源装置 |
JP2012128297A (ja) * | 2010-12-17 | 2012-07-05 | Hitachi Consumer Electronics Co Ltd | 光源装置 |
JP2012141495A (ja) * | 2011-01-05 | 2012-07-26 | Seiko Epson Corp | 光源装置及びプロジェクター |
WO2013047542A1 (ja) * | 2011-09-26 | 2013-04-04 | 日立コンシューマエレクトロニクス株式会社 | 光源装置 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9888220B2 (en) | 2015-06-01 | 2018-02-06 | Nec Display Solutions, Ltd. | Light source device, projection-type display device, and light generation method |
JP2017009683A (ja) * | 2015-06-18 | 2017-01-12 | セイコーエプソン株式会社 | 光源装置、照明装置およびプロジェクター |
CN106324958A (zh) * | 2015-06-30 | 2017-01-11 | 海信集团有限公司 | 一种荧光转换系统 |
CN109031870B (zh) * | 2015-06-30 | 2021-03-30 | 海信集团有限公司 | 一种荧光转换系统 |
CN106324958B (zh) * | 2015-06-30 | 2018-09-04 | 海信集团有限公司 | 一种荧光转换系统 |
CN108761984A (zh) * | 2015-06-30 | 2018-11-06 | 海信集团有限公司 | 一种荧光转换系统 |
CN109031870A (zh) * | 2015-06-30 | 2018-12-18 | 海信集团有限公司 | 一种荧光转换系统 |
CN108761984B (zh) * | 2015-06-30 | 2019-11-08 | 海信集团有限公司 | 一种荧光转换系统 |
US10737391B2 (en) | 2015-09-28 | 2020-08-11 | Ricoh Company, Ltd. | System for capturing an image |
WO2017056479A1 (en) * | 2015-09-28 | 2017-04-06 | Ricoh Company, Ltd. | System |
JP2017067758A (ja) * | 2015-09-28 | 2017-04-06 | 株式会社リコー | システム |
CN106933012A (zh) * | 2015-12-30 | 2017-07-07 | 中强光电股份有限公司 | 照明系统以及投影装置 |
WO2017208313A1 (ja) * | 2016-05-31 | 2017-12-07 | Necディスプレイソリューションズ株式会社 | 光源装置およびプロジェクター |
WO2021039752A1 (ja) * | 2019-08-28 | 2021-03-04 | パナソニックIpマネジメント株式会社 | 光源照明装置及び投写型画像表示装置 |
JP2022512909A (ja) * | 2019-10-11 | 2022-02-07 | 山西▲漢▼威激光科技股▲ふん▼有限公司 | モジュール化された高効率放熱均一フィールドレーザー光源システム |
JP7150170B2 (ja) | 2019-10-11 | 2022-10-07 | 山西▲漢▼威激光科技股▲ふん▼有限公司 | モジュール化された高効率放熱均一フィールドレーザー光源システム |
Also Published As
Publication number | Publication date |
---|---|
CN105264437A (zh) | 2016-01-20 |
US20160131967A1 (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014196020A1 (ja) | 照明光学系及びプロジェクタ | |
JP6056001B2 (ja) | 光源装置および投写型表示装置 | |
US9677720B2 (en) | Lighting device comprising a wavelength conversion arrangement | |
EP3722874B1 (en) | Light source device, image projection apparatus, light source optical system | |
CN107357122B (zh) | 光源装置和投影仪 | |
CN102385232B (zh) | 照明装置及投影机 | |
CN102566233B (zh) | 光源装置和投影型影像显示装置 | |
US20190331990A1 (en) | Projector | |
US9325955B2 (en) | Light source apparatus and projector apparatus with optical system having reduced color irregularity | |
WO2014196015A1 (ja) | 照明光学系及びプロジェクタ | |
CN110476010B (zh) | 照明装置以及投影仪 | |
US10768518B2 (en) | Light source apparatus and image projection apparatus having the same | |
JP2012141411A (ja) | 光源装置 | |
CN113050354B (zh) | 光源组件和投影设备 | |
JP7035667B2 (ja) | 照明光学系ユニット | |
JP2017027903A (ja) | 照明装置及びプロジェクター | |
KR20180017995A (ko) | 프로젝터 | |
JP2015108758A (ja) | 照明装置、投射型映像表示装置、照明方法、および投射型映像表示方法 | |
US20160363273A1 (en) | Laser source for exiting a phosphor and light source comprising a phosphor | |
WO2021105790A1 (en) | Light-source optical system, light-source device, and image display apparatus | |
US20170242266A1 (en) | Illumination device and projector | |
JP2019028333A (ja) | 光源装置およびプロジェクター | |
JP2017053876A (ja) | 投写型画像表示装置 | |
JP2022146401A (ja) | 光源装置およびプロジェクター | |
JP2006113085A (ja) | 光源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380077192.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13886217 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14889175 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13886217 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |