[go: up one dir, main page]

WO2013084322A1 - 合成繊維 - Google Patents

合成繊維 Download PDF

Info

Publication number
WO2013084322A1
WO2013084322A1 PCT/JP2011/078339 JP2011078339W WO2013084322A1 WO 2013084322 A1 WO2013084322 A1 WO 2013084322A1 JP 2011078339 W JP2011078339 W JP 2011078339W WO 2013084322 A1 WO2013084322 A1 WO 2013084322A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
synthetic fiber
dtex
weaving
less
Prior art date
Application number
PCT/JP2011/078339
Other languages
English (en)
French (fr)
Inventor
史章 伊勢
真吾 水野
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to KR1020137032722A priority Critical patent/KR101586554B1/ko
Priority to JP2013504603A priority patent/JP5253685B1/ja
Priority to CN201180071553.0A priority patent/CN103597131B/zh
Priority to US14/237,616 priority patent/US9845068B2/en
Priority to MX2014001491A priority patent/MX352851B/es
Priority to PCT/JP2011/078339 priority patent/WO2013084322A1/ja
Priority to EP11876976.9A priority patent/EP2752510B1/en
Publication of WO2013084322A1 publication Critical patent/WO2013084322A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the present invention relates to a synthetic fiber for improving uniformity of a woven fabric woven at high density and high speed.
  • the present invention relates to a synthetic fiber used for improving the air permeability uniformity of a woven fabric used for an air bag.
  • the airbag device is a safety device that restrains an occupant in a vehicle collision accident.
  • the airbag device includes a collision sensor, a gas generator, an inflator, and an airbag.
  • the air bag is made of synthetic fiber fabric, can withstand the heat of the inflator propellant reaction, deploys in tens of milliseconds, and functions to absorb the rush energy of the occupant with the expanded gas of the deployed bag.
  • Airbags must have mechanical properties that do not break when deployed or when passengers enter, and are designed to meet the required mechanical properties with high-density fabrics.
  • the uniformity of the woven density of the woven fabric is a factor that supports the uniformity of the mechanical properties, and there is a demand for improving the uniformity of the woven density.
  • the air bag needs to be instantly deployed with gas, and is preferably non-vented as much as possible. It is possible to use a coated fabric provided with a resin or elastomer coating film, or to have low air permeability due to high density. A non-coated woven fabric is used. Uniformity of the air permeability of the woven fabric results in uniform working characteristics of the airbag. Furthermore, when gas is deployed instantaneously, local gas ventilation due to air permeability irregularities results in local concentration of deployment stress and may cause air bag breakage. There is.
  • Patent Document 1 discloses that weaving is improved by improving the weaving ability of the weft.
  • An object of the present invention is to provide a synthetic fiber suitable for high-density and high-speed weaving, and in particular, a synthetic fiber excellent in weft insertion stability for obtaining a woven fabric having uniform physical properties such as woven density and air permeability. Is to provide.
  • the present inventor has found that by using synthetic fibers having specific physical properties, weft insertion stability during high-speed weaving is improved, and uniform physical properties can be obtained.
  • the present invention has been achieved. That is, the present invention is as follows. (1) The fineness is 200 to 720 dtex, the average value of the intermediate load elastic modulus is more than 75 cN / dtex and less than 150 cN / dtex, and the variation coefficient of the intermediate load elastic modulus is 5% or less. Synthetic fibers. (2) The synthetic fiber according to the above (1), wherein the average value of the intermediate load elastic modulus is more than 80 cN / dtex and less than 120 cN / dtex.
  • the synthetic fiber according to any one of (1) to (11) which is used for a fabric for an airbag.
  • An airbag base fabric comprising the synthetic fiber according to any one of (1) to (11) above.
  • An airbag comprising the airbag base fabric according to (13).
  • the synthetic fiber of the present invention is excellent in high-speed weaving property, in particular, excellent in stability of weft insertion, and excellent in weaving density uniformity and air permeability uniformity when made into a high-density woven fabric. Furthermore, since the woven fabric obtained from the synthetic fiber of the present invention is excellent in woven density uniformity and air permeability uniformity as an airbag woven fabric, a uniform airbag is obtained, and a highly reliable airbag without bag breakage is obtained. can get.
  • the synthetic fiber of the present invention is preferably a long fiber made of polyamide or polyester multifilament.
  • a polyamide fiber particularly preferred is a polyamide fiber, and since it has a high melting point and a large heat capacity, it is excellent in burst resistance due to melting resistance when an air bag is expanded with explosives.
  • examples thereof include fibers made of polyamide 6, polyamide 6,6, polyamide 11, polyamide 12, polyamide 6,10, polyamide 6,12, polyamide 4,6, a copolymer thereof, and a mixture thereof.
  • polyamide 6/6 fibers mainly composed of polyhexamethylene adipamide fibers are preferable.
  • the polyhexamethylene adipamide fiber refers to a polyamide fiber having a melting point of 250 ° C.
  • the polyamide 6/6 fiber of the present invention is copolymerized with polyhexamethylene adipamide with polyamide 6, polyamide 6 • I, polyamide 6 • 10, polyamide 6 • T or the like within a range where the melting point does not become less than 250 ° C. It may be a fiber made of a blended polymer.
  • the fineness of the synthetic fiber is 200 to 720 dtex. If it is 200 dtex or more, it has sufficient mechanical properties when made into a woven fabric for material use. If it is 720 dtex or less, when carrying out high-speed weaving at 800 rpm or higher with a non-woven weaving machine, there is no case where the transport weight is too heavy to follow when wefts are inserted.
  • the lower limit is more preferably 220 dtex or more, and the upper limit is more preferably 500 dtex or less, and particularly preferably 450 dtex or less.
  • the tensile elasticity can be determined based on the description of the measuring method of JISL1017 (7.8 initial tensile resistance).
  • JISL1017 the tensile elasticity at the initial stage of tension is obtained, but not only at the initial stage of the tensile test, but when the tensile elasticity is obtained in all the elongation regions from the initial stage to the break, a “tensile elasticity-elongation” curve can be obtained. it can.
  • This curve usually shows a small maximum at the beginning of tension, then shows the maximum value of tensile elasticity in the intermediate extension region until breakage, and then shows a behavior in which the elasticity value decreases and leads to breakage.
  • the average value of the intermediate load elastic modulus of the synthetic fiber of the present invention is more than 75 cN / dtex and less than 150 cN / dtex.
  • the intermediate load elastic modulus (cN / dtex) is the maximum value of tensile elasticity in the “tensile elasticity-elongation” curve. Due to the high intermediate load elastic modulus, the fiber response to high-speed weft insertion is good, and the arrival time of weft insertion is short. That is, it is excellent in high-speed weaving.
  • the arrival time of the weft yarn on the opposite side of the nozzle in the loom is evaluated by the crank angle that is the operation timing of the loom, the arrival at a smaller crank angle is observed if the intermediate load elastic modulus is high. If the crank angle is small, it can be determined that the insertion of the weft yarn can be satisfactorily followed by the high-speed weaving. That is, a high intermediate load elastic modulus contributes to lowering the crank angle during weaving. If the average value of the intermediate load elastic modulus exceeds 75 cN / dtex, it contributes to lowering the crank angle. More preferably, it exceeds 80 cN / dtex, and most preferably, it exceeds 85 cN / dtex.
  • the average value of the intermediate load elastic modulus is preferably substantially less than 150 cN / dtex for synthetic fibers in consideration of other characteristics and production costs.
  • the average value of the intermediate load elastic modulus is more preferably less than 120 cN / dtex.
  • the coefficient of variation of the intermediate load elastic modulus obtained by the method described later is preferably 5% or less.
  • the smaller the variation coefficient of the intermediate load elastic modulus the smaller the variation in the arrival time of the weft yarn on the nozzle opposite side, The variation in the crank angle value is reduced. It is desirable that there is no change in the intermediate load elastic modulus. If the arrival time of the weft to the nozzle opposite side does not vary, the weft is driven under uniform insertion conditions.
  • the weft In the case of a water jet loom, the weft is driven by a water droplet flow, and in the case of an air jet loom, the weft is driven by a pressurized air stream, and the weft flies.
  • the yarn reaches the opposite side of the nozzle while being stretched by instantaneous driving, and warps intersect and are beaten to form a woven fabric.
  • the variation in the intermediate load elastic modulus becomes the difference in the degree of stretch of the weft when the weft is inserted, and the difference in the fabric width of the woven fabric. A degree difference will occur.
  • the smaller the variation coefficient of the intermediate load elastic modulus is 5% or less, the smaller the weave density spots and the air permeability spots.
  • the variation coefficient of the intermediate load elastic modulus of the synthetic fiber is substantially 0.1% or more in consideration of other characteristics, production costs, and the like.
  • the elongation at the time of showing the maximum value of tensile elasticity that is, the average value of the intermediate elastic elongation is preferably 10 to 12%.
  • the average value of the intermediate elastic elongation is small, the response of the fiber to the high-speed weft insertion is good, and the arrival time of the weft insertion is short. That is, it is excellent in high-speed weaving.
  • the crank angle which is the operation timing of the loom
  • the average value of the intermediate elastic elongation is 12% or less, the arrival at a smaller crank angle is observed.
  • the value of intermediate elastic elongation is less than 11.5%.
  • the average value of the intermediate elastic elongation is preferably substantially 10% or more for synthetic fibers. As a high quality fiber, the average value of the intermediate elastic elongation is more preferably 10.5% or more.
  • the number of filaments of the synthetic fiber of the present invention is preferably 65 to 200.
  • the number of filaments is 65 or more, the conveyance efficiency by fluid friction on the filament surface is high and the weft insertion speed is fast with respect to the weft conveyance flow of water droplet flow or air flow. That is, the crank angle is small and it is easy to follow high-speed weaving. More preferably, it is 70 or more, and more preferably 80 or more. If the number of filaments is 200 or less, it is advantageous because air entanglement energy for imparting entanglement to the multifilament is good and uniform and good entanglement is provided. More preferably, it is 150 or less.
  • the average value of the entangled part length is preferably 20 mm or less, the average value of the unentangled part length is 10 to 65 mm, and the variation coefficient of the non-entangled part length is preferably 30% or less.
  • the entanglement of the synthetic fiber in this invention it is preferable that the entanglement part length measured by the water immersion method is 20 mm or less and 2 mm or more.
  • the unentangled part length is preferably 10 mm or more and 65 mm or less.
  • weaving flow that is, water drop flow, air flow water or air inclusion is not inferior, and weaving troubles due to insufficient flight are not induced. More preferably, it is 30 mm or more. If the length of the unentangled portion is 65 mm or less, the single yarn length varies in the length direction of the yarn, thereby preventing the occurrence of yarn breakage or fluff during weaving.
  • the apparent weft cross section does not become too large due to the single yarn spread of the weft riding on the water droplet flow or air flow, and therefore the weft flight time may vary due to interference with the open warp. Absent. More preferably, it is 60 mm or less.
  • the variation coefficient of the unentangled portion length obtained by the method described later is preferably 30% or less. When the variation coefficient of the length of the unentangled portion is 30% or less, the yarns are loosened or loosened during weaving, and hardly cause a stop or a fabric defect.
  • the boiling water shrinkage of the synthetic fiber of the present invention is preferably 5.5% or more. If the boiling water shrinkage ratio is 5.5% or more, the fabric can be shrunk in the processing step after weaving, and the finish of the fabric can be contributed to high density.
  • the boiling water shrinkage of the synthetic fiber of the present invention is more preferably 7.0% or more. If the boiling water shrinkage rate is 7.0% or more, the fabric can be shrunk in the processing step after weaving, and this can contribute to uniform variation in the physical properties of the fabric machine. Particularly preferably, it is 7.5% or more.
  • the boiling water shrinkage of the high-strength synthetic fiber is preferably substantially 13.0% or less in consideration of other characteristics and production costs. More preferably, it is 12.0% or less, More preferably, it is 11.0% or less.
  • the oil agent adhesion rate of the synthetic fiber of the present invention is preferably 0.6 to 1.5 wt%. If it is 1.5 wt% or less, there is almost no difficulty in wefts flying due to stickiness (tackiness). In addition, since the single yarn focusing is better than the single yarn focusing due to the entanglement and the apparent cross-sectional area is reduced, the weft conveying medium air and water hardly lose the weft conveying force. That is, the crank angle is not significantly increased. On the other hand, if it is 0.6 wt% or more, the weft is smoothly fed with an appropriate friction reducing effect, so that the crank angle does not fluctuate.
  • the tensile strength of the synthetic fiber of the present invention is preferably 8.5 cN / dtex or more. If the tensile strength is as high as 8.5 cN / dtex or more, it contributes to the improvement of the mechanical properties of the fabric and is also advantageous for increasing the intermediate load elastic modulus during yarn production. More preferably, it is 9.0 cN / dtex or more, and most preferably 9.5 cN / dtex or more. The tensile strength of the synthetic fiber is substantially 10.5 cN / dtex or less in consideration of other characteristics and production costs.
  • Drawing 1 is an explanatory view showing an example of the equipment which manufactures the textiles of the present invention.
  • the polymer in a molten state is soaked by a part of a spinning machine called a spin head (1) and is spun from the spinneret (2).
  • the spun polymer is solidified by cold air from the cooling chamber (3) to form a yarn.
  • the yarns gathered at each end are then given a finishing agent by an oil supply device having an oil supply roller (4), and then the take-up roller (21), the first roller (22) to the fifth roller (26). It progresses to the extending
  • the yarn is taken up at a predetermined speed by the roller (21) and then led to the first stage roller with a slight tension.
  • the yarn is fed to the entanglement imparting device (10) through the yarn path regulating guide (9) and wound by the winder (11). .
  • a heat roll is preferably used in the drawing step, and the temperature control by heat transfer can be sufficiently achieved by designing the contact length between the roll and the yarn.
  • the first stage of cold stretching is performed.
  • the cold drawing between the first stage roller (22) and the second stage roller (23) is performed by setting the temperature of the first stage stretching to less than 150 ° C. and the first stage stretching ratio from 25% with respect to the total stretching ratio. It is preferable to stretch at a distribution ratio of 55%. More preferably, it is 30% to 50%, and more preferably 35% to 45%.
  • the stretch ratio in the first stage is, for example, less than 3 times, more preferably 2.8 times or less, and even more preferably 2.5 times or less.
  • the first stage of cold stretching may be performed in multiple stages, and may be performed while sequentially increasing the stretching temperature at a temperature setting of less than 150 ° C.
  • the cold drawing roll temperature (first stage roller in the illustrated example) is set from a temperature between the anhydrous glass transition point of the spun yarn and a temperature of about 60 ° C. to start drawing. It is preferable for fixing the point position.
  • the roller temperature setting for the first stage stretching is 20 ° C. to 90 ° C., more preferably more than 50 ° C. to 80 ° C., and still more preferably more than 60 ° C. to 70 ° C.
  • the multi-stage stretching may be carried out by successively raising the set temperature to a temperature lower than 150 ° C., more preferably 120 ° C.
  • the second stage heat stretching is performed between the second stage roller (23) and the third stage roller (24), and the second stage roller is set to 150 ° C. or more and stretched to reach the total stretching ratio.
  • the second stage of thermal stretching may be performed in multiple stages, and may be performed while increasing the stretching temperature sequentially at a temperature setting of 150 ° C. or higher.
  • the total stretching ratio may be set so that desired tensile strength properties are exhibited. For example, it is about 5 to 6 times.
  • the hot drawing roll temperature (second stage roller in the illustrated example) is preferably 180 ° C. to 240 ° C., more preferably 200 ° C. to 220 ° C.
  • the multi-stage stretching may be performed by successively raising the set temperature to 240 ° C., more preferably 230 ° C.
  • the surface roughness is preferably 2.0 ⁇ m or more in terms of Ra. More preferably, it is 2.0 to 5.0 ⁇ m, and still more preferably 3.0 to 5.0 ⁇ m.
  • the roller after the heat stretching is a heat setting step, and it is a feature of the present invention that the polymer orientation structure is heat fixed and wound while lowering the temperature in multiple stages.
  • the heat stretching is completed up to the third stage roller (24), and heat setting is performed in three stages from the third stage roller (24) to the fifth stage roller (26) until winding.
  • the third stage roller (24) is a temperature at which the heat setting process is started, and is set to the highest temperature during the heat setting process.
  • the temperature of the third stage roller (24) is a plus of 30 with respect to the final heat drawing temperature, that is, the temperature of the second stage roller (23), with the maximum temperature being about 30 ° C. lower than the constant length restraining melting point of the drawn yarn.
  • the range of from 0 ° C. to minus 50 ° C. is preferred.
  • the fourth stage roller is lower in temperature than the third stage roller, and the temperature difference is preferably 10 ° C. to 60 ° C., more preferably 20 ° C. to 50 ° C., and even more preferably 30 ° C. to 40 ° C. .
  • the fifth stage roller is further lowered to a temperature of less than 150 ° C., preferably 140 ° C. to 100 ° C., and the temperature difference with the fourth stage roller is preferably 10 ° C. to 60 ° C., more preferably Is 20 ° C. to 50 ° C., more preferably 30 ° C. to 40 ° C.
  • the heat setting process it is a feature of the present invention to perform multi-stage temperature-decreasing heat fixing in which the temperature is lowered in at least two stages, more preferably three or more stages. Then, it winds up with a winder (11).
  • the speed between the third stage roller (24) and the fifth stage roller (26) is moderated as appropriate, but the speed ratio of each roller is preferably 1.0 to 0.90, more preferably 1.0 to 0.00. 94.
  • the overall relaxation rate ratio in the heat setting step is preferably 1.0 to 0.90.
  • the temperature setting of the third stage roller (24) is set to a low temperature with respect to the heat drawing temperature up to the second stage roller (23) after the completion of the hot drawing, the boiling water shrinkage rate can be increased as the temperature is lowered. it can.
  • the thermal shrinkage of the fiber can be stabilized and the coefficient of variation of the intermediate load elastic modulus can be lowered, the intermediate load elastic modulus is high, and the intermediate elastic elongation Can be obtained with low fiber properties.
  • Even between the fifth stage roller (26) (final roller) and the winder, a relaxation process with a speed ratio of 1.0 to 0.85 can be performed.
  • the temperature of the final roller is preferably 150 ° C. or lower to room temperature (non-heated), more preferably 140 ° C. or lower to 80 ° C.
  • the finishing agent applied by the oiling device is not particularly limited, but the yarn quality is excellent in smoothness and heat resistance so that the yarn is smoothly stretched in the yarn making process. It is preferable from the viewpoint of industrial material use.
  • the finishing agent composition satisfying such characteristics include a divalent fatty acid ester compound, a divalent fatty acid ester compound containing an alkylene oxide, a polyhydric alcohol alkylene oxide adduct, and a polyhydric alcohol alkylene oxide adduct containing an alkylene oxide.
  • a finishing agent mainly composed of, for example, is preferably used.
  • the finishing agent is used without any limitation, such as those diluted with mineral oil, water-based emulsions, etc., but is preferably an emulsion in consideration of compatibility with water in the subsequent step.
  • the finishing agent may be applied in an appropriate amount such as 0.6 to 1.5% by weight. In order to enhance the weft flying property, it is also preferable to avoid stickiness due to the finishing agent and to set the application rate to 0.6 to 1.0% by weight.
  • a yarn path regulating guide (9) for stabilizing the yarn running is provided at the upstream portion and the downstream portion of the entanglement imparting device (10). Maintaining the yarn running angle defined by these and the entanglement nozzle portion of the entanglement imparting device in the range of 1 to 10 ° is a preferable method for obtaining an entangled yarn with little variation.
  • the entanglement imparting device can be a known device that injects a compressed fluid onto the yarn by an entanglement nozzle.
  • the compressed fluid to the yarn is preferably supplied at an energy of 0.5 to 3.5 kW.
  • the compressed fluid energy is preferably 0.5 kW or more so that the unentangled length is not too long, and variations in the unentangled length can be suppressed.
  • the compressed fluid energy is preferably 3.5 kW or less so that the unentangled length is not too short. Also, keeping the compressed fluid energy from being too high will also reduce variations in unentangled length.
  • the supply energy of the compressed fluid can be calculated by the product of the supply pressure (MPa) and the use flow rate (Nm 3 / hr). By arbitrarily selecting the supply pressure and the fluid introduction diameter of the entangled nozzle, the supply energy can be calculated as described above. The range of can be satisfied.
  • the fluctuation of the winding tension between the fifth stage roller (26) (final roller) and the winder (11) is small and stabilized. Further, by adjusting the winding tension between the fifth stage roller (26) (final roller) and the winder (11) to be in the range of 0.1 to 0.3 cN / dtex, The entangled yarn has a stable and less entangled part, especially less entangled length, and at the same time, it can minimize fluctuations in tension when unpacking the package. Also excellent.
  • the synthetic fiber of the present invention can be woven with various looms such as a water jet loom, an air jet loom, a rapier loom, and a multiphase loom. It is particularly suitable for high-speed weaving at 800 rpm or higher. After weaving, the oil may be removed by a scouring process, or the scouring process may be omitted.
  • the fabric may be shrunk by treatment with hot water or hot air. In this shrinking process, tension control may be performed in the width direction or the anti-long direction of the fabric, or the dimensional change rate may be adjusted. Since the tension control and the dimensional change rate control in the width direction of the woven fabric are set uniformly over the entire length of the fabric, uneven relaxation of the woven fabric properties resulting from variations in the intermediate load elastic modulus at the time of weft insertion is limited.
  • the synthetic fiber of the present invention is suitable for a high-density fabric, and can be a fabric having a cover factor of 2000 to 2500, more preferably 2200 to 2500.
  • the cover factor is ⁇ warp density (main / 2.54 cm) ⁇ (warp fineness (dtex)) 1/2 + weft density (main / 2.54 cm) ⁇ (weft fineness (dtex)) 1/2 ⁇ .
  • the fabric using the synthetic fiber of the present invention can be made into a high-density fabric and used for an uncoated airbag. Moreover, it can also be used for a coating airbag by coating a resin or an elastomer.
  • R F / (L ′ / L ⁇ d)
  • F is the load (cN) at the point C
  • L is the sample length
  • L ′ is between the intersection H between the perpendicular of the point C and the extension axis
  • T between the cut line and the extension axis
  • D is the fineness (dtex).
  • the elongation H at the maximum point C of the cut line angle was defined as the intermediate elastic elongation.
  • s is a standard deviation
  • X is an average value.
  • the average value and the coefficient of variation of the intermediate load elastic modulus are arbitrarily sampled 50 samples in the yarn length direction of the winding yarn, the intermediate load elastic modulus is obtained by the above method for each sample, the average value and the standard deviation are calculated, Asked.
  • the bathing bath for measuring the number of entangled parts has a length of 1.0 m, a width of 20 cm, and a height (water depth) of 15 cm, and the water supplied from the supply port is the bath. It is drained by overflow. That is, the water in the measurement bath is renewed by always supplying new water at a flow rate of about 500 cc / min.
  • the length a of the entangled portion of the yarn extending on the water surface and the length b of the non-entangled portion are measured on a scale. These measurements were repeated 25 times to obtain an average value.
  • the frequency (times / unit / day) was evaluated according to the following criteria. ⁇ : Stops less than 3 times / vehicle / day ⁇ : Stops less than 10 times / vehicle / day ⁇ : Stops exceeding 10 times / vehicle / day
  • Air permeability evaluation Porous Metals, Inc. Using a Capillary Flow Porometer (CFP-1200AEX) manufactured by Capillary, a sample for measurement having a diameter of 25 mm was taken from the fabric, and a wet-up / dry-up air flow rate curve was drawn from 0 to 200 kPa with GalWick immersion liquid, and the air permeability at 100 kPa was drawn.
  • s is a standard deviation
  • X is an average value.
  • Roughness This is a value measured using a surface roughness measuring device (manufactured by Kosaka Co., Ltd., Surf Recorder SE-40D) according to the standard of stylus surface roughness measurement of JIS B0651. The thickness (Ra) was measured.
  • Example 1 A nylon 66 polymer having a 90% relative formic acid relative viscosity of 80 obtained by a conventional polymerization method was melted at 300 ° C. using the apparatus shown in FIG.
  • the spinneret (2) was taken up and wound by a direct spinning drawing process to produce 470 dtex, 72 filament polyamide 66 fibers. That is, the discharged nylon 66 polymer is cooled and solidified in the cold air chamber (3) to form a yarn, and then the oil supply roller (4), the take-up roller (21), the first roller (22) to the fifth roller. After passing (26) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled and wound by the entanglement applying device (10).
  • each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 200 ° C, and the third roller (24) at 220 ° C.
  • the fourth roller (25) is 180 ° C.
  • the fifth roller (26) is 140 ° C.
  • the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 2.25 times, and the stretching ratio of the third roller / second roller is 2. .55 times stretching.
  • the surface roughness of the second roller is 4.0 ⁇ m.
  • the fourth roller / third roller speed ratio is 1.0
  • the fifth roller / fourth roller speed ratio is 0.99
  • the fifth roller to winder has a speed ratio of 0.94.
  • the entanglement imparting device was installed between the fifth roller (26) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fiber.
  • a plain woven fabric was obtained from the obtained polyamide 66 fiber using an air jet loom AS type (AWS4 / J280) manufactured by DORNIER at a speed of 900 rpm.
  • AWS4 / J280 air jet loom AS type
  • DORNIER DORNIER
  • the crank angle was small and stable, and the evaluation results are also shown in Table 1.
  • the resulting woven fabric is scoured by continuous scouring at 80 ° C., heat set with a fabric feed overfeed of 4% and a fabric width of 1% with a tenter at 170 ° C., and the weft density of warp and weft is 2.54 cm. 55 ⁇ 55 woven fabrics were obtained.
  • Example 2 The same procedure as in Example 1 was performed except that the fifth roller / fourth roller speed ratio was set to 1.00 and the speed ratio from the fifth roller to the winder was set to 0.93 by heat setting in the spinning process.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The average value of the intermediate load elastic modulus increased, the crank angle of the weaving was smaller and stable, the air permeability unevenness of the non-coated fabric was small, and the burst resistance performance was also stable.
  • Example 3 The same procedure as in Example 2 was performed except that the application of compressed air to the entanglement applying device in the spinning process was 0.42 MPa and the air supply energy was 1.04 kW.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric.
  • the variation rate of the intermediate load elastic modulus was slightly large and the variation in the weaving crank angle was slightly large, but the air permeability was small and the burst resistance was stable.
  • Example 4 The same procedure as in Example 2 was performed except that spinning was performed with a spinneret having 140 holes in the spinning process.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The crank angle of the weaving was small, the air permeability of the non-coated fabric was small, and the burst resistance was stable.
  • Example 5 The same procedure as in Example 2 was performed except that spinning was performed with a spinneret having 180 holes in the spinning process.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The crank angle of the weaving was small, the air permeability of the non-coated fabric was small, and the burst resistance was stable.
  • Example 6 The same procedure as in Example 2 was performed except that the application of compressed air to the entanglement applying device in the spinning process was 0.2 MPa and the air supply energy was 0.53 kW. Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. While the weaving crank angle is slightly smaller, there are more stops. Although the crank angle variation is slightly larger, the air permeability is small and the burst resistance is stable.
  • Example 7 The same procedure as in Example 2 was performed except that the fourth roller temperature was set to 200 ° C. and the fifth roller / fourth roller speed ratio was set to 0.99 by heat setting in the spinning process.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The boiling water shrinkage decreased, the weaving crank angle was small and stable, and the non-coated fabric had slightly large air permeability, but the burst resistance was stable.
  • Example 8 In the spinning process, the same procedure as in Example 2 was performed, except that the amount of finishing agent applied on the oil supply roller was increased to 1.6%.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. Although the weaving crank angle was slightly larger and the variation was slightly increased, the non-coated fabric had small air permeability and stable burst resistance.
  • Example 9 The same procedure as in Example 2 was performed except that spinning was performed with a spinneret having 60 holes in the spinning process.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The crank angle of weaving increases and the variation increases slightly. Although the air permeability unevenness of the non-coated fabric was slightly large, the burst resistance performance was almost stable.
  • Example 10 The same procedure as in Example 2 was performed except that the fineness was 235 dtex in the spinning process and the weaving density was 75 / 2.54 cm. Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. Although the average value of the intermediate load elastic modulus was slightly large, the crank angle of weaving was small, the air permeability unevenness of the non-coated fabric was small, and the burst resistance performance was stable.
  • Example 11 With the heat setting in the spinning process, the third roller temperature is 210 ° C., the fourth roller temperature is 190 ° C., the fifth roller / fourth roller speed ratio is 0.99, and the fifth roller to winder speed ratio is 0. This was carried out in the same manner as in Example 2 except that it was set to .96.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The boiling water shrinkage increased, the weaving crank angle was small and stable, the non-coated fabric had small air permeability and the burst resistance was stable.
  • Example 12 The same procedure as in Example 2 was performed except that the application of compressed air to the entanglement applying device in the spinning process was 0.15 MPa and the air supply energy was 0.29 kW.
  • Table 1 shows the physical properties and the like of the obtained polyamide 66 fibers and the evaluation results of the woven fabric. The unentangled length is slightly increased, and the variation of the weaving crank angle is slightly increased, which affects the air permeability variation. The high-pressure gas development evaluation is somewhat inferior in reliability but has burst resistance.
  • Example 13 Spinning was performed in the same manner as in Example 1 using the apparatus shown in FIG.
  • the temperature of each roller was set such that the take-up roller (21) was at room temperature, the first roller (22) was 65 ° C., the second roller (23) was 200 ° C., and the third roller (24) was 210 ° C.
  • the fourth roller (25) is 180 ° C.
  • the fifth roller (26) is 140 ° C.
  • the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 2.15 times, and the stretching ratio of the third roller / second roller is 2. .55 times stretching.
  • the surface roughness of the second roller is 4.0 ⁇ m.
  • the fourth roller / third roller speed ratio is 1.0
  • the fifth roller / fourth roller speed ratio is 0.99
  • the speed ratio from the fifth roller to the winder is 0.94. It was relaxed and wound up.
  • the entanglement imparting device was installed between the fifth roller (26) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric having a weaving density of 55 / 2.54 cm.
  • Table 1 shows the evaluation results and the like of the obtained fabric.
  • the crank angle related to the weft flying performance is large and the variation is large, but the weaving property is stable.
  • the air permeability is slightly large, and the burst behavior by high-pressure gas deployment is slightly inferior in reliability but has burst resistance.
  • Example 1 The apparatus shown in FIG. 2 was used. Nylon 66 polymer having a 90% formic acid relative viscosity of 80 obtained by a conventional polymerization method was melted at 300 ° C., soaked with a spin head (1), and then spun with a spinneret (2) having 72 holes. It was discharged and wound by a direct spinning drawing process to produce 470 dtex, 72 filament polyamide 66 fibers. That is, the discharged nylon 66 polymer is cooled and solidified in the cold air chamber (3) to form a thread, and then the oil supply roller (4), the take-up roller (21), the first roller (22) to the fourth roller. After passing (25) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled with the entanglement imparting device (10) and wound.
  • each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 220 ° C, and the third roller (24) at 180 ° C.
  • the fourth roller (25) is 140 ° C.
  • the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 3.55 times, and the stretching ratio of the third roller / second roller is 1. .60 times stretching.
  • the surface roughness of the second roller is 1.5 ⁇ m.
  • the fourth roller / third roller speed ratio was set to 1.0. From the fourth roller to the winder, the winder was relaxed so that the speed ratio was 0.92.
  • the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW. The amount of finishing agent applied was 1.0% by weight.
  • the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1.
  • Example 1 Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric having a weaving density of 55 / 2.54 cm. Table 1 shows the evaluation results and the like of the obtained fabric. Since the cold drawing ratio is large, the fiber physical properties have a small average value of the intermediate load elastic modulus and a large average value of the intermediate elastic elongation. The high-stretching process is somewhat unstable and fluffy. In the weaving process, there were a few stops. Since the average value of the intermediate load elastic modulus is small, the crank angle of weaving is large, and the gas leak of expansion is large. Due to the large cold drawing ratio, the crank angle varies greatly. The non-coated fabric had large air permeability, and the burst resistance was unstable due to the large air permeability.
  • Example 2 The apparatus shown in FIG. 3 was used. Nylon 66 polymer having a 90% formic acid relative viscosity of 80 obtained by a conventional polymerization method was melted at 300 ° C., soaked with a spin head (1), and then spun with a spinneret (2) having 72 holes. It was discharged and wound by a direct spinning drawing process to produce 470 dtex, 72 filament polyamide 66 fibers.
  • the oil supply roller (4), the take-up roller (21), the first roller (22) to the third roller After passing (24) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled with the entanglement imparting device (10) and wound.
  • each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 220 ° C, and the third roller (24) at 180 ° C.
  • the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 3.55 times, and the stretching ratio of the third roller / second roller is 1. .60 times stretching.
  • the surface roughness of the second roller is 1.5 ⁇ m.
  • the third roller / winder speed ratio was 0.94.
  • the entanglement imparting device was installed between the third roller (24) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric having a weaving density of 55 / 2.54 cm. Table 1 shows the evaluation results and the like of the obtained fabric.
  • the relaxation speed ratio is adjusted and the heat fixation is performed with increased tension, but the fiber properties have a small mean value of the intermediate load elastic modulus, The average value of the intermediate elastic elongation is also large. The expansion gas leak is more. Since the cold drawing ratio is large, the weaving crank angle is large and the variation is also large. The non-coated fabric had larger air permeability and the burst resistance was unstable.
  • the fourth roller / third roller speed ratio was set to 1.0, and the winding from the fourth roller to the winder was relaxed so that the speed ratio was 0.96.
  • the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric. Table 1 shows the evaluation results and the like of the obtained fabric.
  • the average value of the intermediate elastic modulus was increased and the average value of the intermediate elastic elongation was decreased by performing heat fixation with further increased tension as compared with Comparative Example 1.
  • the stabilization of tension relaxation is incomplete and the variation in the intermediate load elastic modulus is large.
  • the crank angle of weaving is small, but the variation is large.
  • the non-coated fabric has large air permeability and unstable burst resistance.
  • the 4th roller / 3rd roller speed ratio was set to 1.0, and the 4th roller to the winder was relaxed and wound so that the speed ratio became 0.93.
  • the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric. Table 1 shows the evaluation results and the like of the obtained fabric.
  • Heat setting was performed with a lower tension than in Comparative Example 3 by the relaxation rate ratio.
  • the average value of the intermediate load elastic modulus was reduced, and the variation was also reduced. However, the average value of the intermediate elastic elongation increased. There are many gas leaks of expansion.
  • the non-coated fabric has large air permeability and unstable burst resistance.
  • the 4th roller / 3rd roller speed ratio was set to 1.0, and the 4th roller to the winder was relaxed and wound so that the speed ratio became 0.92.
  • the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1. Using the obtained polyamide 66 fiber, weaving was performed in the same manner as in Example 1 to obtain a non-coated fabric. Table 1 shows the evaluation results and the like of the obtained fabric.
  • the average value of the intermediate load elastic modulus of the obtained polyamide 66 fiber is smaller, and the average value of the intermediate elastic elongation is also large.
  • the variation in the intermediate load elastic modulus is small.
  • the strength of the obtained fiber was 8.0 cN / dtex, and although the strength was small, no burst was reached, but openings were observed and gas leak was too much. Therefore, the cushion function cannot be expected.
  • Example 6 The apparatus shown in FIG. 2 was used. Nylon 66 polymer having a 90% formic acid relative viscosity of 80 is melted at 300 ° C. by a conventional polymerization method, soaked by a spin head (1), and discharged by a spinneret (2) having 72 holes. Winding by a direct spinning drawing process, 470 dtex, 72 filament polyamide 66 fibers were made. That is, the discharged nylon 66 polymer is cooled and solidified in the cold air chamber (3) to form a thread, and then the oil supply roller (4), the take-up roller (21), the first roller (22) to the fourth roller. After passing (25) sequentially and stabilizing the yarn running with the yarn path regulating guide (9), the yarn was entangled with the entanglement imparting device (10) and wound.
  • each roller was the take-up roller (21) at room temperature, the first roller (22) at 65 ° C, the second roller (23) at 230 ° C, and the third roller (24) at 200 ° C.
  • the fourth roller (25) is 140 ° C.
  • the stretching distribution is such that the tension ratio of the first roller / take-off roller is 1.01 times, the stretching ratio of the second roller / first roller is 2.00 times, and the stretching ratio of the third roller / second roller is 2. .55 times stretching.
  • the 4th roller / 3rd roller speed ratio was set to 1.0, and the 4th roller to the winder was relaxed and wound so that the speed ratio became 0.91.
  • the surface roughness of the second roller (23) was increased to 4.0 ⁇ m in Ra.
  • the entanglement imparting device was installed between the fourth roller (25) and the winder (11), the application of compressed air to the entanglement imparting device was 0.3 MPa, and the air supply energy was 0.74 kW.
  • the amount of finishing agent applied was 1.0% by weight.
  • Table 1 shows the evaluation results and the like of the obtained fabric. Since the cold drawing ratio was lowered by the drawing ratio distribution and the surface roughness of the drawing roll was adjusted, the high drawing yarn production process was stabilized and the fluff was reduced. Therefore, the weaving process was stable with few stops.
  • the present invention provides a synthetic fiber suitable for weaving a high-density fabric, and the synthetic fiber of the present invention is suitable for high-speed weaving. Furthermore, the synthetic fiber of this invention can be used for the textile fabric for an airbag.
  • the synthetic fiber of the present invention is a high-strength fiber and can be used as a coating or a non-coated airbag fabric having a uniform woven density and a uniform low air permeability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Air Bags (AREA)
  • Artificial Filaments (AREA)

Abstract

 本発明の目的は、織密度や通気度などの物性が均一の織物に用いるための、緯糸挿入安定性に優れた高密度高速製織に適した合成繊維を提供することであり、本発明の合成繊維は、繊度が200~720dtexであり、中間荷重弾性率の平均値が75cN/dtexを超え150cN/dtex未満であり、該中間弾性率の変動係数が5%以下であることを特徴とする合成繊維である。

Description

合成繊維
 本発明は、高密度高速製織された織布の均一性を改良するための合成繊維に関する。とりわけ、エアバッグ用に用いる織布の通気度均一性の改良のために用いられる合成繊維に関する。
 合成繊維は高密度織物とすることで各種の資材用途がある。なかでもエアバッグ用途は重要である。
 エアバッグ装置は、乗物の衝突事故において乗員を拘束する安全装置である。エアバッグ装置は衝突センサーとガス発生器であるインフレーターとエアバッグとから成る。エアバッグは合成繊維の織物からなり、インフレーターの推薬の反応における熱に耐え、数十ミリ秒で展開し、展開したバッグの膨張ガスで乗員の突入エネルギーを吸収する機能を果たす。
 エアバッグは、展開時や乗員突入時に破袋しないような機械特性が必要であり、高密度の織物によって必要な機械特性を満たすような物性設計をする。織物の織密度の均一性は機械特性の均一性を支える要因であって、織密度均一性向上の要求がある。
 また、エアバッグはガスにより瞬時に展開する必要があり、できるかぎり非通気であることが望ましく、樹脂やエラストマーのコーティング皮膜を設けたコーティング織物を用いたり、高密であることによって低通気であるように織られたノンコート織物が用いられる。織物の通気度の均一性は、エアバッグの作用特性の均一化となる。さらには、ガスにより瞬時に展開する際に、通気度斑による局所的なガス通気は、展開応力の局所集中となり、エアバッグの破袋の原因となることがあり、通気度均一性向上の要求がある。
 高密度織物の高速製織では、経糸を織機に供給する際に、経糸と筬や綜絖との摩擦が非常に激しくなり、経糸がばらけて経糸の開口が実質的に不十分となり、緯糸が滑らかに挿入されずに織物欠点や停台となることがあった。このため、経糸に糊付けしたり、経糸を油脂分や空気交絡で集束させたりして、経糸のばらけを防ぐことが知られている。
 下記特許文献1には、緯糸の集束性を改善することで製織性の改善となることが開示されている。しかし、高密度織物を高速製織する際に織布の物性を均一に維持できないという問題があった。つまり、高速の無杼織機における緯糸挿入に関して、ノズル側からノズル反対側に到達させることで停台がなくなったとしても、緯糸飛走性に関しては、到達速度バラツキが顕著になって、織物性状の均一性が損なわれるという問題が生じている。
 近年、エアバッグ用途においては、細繊度で高強度の合成繊維を用いて織物の軽量化を図る開発が行なわれているが、細繊度であるほど高密度が必要であり、そのため、より高速での製織が望まれている。また、高密であることによって低通気であるように織られたノンコート織物は、通気性の均一性を確保することが困難であった。エアバッグ用途においては、織密度の均一性や通気度の均一性がエアバッグ性能に直結するため、より細繊度で高強度の合成繊維において、高速製織における織物の物性均一性を改善することが求められるようになっている。
特開2007-126796号公報
 本発明の目的は、高密度高速製織に適した合成繊維を提供することであり、とりわけ、織密度や通気度などの物性が均一の織物を得るための、緯糸挿入安定性に優れた合成繊維を提供することである。
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、特定物性の合成繊維を用いることにより高速製織時の緯糸挿入安定性が改良され、均一な織物物性が得られることを見出し、本発明を成すに至った。すなわち、本発明は以下の通りである。
 (1)繊度が200~720dtexであり、中間荷重弾性率の平均値が75cN/dtexを超え150cN/dtex未満であり、該中間荷重弾性率の変動係数が5%以下であることを特徴とする合成繊維。
 (2)中間荷重弾性率の平均値が80cN/dtexを超え120cN/dtex未満である上記(1)に記載の合成繊維。
 (3)中間弾性伸度の平均値が10~12%である上記(1)または(2)に記載の合成繊維。
 (4)フィラメント数が65~200本である上記(1)~(3)のいずれか一項に記載の合成繊維。
 (5)非交絡部長さの平均値が10~65mmである上記(1)~(4)のいずれか一項に記載の合成繊維。
 (6)交絡部長さの平均値が20mm以下、該非交絡部長さの変動係数が30%以下である上記(5)に記載の合成繊維。
 (7)沸水収縮率が5.5%以上である上記(1)~(6)のいずれか一項に記載の合成繊維。
 (8)沸水収縮率が7.0%以上である上記(7)に記載の合成繊維。
 (9)引張強度が8.5cN/dtex以上である上記(1)~(8)のいずれか一項に記載の合成繊維。
 (10)合成繊維がポリアミド繊維である上記(1)~(9)のいずれか一項に記載の合成繊維。
 (11)紡糸口金から紡出した糸状を冷延伸および熱延伸からなる多段延伸した後に多段降温熱固定する上記(1)~(10)のいずれか一項に記載の合成繊維。
 (12)エアバッグ用織物に用いる上記(1)~(11)のいずれか一項に記載の合成繊維。
 (13)上記(1)~(11)のいずれか一項に記載の合成繊維からなるエアバッグ基布。
 (14)上記(13)に記載のエアバッグ基布からなるエアバッグ。
 本発明の合成繊維は、高速製織性に優れ、とりわけ緯糸挿入の安定性に優れ、高密度織物にした際に、織密度均一性や通気度均一性に優れる。さらに、本発明の合成繊維から得られた織物は、エアバッグ織物として織密度均一性や通気度均一性に優れるため、均一なエアバッグが得られ、破袋のない信頼性の高いエアバッグが得られる。
本発明の合成繊維を製造する装置の一例を説明する図である。 従来の合成繊維を製造する装置の一例を説明する図である。 従来の合成繊維を製造する装置の別の一例を説明する図である。 糸条を水に浸漬したときの交絡部と非交絡部を説明する図である。 中間荷重弾性率を求めるための荷重-伸張曲線を説明する図である。 実施例で用いた円形模擬エアバッグを説明する図である。
 以下、本願発明について具体的に説明する。
 本発明の合成繊維はポリアミドやポリエステルのマルチフィラメントからなる長繊維であることが好ましい。特に好ましくは、ポリアミド繊維であり、融点が高く、熱容量も大きいため、エアバッグを火薬展開する場合に耐溶融性による耐バースト性に優れる。例えば、ポリアミド6、ポリアミド6・6、ポリアミド11、ポリアミド12、ポリアミド6・10、ポリアミド6・12、ポリアミド4・6、それらの共重合体およびそれらの混合物からなる繊維が挙げられる。なかでも、主としてポリヘキサメチレンアジパミド繊維からなるポリアミド6・6繊維が好ましい。ポリヘキサメチレンアジパミド繊維とは100%のヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド繊維を指す。本発明のポリアミド6・6繊維は、融点が250℃未満とならない範囲で、ポリヘキサメチレンアジパミドにポリアミド6、ポリアミド6・I、ポリアミド6・10、ポリアミド6・Tなどを共重合、あるいはブレンドしたポリマーからなる繊維でもよい。
 本発明においては、合成繊維の繊度は200~720dtexである。200dtex以上であれば資材用途の織物にした場合、十分な機械物性を有する。720dtex以下であれば、無杼織機で800rpm以上の高速製織をする際に、緯糸挿入する上で搬送重量が重過ぎて追随できないようなことがない。下限に関してはさらに好ましくは220dtex以上であり、また、上限に関してはさらに好ましくは500dtex以下であり、特に好ましくは450dtex以下である。
 本発明においては、繊維の引張り試験における物性が重要である。繊維の引張試験において得られる「荷重-伸長」曲線から、引張り弾性をJISL1017(7.8初期引張抵抗度)の計測方法の記載に基づいて求めることができる。JISL1017では引張り初期の引張り弾性を求めているが、引張り試験の引張り初期に限らず、引張り初期から破断にいたるすべての伸長領域で引張り弾性を求めると、「引張り弾性-伸長」曲線を得ることができる。この曲線は、通常、引張り初期に小さな極大を示し、次いで、破断までの中間の伸長領域で引張り弾性の最大値を示して、その後、弾性値が減少して破断にいたる挙動を示す。本発明の合成繊維の中間荷重弾性率の平均値は75cN/dtexを超え150cN/dtex未満である。中間荷重弾性率(cN/dtex)とは、「引張り弾性-伸長」曲線での引張り弾性の最大値である。中間荷重弾性率が高いことで、高速の緯糸挿入に対する繊維の応答が良く、緯糸挿入の到達時間が短い。すなわち、高速製織性に優れる。織機における緯糸のノズル反対側への到達時間を織機の動作のタイミングであるクランク角で評価すると、中間荷重弾性率が高ければ、より小さなクランク角での到達が観測される。クランク角が小さければ、高速製織に対して緯糸挿入が良好に追随できていると判断できる。すなわち、中間荷重弾性率が高いことが、製織時のクランク角を下げることに寄与する。中間荷重弾性率の平均値が75cN/dtexを超えれば、より小さなクランク角に下げることに寄与する。さらに好ましくは80cN/dtexを超えるものであり、最も好ましくは85cN/dtexを超えるものである。一方、中間荷重弾性率の平均値は、他の特性および製造コスト等を考慮すると、合成繊維では実質的に150cN/dtex未満が好ましい。さらに高品位な繊維としては、中間荷重弾性率の平均値は120cN/dtex未満がより好ましい。
 本発明においては、後述の方法によって求められる中間荷重弾性率の変動係数は5%以下であることが好ましい。織機における緯糸のノズル反対側への到達時間を織機の動作のタイミングであるクランク角で評価すると、中間荷重弾性率の変動係数が小さいほど、緯糸のノズル反対側への到達時間のばらつきは小さく、クランク角の値のばらつきは小さくなる。中間荷重弾性率の変動はないほうが望ましい。緯糸のノズル反対側への到達時間がばらつかなければ、緯糸は均一な挿入条件で打ち込まれている。
 緯糸はウォータージェット織機であれば水滴流により、エアージェット織機であれば圧気の空気流によって搬送打ち込みされ、緯糸が飛走する。このような搬送打ち込みを行なうと、瞬間的な打ち込みによって、伸張しながらノズル反対側に到達し、経糸が交差して筬打ちされて織物となる。このとき、中間荷重弾性率のばらつきが緯糸挿入時の緯糸の伸張度の差となって、織成された織物の反物幅の差となり、製織以降の加工を経て織密度差が生じたり、通気度差が生じることになる。中間荷重弾性率の変動係数が5%以下で少ないほど織密度斑や、通気度斑が少なくなる。より好ましくは3%以下である。中間荷重弾性率の平均値が高ければ高いほど中間荷重弾性率の変動係数による織物物性の均一性への影響が大きいため、中間荷重弾性率を高めた合成繊維では、従来よりも中間荷重弾性率の変動係数を下げることが織物物性の均一性にとって有効である。中間荷重弾性率の変動係数を下げることで、織物中の通気度斑が少なくなり、高圧ガス展開で相対的に高通気の部位にガスリークが集中することで、バッグのバーストに至るような事態を回避できる。合成繊維の中間荷重弾性率の変動係数は、他の特性および製造コスト等を考慮すると、実質的に0.1%以上である。
 本発明においては、引張り弾性の最大値を示す際の伸度、すなわち中間弾性伸度の平均値が10~12%が好ましい。上述の中間荷重弾性率の平均値が高いことに加えて、中間弾性伸度の平均値が小さければ、高速の緯糸挿入に対する繊維の応答が良く、緯糸挿入の到達時間が短い。すなわち、高速製織性に優れる。織機における緯糸のノズル反対側への到達時間を織機の動作のタイミングであるクランク角で評価すると、中間弾性伸度の平均値が12%以下であれば、より小さなクランク角での到達が観測される。クランク角が小さければ、高速製織に対して緯糸挿入が良好に追随できていると判断できる。より好ましくは、中間弾性伸度の値が11.5%未満である。中間弾性伸度の平均値は、他の特性および製造コスト等を考慮すると、合成繊維では実質的に10%以上が好ましい。高品位な繊維としては、中間弾性伸度の平均値は10.5%以上がより好ましい。
 本発明の合成繊維のフィラメント数は65~200本が好ましい。フィラメント数が65本以上であれば、水滴流や空気流の緯糸搬送流に対して、フィラメント表面での流体摩擦による搬送効率が高く、緯糸挿入速度が速い。すなわち、クランク角が小さく、高速製織に追随しやすい。より好ましくは70本以上であり、一層好ましくは80本以上である。フィラメント数が200本以下であれば、マルチフィラメントに交絡を付与するためのエア交絡のエネルギー利用が良く、均一で良好な交絡が与えられるため有利である。より好ましくは150本以下である。
 本発明では、交絡部長さの平均値が20mm以下、非交絡部長さの平均値が10~65mm、非交絡部長さの変動係数が30%以下、が好ましい。
 本発明における合成繊維の交絡は、水浸法によって測定される交絡部長さが20mm以下2mm以上であることが好ましい。交絡部長さが20mm以下であれば、緯糸挿入を行う際、緯糸搬送流すなわち水滴流や空気流の水や空気の包含性に劣ったり、飛走不足による製織トラブルを誘発することがほとんどない。より好ましくは10mm以下であり、一層好ましくは5mm以下である。交絡部長さが2mm以上であれば、経糸として要求される集束性を満足するようになる。非交絡部長さは10mm以上65mm以下が好ましい。非交絡部長さが10mm以上であれば、緯糸挿入を行う際、緯糸搬送流すなわち水滴流や空気流の水や空気の包含性に劣ったり、飛走不足による製織トラブルを誘発することがない。より好ましくは30mm以上である。非交絡部長さが65mm以下であれば、糸条の長さ方向において単糸長のばらつきを生じてしまうことで、製織中の糸切れや毛羽の発生を促したりすることがない。さらには、水滴流や空気流に乗った緯糸の単糸広がりによって見かけの緯糸断面が大きくなりすぎることがなく、したがって、開口している経糸に干渉して緯糸飛走時間がばらつくようなことがない。より好ましくは60mm以下である。後述の方法によって求められる非交絡部長さの変動係数は30%以下が好ましい。非交絡部長さの変動係数が30%以下であれば、製織時に糸条のばらけや弛みが増大して停台や織物欠点になることがほとんどない。
 本発明の合成繊維の沸水収縮率は、5.5%以上が好ましい。沸水収縮率が5.5%以上あれば、製織後の加工工程で織物を収縮させ、織物の仕上がりを高密度にすることに寄与できる。本発明の合成繊維の沸水収縮率は、7.0%以上がさらに好ましい。沸水収縮率が7.0%以上あれば、製織後の加工工程で織物を収縮させ、織物機械物性のばらつきの均一化に寄与できる。特に好ましくは7.5%以上である。高強度の合成繊維の沸水収縮率は、他の特性および製造コスト等を考慮すると、実質的に13.0%以下が好ましい。より好ましくは12.0%以下であり、一層好ましくは11.0%以下である。
  本発明の合成繊維の油剤付着率は0.6~1.5wt%であることが好ましい。1.5wt%以下であれば、べたつき(タック性)によって緯糸が飛走し難いということがほとんどない。また、交絡による単糸集束以上に単糸集束が良すぎて見掛け断面積が減ることにより緯糸搬送媒体である空気や水が緯糸搬送力を失ってゆくことがほとんどない。すなわち、クランク角が著しく大きくなることがない。一方、0.6wt%以上であれば、適切な摩擦低減効果によりスムーズに緯糸供給されるため、クランク角が変動することがない。
 本発明の合成繊維の引張強度は8.5cN/dtex以上が好ましい。引張強度が8.5cN/dtex以上と高ければ、織物の機械特性向上に寄与するし、製糸する際に中間荷重弾性率を上げるためにも有利である。より好ましくは、9.0cN/dtex以上であり、最も好ましくは9.5cN/dtex以上である。合成繊維の引張強度は、他の特性および製造コスト等を考慮すると、実質的に10.5cN/dtex以下である。
 本発明による合成繊維を製造する方法について説明する。図1は、本発明の繊維を製造する設備の一例を示す説明図である。まず、溶融状態のポリマーはスピンヘッド(1)と呼ばれる紡糸機の一部によって均温化され、紡糸口金(2)より紡出される。紡出されたポリマーは、冷却チャンバー(3)からの冷風により固化され糸条を形成する。各エンドにまとめられた糸条は、その後、給油ローラ(4)を有する給油装置で仕上剤を付与された後、引取りローラ(21)、第1ローラ(22)から第5ローラ(26)からなるローラ群による延伸工程へと進む。すなわち、糸条はローラ(21)により所定の速度で引き取られた後若干の緊張力で第1段ローラに導き、第1段ローラ(22)から多段の加熱延伸ローラ(23)および(24)により延伸された後、多段の冷却ローラ(25)および(26)を経て、糸道規制ガイド(9)を通って交絡付与装置(10)に供給され、巻取り機(11)で巻取られる。
 本発明において、延伸工程は、熱ロールを用いることが好ましく、ロールと糸の接触長の設計で伝熱による温度制御が十分になるようにできる。本発明に好適な多段延伸は、まず、第1段階の冷延伸を行なう。第1段ローラ(22)と第2段ローラ(23)の間の冷延伸は、第1段階延伸を150℃未満に温度設定し、第1段階延伸比を全延伸比に対して25%から55%となるような配分率で延伸することが好ましい。より好ましくは、30%から50%であり、一層好ましくは35%から45%である。第1段階の延伸比は、たとえば、3倍未満であり、より好ましくは2.8倍以下、一層好ましくは2.5倍以下にすることができる。全延伸比に対する第1段階延伸比の配分を少なく抑え、第2段階の延伸比の配分を多くすることで、より高強度で中間弾性伸度を低く抑えた繊維物性を安定して発現できる。また、高強度で高い熱収縮率を有する糸の延伸工程が安定して行える。第1段階の冷延伸は多段で行なっても良く、150℃未満の温度設定で順に延伸温度を上げながら延伸すればよい。第1段階の冷延伸では、冷延伸ロール温度(図の例示では第1段ローラ)は、紡出糸の無水ガラス転移点からさらに約60℃低温までの間の温度から設定することが延伸開始点位置を固定するために好ましい。たとえば、第1段延伸のローラ温度設定は、20℃から90℃であり、より好ましくは50℃を超えて80℃までであり、一層好ましくは60℃を超えて70℃までである。さらに、引続いて設定温度を上げて最高で150℃未満まで、より好ましくは120℃まで順次温度を上げて多段延伸してもよい。第2段階の熱延伸は、第2段ローラ(23)と第3段ローラ(24)間で実施し、第2段ローラを150℃以上に設定し全延伸比に至るまで延伸する。第2段階の熱延伸は多段で行なっても良く、150℃以上の温度設定で順に延伸温度を上げながら延伸すればよい。全延伸比は所望の引張り強度物性が発現するように設定すればよい。たとえば、5倍から6倍程度である。第2段階の熱延伸では、延伸ロール温度を延伸糸の定長拘束融点より約30℃低温の温度を最高温度として150℃以上の延伸をすることが好ましく、高延伸のためにはできるだけ高温が好ましい。たとえば、熱延伸ロール温度(図の例示では第2段ローラ)は好ましくは180℃から240℃であり、より好ましくは200℃から220℃である。さらに、引続いて設定温度を上げて240℃まで、より好ましくは230℃まで順次温度を上げて多段延伸してもよい。
 第1段延伸比を全延伸比に対して25%から55%となるような配分で安定して延伸するためには、延伸糸条を延伸ロール上で滑らせるために、第2段延伸のはじめの延伸ロールの表面粗度を大きくすれば良い。表面粗度はRaで2.0μm以上が好ましい。より好ましくは、2.0~5.0μmであり、一層好ましくは3.0~5.0μmである。
 熱延伸以降のローラは熱固定工程であり、多段で順次温度を下げながらポリマー配向構造を熱固定して巻き取ることが本発明の特徴である。図1の例示では、第3段ローラ(24)までで熱延伸を完了し、第3段ローラ(24)から第5段ローラ(26)を用いて巻取りまでに3段階で熱固定する。第3段ローラ(24)は熱固定工程をはじめる温度であり、熱固定工程中で最高温度とする。この第3段ローラ(24)温度は、延伸糸の定長拘束融点より約30℃低温の温度を最高温度として、最終熱延伸温度、すなわち、第2段ローラ(23)温度に対してプラス30℃からマイナス50℃の範囲が好ましい。第4段ローラは、第3段ローラに対して低温とし、その温度差を10℃から60℃とすることが好ましく、より好ましくは20℃から50℃、一層好ましくは30℃から40℃である。第5段ローラは、さらに温度を下げて、150℃未満の温度とし、好ましくは140℃から100℃として、第4段ローラとの温度差を10℃から60℃とすることが好ましく、より好ましくは20℃から50℃、一層好ましくは30℃から40℃である。このように、熱固定工程において、すくなくとも2段階、より好ましくは3段階以上で降温する多段降温熱固定を行なうことが本発明の特徴である。引き続いて巻き取り機(11)で巻き取ってゆく。第3段ローラ(24)から第5段ローラ(26)間では、適宜緩和させるが、各ローラ速度比を1.0から0.90とすることが好ましく、より好ましくは1.0から0.94とする。熱固定工程での全体の緩和の速度比は1.0から0.90とすることが好ましい。このように、緩和速度比をできるだけ大きくして緊張を保ち、熱固定工程では配向構造を出来るだけ保つことで中間荷重弾性率を高め、さらには、中間弾性伸度を低く抑えることができる。
 また、熱延伸完了後に、第3段ローラ(24)の温度設定を第2段ローラ(23)までの熱延伸温度に対して低温設定すれば、低温にするほど沸水収縮率を大きくすることができる。このように多段で順次温度を下げながら熱固定することで、繊維の熱収縮が安定化し中間荷重弾性率の変動係数を下げることができるとともに、中間荷重弾性率が高く、また、中間弾性伸度を低く抑えた繊維物性が得られる。第5段ローラ(26)(最終ローラ)と巻取り機間でも1.0から0.85の速度比の緩和処理ができる。一方、第5段ローラ(26)(最終ローラ)の温度を低温にすることで、巻取り機(11)との間の巻取り張力を低く抑えて交絡付与の効率をあげ、張力変動をなくして交絡の均一性も改善することができる。最終ローラの温度は、好ましくは150℃以下で室温(非加熱)までであり、より好ましくは140℃以下で80℃までである。
 給油装置にて付与される仕上剤は、特に限定されるものではないが、製糸工程における糸条の延伸がスムーズに行われるように平滑性に優れ、かつ耐熱性を有するものが糸条品位、産業資材用途の観点から好ましい。かかる特性を満たす仕上剤組成としては、例えば、二価脂肪酸エステル化合物、アルキレンオキサイドを含有する二価脂肪酸エステル化合物、多価アルコールアルキレンオキサイド付加物、およびアルキレンオキサイドを含有する多価アルコールアルキレンオキサイド付加物などを主成分とする仕上剤が好ましく用いられる。仕上剤は鉱物油などで希釈されたもの、水系のエマルジョンなど何ら限定されずに用いられるが、後工程における水との相溶性を考慮した際にはエマルジョンであることが好ましい。仕上剤の付与率は0.6~1.5重量%までなど適宜付与することができる。緯糸飛走性を高めるために、仕上剤によるべたつきを避けて付与率を0.6~1.0重量%とすることも好ましい。
 交絡付与装置(10)の上流部と下流部には糸走を安定させるための糸道規制ガイド(9)が設けられる。これらと交絡付与装置の交絡ノズル部とで規定される糸走角度を1~10°の範囲に保つことはばらつきの少ない交絡糸を得る上で好ましい方法である。交絡付与装置は、交絡ノズルにより圧縮流体を糸条に噴射する公知の装置を用いることができる。糸条への圧縮流体は、0.5~3.5kWのエネルギーにて供給をすることが好ましい。
 非交絡長が長すぎないように圧縮流体エネルギーを0.5kW以上とすることが好ましく、また、非交絡長のばらつきも抑えられる。圧縮流体エネルギーを高めれば非交絡長は短くなる。非交絡長が短すぎないように圧縮流体エネルギーを3.5kW以下とすることが好ましい。また、圧縮流体エネルギーを高すぎないようにすることは、非交絡長のばらつきを抑えることにもなる。
 圧縮流体の供給エネルギーは、供給圧(MPa)と使用流量(Nm3/hr)の積により算出することができ、供給圧および交絡ノズルの流体導入口径を任意に選択することにより、上記供給エネルギーの範囲を満足させることができる。
 本発明の多段熱固定法では、第5段ローラ(26)(最終ローラ)と巻取り機(11)間の巻取り張力の変動は少なく安定化する。さらには、第5段ローラ(26)(最終ローラ)と巻取り機(11)間の巻取り張力を0.1~0.3cN/dtexの範囲になるように調整することにより、本発明の交絡糸はその交絡部が安定したばらつきの少ない、特に非交絡長のばらつきが少ないものになると同時に、パッケージを解舒する際の張力変動を最小限にすることができ、パッケージの解舒性にも優れる。
 本発明の合成繊維は、ウォータージェット織機、エアージェット織機、レピア織機、多相織機など各種の織機で織物を織ることができる。とりわけ800rpm以上の高速製織に適している。
 製織後は精練工程で油分を除去しても良いし、精練工程を省略しても良い。織物を温水や熱風処理して収縮させても良い。この収縮工程で織物の幅方向や反長方向について張力制御したり、寸法変化率を調整させても良い。織物の幅方向の張力制御や寸法変化率制御は反物全長で一律設定されるため、緯糸挿入時の中間荷重弾性率のばらつきに由来する織物物性の不均一の緩和は限定的なものとなる。
 本発明の合成繊維は、高密度織物とするに適しており、カバーファクターが2000から2500の織物、より好ましくは2200から2500の織物とすることができる。なお、カバーファクターは{経糸密度(本/2.54cm)×(経糸繊度(dtex))1/2+緯糸密度(本/2.54cm)×(緯糸繊度(dtex))1/2}である。
 本発明の合成繊維を用いた織物は、高密度織物にしてノンコートエアバッグ用に用いることもできる。また、樹脂やエラストマーをコーティングしてコーティングエアバッグ用に用いることもできる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、明細書本文および実施例にて用いる物性の定義および測定方法は次の通りである。
 (1)繊度、引張強度
 JIS L 1017 7.3及び7.5により測定した。なお、引張強度は、試料に8回/10cmの撚りを掛け、試料長250mm、引張速度300mm/分で測定した値である。
 (2)中間荷重弾性率、中間荷重弾性率の変動係数、中間弾性伸度
 JIS L 1017 7.8項に記載の初期引張抵抗度を応用して得た図5に示す荷重-伸長曲線から求めた。7.8項では荷重-伸長曲線の原点近くでの切線角の最大点から引張抵抗度を求めて初期引張抵抗度としているが、本発明ではこれに代わって、原点と切断荷重の間のおよそ中間地点で観測される切線角の最大点Cから引張抵抗度を求め、これを中間荷重弾性率Rとした。即ち、中間荷重弾性率Rは下式で表される。
      R=F/(L‘/L×d)
 ここで、FはC地点での荷重(cN)であり、Lは試料長であり、L‘はC地点の垂線と伸張軸との交点Hと、切線と伸張軸との交点Tとの間の長さ(T-H)であり、dは繊度(dtex)である。また、切線角の最大点Cにおける伸度Hを中間弾性伸度とした。
 中間荷重弾性率の変動係数CVは下式で表される。CV値が高いほど、バラツキが大きいことを示す。
      CV(%)=(s/X)×100
 ここで、sは標準偏差であり、Xは平均値である。中間荷重弾性率の平均値と変動係数は、巻取り糸の糸長方向に任意に50試料サンプリングし、それぞれの試料について上記方法により中間荷重弾性率を求め、平均値と標準偏差を算出し、求めた。
 (3)交絡部長さ、非交絡部長さ
 交絡数測定用の水浴バスは、長さ1.0m、幅20cm、高さ(水深)15cmの大きさであり、供給口から供給された水はバスから溢流により排水される。すなわち、常に新しい水を約500cc/分の流量で供給することによって測定バス内の水を更新させる。水浸法により糸条の交絡数を測定する際、図4に示すように水面に拡がった糸条の交絡部の長さaおよび非交絡部の長さbをスケールにて測定する。これらの測定を25回繰り返して平均値を求めた。
 (4)非交絡部長さの変動係数CV
 上記(3)項で測定した非交絡部長さについて以下の計算で求めた。CV値が高いほど、ばらつきが大きいことを示す。
       CV(%)=(s/X)×100
 ここで、sは標準偏差であり、Xは平均値である。
 (5)沸水収縮率
 JIS L 1017 8.14により測定した。
 (6)仕上剤付着率
 JIS L 1017 7.16により測定した。
 (7)製織評価
 DORNIER社製エアージェット織機ASタイプ(AWS4/J280)にて900rpmの速度で平織りを織り、緯糸挿入におけるノズル反対側への到達タイミングを、織機動作のタイミングであるクランク角で検出した。クランク角は、54,000回の緯糸打ち込みデータから平均値と変動係数CVを求めた。変動係数CVは下式から計算した。
       CV(%)=(s/X)×100
 ここで、sは標準偏差であり、Xは平均値である。
 また、製織時の停台において、経糸の集束性に係る欠点が原因で停台したものと、緯糸の飛走性に係る欠点が原因で停台したものとを区別し、緯糸原因の停台頻度(回/台/日)を次の基準で評価した。
     ○:3回/台/日以下の停台
     △:10回/台/日以下の停台
     ×:10回/台/日を超える停台
 (8)通気度評価
 Porous Metrials,Inc.製Capillary Flow Porometer(CFP-1200AEX)を用い、織物から直径が25mmの測定用試料を採取し、GalWick浸漬液にて空気圧0から200kPaまでウェットアップ/ドライアップ通気量カーブを描いて100kPaにおける通気度を求め、任意に選んだ10箇所の試料の測定から変動係数CV値を下式により求めた。
       CV(%)=(s/X)×100
 ここで、sは標準偏差であり、Xは平均値である。
 (9)エアバッグ膨張圧評価
 直径30cmの膨張サイズが確保できる円形状に織物を裁断し、これを2枚貼りあわせるかたちで、図6(a)に示した模擬エアバッグを縫製した。図6(a)に示すように、該エアバッグには100mm×80mmのガス導入口を設け、導入口のエアバッグ貼りあわせ箇所の一部を筒状になったガス噴出口に挿入し、ガスが漏れないように密閉固定した。
 ガス噴出口から900L/分の空気を導入し、膨張圧力(kPa)を計測し、膨張時のガスリーク性を評価した。
 (10)エアバッグバースト評価
 前項と同様の模擬エアバッグにつき、図6(b)~(d)に示すように、ガス導入口を中心とし、左右に半円状に広がる模擬エアバッグを中心に向かいそれぞれが重ならないように畳んだ後、ガス導入口の反対側から導入口側に向かい10cm間隔で3回折り畳んだ。
 展開性評価を970ccタンク圧15MPaの高圧圧縮ヘリウムガスで10回実施し、エアバッグを概観検査した結果、次の基準にて耐バースト性を評価した。
    ○:バースト(破袋)、縫製目開きともになし
    △:バースト無し、1袋以上で縫製目開きあり
    ×:1袋以上のバーストあり
 (11)粗度
 表面粗さ測定器(小坂(株)製、サーフレコーダSE-40D)を用い、JIS B0651の触針式表面粗さ測定の基準に準じて測定した値で、中心線平均粗さ(Ra)を測定した。
 [実施例1]
 図1に示す装置により、常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第5ローラ(26)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
  各ローラの温度は、引取りローラ(21)を室温に、第1ローラ(22)を65℃、第2ローラ(23)を200℃、第3ローラ(24)を220℃とした。第4ローラ(25)が180℃、第5ローラ(26)が140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が2.25倍、第3ローラ/第2ローラの延伸比が2.55倍の延伸である。第2ローラの表面粗度は4.0μmである。熱固定では、第4ローラ/第3ローラ速度比が1.0、第5ローラ/第4ローラ速度比が0.99、第5ローラから巻取り機は速度比が0.94となるように緩和して巻き取った。交絡付与装置は、第5ローラ(26)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に記す。
 得られたポリアミド66繊維をDORNIER社製エアージェット織機ASタイプ(AWS4/J280)にて900rpmの速度で平織り織物を得た。製織工程にて、緯糸の飛走性に係るクランク角を評価した。クランク角は小さく安定しており評価結果を表1に併せて示した。
 得られた織物は80℃の連続精練で精練し、170℃のテンターで織物送りのオーバーフィード4%、織物幅を1%の幅入れで熱セットし、経糸及び緯糸の織密度を2.54cmあたり55本×55本の織物を得た。これをノンコート織物として、通気度斑を評価し、空気通気による膨張圧でガスリークを評価し、さらに、高圧ガス展開によるバースト挙動を評価した。評価結果を表1に併せて示した。膨張圧は高くガスリークが少なく、また、通気度斑が小さく、耐バースト性能も安定していた。
 [実施例2]
 紡糸工程の熱固定で、第5ローラ/第4ローラ速度比を1.00、第5ローラから巻取り機への速度比を0.93とした以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 中間荷重弾性率の平均値が上がり、製織のクランク角はより小さく安定し、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
 [実施例3]
 紡糸工程における交絡付与装置への圧縮空気の付与を0.42MPaで空気供給エネルギーを1.04kWとした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 中間荷重弾性率の変動率がやや大きくなり、製織のクランク角のばらつきがやや大きくなるが、通気度斑は小さく、耐バースト性能も安定していた。
 [実施例4]
 紡糸工程において孔数140の紡糸口金で紡糸した以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 製織のクランク角は小さく、ノンコート織物の通気度斑も小さく、耐バースト性能も安定していた。
 [実施例5]
 紡糸工程において孔数180の紡糸口金で紡糸した以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 製織のクランク角は小さく、ノンコート織物の通気度斑も小さく、耐バースト性能も安定していた。
 [実施例6]
 紡糸工程における交絡付与装置への圧縮空気の付与を0.2MPaで空気供給エネルギーを0.53kWとした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 製織のクランク角がやや小さくなる一方、停台がやや多い。クランク角のばらつきがやや大きくなるが、通気度斑は小さく、耐バースト性能も安定している。
 [実施例7]
 紡糸工程の熱固定で、第4ローラ温度を200℃、第5ローラ/第4ローラ速度比を0.99とした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 沸水収縮率が下がり、製織のクランク角は小さく安定し、ノンコート織物の通気度斑はやや大きいが、耐バースト性能は安定していた。
 [実施例8]
 紡糸工程において、給油ローラでの仕上剤付与量を増やし1.6%とした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 製織のクランク角がやや大きくなり、ばらつきもやや増えるが、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
 [実施例9]
 紡糸工程において孔数60の紡糸口金で紡糸した以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 製織のクランク角は大きくなり、ばらつきもやや増える。ノンコート織物の通気度斑がやや大きいが、耐バースト性能は略安定していた。
 [実施例10]
 紡糸工程において繊度を235dtexとし、製織加工した織密度を経緯とも75本/2.54cmとした以外は、実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 中間荷重弾性率の平均値がやや大きいが、製織のクランク角は小さく、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
 [実施例11]
 紡糸工程の熱固定で、第3ローラ温度を210℃、第4ローラ温度を190℃、第5ローラ/第4ローラ速度比を0.99、第5ローラから巻取り機への速度比を0.96とした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 沸水収縮率が上がり、製織のクランク角は小さく安定し、ノンコート織物の通気度斑は小さく、耐バースト性能も安定していた。
 [実施例12]
 紡糸工程における交絡付与装置への圧縮空気の付与を0.15MPaで空気供給エネルギーを0.29kWとした以外は実施例2と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を表1に示す。
 非交絡長がやや大きくなり、製織のクランク角のばらつきがやや大きくなって、通気性ばらつきに影響している。高圧ガス展開評価は、やや信頼性が劣るが耐バースト性能を有する。
 [実施例13]
 図1に示す装置を用いて、実施例1と同じように紡糸した。各ローラの温度は、引取りローラ(21)を室温に、第1ローラ(22)を65℃、第2ローラ(23)を200℃、第3ローラ(24)を210℃とした。第4ローラ(25)が180℃、第5ローラ(26)が140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が2.15倍、第3ローラ/第2ローラの延伸比が2.55倍の延伸である。第2ローラの表面粗度は4.0μmである。熱固定では、第4ローラ/第3ローラ速度比が1.0、第5ローラ/第4ローラ速度比が0.99、第5ローラから巻取り機への速度比が0.94となるように緩和して巻き取った。交絡付与装置は、第5ローラ(26)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて実施例1と同じように製織加工し、織密度が経緯とも55本/2.54cmのノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 緯糸の飛走性に係るクランク角は大きめで、そのばらつきも大きめであるが、製織性は安定である。通気度斑はやや大きめで、高圧ガス展開によるバースト挙動は、やや信頼性に劣るが耐バースト性能を有する。
 [比較例1]
 図2に示す装置を用いた。常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第4ローラ(25)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
 各ローラの温度は、引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を220℃、第3ローラ(24)を180℃とした。第4ローラ(25)が140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.55倍、第3ローラ/第2ローラの延伸比が1.60倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定は、第4ローラ/第3ローラ速度比を1.0とした。第4ローラから巻取り機へは速度比が0.92となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて実施例1と同様に製織加工し、織密度が経緯とも55本/2.54cmのノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 冷延伸比率が多いため、繊維物性は中間荷重弾性率の平均値が小さく、中間弾性伸度の平均値も大きい。高延伸の製糸工程がやや不安定で、毛羽が多めである。製織工程では、停台がやや多かった。中間荷重弾性率の平均値が小さいため、製織のクランク角が大きく、膨張のガスリークは多い。冷延伸比率が多いため、クランク角のばらつきも大きい。ノンコート織物の通気度斑は大きく、通気斑が大きいため耐バースト性能は不安定であった。
 [比較例2]
 図3に示す装置を用いた。常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第3ローラ(24)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
 各ローラの温度は、引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を220℃、第3ローラ(24)を180℃とした。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.55倍、第3ローラ/第2ローラの延伸比が1.60倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定は、第3ローラ/巻取り機速度比を0.94とした。交絡付与装置は、第3ローラ(24)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、織密度が経緯とも55本/2.54cmのノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 冷延伸比率が多く、加えて熱固定の弛緩工程が1段のみのため、弛緩速度比を調節し、緊張を高めた熱固定をしたが、繊維物性は中間荷重弾性率の平均値が小さく、中間弾性伸度の平均値も大きい。膨張のガスリークはより多い。冷延伸比率が多いため、製織のクランク角が大きく、ばらつきもより大きい。ノンコート織物の通気度斑はより大きく、耐バースト性能は不安定であった。
 [比較例3]
 比較例1と同様に、図2に示す装置を用いて紡糸を行なった。引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を180℃、第3ローラ(24)を170℃とした。第4ローラ(25)は140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.55倍、第3ローラ/第2ローラの延伸比が1.65倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定は、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.96となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて、実施例1と同じように製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 弛緩速度比の調節によって、比較例1に比べ緊張をさらに高めた熱固定をすることにより、中間荷重弾性率の平均値が大きく、中間弾性伸度の平均値が小さくなった。膨張のガスリークも少ない。しかし、張力緩和の安定化が不完全で中間荷重弾性率のばらつきは大きい。製織のクランク角は小さいが、ばらつきが大きい。ノンコート織物の通気度斑は大きく、耐バースト性能は不安定である。
 [比較例4]
 比較例1と同様に、図2に示す装置を用いて紡糸を行なった。引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を210℃、第3ローラ(24)を180℃とした。第4ローラ(25)は140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.55倍、第3ローラ/第2ローラの延伸比が1.60倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定では、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.93となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 弛緩速度比によって、比較例3に比べ緊張を下げた熱固定をした。中間荷重弾性率の平均値が小さくなり、ばらつきも小さくなった。しかし、中間弾性伸度の平均値は大きくなった。膨張のガスリークが多い。ノンコート織物の通気度斑は大きく、耐バースト性能は不安定である。
 [比較例5]
 比較例1と同様に、図2に示す装置を用いて紡糸を行なった。引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を220℃、第3ローラ(24)を180℃とした。第4ローラ(25)は140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が3.45倍、第3ローラ/第2ローラの延伸比が1.45倍の延伸である。第2ローラの表面粗度は1.5μmである。熱固定では、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.92となるように緩和して巻き取った。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 冷延伸比率が多く、総延伸比も低いため、得られたポリアミド66繊維の中間荷重弾性率の平均値がより小さく、中間弾性伸度の平均値も大きい。一方、中間荷重弾性率のばらつきは小さい。膨張のガスリークは多い。得られた繊維の強度は8.0cN/dtexであり、強度が小さいにもかかわらずバーストには至らないが、目開きが観測され、ガスリークが多すぎたためである。したがってクッション機能は期待できない。
 [比較例6]
 図2に示す装置を用いた。常法の重合方法にて90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド(1)により均温化させ、孔数72の紡糸口金(2)により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、72フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー(3)にて冷却固化され糸条を形成した後、給油ローラ(4)、引取りローラ(21)、第1ローラ(22)から第4ローラ(25)を順次通過させ、糸道規制ガイド(9)にて糸走を安定させた後、交絡付与装置(10)にて糸条に交絡を付与し巻き取った。
 各ローラの温度は、引取りローラ(21)を室温、第1ローラ(22)を65℃、第2ローラ(23)を230℃、第3ローラ(24)を200℃とした。第4ローラ(25)が140℃である。延伸配分は、第1ローラ/引取りローラ速度比が1.01倍の緊張で、第2ローラ/第1ローラの延伸比が2.00倍、第3ローラ/第2ローラの延伸比が2.55倍の延伸である。熱固定では、第4ローラ/第3ローラ速度比を1.0とし、第4ローラから巻取り機へは速度比が0.91となるように緩和して巻き取った。第2ローラ(23)の表面粗度はRaで4.0μmと大きくした。交絡付与装置は、第4ローラ(25)と巻取り機(11)間に設置し、交絡付与装置への圧縮空気の付与は0.3MPaで空気供給エネルギーは0.74kWとした。仕上剤の付与量は1.0重量%であった。得られたポリアミド66繊維の物性等を表1に示す。
 得られたポリアミド66繊維を用いて、実施例1と同様に製織加工し、ノンコート織物を得た。得られた織物の評価結果等を表1に示す。
 延伸比配分で冷延伸比を下げ、さらに延伸ロール表面粗度を調整したことにより、高延伸の製糸工程が安定化し、毛羽が減ったため、製織工程では、停台少なく安定であった。熱固定において弛緩程度が大きいため、中間荷重弾性率の平均値が小さめで、バッグの膨張圧は低く、エアリークが多い。製織のクランク角が大きく、そのばらつきは抑え気味だが、ノンコート織物の通気度斑がやや大きく、エアリークも多く、バーストが発生する。
Figure JPOXMLDOC01-appb-T000001
 本発明は高密度織物を織成するに適した合成繊維を提供するものであり、本発明の合成繊維は高速製織に適している。さらに、本発明の合成繊維はエアバッグ用途の織物に用いることができる。とりわけ、本発明の合成繊維は高強度繊維であって、均一な織密度、均一な低通気性を有するコーティングまたはノンコートエアバッグ用織物として用いることができる。
 1  スピンヘッド
 2  紡糸口金
 3  冷風チャンバー
 4  給油ローラ
 9  糸道規制ガイド
 10  交絡付与装置
 11  巻取り機
 21  引取りローラ
 22  第1ローラ
 23  第2ローラ
 24  第3ローラ
 25  第4ローラ
 26  第5ローラ
 a  糸条の交絡部長さ
 b  糸条の非交絡部長さ

Claims (14)

  1.  繊度が200~720dtexであり、中間荷重弾性率の平均値が75cN/dtexを超え150cN/dtex未満であり、該中間荷重弾性率の変動係数が5%以下であることを特徴とする合成繊維。
  2.  中間荷重弾性率の平均値が80cN/dtexを超え120cN/dtex未満である請求項1に記載の合成繊維。
  3.  中間弾性伸度の平均値が10~12%である請求項1または2に記載の合成繊維。
  4.  フィラメント数が65~200本である請求項1~3のいずれか一項に記載の合成繊維。
  5.  非交絡部長さの平均値が10~65mmである請求項1~4のいずれか一項に記載の合成繊維。
  6.  交絡部長さの平均値が20mm以下、該非交絡部長さの変動係数が30%以下である請求項5に記載の合成繊維。
  7.  沸水収縮率が5.5%以上である請求項1~6のいずれか一項に記載の合成繊維。
  8.  沸水収縮率が7.0%以上である請求項7に記載の合成繊維。
  9.  引張強度が8.5cN/dtex以上である請求項1~8のいずれか一項に記載の合成繊維。
  10.  合成繊維がポリアミド繊維である請求項1~9のいずれか一項に記載の合成繊維。
  11.  紡糸口金から紡出した糸状を冷延伸および熱延伸からなる多段延伸した後に多段降温熱固定する請求項1~10のいずれか一項に記載の合成繊維。
  12.  エアバッグ用織物に用いる請求項1~11のいずれか一項に記載の合成繊維。
  13.  請求項1~11のいずれか一項に記載の合成繊維からなるエアバッグ基布。
  14.  請求項13に記載のエアバッグ基布からなるエアバッグ。
PCT/JP2011/078339 2011-12-07 2011-12-07 合成繊維 WO2013084322A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020137032722A KR101586554B1 (ko) 2011-12-07 2011-12-07 합성 섬유
JP2013504603A JP5253685B1 (ja) 2011-12-07 2011-12-07 合成繊維
CN201180071553.0A CN103597131B (zh) 2011-12-07 2011-12-07 合成纤维
US14/237,616 US9845068B2 (en) 2011-12-07 2011-12-07 Synthetic fiber used for fabric
MX2014001491A MX352851B (es) 2011-12-07 2011-12-07 Fibra sintetica.
PCT/JP2011/078339 WO2013084322A1 (ja) 2011-12-07 2011-12-07 合成繊維
EP11876976.9A EP2752510B1 (en) 2011-12-07 2011-12-07 Synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078339 WO2013084322A1 (ja) 2011-12-07 2011-12-07 合成繊維

Publications (1)

Publication Number Publication Date
WO2013084322A1 true WO2013084322A1 (ja) 2013-06-13

Family

ID=48573726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078339 WO2013084322A1 (ja) 2011-12-07 2011-12-07 合成繊維

Country Status (7)

Country Link
US (1) US9845068B2 (ja)
EP (1) EP2752510B1 (ja)
JP (1) JP5253685B1 (ja)
KR (1) KR101586554B1 (ja)
CN (1) CN103597131B (ja)
MX (1) MX352851B (ja)
WO (1) WO2013084322A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526314A (zh) * 2013-10-30 2014-01-22 苏州龙杰特种纤维股份有限公司 防母丝丝束滑移的方法
JP2017155348A (ja) * 2016-02-29 2017-09-07 東レ株式会社 ポリアミド繊維およびそれよりなる布帛
JPWO2020059443A1 (ja) * 2018-09-19 2021-08-30 東レ株式会社 エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法
WO2022075329A1 (ja) * 2020-10-05 2022-04-14 旭化成株式会社 エアバッグ用ポリアミド繊維及びその製造方法
WO2022211130A1 (ja) * 2021-04-02 2022-10-06 旭化成株式会社 エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法
WO2024162095A1 (ja) * 2023-01-30 2024-08-08 東レ株式会社 ポリアミドマルチフィラメントおよびポリアミドモノフィラメント

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201311B (zh) * 2014-08-15 2016-05-04 常州大学 一种改进的单向拉伸制备聚乙烯微孔隔膜的方法
JP6385790B2 (ja) * 2014-10-21 2018-09-05 Tmtマシナリー株式会社 紡糸延伸装置
CN106222769A (zh) * 2016-08-26 2016-12-14 山东合信科技股份有限公司 一种细旦pa66未拉伸丝及其生产工艺
CN106120000A (zh) * 2016-08-26 2016-11-16 山东合信科技股份有限公司 一种耐热性好的pa66未拉伸丝及其生产工艺
CN106120001A (zh) * 2016-08-26 2016-11-16 山东合信科技股份有限公司 一种高强力耐热pa66未拉伸丝及其生产工艺
PL3619078T3 (pl) 2017-05-02 2021-08-30 Invista Textiles (U.K.) Limited Tkanina o niskiej przepuszczalności i dużej wytrzymałości oraz sposoby jej wytwarzania
CN107043959B (zh) * 2017-05-10 2019-10-25 海安县华荣化纤有限公司 12头纺锦纶6细旦低收缩工业丝的生产工艺
WO2019067655A1 (en) 2017-09-29 2019-04-04 Invista Textiles (U.K.) Limited INFLATABLE SAFETY DEVICES AND METHODS FOR PRODUCING INFLATABLE SAFETY DEVICES
KR101973714B1 (ko) 2017-12-18 2019-04-29 김종렬 유동 반지 및 이의 제조 방법
US11554746B2 (en) 2018-02-27 2023-01-17 ZF Passive Safty System US Inc. One-piece woven vehicle occupant protection device and method for manufacturing the same
CN116172307A (zh) * 2018-04-13 2023-05-30 耐克创新有限合伙公司 具有镶嵌缓冲的针织部件
CN109371571A (zh) * 2018-11-30 2019-02-22 周宏辉 一种芯类填充物及其制造方法
WO2020179456A1 (ja) * 2019-03-04 2020-09-10 東レ株式会社 エアバッグ用基布およびエアバッグ用基布の製造方法
GB202017576D0 (en) * 2020-11-06 2020-12-23 Invista Textiles Uk Ltd Airbag fabrics
TWI790173B (zh) * 2022-06-15 2023-01-11 遠東新世紀股份有限公司 聚醯胺56樹脂組成物、纖維、纖維絲束、纖維撚紗、纖維製品及輪胎簾布

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183205A (ja) * 2004-12-28 2006-07-13 Toray Ind Inc エアバッグ用基布
JP2007126796A (ja) 2005-11-07 2007-05-24 Asahi Kasei Chemicals Corp 交絡糸およびその製造方法
JP2011168938A (ja) * 2010-02-22 2011-09-01 Asahi Kasei Fibers Corp エアバック用ナイロン66繊維およびエアバック
JP2011168919A (ja) * 2010-02-18 2011-09-01 Asahi Kasei Fibers Corp ポリアミド繊維およびエアバッグ用織物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303169A (en) * 1962-01-18 1967-02-07 Du Pont High-modulus, high-tenacity, lowshrinkage polyamide yarn
JPS58136823A (ja) * 1982-02-06 1983-08-15 Toyobo Co Ltd ポリアミド繊維
FR2773178B1 (fr) * 1997-12-29 2000-04-21 Nylstar Sa Fils textiles multifilamentaires a section creuse - procede de fabrication de ces fils, et surfaces textiles obtenues avec ces fils
CA2450103C (en) * 2003-10-22 2008-09-16 Hyosung Corporation Low shrinkage polyamide fiber and uncoated fabric for airbags made of the same
KR100451263B1 (ko) * 2003-12-30 2004-10-11 주식회사 효성 비피복 에어백용 폴리아미드 섬유
CN102046859B (zh) * 2008-03-26 2013-09-25 东丽株式会社 聚酰胺56细丝、含有它们的纤维结构、以及气囊织物
CN101634074B (zh) * 2008-07-23 2012-01-25 东丽纤维研究所(中国)有限公司 安全气囊用织物及其生产方法
CN101666007B (zh) * 2008-09-01 2012-11-07 东丽纤维研究所(中国)有限公司 一种安全气囊用织物
KR101575837B1 (ko) * 2009-12-18 2015-12-22 코오롱인더스트리 주식회사 에어백용 폴리에스테르 원사 및 그의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183205A (ja) * 2004-12-28 2006-07-13 Toray Ind Inc エアバッグ用基布
JP2007126796A (ja) 2005-11-07 2007-05-24 Asahi Kasei Chemicals Corp 交絡糸およびその製造方法
JP2011168919A (ja) * 2010-02-18 2011-09-01 Asahi Kasei Fibers Corp ポリアミド繊維およびエアバッグ用織物
JP2011168938A (ja) * 2010-02-22 2011-09-01 Asahi Kasei Fibers Corp エアバック用ナイロン66繊維およびエアバック

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526314A (zh) * 2013-10-30 2014-01-22 苏州龙杰特种纤维股份有限公司 防母丝丝束滑移的方法
JP2017155348A (ja) * 2016-02-29 2017-09-07 東レ株式会社 ポリアミド繊維およびそれよりなる布帛
JPWO2020059443A1 (ja) * 2018-09-19 2021-08-30 東レ株式会社 エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法
JP7272270B2 (ja) 2018-09-19 2023-05-12 東レ株式会社 エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法
WO2022075329A1 (ja) * 2020-10-05 2022-04-14 旭化成株式会社 エアバッグ用ポリアミド繊維及びその製造方法
JPWO2022075329A1 (ja) * 2020-10-05 2022-04-14
JP7375219B2 (ja) 2020-10-05 2023-11-07 旭化成株式会社 エアバッグ用ポリアミド繊維及びその製造方法
WO2022211130A1 (ja) * 2021-04-02 2022-10-06 旭化成株式会社 エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法
JP7560657B2 (ja) 2021-04-02 2024-10-02 旭化成株式会社 エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法
WO2024162095A1 (ja) * 2023-01-30 2024-08-08 東レ株式会社 ポリアミドマルチフィラメントおよびポリアミドモノフィラメント

Also Published As

Publication number Publication date
US20140265279A1 (en) 2014-09-18
US9845068B2 (en) 2017-12-19
EP2752510A1 (en) 2014-07-09
JP5253685B1 (ja) 2013-07-31
KR20140007010A (ko) 2014-01-16
MX2014001491A (es) 2014-04-14
EP2752510A4 (en) 2016-04-06
KR101586554B1 (ko) 2016-01-18
CN103597131A (zh) 2014-02-19
CN103597131B (zh) 2015-04-15
JPWO2013084322A1 (ja) 2015-04-27
EP2752510B1 (en) 2017-05-10
MX352851B (es) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5253685B1 (ja) 合成繊維
US8261779B2 (en) Base cloth for air bag, raw yarn for air bag, and method for producing the raw yarn
JP5365272B2 (ja) エアバッグ用織物およびエアバッグ用織物の製造方法
KR101919216B1 (ko) 폴리아미드 섬유 및 에어백용 직물
JP2012502194A (ja) エアバッグ用織物及びその製造方法
JP5359714B2 (ja) エアバッグ用基布
JP2007284826A (ja) エアバッグ用基布の製造方法
EP3279378B1 (en) Airbag-use woven fabric and airbag
CN113785087A (zh) 超低渗透性和高接缝强度织物及其制造方法
JP4603297B2 (ja) ポリヘキサメチレンアジパミド繊維
JP2010174390A (ja) エアバッグ用織物およびエアバッグ用織物の製造方法
JP4538967B2 (ja) エアバッグ用布帛
JP6105192B2 (ja) エアバッグ織物
JP5741639B2 (ja) エアバッグ用原糸およびエアバッグ用原糸の製造方法
JP2002293209A (ja) エアバッグ用繊維、その製造方法およびノンコートエアバッグ用基布
JP4770152B2 (ja) エアバック用原糸パッケージ、それを用いたエアバック用基布およびエアバック用原糸パッケージの製造方法
JP7560657B2 (ja) エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013504603

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137032722

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011876976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011876976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/001491

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14237616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE