WO2013084322A1 - 合成繊維 - Google Patents
合成繊維 Download PDFInfo
- Publication number
- WO2013084322A1 WO2013084322A1 PCT/JP2011/078339 JP2011078339W WO2013084322A1 WO 2013084322 A1 WO2013084322 A1 WO 2013084322A1 JP 2011078339 W JP2011078339 W JP 2011078339W WO 2013084322 A1 WO2013084322 A1 WO 2013084322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller
- synthetic fiber
- dtex
- weaving
- less
- Prior art date
Links
- 229920002994 synthetic fiber Polymers 0.000 title claims abstract description 67
- 239000012209 synthetic fiber Substances 0.000 title claims abstract description 67
- 239000004744 fabric Substances 0.000 claims abstract description 69
- 239000000835 fiber Substances 0.000 claims abstract description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 238000009835 boiling Methods 0.000 claims description 13
- 238000010622 cold drawing Methods 0.000 claims description 11
- 239000004952 Polyamide Substances 0.000 claims description 7
- 229920002647 polyamide Polymers 0.000 claims description 7
- 238000009941 weaving Methods 0.000 abstract description 66
- 230000035699 permeability Effects 0.000 abstract description 34
- 238000003780 insertion Methods 0.000 abstract description 15
- 230000037431 insertion Effects 0.000 abstract description 15
- 229920002302 Nylon 6,6 Polymers 0.000 description 44
- 238000000034 method Methods 0.000 description 42
- 239000002759 woven fabric Substances 0.000 description 30
- 230000000704 physical effect Effects 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 25
- 239000007789 gas Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 19
- 238000009987 spinning Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 238000009998 heat setting Methods 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- 230000003746 surface roughness Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 239000012530 fluid Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 229920002292 Nylon 6 Polymers 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010036 direct spinning Methods 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000009991 scouring Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 244000273256 Phragmites communis Species 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- -1 fatty acid ester compound Chemical class 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D10/00—Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
- D01D10/02—Heat treatment
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/60—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/60—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
- D01F6/605—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/02—Inflatable articles
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/573—Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
- B60R2021/23504—Inflatable members characterised by their material characterised by material
- B60R2021/23509—Fabric
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- the present invention relates to a synthetic fiber for improving uniformity of a woven fabric woven at high density and high speed.
- the present invention relates to a synthetic fiber used for improving the air permeability uniformity of a woven fabric used for an air bag.
- the airbag device is a safety device that restrains an occupant in a vehicle collision accident.
- the airbag device includes a collision sensor, a gas generator, an inflator, and an airbag.
- the air bag is made of synthetic fiber fabric, can withstand the heat of the inflator propellant reaction, deploys in tens of milliseconds, and functions to absorb the rush energy of the occupant with the expanded gas of the deployed bag.
- Airbags must have mechanical properties that do not break when deployed or when passengers enter, and are designed to meet the required mechanical properties with high-density fabrics.
- the uniformity of the woven density of the woven fabric is a factor that supports the uniformity of the mechanical properties, and there is a demand for improving the uniformity of the woven density.
- the air bag needs to be instantly deployed with gas, and is preferably non-vented as much as possible. It is possible to use a coated fabric provided with a resin or elastomer coating film, or to have low air permeability due to high density. A non-coated woven fabric is used. Uniformity of the air permeability of the woven fabric results in uniform working characteristics of the airbag. Furthermore, when gas is deployed instantaneously, local gas ventilation due to air permeability irregularities results in local concentration of deployment stress and may cause air bag breakage. There is.
- Patent Document 1 discloses that weaving is improved by improving the weaving ability of the weft.
- An object of the present invention is to provide a synthetic fiber suitable for high-density and high-speed weaving, and in particular, a synthetic fiber excellent in weft insertion stability for obtaining a woven fabric having uniform physical properties such as woven density and air permeability. Is to provide.
- the present inventor has found that by using synthetic fibers having specific physical properties, weft insertion stability during high-speed weaving is improved, and uniform physical properties can be obtained.
- the present invention has been achieved. That is, the present invention is as follows. (1) The fineness is 200 to 720 dtex, the average value of the intermediate load elastic modulus is more than 75 cN / dtex and less than 150 cN / dtex, and the variation coefficient of the intermediate load elastic modulus is 5% or less. Synthetic fibers. (2) The synthetic fiber according to the above (1), wherein the average value of the intermediate load elastic modulus is more than 80 cN / dtex and less than 120 cN / dtex.
- the synthetic fiber according to any one of (1) to (11) which is used for a fabric for an airbag.
- An airbag base fabric comprising the synthetic fiber according to any one of (1) to (11) above.
- An airbag comprising the airbag base fabric according to (13).
- the synthetic fiber of the present invention is excellent in high-speed weaving property, in particular, excellent in stability of weft insertion, and excellent in weaving density uniformity and air permeability uniformity when made into a high-density woven fabric. Furthermore, since the woven fabric obtained from the synthetic fiber of the present invention is excellent in woven density uniformity and air permeability uniformity as an airbag woven fabric, a uniform airbag is obtained, and a highly reliable airbag without bag breakage is obtained. can get.
- the synthetic fiber of the present invention is preferably a long fiber made of polyamide or polyester multifilament.
- a polyamide fiber particularly preferred is a polyamide fiber, and since it has a high melting point and a large heat capacity, it is excellent in burst resistance due to melting resistance when an air bag is expanded with explosives.
- examples thereof include fibers made of polyamide 6, polyamide 6,6, polyamide 11, polyamide 12, polyamide 6,10, polyamide 6,12, polyamide 4,6, a copolymer thereof, and a mixture thereof.
- polyamide 6/6 fibers mainly composed of polyhexamethylene adipamide fibers are preferable.
- the polyhexamethylene adipamide fiber refers to a polyamide fiber having a melting point of 250 ° C.
- the polyamide 6/6 fiber of the present invention is copolymerized with polyhexamethylene adipamide with polyamide 6, polyamide 6 • I, polyamide 6 • 10, polyamide 6 • T or the like within a range where the melting point does not become less than 250 ° C. It may be a fiber made of a blended polymer.
- the fineness of the synthetic fiber is 200 to 720 dtex. If it is 200 dtex or more, it has sufficient mechanical properties when made into a woven fabric for material use. If it is 720 dtex or less, when carrying out high-speed weaving at 800 rpm or higher with a non-woven weaving machine, there is no case where the transport weight is too heavy to follow when wefts are inserted.
- the lower limit is more preferably 220 dtex or more, and the upper limit is more preferably 500 dtex or less, and particularly preferably 450 dtex or less.
- the tensile elasticity can be determined based on the description of the measuring method of JISL1017 (7.8 initial tensile resistance).
- JISL1017 the tensile elasticity at the initial stage of tension is obtained, but not only at the initial stage of the tensile test, but when the tensile elasticity is obtained in all the elongation regions from the initial stage to the break, a “tensile elasticity-elongation” curve can be obtained. it can.
- This curve usually shows a small maximum at the beginning of tension, then shows the maximum value of tensile elasticity in the intermediate extension region until breakage, and then shows a behavior in which the elasticity value decreases and leads to breakage.
- the average value of the intermediate load elastic modulus of the synthetic fiber of the present invention is more than 75 cN / dtex and less than 150 cN / dtex.
- the intermediate load elastic modulus (cN / dtex) is the maximum value of tensile elasticity in the “tensile elasticity-elongation” curve. Due to the high intermediate load elastic modulus, the fiber response to high-speed weft insertion is good, and the arrival time of weft insertion is short. That is, it is excellent in high-speed weaving.
- the arrival time of the weft yarn on the opposite side of the nozzle in the loom is evaluated by the crank angle that is the operation timing of the loom, the arrival at a smaller crank angle is observed if the intermediate load elastic modulus is high. If the crank angle is small, it can be determined that the insertion of the weft yarn can be satisfactorily followed by the high-speed weaving. That is, a high intermediate load elastic modulus contributes to lowering the crank angle during weaving. If the average value of the intermediate load elastic modulus exceeds 75 cN / dtex, it contributes to lowering the crank angle. More preferably, it exceeds 80 cN / dtex, and most preferably, it exceeds 85 cN / dtex.
- the average value of the intermediate load elastic modulus is preferably substantially less than 150 cN / dtex for synthetic fibers in consideration of other characteristics and production costs.
- the average value of the intermediate load elastic modulus is more preferably less than 120 cN / dtex.
- the coefficient of variation of the intermediate load elastic modulus obtained by the method described later is preferably 5% or less.
- the smaller the variation coefficient of the intermediate load elastic modulus the smaller the variation in the arrival time of the weft yarn on the nozzle opposite side, The variation in the crank angle value is reduced. It is desirable that there is no change in the intermediate load elastic modulus. If the arrival time of the weft to the nozzle opposite side does not vary, the weft is driven under uniform insertion conditions.
- the weft In the case of a water jet loom, the weft is driven by a water droplet flow, and in the case of an air jet loom, the weft is driven by a pressurized air stream, and the weft flies.
- the yarn reaches the opposite side of the nozzle while being stretched by instantaneous driving, and warps intersect and are beaten to form a woven fabric.
- the variation in the intermediate load elastic modulus becomes the difference in the degree of stretch of the weft when the weft is inserted, and the difference in the fabric width of the woven fabric. A degree difference will occur.
- the smaller the variation coefficient of the intermediate load elastic modulus is 5% or less, the smaller the weave density spots and the air permeability spots.
- the variation coefficient of the intermediate load elastic modulus of the synthetic fiber is substantially 0.1% or more in consideration of other characteristics, production costs, and the like.
- the elongation at the time of showing the maximum value of tensile elasticity that is, the average value of the intermediate elastic elongation is preferably 10 to 12%.
- the average value of the intermediate elastic elongation is small, the response of the fiber to the high-speed weft insertion is good, and the arrival time of the weft insertion is short. That is, it is excellent in high-speed weaving.
- the crank angle which is the operation timing of the loom
- the average value of the intermediate elastic elongation is 12% or less, the arrival at a smaller crank angle is observed.
- the value of intermediate elastic elongation is less than 11.5%.
- the average value of the intermediate elastic elongation is preferably substantially 10% or more for synthetic fibers. As a high quality fiber, the average value of the intermediate elastic elongation is more preferably 10.5% or more.
- the number of filaments of the synthetic fiber of the present invention is preferably 65 to 200.
- the number of filaments is 65 or more, the conveyance efficiency by fluid friction on the filament surface is high and the weft insertion speed is fast with respect to the weft conveyance flow of water droplet flow or air flow. That is, the crank angle is small and it is easy to follow high-speed weaving. More preferably, it is 70 or more, and more preferably 80 or more. If the number of filaments is 200 or less, it is advantageous because air entanglement energy for imparting entanglement to the multifilament is good and uniform and good entanglement is provided. More preferably, it is 150 or less.
- the average value of the entangled part length is preferably 20 mm or less, the average value of the unentangled part length is 10 to 65 mm, and the variation coefficient of the non-entangled part length is preferably 30% or less.
- the entanglement of the synthetic fiber in this invention it is preferable that the entanglement part length measured by the water immersion method is 20 mm or less and 2 mm or more.
- the unentangled part length is preferably 10 mm or more and 65 mm or less.
- weaving flow that is, water drop flow, air flow water or air inclusion is not inferior, and weaving troubles due to insufficient flight are not induced. More preferably, it is 30 mm or more. If the length of the unentangled portion is 65 mm or less, the single yarn length varies in the length direction of the yarn, thereby preventing the occurrence of yarn breakage or fluff during weaving.
- the apparent weft cross section does not become too large due to the single yarn spread of the weft riding on the water droplet flow or air flow, and therefore the weft flight time may vary due to interference with the open warp. Absent. More preferably, it is 60 mm or less.
- the variation coefficient of the unentangled portion length obtained by the method described later is preferably 30% or less. When the variation coefficient of the length of the unentangled portion is 30% or less, the yarns are loosened or loosened during weaving, and hardly cause a stop or a fabric defect.
- the boiling water shrinkage of the synthetic fiber of the present invention is preferably 5.5% or more. If the boiling water shrinkage ratio is 5.5% or more, the fabric can be shrunk in the processing step after weaving, and the finish of the fabric can be contributed to high density.
- the boiling water shrinkage of the synthetic fiber of the present invention is more preferably 7.0% or more. If the boiling water shrinkage rate is 7.0% or more, the fabric can be shrunk in the processing step after weaving, and this can contribute to uniform variation in the physical properties of the fabric machine. Particularly preferably, it is 7.5% or more.
- the boiling water shrinkage of the high-strength synthetic fiber is preferably substantially 13.0% or less in consideration of other characteristics and production costs. More preferably, it is 12.0% or less, More preferably, it is 11.0% or less.
- the oil agent adhesion rate of the synthetic fiber of the present invention is preferably 0.6 to 1.5 wt%. If it is 1.5 wt% or less, there is almost no difficulty in wefts flying due to stickiness (tackiness). In addition, since the single yarn focusing is better than the single yarn focusing due to the entanglement and the apparent cross-sectional area is reduced, the weft conveying medium air and water hardly lose the weft conveying force. That is, the crank angle is not significantly increased. On the other hand, if it is 0.6 wt% or more, the weft is smoothly fed with an appropriate friction reducing effect, so that the crank angle does not fluctuate.
- the tensile strength of the synthetic fiber of the present invention is preferably 8.5 cN / dtex or more. If the tensile strength is as high as 8.5 cN / dtex or more, it contributes to the improvement of the mechanical properties of the fabric and is also advantageous for increasing the intermediate load elastic modulus during yarn production. More preferably, it is 9.0 cN / dtex or more, and most preferably 9.5 cN / dtex or more. The tensile strength of the synthetic fiber is substantially 10.5 cN / dtex or less in consideration of other characteristics and production costs.
- Drawing 1 is an explanatory view showing an example of the equipment which manufactures the textiles of the present invention.
- the polymer in a molten state is soaked by a part of a spinning machine called a spin head (1) and is spun from the spinneret (2).
- the spun polymer is solidified by cold air from the cooling chamber (3) to form a yarn.
- the yarns gathered at each end are then given a finishing agent by an oil supply device having an oil supply roller (4), and then the take-up roller (21), the first roller (22) to the fifth roller (26). It progresses to the extending
- the yarn is taken up at a predetermined speed by the roller (21) and then led to the first stage roller with a slight tension.
- the yarn is fed to the entanglement imparting device (10) through the yarn path regulating guide (9) and wound by the winder (11). .
- a heat roll is preferably used in the drawing step, and the temperature control by heat transfer can be sufficiently achieved by designing the contact length between the roll and the yarn.
- the first stage of cold stretching is performed.
- the cold drawing between the first stage roller (22) and the second stage roller (23) is performed by setting the temperature of the first stage stretching to less than 150 ° C. and the first stage stretching ratio from 25% with respect to the total stretching ratio. It is preferable to stretch at a distribution ratio of 55%. More preferably, it is 30% to 50%, and more preferably 35% to 45%.
- the stretch ratio in the first stage is, for example, less than 3 times, more preferably 2.8 times or less, and even more preferably 2.5 times or less.
- the first stage of cold stretching may be performed in multiple stages, and may be performed while sequentially increasing the stretching temperature at a temperature setting of less than 150 ° C.
- the cold drawing roll temperature (first stage roller in the illustrated example) is set from a temperature between the anhydrous glass transition point of the spun yarn and a temperature of about 60 ° C. to start drawing. It is preferable for fixing the point position.
- the roller temperature setting for the first stage stretching is 20 ° C. to 90 ° C., more preferably more than 50 ° C. to 80 ° C., and still more preferably more than 60 ° C. to 70 ° C.
- the multi-stage stretching may be carried out by successively raising the set temperature to a temperature lower than 150 ° C., more preferably 120 ° C.
- the second stage heat stretching is performed between the second stage roller (23) and the third stage roller (24), and the second stage roller is set to 150 ° C. or more and stretched to reach the total stretching ratio.
- the second stage of thermal stretching may be performed in multiple stages, and may be performed while increasing the stretching temperature sequentially at a temperature setting of 150 ° C. or higher.
- the total stretching ratio may be set so that desired tensile strength properties are exhibited. For example, it is about 5 to 6 times.
- the hot drawing roll temperature (second stage roller in the illustrated example) is preferably 180 ° C. to 240 ° C., more preferably 200 ° C. to 220 ° C.
- the multi-stage stretching may be performed by successively raising the set temperature to 240 ° C., more preferably 230 ° C.
- the surface roughness is preferably 2.0 ⁇ m or more in terms of Ra. More preferably, it is 2.0 to 5.0 ⁇ m, and still more preferably 3.0 to 5.0 ⁇ m.
- the roller after the heat stretching is a heat setting step, and it is a feature of the present invention that the polymer orientation structure is heat fixed and wound while lowering the temperature in multiple stages.
- the heat stretching is completed up to the third stage roller (24), and heat setting is performed in three stages from the third stage roller (24) to the fifth stage roller (26) until winding.
- the third stage roller (24) is a temperature at which the heat setting process is started, and is set to the highest temperature during the heat setting process.
- the temperature of the third stage roller (24) is a plus of 30 with respect to the final heat drawing temperature, that is, the temperature of the second stage roller (23), with the maximum temperature being about 30 ° C. lower than the constant length restraining melting point of the drawn yarn.
- the range of from 0 ° C. to minus 50 ° C. is preferred.
- the fourth stage roller is lower in temperature than the third stage roller, and the temperature difference is preferably 10 ° C. to 60 ° C., more preferably 20 ° C. to 50 ° C., and even more preferably 30 ° C. to 40 ° C. .
- the fifth stage roller is further lowered to a temperature of less than 150 ° C., preferably 140 ° C. to 100 ° C., and the temperature difference with the fourth stage roller is preferably 10 ° C. to 60 ° C., more preferably Is 20 ° C. to 50 ° C., more preferably 30 ° C. to 40 ° C.
- the heat setting process it is a feature of the present invention to perform multi-stage temperature-decreasing heat fixing in which the temperature is lowered in at least two stages, more preferably three or more stages. Then, it winds up with a winder (11).
- the speed between the third stage roller (24) and the fifth stage roller (26) is moderated as appropriate, but the speed ratio of each roller is preferably 1.0 to 0.90, more preferably 1.0 to 0.00. 94.
- the overall relaxation rate ratio in the heat setting step is preferably 1.0 to 0.90.
- the temperature setting of the third stage roller (24) is set to a low temperature with respect to the heat drawing temperature up to the second stage roller (23) after the completion of the hot drawing, the boiling water shrinkage rate can be increased as the temperature is lowered. it can.
- the thermal shrinkage of the fiber can be stabilized and the coefficient of variation of the intermediate load elastic modulus can be lowered, the intermediate load elastic modulus is high, and the intermediate elastic elongation Can be obtained with low fiber properties.
- Even between the fifth stage roller (26) (final roller) and the winder, a relaxation process with a speed ratio of 1.0 to 0.85 can be performed.
- the temperature of the final roller is preferably 150 ° C. or lower to room temperature (non-heated), more preferably 140 ° C. or lower to 80 ° C.
- the finishing agent applied by the oiling device is not particularly limited, but the yarn quality is excellent in smoothness and heat resistance so that the yarn is smoothly stretched in the yarn making process. It is preferable from the viewpoint of industrial material use.
- the finishing agent composition satisfying such characteristics include a divalent fatty acid ester compound, a divalent fatty acid ester compound containing an alkylene oxide, a polyhydric alcohol alkylene oxide adduct, and a polyhydric alcohol alkylene oxide adduct containing an alkylene oxide.
- a finishing agent mainly composed of, for example, is preferably used.
- the finishing agent is used without any limitation, such as those diluted with mineral oil, water-based emulsions, etc., but is preferably an emulsion in consideration of compatibility with water in the subsequent step.
- the finishing agent may be applied in an appropriate amount such as 0.6 to 1.5% by weight. In order to enhance the weft flying property, it is also preferable to avoid stickiness due to the finishing agent and to set the application rate to 0.6 to 1.0% by weight.
- a yarn path regulating guide (9) for stabilizing the yarn running is provided at the upstream portion and the downstream portion of the entanglement imparting device (10). Maintaining the yarn running angle defined by these and the entanglement nozzle portion of the entanglement imparting device in the range of 1 to 10 ° is a preferable method for obtaining an entangled yarn with little variation.
- the entanglement imparting device can be a known device that injects a compressed fluid onto the yarn by an entanglement nozzle.
- the compressed fluid to the yarn is preferably supplied at an energy of 0.5 to 3.5 kW.
- the compressed fluid energy is preferably 0.5 kW or more so that the unentangled length is not too long, and variations in the unentangled length can be suppressed.
- the compressed fluid energy is preferably 3.5 kW or less so that the unentangled length is not too short. Also, keeping the compressed fluid energy from being too high will also reduce variations in unentangled length.
- the supply energy of the compressed fluid can be calculated by the product of the supply pressure (MPa) and the use flow rate (Nm 3 / hr). By arbitrarily selecting the supply pressure and the fluid introduction diameter of the entangled nozzle, the supply energy can be calculated as described above. The range of can be satisfied.
- the fluctuation of the winding tension between the fifth stage roller (26) (final roller) and the winder (11) is small and stabilized. Further, by adjusting the winding tension between the fifth stage roller (26) (final roller) and the winder (11) to be in the range of 0.1 to 0.3 cN / dtex, The entangled yarn has a stable and less entangled part, especially less entangled length, and at the same time, it can minimize fluctuations in tension when unpacking the package. Also excellent.
- the synthetic fiber of the present invention can be woven with various looms such as a water jet loom, an air jet loom, a rapier loom, and a multiphase loom. It is particularly suitable for high-speed weaving at 800 rpm or higher. After weaving, the oil may be removed by a scouring process, or the scouring process may be omitted.
- the fabric may be shrunk by treatment with hot water or hot air. In this shrinking process, tension control may be performed in the width direction or the anti-long direction of the fabric, or the dimensional change rate may be adjusted. Since the tension control and the dimensional change rate control in the width direction of the woven fabric are set uniformly over the entire length of the fabric, uneven relaxation of the woven fabric properties resulting from variations in the intermediate load elastic modulus at the time of weft insertion is limited.
- the synthetic fiber of the present invention is suitable for a high-density fabric, and can be a fabric having a cover factor of 2000 to 2500, more preferably 2200 to 2500.
- the cover factor is ⁇ warp density (main / 2.54 cm) ⁇ (warp fineness (dtex)) 1/2 + weft density (main / 2.54 cm) ⁇ (weft fineness (dtex)) 1/2 ⁇ .
- the fabric using the synthetic fiber of the present invention can be made into a high-density fabric and used for an uncoated airbag. Moreover, it can also be used for a coating airbag by coating a resin or an elastomer.
- R F / (L ′ / L ⁇ d)
- F is the load (cN) at the point C
- L is the sample length
- L ′ is between the intersection H between the perpendicular of the point C and the extension axis
- T between the cut line and the extension axis
- D is the fineness (dtex).
- the elongation H at the maximum point C of the cut line angle was defined as the intermediate elastic elongation.
- s is a standard deviation
- X is an average value.
- the average value and the coefficient of variation of the intermediate load elastic modulus are arbitrarily sampled 50 samples in the yarn length direction of the winding yarn, the intermediate load elastic modulus is obtained by the above method for each sample, the average value and the standard deviation are calculated, Asked.
- the bathing bath for measuring the number of entangled parts has a length of 1.0 m, a width of 20 cm, and a height (water depth) of 15 cm, and the water supplied from the supply port is the bath. It is drained by overflow. That is, the water in the measurement bath is renewed by always supplying new water at a flow rate of about 500 cc / min.
- the length a of the entangled portion of the yarn extending on the water surface and the length b of the non-entangled portion are measured on a scale. These measurements were repeated 25 times to obtain an average value.
- the frequency (times / unit / day) was evaluated according to the following criteria. ⁇ : Stops less than 3 times / vehicle / day ⁇ : Stops less than 10 times / vehicle / day ⁇ : Stops exceeding 10 times / vehicle / day
- Air permeability evaluation Porous Metals, Inc. Using a Capillary Flow Porometer (CFP-1200AEX) manufactured by Capillary, a sample for measurement having a diameter of 25 mm was taken from the fabric, and a wet-up / dry-up air flow rate curve was drawn from 0 to 200 kPa with GalWick immersion liquid, and the air permeability at 100 kPa was drawn.
- s is a standard deviation
- X is an average value.
- Roughness This is a value measured using a surface roughness measuring device (manufactured by Kosaka Co., Ltd., Surf Recorder SE-40D) according to the standard of stylus surface roughness measurement of JIS B0651. The thickness (Ra) was measured.
- Example 1 A nylon 66 polymer having a 90% relative formic acid relative viscosity of 80 obtained by a conventional polymerization method was melted at 300 ° C. using the apparatus shown in FIG.
- the spinneret (2) was taken up and wound by a direct spinning drawing process to produce 470 dtex, 72 filament polyamide 66 fibers. That is, the discharged nylon 66 polymer is cooled and solidified in the cold air chamber (3) to form a yarn, and then the oil supply roller (4), the take-up roller (21), the first roller (22) to the fifth roller. After passing (26) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled and wound by the entanglement applying device (10).
- each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 200 ° C, and the third roller (24) at 220 ° C.
- the fourth roller (25) is 180 ° C.
- the fifth roller (26) is 140 ° C.
- the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 2.25 times, and the stretching ratio of the third roller / second roller is 2. .55 times stretching.
- the surface roughness of the second roller is 4.0 ⁇ m.
- the fourth roller / third roller speed ratio is 1.0
- the fifth roller / fourth roller speed ratio is 0.99
- the fifth roller to winder has a speed ratio of 0.94.
- the entanglement imparting device was installed between the fifth roller (26) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fiber.
- a plain woven fabric was obtained from the obtained polyamide 66 fiber using an air jet loom AS type (AWS4 / J280) manufactured by DORNIER at a speed of 900 rpm.
- AWS4 / J280 air jet loom AS type
- DORNIER DORNIER
- the crank angle was small and stable, and the evaluation results are also shown in Table 1.
- the resulting woven fabric is scoured by continuous scouring at 80 ° C., heat set with a fabric feed overfeed of 4% and a fabric width of 1% with a tenter at 170 ° C., and the weft density of warp and weft is 2.54 cm. 55 ⁇ 55 woven fabrics were obtained.
- Example 2 The same procedure as in Example 1 was performed except that the fifth roller / fourth roller speed ratio was set to 1.00 and the speed ratio from the fifth roller to the winder was set to 0.93 by heat setting in the spinning process.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The average value of the intermediate load elastic modulus increased, the crank angle of the weaving was smaller and stable, the air permeability unevenness of the non-coated fabric was small, and the burst resistance performance was also stable.
- Example 3 The same procedure as in Example 2 was performed except that the application of compressed air to the entanglement applying device in the spinning process was 0.42 MPa and the air supply energy was 1.04 kW.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric.
- the variation rate of the intermediate load elastic modulus was slightly large and the variation in the weaving crank angle was slightly large, but the air permeability was small and the burst resistance was stable.
- Example 4 The same procedure as in Example 2 was performed except that spinning was performed with a spinneret having 140 holes in the spinning process.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The crank angle of the weaving was small, the air permeability of the non-coated fabric was small, and the burst resistance was stable.
- Example 5 The same procedure as in Example 2 was performed except that spinning was performed with a spinneret having 180 holes in the spinning process.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The crank angle of the weaving was small, the air permeability of the non-coated fabric was small, and the burst resistance was stable.
- Example 6 The same procedure as in Example 2 was performed except that the application of compressed air to the entanglement applying device in the spinning process was 0.2 MPa and the air supply energy was 0.53 kW. Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. While the weaving crank angle is slightly smaller, there are more stops. Although the crank angle variation is slightly larger, the air permeability is small and the burst resistance is stable.
- Example 7 The same procedure as in Example 2 was performed except that the fourth roller temperature was set to 200 ° C. and the fifth roller / fourth roller speed ratio was set to 0.99 by heat setting in the spinning process.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The boiling water shrinkage decreased, the weaving crank angle was small and stable, and the non-coated fabric had slightly large air permeability, but the burst resistance was stable.
- Example 8 In the spinning process, the same procedure as in Example 2 was performed, except that the amount of finishing agent applied on the oil supply roller was increased to 1.6%.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. Although the weaving crank angle was slightly larger and the variation was slightly increased, the non-coated fabric had small air permeability and stable burst resistance.
- Example 9 The same procedure as in Example 2 was performed except that spinning was performed with a spinneret having 60 holes in the spinning process.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The crank angle of weaving increases and the variation increases slightly. Although the air permeability unevenness of the non-coated fabric was slightly large, the burst resistance performance was almost stable.
- Example 10 The same procedure as in Example 2 was performed except that the fineness was 235 dtex in the spinning process and the weaving density was 75 / 2.54 cm. Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. Although the average value of the intermediate load elastic modulus was slightly large, the crank angle of weaving was small, the air permeability unevenness of the non-coated fabric was small, and the burst resistance performance was stable.
- Example 11 With the heat setting in the spinning process, the third roller temperature is 210 ° C., the fourth roller temperature is 190 ° C., the fifth roller / fourth roller speed ratio is 0.99, and the fifth roller to winder speed ratio is 0. This was carried out in the same manner as in Example 2 except that it was set to .96.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The boiling water shrinkage increased, the weaving crank angle was small and stable, the non-coated fabric had small air permeability and the burst resistance was stable.
- Example 12 The same procedure as in Example 2 was performed except that the application of compressed air to the entanglement applying device in the spinning process was 0.15 MPa and the air supply energy was 0.29 kW.
- Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The unentangled length is slightly increased, and the variation of the weaving crank angle is slightly increased, which affects the air permeability variation. The high-pressure gas development evaluation is somewhat inferior in reliability but has burst resistance.
- Example 13 Spinning was performed in the same manner as in Example 1 using the apparatus shown in FIG.
- the temperature of each roller was set such that the take-up roller (21) was at room temperature, the first roller (22) was 65 ° C., the second roller (23) was 200 ° C., and the third roller (24) was 210 ° C.
- the fourth roller (25) is 180 ° C.
- the fifth roller (26) is 140 ° C.
- the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 2.15 times, and the stretching ratio of the third roller / second roller is 2. .55 times stretching.
- the surface roughness of the second roller is 4.0 ⁇ m.
- the fourth roller / third roller speed ratio is 1.0
- the fifth roller / fourth roller speed ratio is 0.99
- the speed ratio from the fifth roller to the winder is 0.94. It was relaxed and wound up.
- the entanglement imparting device was installed between the fifth roller (26) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric having a weaving density of 55 / 2.54 cm.
- Table 1 shows the evaluation results and the like of the obtained fabric.
- the crank angle related to the weft flying performance is large and the variation is large, but the weaving property is stable.
- the air permeability is slightly large, and the burst behavior by high-pressure gas deployment is slightly inferior in reliability but has burst resistance.
- Example 1 The apparatus shown in FIG. 2 was used. Nylon 66 polymer having a 90% formic acid relative viscosity of 80 obtained by a conventional polymerization method was melted at 300 ° C., soaked with a spin head (1), and then spun with a spinneret (2) having 72 holes. It was discharged and wound by a direct spinning drawing process to produce 470 dtex, 72 filament polyamide 66 fibers. That is, the discharged nylon 66 polymer is cooled and solidified in the cold air chamber (3) to form a thread, and then the oil supply roller (4), the take-up roller (21), the first roller (22) to the fourth roller. After passing (25) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled with the entanglement imparting device (10) and wound.
- each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 220 ° C, and the third roller (24) at 180 ° C.
- the fourth roller (25) is 140 ° C.
- the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 3.55 times, and the stretching ratio of the third roller / second roller is 1. .60 times stretching.
- the surface roughness of the second roller is 1.5 ⁇ m.
- the fourth roller / third roller speed ratio was set to 1.0. From the fourth roller to the winder, the winder was relaxed so that the speed ratio was 0.92.
- the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW. The amount of finishing agent applied was 1.0% by weight.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1.
- Example 1 Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric having a weaving density of 55 / 2.54 cm. Table 1 shows the evaluation results and the like of the obtained fabric. Since the cold drawing ratio is large, the fiber physical properties have a small average value of the intermediate load elastic modulus and a large average value of the intermediate elastic elongation. The high-stretching process is somewhat unstable and fluffy. In the weaving process, there were a few stops. Since the average value of the intermediate load elastic modulus is small, the crank angle of weaving is large, and the gas leak of expansion is large. Due to the large cold drawing ratio, the crank angle varies greatly. The non-coated fabric had large air permeability, and the burst resistance was unstable due to the large air permeability.
- Example 2 The apparatus shown in FIG. 3 was used. Nylon 66 polymer having a 90% formic acid relative viscosity of 80 obtained by a conventional polymerization method was melted at 300 ° C., soaked with a spin head (1), and then spun with a spinneret (2) having 72 holes. It was discharged and wound by a direct spinning drawing process to produce 470 dtex, 72 filament polyamide 66 fibers.
- the oil supply roller (4), the take-up roller (21), the first roller (22) to the third roller After passing (24) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled with the entanglement imparting device (10) and wound.
- each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 220 ° C, and the third roller (24) at 180 ° C.
- the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 3.55 times, and the stretching ratio of the third roller / second roller is 1. .60 times stretching.
- the surface roughness of the second roller is 1.5 ⁇ m.
- the third roller / winder speed ratio was 0.94.
- the entanglement imparting device was installed between the third roller (24) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric having a weaving density of 55 / 2.54 cm. Table 1 shows the evaluation results and the like of the obtained fabric.
- the relaxation speed ratio is adjusted and the heat fixation is performed with increased tension, but the fiber properties have a small mean value of the intermediate load elastic modulus, The average value of the intermediate elastic elongation is also large. The expansion gas leak is more. Since the cold drawing ratio is large, the weaving crank angle is large and the variation is also large. The non-coated fabric had larger air permeability and the burst resistance was unstable.
- the fourth roller / third roller speed ratio was set to 1.0, and the winding from the fourth roller to the winder was relaxed so that the speed ratio was 0.96.
- the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric. Table 1 shows the evaluation results and the like of the obtained fabric.
- the average value of the intermediate elastic modulus was increased and the average value of the intermediate elastic elongation was decreased by performing heat fixation with further increased tension as compared with Comparative Example 1.
- the stabilization of tension relaxation is incomplete and the variation in the intermediate load elastic modulus is large.
- the crank angle of weaving is small, but the variation is large.
- the non-coated fabric has large air permeability and unstable burst resistance.
- the 4th roller / 3rd roller speed ratio was set to 1.0, and the 4th roller to the winder was relaxed and wound so that the speed ratio became 0.93.
- the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric. Table 1 shows the evaluation results and the like of the obtained fabric.
- Heat setting was performed with a lower tension than in Comparative Example 3 by the relaxation rate ratio.
- the average value of the intermediate load elastic modulus was reduced, and the variation was also reduced. However, the average value of the intermediate elastic elongation increased. There are many gas leaks of expansion.
- the non-coated fabric has large air permeability and unstable burst resistance.
- the 4th roller / 3rd roller speed ratio was set to 1.0, and the 4th roller to the winder was relaxed and wound so that the speed ratio became 0.92.
- the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric. Table 1 shows the evaluation results and the like of the obtained fabric.
- the average value of the intermediate load elastic modulus of the obtained polyamide 66 fiber is smaller, and the average value of the intermediate elastic elongation is also large.
- the variation in the intermediate load elastic modulus is small.
- the strength of the obtained fiber was 8.0 cN / dtex, and although the strength was small, no burst was reached, but openings were observed and gas leak was too much. Therefore, the cushion function cannot be expected.
- Example 6 The apparatus shown in FIG. 2 was used. Nylon 66 polymer having a 90% formic acid relative viscosity of 80 is melted at 300 ° C. by a conventional polymerization method, soaked by a spin head (1), and discharged by a spinneret (2) having 72 holes. Winding by a direct spinning drawing process, 470 dtex, 72 filament polyamide 66 fibers were made. That is, the discharged nylon 66 polymer is cooled and solidified in the cold air chamber (3) to form a thread, and then the oil supply roller (4), the take-up roller (21), the first roller (22) to the fourth roller. After passing (25) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled with the entanglement imparting device (10) and wound.
- each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 230 ° C, and the third roller (24) at 200 ° C.
- the fourth roller (25) is 140 ° C.
- the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 2.00 times, and the stretching ratio of the third roller / second roller is 2. .55 times stretching.
- the 4th roller / 3rd roller speed ratio was set to 1.0, and the 4th roller to the winder was relaxed and wound so that the speed ratio became 0.91.
- the surface roughness of the second roller (23) was increased to 4.0 ⁇ m in Ra.
- the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
- the amount of finishing agent applied was 1.0% by weight.
- Table 1 shows the evaluation results and the like of the obtained fabric. Since the cold drawing ratio was lowered by the drawing ratio distribution and the surface roughness of the drawing roll was adjusted, the high drawing yarn production process was stabilized and the fluff was reduced. Therefore, the weaving process was stable with few stops.
- the present invention provides a synthetic fiber suitable for weaving a high-density fabric, and the synthetic fiber of the present invention is suitable for high-speed weaving. Furthermore, the synthetic fiber of this invention can be used for the textile fabric for an airbag.
- the synthetic fiber of the present invention is a high-strength fiber and can be used as a coating or a non-coated airbag fabric having a uniform woven density and a uniform low air permeability.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Woven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Air Bags (AREA)
- Artificial Filaments (AREA)
Abstract
Description
エアバッグ装置は、乗物の衝突事故において乗員を拘束する安全装置である。エアバッグ装置は衝突センサーとガス発生器であるインフレーターとエアバッグとから成る。エアバッグは合成繊維の織物からなり、インフレーターの推薬の反応における熱に耐え、数十ミリ秒で展開し、展開したバッグの膨張ガスで乗員の突入エネルギーを吸収する機能を果たす。
エアバッグは、展開時や乗員突入時に破袋しないような機械特性が必要であり、高密度の織物によって必要な機械特性を満たすような物性設計をする。織物の織密度の均一性は機械特性の均一性を支える要因であって、織密度均一性向上の要求がある。
下記特許文献1には、緯糸の集束性を改善することで製織性の改善となることが開示されている。しかし、高密度織物を高速製織する際に織布の物性を均一に維持できないという問題があった。つまり、高速の無杼織機における緯糸挿入に関して、ノズル側からノズル反対側に到達させることで停台がなくなったとしても、緯糸飛走性に関しては、到達速度バラツキが顕著になって、織物性状の均一性が損なわれるという問題が生じている。
(1)繊度が200~720dtexであり、中間荷重弾性率の平均値が75cN/dtexを超え150cN/dtex未満であり、該中間荷重弾性率の変動係数が5%以下であることを特徴とする合成繊維。
(2)中間荷重弾性率の平均値が80cN/dtexを超え120cN/dtex未満である上記(1)に記載の合成繊維。
(3)中間弾性伸度の平均値が10~12%である上記(1)または(2)に記載の合成繊維。
(4)フィラメント数が65~200本である上記(1)~(3)のいずれか一項に記載の合成繊維。
(5)非交絡部長さの平均値が10~65mmである上記(1)~(4)のいずれか一項に記載の合成繊維。
(6)交絡部長さの平均値が20mm以下、該非交絡部長さの変動係数が30%以下である上記(5)に記載の合成繊維。
(7)沸水収縮率が5.5%以上である上記(1)~(6)のいずれか一項に記載の合成繊維。
(8)沸水収縮率が7.0%以上である上記(7)に記載の合成繊維。
(9)引張強度が8.5cN/dtex以上である上記(1)~(8)のいずれか一項に記載の合成繊維。
(10)合成繊維がポリアミド繊維である上記(1)~(9)のいずれか一項に記載の合成繊維。
(11)紡糸口金から紡出した糸状を冷延伸および熱延伸からなる多段延伸した後に多段降温熱固定する上記(1)~(10)のいずれか一項に記載の合成繊維。
(12)エアバッグ用織物に用いる上記(1)~(11)のいずれか一項に記載の合成繊維。
(13)上記(1)~(11)のいずれか一項に記載の合成繊維からなるエアバッグ基布。
(14)上記(13)に記載のエアバッグ基布からなるエアバッグ。
本発明の合成繊維はポリアミドやポリエステルのマルチフィラメントからなる長繊維であることが好ましい。特に好ましくは、ポリアミド繊維であり、融点が高く、熱容量も大きいため、エアバッグを火薬展開する場合に耐溶融性による耐バースト性に優れる。例えば、ポリアミド6、ポリアミド6・6、ポリアミド11、ポリアミド12、ポリアミド6・10、ポリアミド6・12、ポリアミド4・6、それらの共重合体およびそれらの混合物からなる繊維が挙げられる。なかでも、主としてポリヘキサメチレンアジパミド繊維からなるポリアミド6・6繊維が好ましい。ポリヘキサメチレンアジパミド繊維とは100%のヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド繊維を指す。本発明のポリアミド6・6繊維は、融点が250℃未満とならない範囲で、ポリヘキサメチレンアジパミドにポリアミド6、ポリアミド6・I、ポリアミド6・10、ポリアミド6・Tなどを共重合、あるいはブレンドしたポリマーからなる繊維でもよい。
緯糸はウォータージェット織機であれば水滴流により、エアージェット織機であれば圧気の空気流によって搬送打ち込みされ、緯糸が飛走する。このような搬送打ち込みを行なうと、瞬間的な打ち込みによって、伸張しながらノズル反対側に到達し、経糸が交差して筬打ちされて織物となる。このとき、中間荷重弾性率のばらつきが緯糸挿入時の緯糸の伸張度の差となって、織成された織物の反物幅の差となり、製織以降の加工を経て織密度差が生じたり、通気度差が生じることになる。中間荷重弾性率の変動係数が5%以下で少ないほど織密度斑や、通気度斑が少なくなる。より好ましくは3%以下である。中間荷重弾性率の平均値が高ければ高いほど中間荷重弾性率の変動係数による織物物性の均一性への影響が大きいため、中間荷重弾性率を高めた合成繊維では、従来よりも中間荷重弾性率の変動係数を下げることが織物物性の均一性にとって有効である。中間荷重弾性率の変動係数を下げることで、織物中の通気度斑が少なくなり、高圧ガス展開で相対的に高通気の部位にガスリークが集中することで、バッグのバーストに至るような事態を回避できる。合成繊維の中間荷重弾性率の変動係数は、他の特性および製造コスト等を考慮すると、実質的に0.1%以上である。
本発明における合成繊維の交絡は、水浸法によって測定される交絡部長さが20mm以下2mm以上であることが好ましい。交絡部長さが20mm以下であれば、緯糸挿入を行う際、緯糸搬送流すなわち水滴流や空気流の水や空気の包含性に劣ったり、飛走不足による製織トラブルを誘発することがほとんどない。より好ましくは10mm以下であり、一層好ましくは5mm以下である。交絡部長さが2mm以上であれば、経糸として要求される集束性を満足するようになる。非交絡部長さは10mm以上65mm以下が好ましい。非交絡部長さが10mm以上であれば、緯糸挿入を行う際、緯糸搬送流すなわち水滴流や空気流の水や空気の包含性に劣ったり、飛走不足による製織トラブルを誘発することがない。より好ましくは30mm以上である。非交絡部長さが65mm以下であれば、糸条の長さ方向において単糸長のばらつきを生じてしまうことで、製織中の糸切れや毛羽の発生を促したりすることがない。さらには、水滴流や空気流に乗った緯糸の単糸広がりによって見かけの緯糸断面が大きくなりすぎることがなく、したがって、開口している経糸に干渉して緯糸飛走時間がばらつくようなことがない。より好ましくは60mm以下である。後述の方法によって求められる非交絡部長さの変動係数は30%以下が好ましい。非交絡部長さの変動係数が30%以下であれば、製織時に糸条のばらけや弛みが増大して停台や織物欠点になることがほとんどない。
第1段延伸比を全延伸比に対して25%から55%となるような配分で安定して延伸するためには、延伸糸条を延伸ロール上で滑らせるために、第2段延伸のはじめの延伸ロールの表面粗度を大きくすれば良い。表面粗度はRaで2.0μm以上が好ましい。より好ましくは、2.0~5.0μmであり、一層好ましくは3.0~5.0μmである。
非交絡長が長すぎないように圧縮流体エネルギーを0.5kW以上とすることが好ましく、また、非交絡長のばらつきも抑えられる。圧縮流体エネルギーを高めれば非交絡長は短くなる。非交絡長が短すぎないように圧縮流体エネルギーを3.5kW以下とすることが好ましい。また、圧縮流体エネルギーを高すぎないようにすることは、非交絡長のばらつきを抑えることにもなる。
圧縮流体の供給エネルギーは、供給圧(MPa)と使用流量(Nm3/hr)の積により算出することができ、供給圧および交絡ノズルの流体導入口径を任意に選択することにより、上記供給エネルギーの範囲を満足させることができる。
製織後は精練工程で油分を除去しても良いし、精練工程を省略しても良い。織物を温水や熱風処理して収縮させても良い。この収縮工程で織物の幅方向や反長方向について張力制御したり、寸法変化率を調整させても良い。織物の幅方向の張力制御や寸法変化率制御は反物全長で一律設定されるため、緯糸挿入時の中間荷重弾性率のばらつきに由来する織物物性の不均一の緩和は限定的なものとなる。
本発明の合成繊維を用いた織物は、高密度織物にしてノンコートエアバッグ用に用いることもできる。また、樹脂やエラストマーをコーティングしてコーティングエアバッグ用に用いることもできる。
(1)繊度、引張強度
JIS L 1017 7.3及び7.5により測定した。なお、引張強度は、試料に8回/10cmの撚りを掛け、試料長250mm、引張速度300mm/分で測定した値である。
JIS L 1017 7.8項に記載の初期引張抵抗度を応用して得た図5に示す荷重-伸長曲線から求めた。7.8項では荷重-伸長曲線の原点近くでの切線角の最大点から引張抵抗度を求めて初期引張抵抗度としているが、本発明ではこれに代わって、原点と切断荷重の間のおよそ中間地点で観測される切線角の最大点Cから引張抵抗度を求め、これを中間荷重弾性率Rとした。即ち、中間荷重弾性率Rは下式で表される。
R=F/(L‘/L×d)
ここで、FはC地点での荷重(cN)であり、Lは試料長であり、L‘はC地点の垂線と伸張軸との交点Hと、切線と伸張軸との交点Tとの間の長さ(T-H)であり、dは繊度(dtex)である。また、切線角の最大点Cにおける伸度Hを中間弾性伸度とした。
中間荷重弾性率の変動係数CVは下式で表される。CV値が高いほど、バラツキが大きいことを示す。
CV(%)=(s/X)×100
ここで、sは標準偏差であり、Xは平均値である。中間荷重弾性率の平均値と変動係数は、巻取り糸の糸長方向に任意に50試料サンプリングし、それぞれの試料について上記方法により中間荷重弾性率を求め、平均値と標準偏差を算出し、求めた。
交絡数測定用の水浴バスは、長さ1.0m、幅20cm、高さ(水深)15cmの大きさであり、供給口から供給された水はバスから溢流により排水される。すなわち、常に新しい水を約500cc/分の流量で供給することによって測定バス内の水を更新させる。水浸法により糸条の交絡数を測定する際、図4に示すように水面に拡がった糸条の交絡部の長さaおよび非交絡部の長さbをスケールにて測定する。これらの測定を25回繰り返して平均値を求めた。
上記(3)項で測定した非交絡部長さについて以下の計算で求めた。CV値が高いほど、ばらつきが大きいことを示す。
CV(%)=(s/X)×100
ここで、sは標準偏差であり、Xは平均値である。
(5)沸水収縮率
JIS L 1017 8.14により測定した。
(6)仕上剤付着率
JIS L 1017 7.16により測定した。
DORNIER社製エアージェット織機ASタイプ(AWS4/J280)にて900rpmの速度で平織りを織り、緯糸挿入におけるノズル反対側への到達タイミングを、織機動作のタイミングであるクランク角で検出した。クランク角は、54,000回の緯糸打ち込みデータから平均値と変動係数CVを求めた。変動係数CVは下式から計算した。
CV(%)=(s/X)×100
ここで、sは標準偏差であり、Xは平均値である。
また、製織時の停台において、経糸の集束性に係る欠点が原因で停台したものと、緯糸の飛走性に係る欠点が原因で停台したものとを区別し、緯糸原因の停台頻度(回/台/日)を次の基準で評価した。
○:3回/台/日以下の停台
△:10回/台/日以下の停台
×:10回/台/日を超える停台
Porous Metrials,Inc.製Capillary Flow Porometer(CFP-1200AEX)を用い、織物から直径が25mmの測定用試料を採取し、GalWick浸漬液にて空気圧0から200kPaまでウェットアップ/ドライアップ通気量カーブを描いて100kPaにおける通気度を求め、任意に選んだ10箇所の試料の測定から変動係数CV値を下式により求めた。
CV(%)=(s/X)×100
ここで、sは標準偏差であり、Xは平均値である。
直径30cmの膨張サイズが確保できる円形状に織物を裁断し、これを2枚貼りあわせるかたちで、図6(a)に示した模擬エアバッグを縫製した。図6(a)に示すように、該エアバッグには100mm×80mmのガス導入口を設け、導入口のエアバッグ貼りあわせ箇所の一部を筒状になったガス噴出口に挿入し、ガスが漏れないように密閉固定した。
ガス噴出口から900L/分の空気を導入し、膨張圧力(kPa)を計測し、膨張時のガスリーク性を評価した。
前項と同様の模擬エアバッグにつき、図6(b)~(d)に示すように、ガス導入口を中心とし、左右に半円状に広がる模擬エアバッグを中心に向かいそれぞれが重ならないように畳んだ後、ガス導入口の反対側から導入口側に向かい10cm間隔で3回折り畳んだ。
展開性評価を970ccタンク圧15MPaの高圧圧縮ヘリウムガスで10回実施し、エアバッグを概観検査した結果、次の基準にて耐バースト性を評価した。
○:バースト(破袋)、縫製目開きともになし
△:バースト無し、1袋以上で縫製目開きあり
×:1袋以上のバーストあり
表面粗さ測定器(小坂(株)製、サーフレコーダSE-40D)を用い、JIS B0651の触針式表面粗さ測定の基準に準じて測定した値で、中心線平均粗さ(Ra)を測定した。
図1に示す装置により、常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第5ローラ(26)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
得られた織物は80℃の連続精練で精練し、170℃のテンターで織物送りのオーバーフィード4%、織物幅を1%の幅入れで熱セットし、経糸及び緯糸の織密度を2.54cmあたり55本×55本の織物を得た。これをノンコート織物として、通気度斑を評価し、空気通気による膨張圧でガスリークを評価し、さらに、高圧ガス展開によるバースト挙動を評価した。評価結果を表1に併せて示した。膨張圧は高くガスリークが少なく、また、通気度斑が小さく、耐バースト性能も安定していた。
紡糸工程の熱固定で、第5ローラ/第4ローラ速度比を1.00、第5ローラから巻取り機への速度比を0.93とした以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
中間荷重弾性率の平均値が上がり、製織のクランク角はより小さく安定し、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
紡糸工程における交絡付与装置への圧縮空気の付与を0.42MPaで空気供給エネルギーを1.04kWとした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
中間荷重弾性率の変動率がやや大きくなり、製織のクランク角のばらつきがやや大きくなるが、通気度斑は小さく、耐バースト性能も安定していた。
紡糸工程において孔数140の紡糸口金で紡糸した以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
製織のクランク角は小さく、ノンコート織物の通気度斑も小さく、耐バースト性能も安定していた。
紡糸工程において孔数180の紡糸口金で紡糸した以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
製織のクランク角は小さく、ノンコート織物の通気度斑も小さく、耐バースト性能も安定していた。
紡糸工程における交絡付与装置への圧縮空気の付与を0.2MPaで空気供給エネルギーを0.53kWとした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
製織のクランク角がやや小さくなる一方、停台がやや多い。クランク角のばらつきがやや大きくなるが、通気度斑は小さく、耐バースト性能も安定している。
紡糸工程の熱固定で、第4ローラ温度を200℃、第5ローラ/第4ローラ速度比を0.99とした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
沸水収縮率が下がり、製織のクランク角は小さく安定し、ノンコート織物の通気度斑はやや大きいが、耐バースト性能は安定していた。
紡糸工程において、給油ローラでの仕上剤付与量を増やし1.6%とした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
製織のクランク角がやや大きくなり、ばらつきもやや増えるが、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
紡糸工程において孔数60の紡糸口金で紡糸した以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
製織のクランク角は大きくなり、ばらつきもやや増える。ノンコート織物の通気度斑がやや大きいが、耐バースト性能は略安定していた。
紡糸工程において繊度を235dtexとし、製織加工した織密度を経緯とも75本/2.54cmとした以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
中間荷重弾性率の平均値がやや大きいが、製織のクランク角は小さく、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
紡糸工程の熱固定で、第3ローラ温度を210℃、第4ローラ温度を190℃、第5ローラ/第4ローラ速度比を0.99、第5ローラから巻取り機への速度比を0.96とした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
沸水収縮率が上がり、製織のクランク角は小さく安定し、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
紡糸工程における交絡付与装置への圧縮空気の付与を0.15MPaで空気供給エネルギーを0.29kWとした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
非交絡長がやや大きくなり、製織のクランク角のばらつきがやや大きくなって、通気性ばらつきに影響している。高圧ガス展開評価は、やや信頼性が劣るが耐バースト性能を有する。
図1に示す装置を用いて、実施例1と同じように紡糸した。各ローラの温度は、引取りローラ(21)を室温に、第1ローラ(22)を65℃、第2ローラ(23)を200℃、第3ローラ(24)を210℃とした。第4ローラ(25)が180℃、第5ローラ(26)が140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が2.15倍、第3ローラ/第2ローラの延伸比が2.55倍の延伸である。第2ローラの表面粗度は4.0μmである。熱固定では、第4ローラ/第3ローラ速度比が1.0、第5ローラ/第4ローラ速度比が0.99、第5ローラから巻取り機への速度比が0.94となるように緩和して巻き取った。交絡付与装置は、第5ローラ(26)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
得られたポリアミド66繊維を用いて実施例1と同じように製織加工し、織密度が経緯とも55本/2.54cmのノンコート織物を得た。得られた織物の評価結果等を表1に示す。
緯糸の飛走性に係るクランク角は大きめで、そのばらつきも大きめであるが、製織性は安定である。通気度斑はやや大きめで、高圧ガス展開によるバースト挙動は、やや信頼性に劣るが耐バースト性能を有する。
図2に示す装置を用いた。常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第4ローラ(25)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
冷延伸比率が多いため、繊維物性は中間荷重弾性率の平均値が小さく、中間弾性伸度の平均値も大きい。高延伸の製糸工程がやや不安定で、毛羽が多めである。製織工程では、停台がやや多かった。中間荷重弾性率の平均値が小さいため、製織のクランク角が大きく、膨張のガスリークは多い。冷延伸比率が多いため、クランク角のばらつきも大きい。ノンコート織物の通気度斑は大きく、通気斑が大きいため耐バースト性能は不安定であった。
図3に示す装置を用いた。常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第3ローラ(24)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、織密度が経緯とも55本/2.54cmのノンコート織物を得た。得られた織物の評価結果等を表1に示す。
冷延伸比率が多く、加えて熱固定の弛緩工程が1段のみのため、弛緩速度比を調節し、緊張を高めた熱固定をしたが、繊維物性は中間荷重弾性率の平均値が小さく、中間弾性伸度の平均値も大きい。膨張のガスリークはより多い。冷延伸比率が多いため、製織のクランク角が大きく、ばらつきもより大きい。ノンコート織物の通気度斑はより大きく、耐バースト性能は不安定であった。
比較例1と同様に、図2に示す装置を用いて紡糸を行なった。引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を180℃、第3ローラ(24)を170℃とした。第4ローラ(25)は140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.55倍、第3ローラ/第2ローラの延伸比が1.65倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定は、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.96となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
得られたポリアミド66繊維を用いて、実施例1と同じように製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
弛緩速度比の調節によって、比較例1に比べ緊張をさらに高めた熱固定をすることにより、中間荷重弾性率の平均値が大きく、中間弾性伸度の平均値が小さくなった。膨張のガスリークも少ない。しかし、張力緩和の安定化が不完全で中間荷重弾性率のばらつきは大きい。製織のクランク角は小さいが、ばらつきが大きい。ノンコート織物の通気度斑は大きく、耐バースト性能は不安定である。
比較例1と同様に、図2に示す装置を用いて紡糸を行なった。引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を210℃、第3ローラ(24)を180℃とした。第4ローラ(25)は140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.55倍、第3ローラ/第2ローラの延伸比が1.60倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定では、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.93となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
弛緩速度比によって、比較例3に比べ緊張を下げた熱固定をした。中間荷重弾性率の平均値が小さくなり、ばらつきも小さくなった。しかし、中間弾性伸度の平均値は大きくなった。膨張のガスリークが多い。ノンコート織物の通気度斑は大きく、耐バースト性能は不安定である。
比較例1と同様に、図2に示す装置を用いて紡糸を行なった。引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を220℃、第3ローラ(24)を180℃とした。第4ローラ(25)は140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.45倍、第3ローラ/第2ローラの延伸比が1.45倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定では、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.92となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
冷延伸比率が多く、総延伸比も低いため、得られたポリアミド66繊維の中間荷重弾性率の平均値がより小さく、中間弾性伸度の平均値も大きい。一方、中間荷重弾性率のばらつきは小さい。膨張のガスリークは多い。得られた繊維の強度は8.0cN/dtexであり、強度が小さいにもかかわらずバーストには至らないが、目開きが観測され、ガスリークが多すぎたためである。したがってクッション機能は期待できない。
図2に示す装置を用いた。常法の重合方法にて90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第4ローラ(25)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
延伸比配分で冷延伸比を下げ、さらに延伸ロール表面粗度を調整したことにより、高延伸の製糸工程が安定化し、毛羽が減ったため、製織工程では、停台少なく安定であった。熱固定において弛緩程度が大きいため、中間荷重弾性率の平均値が小さめで、バッグの膨張圧は低く、エアリークが多い。製織のクランク角が大きく、そのばらつきは抑え気味だが、ノンコート織物の通気度斑がやや大きく、エアリークも多く、バーストが発生する。
2 紡糸口金
3 冷風チャンバー
4 給油ローラ
9 糸道規制ガイド
10 交絡付与装置
11 巻取り機
21 引取りローラ
22 第1ローラ
23 第2ローラ
24 第3ローラ
25 第4ローラ
26 第5ローラ
a 糸条の交絡部長さ
b 糸条の非交絡部長さ
Claims (14)
- 繊度が200~720dtexであり、中間荷重弾性率の平均値が75cN/dtexを超え150cN/dtex未満であり、該中間荷重弾性率の変動係数が5%以下であることを特徴とする合成繊維。
- 中間荷重弾性率の平均値が80cN/dtexを超え120cN/dtex未満である請求項1に記載の合成繊維。
- 中間弾性伸度の平均値が10~12%である請求項1または2に記載の合成繊維。
- フィラメント数が65~200本である請求項1~3のいずれか一項に記載の合成繊維。
- 非交絡部長さの平均値が10~65mmである請求項1~4のいずれか一項に記載の合成繊維。
- 交絡部長さの平均値が20mm以下、該非交絡部長さの変動係数が30%以下である請求項5に記載の合成繊維。
- 沸水収縮率が5.5%以上である請求項1~6のいずれか一項に記載の合成繊維。
- 沸水収縮率が7.0%以上である請求項7に記載の合成繊維。
- 引張強度が8.5cN/dtex以上である請求項1~8のいずれか一項に記載の合成繊維。
- 合成繊維がポリアミド繊維である請求項1~9のいずれか一項に記載の合成繊維。
- 紡糸口金から紡出した糸状を冷延伸および熱延伸からなる多段延伸した後に多段降温熱固定する請求項1~10のいずれか一項に記載の合成繊維。
- エアバッグ用織物に用いる請求項1~11のいずれか一項に記載の合成繊維。
- 請求項1~11のいずれか一項に記載の合成繊維からなるエアバッグ基布。
- 請求項13に記載のエアバッグ基布からなるエアバッグ。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137032722A KR101586554B1 (ko) | 2011-12-07 | 2011-12-07 | 합성 섬유 |
JP2013504603A JP5253685B1 (ja) | 2011-12-07 | 2011-12-07 | 合成繊維 |
CN201180071553.0A CN103597131B (zh) | 2011-12-07 | 2011-12-07 | 合成纤维 |
US14/237,616 US9845068B2 (en) | 2011-12-07 | 2011-12-07 | Synthetic fiber used for fabric |
MX2014001491A MX352851B (es) | 2011-12-07 | 2011-12-07 | Fibra sintetica. |
PCT/JP2011/078339 WO2013084322A1 (ja) | 2011-12-07 | 2011-12-07 | 合成繊維 |
EP11876976.9A EP2752510B1 (en) | 2011-12-07 | 2011-12-07 | Synthetic fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/078339 WO2013084322A1 (ja) | 2011-12-07 | 2011-12-07 | 合成繊維 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013084322A1 true WO2013084322A1 (ja) | 2013-06-13 |
Family
ID=48573726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078339 WO2013084322A1 (ja) | 2011-12-07 | 2011-12-07 | 合成繊維 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9845068B2 (ja) |
EP (1) | EP2752510B1 (ja) |
JP (1) | JP5253685B1 (ja) |
KR (1) | KR101586554B1 (ja) |
CN (1) | CN103597131B (ja) |
MX (1) | MX352851B (ja) |
WO (1) | WO2013084322A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103526314A (zh) * | 2013-10-30 | 2014-01-22 | 苏州龙杰特种纤维股份有限公司 | 防母丝丝束滑移的方法 |
JP2017155348A (ja) * | 2016-02-29 | 2017-09-07 | 東レ株式会社 | ポリアミド繊維およびそれよりなる布帛 |
JPWO2020059443A1 (ja) * | 2018-09-19 | 2021-08-30 | 東レ株式会社 | エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法 |
WO2022075329A1 (ja) * | 2020-10-05 | 2022-04-14 | 旭化成株式会社 | エアバッグ用ポリアミド繊維及びその製造方法 |
WO2022211130A1 (ja) * | 2021-04-02 | 2022-10-06 | 旭化成株式会社 | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
WO2024162095A1 (ja) * | 2023-01-30 | 2024-08-08 | 東レ株式会社 | ポリアミドマルチフィラメントおよびポリアミドモノフィラメント |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104201311B (zh) * | 2014-08-15 | 2016-05-04 | 常州大学 | 一种改进的单向拉伸制备聚乙烯微孔隔膜的方法 |
JP6385790B2 (ja) * | 2014-10-21 | 2018-09-05 | Tmtマシナリー株式会社 | 紡糸延伸装置 |
CN106222769A (zh) * | 2016-08-26 | 2016-12-14 | 山东合信科技股份有限公司 | 一种细旦pa66未拉伸丝及其生产工艺 |
CN106120000A (zh) * | 2016-08-26 | 2016-11-16 | 山东合信科技股份有限公司 | 一种耐热性好的pa66未拉伸丝及其生产工艺 |
CN106120001A (zh) * | 2016-08-26 | 2016-11-16 | 山东合信科技股份有限公司 | 一种高强力耐热pa66未拉伸丝及其生产工艺 |
PL3619078T3 (pl) | 2017-05-02 | 2021-08-30 | Invista Textiles (U.K.) Limited | Tkanina o niskiej przepuszczalności i dużej wytrzymałości oraz sposoby jej wytwarzania |
CN107043959B (zh) * | 2017-05-10 | 2019-10-25 | 海安县华荣化纤有限公司 | 12头纺锦纶6细旦低收缩工业丝的生产工艺 |
WO2019067655A1 (en) | 2017-09-29 | 2019-04-04 | Invista Textiles (U.K.) Limited | INFLATABLE SAFETY DEVICES AND METHODS FOR PRODUCING INFLATABLE SAFETY DEVICES |
KR101973714B1 (ko) | 2017-12-18 | 2019-04-29 | 김종렬 | 유동 반지 및 이의 제조 방법 |
US11554746B2 (en) | 2018-02-27 | 2023-01-17 | ZF Passive Safty System US Inc. | One-piece woven vehicle occupant protection device and method for manufacturing the same |
CN116172307A (zh) * | 2018-04-13 | 2023-05-30 | 耐克创新有限合伙公司 | 具有镶嵌缓冲的针织部件 |
CN109371571A (zh) * | 2018-11-30 | 2019-02-22 | 周宏辉 | 一种芯类填充物及其制造方法 |
WO2020179456A1 (ja) * | 2019-03-04 | 2020-09-10 | 東レ株式会社 | エアバッグ用基布およびエアバッグ用基布の製造方法 |
GB202017576D0 (en) * | 2020-11-06 | 2020-12-23 | Invista Textiles Uk Ltd | Airbag fabrics |
TWI790173B (zh) * | 2022-06-15 | 2023-01-11 | 遠東新世紀股份有限公司 | 聚醯胺56樹脂組成物、纖維、纖維絲束、纖維撚紗、纖維製品及輪胎簾布 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183205A (ja) * | 2004-12-28 | 2006-07-13 | Toray Ind Inc | エアバッグ用基布 |
JP2007126796A (ja) | 2005-11-07 | 2007-05-24 | Asahi Kasei Chemicals Corp | 交絡糸およびその製造方法 |
JP2011168938A (ja) * | 2010-02-22 | 2011-09-01 | Asahi Kasei Fibers Corp | エアバック用ナイロン66繊維およびエアバック |
JP2011168919A (ja) * | 2010-02-18 | 2011-09-01 | Asahi Kasei Fibers Corp | ポリアミド繊維およびエアバッグ用織物 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3303169A (en) * | 1962-01-18 | 1967-02-07 | Du Pont | High-modulus, high-tenacity, lowshrinkage polyamide yarn |
JPS58136823A (ja) * | 1982-02-06 | 1983-08-15 | Toyobo Co Ltd | ポリアミド繊維 |
FR2773178B1 (fr) * | 1997-12-29 | 2000-04-21 | Nylstar Sa | Fils textiles multifilamentaires a section creuse - procede de fabrication de ces fils, et surfaces textiles obtenues avec ces fils |
CA2450103C (en) * | 2003-10-22 | 2008-09-16 | Hyosung Corporation | Low shrinkage polyamide fiber and uncoated fabric for airbags made of the same |
KR100451263B1 (ko) * | 2003-12-30 | 2004-10-11 | 주식회사 효성 | 비피복 에어백용 폴리아미드 섬유 |
CN102046859B (zh) * | 2008-03-26 | 2013-09-25 | 东丽株式会社 | 聚酰胺56细丝、含有它们的纤维结构、以及气囊织物 |
CN101634074B (zh) * | 2008-07-23 | 2012-01-25 | 东丽纤维研究所(中国)有限公司 | 安全气囊用织物及其生产方法 |
CN101666007B (zh) * | 2008-09-01 | 2012-11-07 | 东丽纤维研究所(中国)有限公司 | 一种安全气囊用织物 |
KR101575837B1 (ko) * | 2009-12-18 | 2015-12-22 | 코오롱인더스트리 주식회사 | 에어백용 폴리에스테르 원사 및 그의 제조방법 |
-
2011
- 2011-12-07 CN CN201180071553.0A patent/CN103597131B/zh active Active
- 2011-12-07 EP EP11876976.9A patent/EP2752510B1/en active Active
- 2011-12-07 US US14/237,616 patent/US9845068B2/en active Active
- 2011-12-07 JP JP2013504603A patent/JP5253685B1/ja active Active
- 2011-12-07 MX MX2014001491A patent/MX352851B/es active IP Right Grant
- 2011-12-07 WO PCT/JP2011/078339 patent/WO2013084322A1/ja active Application Filing
- 2011-12-07 KR KR1020137032722A patent/KR101586554B1/ko active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183205A (ja) * | 2004-12-28 | 2006-07-13 | Toray Ind Inc | エアバッグ用基布 |
JP2007126796A (ja) | 2005-11-07 | 2007-05-24 | Asahi Kasei Chemicals Corp | 交絡糸およびその製造方法 |
JP2011168919A (ja) * | 2010-02-18 | 2011-09-01 | Asahi Kasei Fibers Corp | ポリアミド繊維およびエアバッグ用織物 |
JP2011168938A (ja) * | 2010-02-22 | 2011-09-01 | Asahi Kasei Fibers Corp | エアバック用ナイロン66繊維およびエアバック |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103526314A (zh) * | 2013-10-30 | 2014-01-22 | 苏州龙杰特种纤维股份有限公司 | 防母丝丝束滑移的方法 |
JP2017155348A (ja) * | 2016-02-29 | 2017-09-07 | 東レ株式会社 | ポリアミド繊維およびそれよりなる布帛 |
JPWO2020059443A1 (ja) * | 2018-09-19 | 2021-08-30 | 東レ株式会社 | エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法 |
JP7272270B2 (ja) | 2018-09-19 | 2023-05-12 | 東レ株式会社 | エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法 |
WO2022075329A1 (ja) * | 2020-10-05 | 2022-04-14 | 旭化成株式会社 | エアバッグ用ポリアミド繊維及びその製造方法 |
JPWO2022075329A1 (ja) * | 2020-10-05 | 2022-04-14 | ||
JP7375219B2 (ja) | 2020-10-05 | 2023-11-07 | 旭化成株式会社 | エアバッグ用ポリアミド繊維及びその製造方法 |
WO2022211130A1 (ja) * | 2021-04-02 | 2022-10-06 | 旭化成株式会社 | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
JP7560657B2 (ja) | 2021-04-02 | 2024-10-02 | 旭化成株式会社 | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
WO2024162095A1 (ja) * | 2023-01-30 | 2024-08-08 | 東レ株式会社 | ポリアミドマルチフィラメントおよびポリアミドモノフィラメント |
Also Published As
Publication number | Publication date |
---|---|
US20140265279A1 (en) | 2014-09-18 |
US9845068B2 (en) | 2017-12-19 |
EP2752510A1 (en) | 2014-07-09 |
JP5253685B1 (ja) | 2013-07-31 |
KR20140007010A (ko) | 2014-01-16 |
MX2014001491A (es) | 2014-04-14 |
EP2752510A4 (en) | 2016-04-06 |
KR101586554B1 (ko) | 2016-01-18 |
CN103597131A (zh) | 2014-02-19 |
CN103597131B (zh) | 2015-04-15 |
JPWO2013084322A1 (ja) | 2015-04-27 |
EP2752510B1 (en) | 2017-05-10 |
MX352851B (es) | 2017-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5253685B1 (ja) | 合成繊維 | |
US8261779B2 (en) | Base cloth for air bag, raw yarn for air bag, and method for producing the raw yarn | |
JP5365272B2 (ja) | エアバッグ用織物およびエアバッグ用織物の製造方法 | |
KR101919216B1 (ko) | 폴리아미드 섬유 및 에어백용 직물 | |
JP2012502194A (ja) | エアバッグ用織物及びその製造方法 | |
JP5359714B2 (ja) | エアバッグ用基布 | |
JP2007284826A (ja) | エアバッグ用基布の製造方法 | |
EP3279378B1 (en) | Airbag-use woven fabric and airbag | |
CN113785087A (zh) | 超低渗透性和高接缝强度织物及其制造方法 | |
JP4603297B2 (ja) | ポリヘキサメチレンアジパミド繊維 | |
JP2010174390A (ja) | エアバッグ用織物およびエアバッグ用織物の製造方法 | |
JP4538967B2 (ja) | エアバッグ用布帛 | |
JP6105192B2 (ja) | エアバッグ織物 | |
JP5741639B2 (ja) | エアバッグ用原糸およびエアバッグ用原糸の製造方法 | |
JP2002293209A (ja) | エアバッグ用繊維、その製造方法およびノンコートエアバッグ用基布 | |
JP4770152B2 (ja) | エアバック用原糸パッケージ、それを用いたエアバック用基布およびエアバック用原糸パッケージの製造方法 | |
JP7560657B2 (ja) | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013504603 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11876976 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137032722 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011876976 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011876976 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/001491 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14237616 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |