WO2022211130A1 - エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 - Google Patents
エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 Download PDFInfo
- Publication number
- WO2022211130A1 WO2022211130A1 PCT/JP2022/017011 JP2022017011W WO2022211130A1 WO 2022211130 A1 WO2022211130 A1 WO 2022211130A1 JP 2022017011 W JP2022017011 W JP 2022017011W WO 2022211130 A1 WO2022211130 A1 WO 2022211130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yarn
- airbag
- synthetic fiber
- airbags
- fiber
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 68
- 229920002994 synthetic fiber Polymers 0.000 title abstract description 67
- 239000012209 synthetic fiber Substances 0.000 title abstract description 64
- 239000002759 woven fabric Substances 0.000 title abstract description 61
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 85
- 238000009941 weaving Methods 0.000 abstract description 48
- 238000004804 winding Methods 0.000 abstract description 48
- 239000000835 fiber Substances 0.000 description 47
- 239000004744 fabric Substances 0.000 description 42
- 229920002302 Nylon 6,6 Polymers 0.000 description 33
- 239000003795 chemical substances by application Substances 0.000 description 32
- -1 Ester compounds Chemical class 0.000 description 27
- 230000000704 physical effect Effects 0.000 description 26
- 238000011156 evaluation Methods 0.000 description 19
- 230000001050 lubricating effect Effects 0.000 description 19
- 239000002563 ionic surfactant Substances 0.000 description 15
- 239000004952 Polyamide Substances 0.000 description 13
- 229920002647 polyamide Polymers 0.000 description 13
- 238000009835 boiling Methods 0.000 description 11
- 238000003780 insertion Methods 0.000 description 11
- 230000037431 insertion Effects 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 239000003945 anionic surfactant Substances 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 8
- 239000004359 castor oil Substances 0.000 description 8
- 235000019438 castor oil Nutrition 0.000 description 8
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 7
- 238000009987 spinning Methods 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- 239000002736 nonionic surfactant Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 125000004437 phosphorous atom Chemical group 0.000 description 4
- 238000009991 scouring Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-L 3-(2-carboxylatoethylsulfanyl)propanoate Chemical compound [O-]C(=O)CCSCCC([O-])=O ODJQKYXPKWQWNK-UHFFFAOYSA-L 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- GWTCIAGIKURVBJ-UHFFFAOYSA-L dipotassium;dodecyl phosphate Chemical compound [K+].[K+].CCCCCCCCCCCCOP([O-])([O-])=O GWTCIAGIKURVBJ-UHFFFAOYSA-L 0.000 description 1
- LPZZAIMVFFLHQU-UHFFFAOYSA-L dipotassium;octyl phosphate Chemical compound [K+].[K+].CCCCCCCCOP([O-])([O-])=O LPZZAIMVFFLHQU-UHFFFAOYSA-L 0.000 description 1
- YVIGPQSYEAOLAD-UHFFFAOYSA-L disodium;dodecyl phosphate Chemical compound [Na+].[Na+].CCCCCCCCCCCCOP([O-])([O-])=O YVIGPQSYEAOLAD-UHFFFAOYSA-L 0.000 description 1
- WUIJQWLICXXNNE-UHFFFAOYSA-L disodium;octyl phosphate Chemical compound [Na+].[Na+].CCCCCCCCOP([O-])([O-])=O WUIJQWLICXXNNE-UHFFFAOYSA-L 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 210000003660 reticulum Anatomy 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D7/00—Collecting the newly-spun products
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/02—Inflatable articles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/248—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
- D06M13/256—Sulfonated compounds esters thereof, e.g. sultones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/282—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
- D06M13/292—Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
Definitions
- the present invention relates to a synthetic fiber for airbags and a method for manufacturing airbag fabrics using the same.
- the installation of airbag devices is progressing for the purpose of protecting passengers in the event of a car collision.
- the airbag protects the occupant by generating high-pressure gas from the inflator and inflating the airbag cushion.
- facade curtain airbags that prevent collisions between the driver and front passenger and pedestrian airbags that protect pedestrians have appeared, but these are stored in narrow spaces such as seats and bonnets. Therefore, there is an increasing demand for compactness of airbag cushions.
- the manufacturing process of airbag cushions is mainly divided into four processes: spinning, weaving, sewing, and assembly.
- a water jet loom WJL
- WJL water jet loom
- the yarn rides on the water flow of the formed water column to perform weft insertion. After the weft inserted into the opening of the warp is gripped on the side opposite to the nozzle, it is beaten to form a woven fabric.
- Patent Document 2 discloses synthetic fibers for airbags that are entangled so as to improve weft flight in weaving. This enables high-speed weaving at 850 rpm to 1000 rpm and reduces defects in the process. However, only the number of weaving stops is mentioned and the quality of the textile product is not mentioned.
- the conventional technology by improving the responsiveness to the force in the flying direction of the weft yarn and suppressing the variation in the responsiveness in the yarn length direction, uniform air permeability and uniform air permeability can be achieved even at high speed weaving.
- the air permeability of the fabric is a parameter related to air leakage from the fabric surface, and affects the internal pressure retention of the airbag.
- the air leak from the sewn portion is greater than the air leak from the surface of the fabric, and the effect of the breathability of the fabric on the ability to retain internal pressure is negligible.
- a parameter related to air leakage from the sewn part of the fabric is the sliding resistance. If the sliding resistance is large, when stress is applied to the sewn portion when the airbag is deployed, the sewn portion is less likely to be displaced, and the internal pressure is less likely to decrease.
- bending resistance is a parameter related to the storability of the airbag in the vehicle.
- the airbag cushion is folded and stored and installed in the vehicle as an airbag device.
- the problem to be solved by the present invention is to provide a synthetic fiber for airbags that can be suitably used together with warp and warp when weaving fabrics used for airbags by WJL.
- the weft runs at high speed, further reduces tension unevenness when it reaches the side opposite to the nozzle, has uniform followability to the jet water, and runs at high speed, and can be used in the width direction of the fabric.
- a synthetic material for airbags that suppresses quality variation (because the instantaneous elastic recovery of polyamide yarn settles down in the width direction of the fabric before it is organized) and achieves both high slip resistance and high flexibility, which are trade-offs in fabrics. to provide fiber.
- the present inventors have found that the uniformity of the non-entangled area is important for the uniform running performance of the yarn, and the instantaneous hydrophilicity of the yarn is important for the followability to the jet water. was unexpectedly discovered, and the present invention was completed.
- a multifilament synthetic fiber for airbags having an entangled portion and a non-entangled portion, wherein the water droplet contact angle on the surface of the single yarn is 50 to 75 °, and the non-entangled portion area variation is CV per 20 cm.
- a synthetic fiber for an airbag characterized by having a value of 10% or less.
- the synthetic fiber for an airbag according to [1] wherein the non-entangled portion area is in the range of 12.5 to 20 cm 2 in the yarn length direction for each 20 cm range.
- a method of making a fabric for an airbag comprising:
- the synthetic fiber for airbags of the present invention has a water droplet contact angle on the surface of the single yarn and a variation in the area of the non-entangled portion within a specific range. ), and has excellent uniform and straight flight characteristics (uniform flight performance of yarn). These two characteristics make it possible to perform high-speed weaving without quality variations in the width direction of the base fabric.
- FIG. 3 is a diagram for explaining definitions of a short-period oscillation width ratio B and winding start winding angle ⁇ for determining a traverse speed increase/decrease method in a winder. It is explanatory drawing in measurement of a water-drop contact angle. It is an explanatory view of the definition of the length a and the width b of the non-entangled part for obtaining the non-entangled part area and its CV value.
- One embodiment of the present invention is a multifilament synthetic fiber for airbags having an entangled portion and a non-entangled portion, wherein the water droplet contact angle on the surface of the single yarn is 50 to 75°, and the non-entangled fibers are separated every 20 cm.
- the synthetic fiber for an airbag is characterized by having a CV value of 10% or less of variation in area.
- the water droplet contact angle on the single yarn surface of the airbag synthetic fiber in this embodiment is 50° or more and 75° or less. As shown in FIG. 4, the water droplet contact angle is measured by attaching a certain amount of water droplets to a single yarn of synthetic fiber for airbags, observing the contact angle from the side over time, and measuring the contact angle within 100 ms (one frame of the video is 8 ms). The maximum contact angle value. If the water droplet contact angle is 50° or more, the surface tension of the sprayed water works appropriately in the yarn during weft insertion, and the yarn can fly without coming apart.
- the weft yarn Since the yarn does not come loose, the air resistance that the yarn receives during flight is reduced, the flight performance of the weft yarn is improved, and the weft insertion performance is stabilized at high speed.
- the weft yarn is woven into the warp yarn after the momentary elastic recovery has settled down, which contributes to the uniformity of airbag fabric properties in high-speed weaving.
- the jet water contained in the yarn becomes uniform, the yarn runs uniformly, contributing to the uniformity of the physical properties of the fabric. Further, when the contact angle is 75° or less, the hydrophilicity of the thread becomes high, and the followability to the jet water is improved.
- the CV value (variation coefficient) of the water droplet contact angle on the single yarn surface of the airbag synthetic fiber has a variation in the yarn length direction of 5% or less. If the CV value is 5% or less, the finishing agent adheres to the single yarn evenly in the yarn length direction, the amount of water contained in the yarn during weft insertion becomes uniform, the variation in flight performance is eliminated, and the slipping. Variation in the ratio of resistance to bending resistance (EC/V) can be reduced, that is, it is possible to obtain a woven fabric of uniform quality, especially in the width direction of the base fabric.
- the CV value is preferably 4.5% or less. Although the lower limit of the CV value is not particularly limited, it may be 1% or more as an economically feasible range.
- the CV value (variation coefficient) of the non-entangled area of the synthetic fibers for airbags in this embodiment is 10% or less for every 20 cm. If the CV value is 10% or less, as shown in FIG. At the time of weft insertion, the amount of water contained in the yarn becomes uniform, the variation in flight performance is eliminated, and the variation in the ratio of sliding resistance to bending resistance (EC / V) can be reduced. In particular, it is possible to obtain a woven fabric of uniform quality in the width direction of the base fabric.
- the CV value is preferably 8% or less, more preferably 7% or less. Although the lower limit of the CV value is not particularly limited, it may be 3% or more as an economically feasible range. If the state of the non-entangled portion is uniform everywhere in the measurement of the 20 cm yarn length, the flight performance by jet water will be uniform.
- the area of the non-entangled portion of the synthetic fibers for airbags in this embodiment is preferably 12.5 to 20 cm 2 when evaluated for each 20 cm range in the fiber length direction. If the area of the non-entangled portion is 12.5 cm 2 or more, the yarn will sufficiently absorb water, the weft will have good flying properties, and the loom can be prevented from stopping. On the other hand, if the area of the non-entangled portion is 20 cm 2 or less, the length of the entangled portion can be appropriately set, the yarn is not loosened, and the loom can be prevented from stopping.
- the area of the non-entangled portion is more preferably 14 to 17.5 cm 2 when evaluated in every 20 cm range in the yarn length direction.
- the anionic surfactant containing phosphorus atoms and/or the anionic surfactant containing sulfur atoms is preferably attached in an amount of 200 to 500 ppm with respect to the weight of the fiber.
- the contact angle of water droplets becomes sufficiently low, the yarn becomes more hydrophilic, and the followability to jet water during weft insertion in the weaving process improves, and the weft flight performance is improved. do.
- the adhesion rate is 500 ppm or less, the water droplet contact angle is too small, and the yarn does not come loose when the weft yarn flies in weaving.
- the adhesion rate of the anionic surfactant to the fiber weight is more preferably 250 to 500 ppm, still more preferably 300 to 500 ppm.
- the anionic surfactant containing a phosphorus atom is not particularly limited. mentioned. More specific examples include lauryl phosphate potassium salt, lauryl phosphate sodium salt, octyl phosphate potassium salt, octyl phosphate sodium salt and the like.
- An anionic surfactant containing a sulfur atom is not particularly limited, but examples thereof include alkanesulfonates.
- the method for attaching the ionic surfactant is not particularly limited, it is preferable to attach the ionic surfactant by mixing it in the finishing agent.
- the entanglement degree of the synthetic fibers for airbags in this embodiment is preferably 10 to 35 pieces/m when measured by the water immersion method as shown in FIG. If the degree of entanglement is 10 warps/m or more, the bundling property required for the warp yarns during weaving is sufficiently satisfied, and the weaving efficiency is not lowered and the quality of the fabric is not impaired. On the other hand, if the number of entanglements is 35/m or less, the area of the non-entanglement portion becomes appropriate, the flight performance of the weft yarn is improved, and the single yarn length varies in the longitudinal direction of the yarn. It is possible to suppress the occurrence of thread breakage and fluff during weaving and prevent the stoppage of the loom.
- the degree of entanglement is more preferably 15 to 30/m.
- the synthetic fiber for airbags of this embodiment is a multifilament, and preferably has 60 to 250 single yarns. If the number of single yarns is 60 or more, the number of yarns is sufficient to constitute entanglement, and entanglement cannot be formed and variations do not occur. The number of single yarns is more preferably 120 or more. On the other hand, if the number of single yarns is 250 or less, the energy of air for imparting entanglement is efficiently used, and uniform and good entanglement can be achieved. The number of single yarns is more preferably 200 or less.
- the single filament fineness of the multifilament synthetic fiber for airbags of the present embodiment is preferably 1 to 7 dtex. If the single yarn fineness is 1 dtex or more, tensile properties such as single yarn toughness are sufficient, and fluff generation in the spinning process can be suppressed. On the other hand, if the single yarn fineness is 7 dtex or less, the yarn can be turned with less energy during the entangling treatment, and the intended entangled state can be obtained. Furthermore, if the dtex is 4 dtex or less, the gaps between the single yarns are reduced, so that the effect of the surface tension of the jet water inside the yarn during weft insertion is increased, and the twisted yarn can fly without coming loose.
- the single yarn fineness is more preferably 2 to 7 dtex, and from the viewpoint of flight performance during weft insertion, the single yarn fineness is more preferably 1 to 4 dtex. It is more preferably 1 to 3 dtex, and still more preferably 1.0 dtex or more and 1.8 dtex or less.
- the multifilament synthetic fiber for airbags of the present embodiment preferably has a single yarn number of 200 to 250 and a single yarn fineness of 1.0 dtex or more and 1.8 dtex or less. If the single yarn fineness is 1.0 dtex or more and 1.8 dtex or less, the woven fabric has much more flexibility. If the single yarn number is 200 to 250, even if the single yarn fineness is as low as 1.0 dtex or more and 1.8 dtex or less, it has sufficient mechanical properties as a multifilament fiber.
- the multifilament synthetic fiber for airbags of the present embodiment preferably has physical properties such as a total fineness of 150 to 800 dtex, a strength of 7.5 to 9 cN/dtex, an elongation of 15 to 25%, and a boiling water shrinkage of 4 to 11%. If the total fineness is 150 dtex or more, it has sufficient mechanical properties when used as a woven fabric for an airbag. On the other hand, if the total fineness is 800 dtex or less, it becomes easy to impart bundling properties in the entangling step. In other words, when the fineness increases, it is necessary to significantly increase the air pressure or air flow rate required for spinning the yarn in order to impart an appropriate amount of entanglement. is easily damaged, fluff is generated, and the quality of the yarn tends to be lowered.
- the total fineness is more preferably 200-550 dtex.
- (Tensile) strength is preferably 7.5 to 9.0 cN/dtex. If the tensile strength is as high as 7.5 cN/dtex or more, it contributes to improving the mechanical properties of the woven fabric. The tensile strength is more preferably 8.0 cN/dtex or more. The tensile strength of synthetic fibers for airbags is substantially 9.0 cN/dtex or less, considering other properties, manufacturing costs, and the like.
- the elongation is preferably 15-25%. If the elongation is 15% or more, excessive stress will not be applied to the boundary portion between the inflatable portion and the non-inflatable portion during deployment, resulting in breakage. In addition, there is a trade-off between elongation and strength, and the elongation is preferably 25% or less in order to balance with strength.
- the boiling water shrinkage rate is preferably in the range of 4 to 11%. If the boiling water shrinkage ratio is 4% or more, the woven fabric is shrunk in the processing step after weaving, which contributes to making the woven fabric finished with high density.
- the boiling water shrinkage rate is more preferably 6% or more. If the boiling water shrinkage ratio is 6% or more, the woven fabric is shrunk in the processing step after weaving, which contributes to equalization of variations in mechanical properties of the woven fabric.
- the boiling water shrinkage ratio is particularly preferably 7% or more. If the boiling water shrinkage ratio is 11% or less, excessive shrinkage will not cause unbalanced warp and weave when made into a woven fabric.
- the boiling water shrinkage ratio is more preferably 9.5% or less, still more preferably 9% or less.
- FIG. 1 Another embodiment of the present invention is a wound package of said airbag synthetic fabric, wherein the width W of the package is 8-22 cm.
- a winding package a fiber packaging form in which fibers are wound around a paper tube or the like by a winding machine
- W is more preferably 8 to 18 cm.
- the synthetic fibers that constitute the airbag synthetic fibers of the present embodiment are preferably long fibers made of polyamide or polyester multifilaments.
- Polyamide fibers are particularly preferable because they have a high melting point and a large heat capacity, and thus are excellent in heat resistance. Examples include fibers made of polyamide 6, polyamide 6.6, polyamide 11, polyamide 12, polyamide 6.10, polyamide 6.12, polyamide 4.6, copolymers thereof and mixtures thereof.
- polyamide 6.6 fibers mainly composed of polyhexamethylene adipamide fibers are preferable.
- Polyhexamethylene adipamide refers to a polyamide fiber composed of 100% hexamethylene diamine and adipic acid and having a melting point of 250° C. or higher.
- the polyamide 6.6 fiber of the present invention contains polyhexamethylene adipamide, polyamide 8, polyamide 6.6, and polyhexamethylene adipamide, as long as the melting point is not less than 250.degree.
- a fiber made of a polymer obtained by copolymerizing or blending I, polyamide 10, polyamide 6 ⁇ T, or the like may be used.
- Yet another embodiment of the invention comprises the steps of: Synthetic fibers spun by melt spinning are passed through one or more finishing agent applying (lubricating) devices, multistage drawing rollers, entangling devices, and one or more yarn path regulation guides provided before and after the entangling devices. Winding on a tube using a winding machine equipped with a traverser for swinging the yarn in the tube axial direction; A method for producing a synthetic fiber for an airbag, wherein the tension before winding in the process is 0.1 to 0.3 cN, and the short period swing width ratio in the swinging of the yarn by the traverser The above method, wherein B is 0.5-5%.
- FIG. 2 is an explanatory view showing an example of equipment for manufacturing the synthetic fiber for airbags of this embodiment.
- the molten polymer is homogenized by a part of the spinning machine called a spin head 3 and spun from a spinneret 4 .
- the spun polymer is solidified by cold air from the cooling chamber 5 to form threads.
- the yarn collected at each end is then applied with a finishing agent by the lubrication device 6, and then proceeds to a drawing process by a roller group consisting of a take-up roller 7, first roller 8 to fourth roller 11.
- the yarn After the yarn is taken up at a predetermined speed by the roller 7, it is guided to the first stage roller 8 with a slight tension, and is stretched from the first stage roller 8 by the multistage heating and stretching rollers 9, 10, and 11. . Thereafter, the yarn passes through the yarn path regulation guide 12 and is supplied to the entangling device 13 , and further passed through the yarn path regulation guide 12 to be wound by the winder 14 .
- a roll type or nozzle type is generally used for the lubricating device 6 .
- one or more lubricating devices 6 may be provided, it is preferable that there are two or more lubricating devices 6 at different positions in the yarn path direction, and at least two directions of the lubricating portions face each other.
- the single yarn fineness is 1.0 to 1.8 dtex
- the shaking of the yarn in the process of solidifying by cold air from the cooling chamber 5 propagates to the oiling process, disturbing the contact of the yarn with the oiling device 6, and the finishing agent. tends to adhere unevenly.
- Two or more lubricating devices are provided at different positions in the direction of the yarn path, and at least two directions of the lubricating portions face each other, thereby suppressing the disturbance of the contact of the yarn with the lubricating device, thereby achieving a single yarn fineness of 1.
- the finishing agent can be adhered uniformly even at 0 to 1.8 dtex, and variation in the water droplet contact angle on the single yarn surface in the yarn length direction can be suppressed.
- the adhesion rate of the finishing agent applied to the synthetic fibers by the lubricating device 6 is preferably in the range of 0.6 to 1.2% by weight.
- a yarn having a finishing agent adhesion rate of 1.2% by weight or less hardly causes the weft yarn to be difficult to fly due to stickiness (tackiness). If the finishing agent adhesion rate is 0.6% by weight or more, it is possible to suppress the occurrence of single yarn fluff during drawing in the spinning process.
- the components of the finishing agent applied to the synthetic fibers by the lubricating device 6 have excellent smoothness and heat resistance so that the yarn can be drawn smoothly in the yarn making process. From the viewpoint of yarn quality and industrial material applications, it is preferable to use a component having
- Ester compounds are preferred as the component as the smoothing agent. Those containing at least one ester compound selected from an ester compound having three or more ester bonds in the molecule and an ester compound having a sulfur element in the molecule are preferred. Ester compounds having a sulfur element in the molecule include, for example, (1) ester compounds of divalent carboxylic acids such as dialkylthiodipropionates and monohydric alcohols, and (2) monovalent carboxylic acids such as alkylmercaptopropionates. and an ester compound with a monohydric alcohol.
- ester compounds having three or more ester bonds in the molecule include (3) polyhydric alcohols such as trimethylolpropane trialkylate, glycerin trifatty acid ester, pentaerythritol tetrafatty acid ester, and trimethylolpropane fatty acid ester, and monohydric alcohols.
- Ester compounds with carboxylic acids (4) Ester compounds with polyhydric carboxylic acids such as trialkyl trimellitate and triethyl citrate and monohydric alcohols, (5) Natural fats and oils such as castor oil, palm oil, and rapeseed oil etc. These components may be used individually by 1 type, and may be used in combination of 2 or more type.
- Nonionic surfactants can be used as modifiers of emulsifying action and friction action.
- Oxyalkylene polyhydric alcohol fatty acid ester type nonionic surfactant (2) a compound obtained by adding an alkylene oxide having 2 to 4 carbon atoms to at least one selected from organic acids, organic alcohols, organic amines and organic amides, more specifically Examples include polyoxyethylene fatty acid esters, polyoxyethylene fatty
- the finish may be diluted with mineral oil or the like, or may be made into an aqueous emulsion. Although it is not particularly limited, it is preferably used in the form of an emulsion in consideration of the compatibility with water in the post-process.
- Yarn path regulation guides 12 for stabilizing yarn running are provided upstream and downstream of the entangling device 13 . It is a preferable method for obtaining synthetic fibers for airbags with little variation to keep the yarn run angle defined by these and the entangling nozzle of the entangling device within the range of 1 to 10°. Setting the distance between the two yarn path regulating guides 12 to 50 to 90 mm is preferable for obtaining a suitable non-entangled area.
- the entangling device 13 can be a known device that jets a compressed fluid to the yarn through an entangling nozzle, but the compressed fluid to the yarn should be supplied with an energy of 0.5 to 3.5 kW. is preferred.
- the supply energy of the compressed fluid can be calculated by multiplying the supply pressure (Mpa) and the flow rate (Nm 3 /hr). can satisfy the range of Furthermore, by adjusting the speed ratio between the fourth roller 11 and the winder and the temperature of the fourth roller 11 within the above range, the winding tension (pre-winding tension) between the fourth roller 11 and the winder 14 is increased.
- a range of 0.1 to 0.3 cN/dtex is preferred. If the winding tension is 0.1 cN or more, there is no thread dropout and the package shape is stable. Also, the package density is increased, and the transportation efficiency is improved. On the other hand, if the pre-winding tension is 0.3 cN or less, the entanglement will be sufficient, and the variation in the stable entanglement portion will be reduced. It also has excellent flexibility.
- the synthetic fiber for airbags of this embodiment is wound around a paper tube or the like by a winder 14 .
- the yarn is oscillated in the axial direction of the paper tube by the traverser, swung left and right across the width of the winding package, and packaged in a cylindrical shape.
- (traverse speed) (winding speed) ⁇ (tan ⁇ ). Control the traverse speed by setting the angle.
- the speed to be swung to the left and right between the winding widths is a short-cycle swing that satisfies the short-cycle swing width ratio B of 0.5 to 5%. It is preferred to apply moving means.
- the short-period oscillation width ratio B is defined in FIG. B can be set on the Traverser Control application.
- the winding angle ⁇ usually changes for each winding time, by setting B, it is possible to introduce a fine variation in the winding angle for a certain winding time. For example, if the winding start angle is 10° and B is set to 1%, the winding angle changes over time in a short period of -0.1 to 0.1° ( ⁇ 1° of 10°). %) can be included.
- the short cycle means a cycle of 0.1 to 2 seconds.
- B is set to prevent ribbon winding, but the present inventor has found that by performing such variable traversing, fluctuations in yarn winding tension due to traversing are suppressed, and entanglement is not impaired, and non-entanglement is achieved. It was found that a uniform synthetic fiber for airbags with little variation in part area can be obtained. If the short-period oscillation width ratio B is set to 0.5% or more, ribbon winding can be avoided and fluctuations in winding tension can be suppressed. On the other hand, if B is set to 5% or less, yarn dropping due to variation in winding diameter caused by the size of the weave angle in a short period does not occur.
- Yet another embodiment of the invention comprises the steps of: a step of weaving a woven fabric at a weaving speed of 800 rpm or more using the synthetic fiber for airbags as the weft in a water jet loom;
- a method of manufacturing an airbag fabric comprising: In order to obtain a synthetic fiber for airbags with good flight performance in WJL, the points are to improve the uniformity of entanglement by adjusting the traverse conditions and to improve the hydrophilicity of the yarn by selecting a finishing agent, as described above.
- the synthetic fiber for airbags of the present embodiment is suitable for use as weft yarns in WJL weaving, particularly in high-speed weaving at 800 rpm or more and weaving with a wide loom of 2 m or more.
- the warp used for weaving the synthetic fiber for airbags of the present embodiment can be suitably used.
- the warp yarns before weaving may be subjected to a sizing treatment for improving smoothness.
- the oil may be removed in a scouring step, or the scouring step may be omitted.
- the fabric may be shrunk by hot water or hot air treatment. In this shrinking step, the tension may be controlled in the width direction or anti-longitudinal direction of the fabric, or the dimensional change rate may be adjusted.
- the synthetic fiber for airbags of the present embodiment is suitable for weaving into a high-density fabric by using it as a weaving yarn, and preferably a fabric with a cover factor of 2,000 to 2,500. If the cover factor is 2000 or more, sufficient strength and low air permeability can be ensured as a woven fabric for airbags. On the other hand, if the cover factor is 2500 or less, sufficient flexibility, thinness and lightness can be imparted. The cover factor is more preferably 2200-2500. The cover factor is ⁇ warp density (thread/2.54 cm) x (warp fineness (dtex)) 1/2 + weft density (thread/2.54 cm) x (weft fineness (dtex)) 1/2 ⁇ . .
- the fabric for airbags using the synthetic fibers of the present embodiment preferably has a ratio of sliding resistance to bending resistance (EC/V) of 25 N/N or more. If the EC/V is 25 N/N or more, the woven fabric has sufficient low air permeability and flexibility for airbag applications. EC/V is more preferably 35 N/N or more, still more preferably 45 N/N or more.
- the airbag fabric using the airbag synthetic fiber of the present embodiment preferably has a CV value of 20% or less variation in the ratio of sliding resistance to bending resistance (EC/V). If the CV value of EC/V is 20% or less, the airbag fabric has little variation in the width direction of the fabric, stabilizes the physical properties of the base fabric, and has high slip resistance and good flexibility. Therefore, even if the airbag parts are cut from any part of the fabric, they have the same physical properties, and the reliability of the airbag is improved.
- the CV value of EC/V is more preferably 17.5% or less, still more preferably 15% or less.
- composition A was prepared as a base.
- the composition of composition A was as follows. Dialkyl (C12-18) thiodipropionate: 40 parts by weight Hydrogenated castor oil ethylene oxide 25 mol adduct: 30 parts by weight Propylene oxide/ethylene oxide alkyl (C12-18) polyether: 30 parts by weight Alkyl (C12-16) amine phosphate, which is an ionic surfactant, is added to composition A, and the "ionic surfactant content (% by weight) in the finishing agent" described in Tables 1 and 2 below is obtained.
- the finish was adjusted as follows. An emulsion liquid was prepared by adding water so that the content of the finishing agent was 22% by weight.
- FIG. 4 is an explanatory diagram of the measurement of the water droplet contact angle.
- the single yarn is fixed between the measuring jigs in the atmosphere of a room with a temperature of 25°C and a humidity of 50%.
- a moving image is taken and the contact angle ⁇ is measured.
- the contact angle ⁇ decreases over time (water adapts to the thread), but the maximum value of the contact angle within 100 ms (8 ms for one frame of the video) is measured in order to confirm the instantaneous water familiarity of the thread. value.
- This operation was repeated with another single yarn, and the average value of all five times was taken as the water droplet contact angle of each single yarn with respect to water.
- the water bath for measuring the degree of entanglement was 1.2 m long, 20 cm wide, and 15 cm high (water depth). Water supplied from the bath is drained by overflow from the bath. That is, the water in the measurement bath is refreshed by constantly supplying fresh water at a rate of about 500 cc/min.
- the measurement method is to hold both ends of a thread cut to about 1.2 m and immerse it in a measuring bath with a tension of about 10 cN applied, and the number of entanglements between white lines when it is in a relaxed state on the water surface ( (pieces/m) is visually read. These measurements are repeated 50 times and the average value is evaluated.
- Non-entangled area (cm 2 )
- the yarn is immersed in the measurement bath in the same manner as in (4) above, and as shown in FIG. and let a ⁇ b be the non-entangled area.
- the unentangled area spread over the water surface in the 20 cm yarn length area was totaled as one measurement, and this measurement was repeated 25 times for different 20 cm areas each time to obtain the average value.
- Fineness Measured according to JIS L 1017 8.3a A sample of 50 m was collected from the winding package using a measuring machine with a frame circumference of 1.25 m.
- Boiling water shrinkage (%) Measured according to JIS L 1017 8.14. After being immersed in boiling water, it was allowed to stand in a room under standard conditions (20° C., 65%) for 12 hours.
- Finishing agent adhesion rate (% by weight) Measured according to JIS L 1017 8.16b. Cyclohexane was used as an extraction solvent.
- Ionic surfactant adhesion rate (ppm) It was calculated from the value measured in (10) above (finishing agent adhesion rate (% by weight)) and the ionic surfactant concentration in the finishing agent (ionic surfactant content in the finishing agent (%)).
- Weft sliding resistance EC (N) The process of collecting samples at 5 locations in the width direction of the base cloth is repeated 5 times in the length direction of the base cloth, that is, a total of 25 samples are collected, and their weft sliding resistance (N) is measured according to ASTM D6479, The average value was calculated.
- Base fabric bending resistance V (N) In the above (12) weft sliding resistance EC test, a sample was taken from the adjacent part of the sample, the base fabric bending resistance (N) of the obtained 25 samples was measured according to ASTM D4032, and the average value was calculated. .
- Example 1 With the apparatus shown in FIG. 2, a nylon 66 polymer having a 90% formic acid relative viscosity of 80 obtained by a conventional polymerization method is melted at 300 ° C., then the temperature is uniformed by the spin head 3, and the number of holes is 136. Spinning. It was discharged through a spinneret 4 and wound up by a direct spin draw process to produce a polyamide 66 fiber of 470 dtex, 136 filaments.
- the extruded nylon 66 polymer is cooled and solidified in the cold air chamber 5 to form a yarn, and then passes through the lubricating device 6, the take-up roller 7, the first roller 8 to the fourth roller 11 in order, and the yarn path After stabilizing the running of the yarn by the regulating guide 12 , the yarn is entangled by the entangling device 13 , passed through the yarn path regulating guide 12 , and wound by the winder 14 .
- one finishing agent applying device applied the finishing agent with a composition such that the adhesion rate was 0.7% and the adhesion rate of the ionic surfactant was 350 ppm.
- Compressed air was applied to the entangling device 13 at 0.5 MPa, and the air supply energy was 1.2 kW.
- the distance between the yarn path regulation guides 12 was set to 7.3 cm.
- the winding tension was adjusted to 0.19 cN/dtex.
- the winding conditions were as follows: short period oscillation width ratio B: 4.0%; winding start winding angle: 7.8°; package width W: 16 cm.
- the physical properties and the like of the obtained polyamide 66 fiber are shown in Table 1 below.
- the resulting polyamide 66 fiber was plain woven using a WJL at a speed of 900 rpm to obtain a woven fabric.
- the obtained woven fabric was scouring by continuous scouring at 80°C, heat-set in a tenter at 170°C with 4% overfeed of the woven fabric feeding and 1% widening of the woven fabric width, and the weaving density of the warp and weft was 2.54 cm. 53 x 53 fabrics were obtained per batch.
- the cover factor is 2298.
- the sliding resistance and bending resistance of this fabric were evaluated. The evaluation results are shown in Table 1 below.
- the water droplet contact angle was at an appropriate level, the variation coefficient of the non-entangled area was small, the variation coefficient of EC/V was small, and the woven fabric had little variation.
- Example 2 The same procedure as in Example 1 was performed except that the adhesion rate of the ionic surfactant was changed to 490 ppm in the refueling process.
- Table 1 shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The water droplet contact angle was at an appropriate level, the coefficient of variation of EC/V was small, and the woven fabric had little variation.
- Example 3 The procedure of Example 1 was repeated except that the ionic surfactant adhesion rate was changed to 210 ppm in the refueling process.
- Table 1 shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The water droplet contact angle was slightly large even though it was at an appropriate level, and the coefficient of variation of EC/V was slightly large, resulting in a slightly uneven fabric.
- Example 4 The procedure was carried out in the same manner as in Example 1, except that the adhesion rate of the ionic surfactant was set to 490 ppm in the lubrication process, and the package width W was set to 8.5 cm in the winding process.
- Table 1 shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The water droplet contact angle was at an appropriate level, the variation coefficient of the non-entangled area was small, the variation coefficient of EC/V was small, and the woven fabric had little variation.
- Example 5 The winding process was carried out in the same manner as in Example 1, except that the short period oscillation width ratio B was 1.5% and the package width W was 8.5 cm. Table 1 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The coefficient of variation of the non-entangled area was small, the coefficient of variation of EC/V was small, and the woven fabric had little variation.
- Example 6 The winding process was carried out in the same manner as in Example 1, except that the short period swing width ratio B was set to 0.8% and the package width W was set to 8.5 cm.
- Table 1 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The coefficient of variation of the non-entangled area was slightly increased, the coefficient of variation of EC/V was slightly increased, and the woven fabric was slightly uneven.
- Example 7 The winding process was performed in the same manner as in Example 1, except that the package width W was set to 19.0 cm.
- Table 1 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The coefficient of variation of the non-entangled area was slightly increased, the coefficient of variation of EC/V was slightly increased, and the woven fabric was slightly uneven.
- Example 8 The entangling process was carried out in the same manner as in Example 1, except that the distance between the yarn path regulation guides 12 was set to 7.8 cm. Table 1 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The woven fabric had a large non-entangled area, a small coefficient of variation of EC/V, and little variation.
- Example 9 The entanglement process was carried out in the same manner as in Example 1, except that the air supply energy was changed to 0.7 kW.
- Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric.
- the woven fabric had a large non-entangled area, a small coefficient of variation of EC/V, and little variation.
- Example 10 The procedure of Example 1 was repeated except that the number of holes in the spinneret 4 was changed to 72 in the polymer discharge process, and polyamide 66 fibers of 470 dtex and 72 filaments were spun. Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The water droplet contact angle was slightly large, the variation coefficient of EC/V was slightly large, and the woven fabric was somewhat uneven.
- Example 11 A 350 dtex, 136 filament polyamide 66 fiber was spun in the polymer extrusion process. In the weaving process, the weaving density of the warp and weft was 60 ⁇ 60 per 2.54 cm, and a woven fabric with a cover factor of 2245 was obtained. The same procedures as in Example 1 were carried out except for the discharging process and the weaving process described above. Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The water droplet contact angle was at an appropriate level, the variation coefficient of the non-entangled area was small, the variation coefficient of EC/V was small, and the woven fabric had little variation.
- Example 12 In the polymer discharge process, the number of holes of the spinneret 4 was set to 216, and polyamide 66 fibers of 350 dtex and 216 filaments were spun. The procedure of Example 11 was repeated except for the ejection step described above. Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. Variation in the contact angle of water droplets increased, the coefficient of variation of EC/V was slightly large, and the woven fabric was slightly uneven.
- Example 13 In the polymer discharge process, the number of holes in the spinneret 4 is set to 216, and in the lubrication process, two lubricating devices are provided at different positions in the yarn path direction, and the direction of the lubricating parts is made to face each other to apply the finishing agent. , 350 dtex, 216 filament polyamide 66 fibers were spun. The procedure of Example 11 was repeated except for the discharge step and the lubricating step. Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric.
- the water droplet contact angle was at an appropriate level, and although the single yarn was thin, the water droplet contact angle variation was small, the variation coefficient of the non-entangled area was small, and the variation coefficient of EC/V was small, resulting in a woven fabric with little variation.
- Example 14 In the polymer discharge process, the number of holes of the spinneret 4 was set to 216, and a polyamide 66 fiber of 235 dtex and 216 filaments was spun. In the weaving process, the weaving density of the warp and weft was 72 ⁇ 72 per 2.54 cm, and a woven fabric with a cover factor of 2207 was obtained. The same procedures as in Example 1 were carried out except for the discharging process and the weaving process described above. Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. Variation in the contact angle of water droplets increased, the coefficient of variation of EC/V was slightly large, and the woven fabric was slightly uneven.
- Example 15 In the polymer discharge process, the number of holes in the spinneret 4 is set to 216, and in the lubrication process, two lubricating devices are provided at different positions in the yarn path direction, and the direction of the lubricating parts is made to face each other to apply the finishing agent. , 235 dtex, 216 filament polyamide 66 fibers were spun. It was carried out in the same manner as in Example 14 except for the above oil supply step. Table 2 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric.
- the water droplet contact angle was at an appropriate level, and although the single yarn was thin, the water droplet contact angle variation was small, the variation coefficient of the non-entangled area was small, and the variation coefficient of EC/V was small, resulting in a woven fabric with little variation.
- Example 1 The same procedure as in Example 1 was carried out, except that the ionic surfactant adhesion rate was changed to 70 ppm in the refueling process.
- Table 3 shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric.
- the woven fabric had a large water droplet contact angle, a large EC/V coefficient of variation, and a large variation.
- Example 2 The same procedure as in Example 1 was carried out, except that the ionic surfactant deposition rate was changed to 840 ppm in the refueling process.
- Table 3 shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The water droplet contact angle was small, the variation coefficient of EC/V was large, and the woven fabric was uneven.
- Example 3 The winding process was carried out in the same manner as in Example 1, except that the short-period oscillation width ratio B was set to 0.2 and the package width W was set to 8.5 cm. Table 3 below shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The coefficient of variation of the non-entangled area increased, and the coefficient of variation of EC/V increased, resulting in a woven fabric with variations.
- Example 4 The winding process was performed in the same manner as in Example 1, except that the package width W was set to 32 cm.
- Table 3 shows the physical properties of the obtained polyamide 66 fiber and the evaluation results of the woven fabric. The coefficient of variation of the non-entangled area increased, and the coefficient of variation of EC/V increased, resulting in a woven fabric with variations.
- the synthetic fiber for airbags of the present invention is excellent in water entrapment (instantaneous hydrophilicity of the yarn), so that the weft flight performance (followability to jetted water) is dramatically improved. and having a uniform non-entangled portion area, it is excellent in uniform and straight flight characteristics (uniform flight performance of yarn). These two characteristics make it possible to perform high-speed weaving without quality variations in the width direction of the base fabric. Therefore, the synthetic fiber for airbags of the present invention can be suitably used as weaving yarns, especially weft yarns, for weaving fabrics for airbags.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Air Bags (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Artificial Filaments (AREA)
- Woven Fabrics (AREA)
Abstract
Description
以下の特許文献1では、緯入れノズルから噴射される水の拡散を規制し、緯糸を安定かつ確実に飛走させることで製織効率向上を達成している。他方、糸によっては製織速度を向上させると緯入れの際に飛走不足が生じ、製織トラブルが発生することがある。
[1]交絡部と非交絡部を有するエアバッグ用マルチフィラメント合成繊維であって、単糸表面の水滴接触角が50~75°であり、かつ、20cmごとの非交絡部面積のバラつきがCV値で10%以下であることを特徴とするエアバッグ用合成繊維。
[2]前記非交絡部面積が糸長方向に20cm範囲ごとの評価で12.5~20cm2の範囲である、前記[1]に記載のエアバッグ用合成繊維。
[3]単糸数が60~250本である、前記[1]又は[2]に記載のエアバッグ用合成繊維。
[4]単糸繊度が1~7dtexである、前記[1]~[3]のいずれかに記載のエアバッグ用合成繊維。
[5]単糸数が200~250本、かつ、単糸繊度が1.0dtex~1.8dtexである、前記[1]~[4]のいずれかに記載のエアバッグ用合成繊維。
[6]交絡度が10~35個/mである、前記[1]~[5]のいずれかに記載のエアバッグ用合成繊維。
[7]単糸表面の水滴接触角の長さ方向のバラつきがCV値で5%以下である、前記[1]~[6]のいずれかに記載のエアバッグ用合成繊維。
[8]仕上剤付着率が0.6~1.2重量%である、前記[1]~[7]のいずれかに記載のエアバッグ用合成繊維。
[9]リン原子を含むアニオン性界面活性剤及び/又は硫黄原子を含むアニオン性界面活性剤が繊維重量に対して200~500ppm付着している、前記[1]~[8]のいずれかに記載のエアバッグ用合成繊維。
[10]下記要件(1)~(4):
(1)総繊度が150~800dtexである;
(2)強度が7.5~9cN/dtexである;
(3)伸度が15~25%である;及び
(4)沸水収縮率が4~11%である;
を満たす、前記[1]~[9]のいずれかに記載のエアバッグ用合成繊維。
[11]パッケージの幅Wが8~22cmである、前記[1]~[10]のいずれかに記載のエアバッグ用合成繊維の巻き取りパッケージ。
[12]以下の工程:
溶融紡糸により紡糸された合成繊維を、1つ以上の仕上剤付与(給油)装置、多段延伸ローラ、交絡付与装置、及び該交絡付与装置の前後に設けられた1つ以上の糸道規制ガイドを経由して、管軸方向に糸条を搖動するためのトラバーサーを備えた巻き取り機を用いて、管に巻き取る工程;
を含む、エアバッグ用合成繊維の製造方法であって、該工程における、巻き取り前の張力が0.1~0.3cNであり、かつ、トラバーサーによる糸条の搖動における短周期揺動幅比率Bが0.5~5%であることを特徴とする前記方法。
[13]合成繊維を管に巻き取ることで得られるパッケージの幅Wが8~22cmである、前記[12]に記載のエアバッグ用合成繊維の製造方法。
[14]前記仕上剤付与装置によって、リン原子を含むアニオン性界面活性剤及び/又は硫黄原子を含むアニオン性界面活性剤が繊維重量に対して200~500ppm付着するように仕上剤を付与する、前記[12]又は[13]に記載のエアバッグ用合成繊維の製造方法。
[15]前記仕上剤付与装置が糸道方向の異なる位置に2つ以上あり、かつ少なくとも2つの仕上剤付与装置の給油部の方向が正対している、前記[12]~[14]のいずれかに記載のエアバッグ用合成繊維の製造方法
[16]以下の工程:
ウォータージェットルーム織機において、緯糸に前記[1]~[10]のいずれかに記載のエアバッグ用合成繊維を用いて、製織速度800rpm以上で、織物を製織する工程;
を含む、エアバッグ用織物の製造方法。
本発明の1の実施形態は、交絡部と非交絡部を有するエアバッグ用マルチフィラメント合成繊維であって、単糸表面の水滴接触角が50~75°であり、かつ、20cmごとの非交絡部面積のバラつきがCV値で10%以下であることを特徴とするエアバッグ用合成繊維である。
水滴接触角が50°以上であれば、緯入れ時に糸条内で噴射水の表面張力が適度に働き、糸がばらけずに飛走できる。糸がばらけないことで、飛走時に糸条が受ける空気抵抗が減り、緯糸飛走性が向上し、緯入れ性が高速で安定化する。緯入れ挙動が安定化することで、緯糸は瞬間弾性回復が落ち着いてから経糸に織り込みされるため、高速製織におけるエアバッグ織物物性の均一化に寄与する。また、糸条内に包含される噴射水が均一になることで、均一な飛走となり、織物物性の均一化に寄与する。また、接触角が75°以下であれば、糸条の親水性が高くなり、噴射水への追従性が向上することで、こぶ状現象(噴射水の爆発現象)を起こして、噴射水が飛散して糸条が反ノズル側まで届かず、飛走不足となり、製織トラブルが発生するという問題が生じない。水滴接触角が低いことにより、糸条の噴射水包含がミリ秒単位で素早く起こるため、非交絡部の拡幅が素早く生じ、噴射水による飛走性が効率的になり、上記同様の理由で、織物物性が均一化に寄与する。水滴接触角αが低いほどエアバッグ基布物性が均一化する。水滴接触角は、より好ましくは50~70°であり、さらに好ましくは50~65°である。
総繊度が150dtex以上であれば、エアバッグ用織物にした場合、十分な機械物性を有する。他方、総繊度が800dtex以下であれば、交絡付与工程において、集束性を付与することが容易になる。つまり、繊度が大きくなると適度な交絡を付与するには、糸旋回に必要なエアー圧、又はエアー流量を著しく増加する必要があり、用役増分のコストアップだけでなく、交絡ノズル部において糸条がダメージを受け易く、毛羽が生じ、糸条品位の低下を招き易いが、総繊度が800dtex以下であれば、そのようなことがない。総繊度は、より好ましくは200~550dtexである。
かかる巻き取りパッケージ(繊維を巻取り機にて紙管等に巻きつけたものの繊維包装形態)は、図1に示すように、パッケージの幅Wが8~22cmであるものが好ましい。Wが8cm以上であれば、形状が安定し、かつ輸送効率も良い。他方、幅W22cm以下であれば、巻取り時にパッケージの幅方向における中心と両端での張力差により非交絡部面積の変動が低減される。Wは、より好ましくは8~18cmである。
溶融紡糸により紡糸された合成繊維を、1つ以上の仕上剤付与(給油)装置、多段延伸ローラ、交絡付与装置、及び該交絡付与装置の前後に設けられた1つ以上の糸道規制ガイドを経由して、管軸方向に糸条を搖動するためのトラバーサーを備えた巻き取り機を用いて、管に巻き取る工程;
を含む、エアバッグ用合成繊維の製造方法であって、該工程における、巻き取り前の張力が0.1~0.3cNであり、かつ、トラバーサーによる糸条の搖動における短周期揺動幅比率Bが0.5~5%であることを特徴とする前記方法である。
図2は、本実施形態のエアバッグ用合成繊維を製造する設備の一例を示す説明図である。まず、溶融状態のポリマーはスピンヘッド3と呼ばれる紡糸機の一部によって均温化され、紡糸口金4より紡出される。紡出されたポリマーは、冷却チャンバー5からの冷風により固化され糸条を形成する。各エンドにまとめられた糸条は、その後、給油装置6で仕上剤を付与された後、引き取りローラ7、第1ローラ8から第4ローラ11からなるローラ群による延伸工程へと進む。すなわち、糸条はローラ7により所定の速度で引き取られた後、若干の緊張力で第1段ローラ8に導き、第1段ローラ8から多段の加熱延伸ローラ9、10、11により延伸される。その後、糸道規制ガイド12を通って交絡付与装置13に供給され、さらに糸道規制ガイド12を通って巻取り機14で巻取られる。
分子中に硫黄元素を有するエステル化合物は、例えば、(1)ジアルキルチオジプロピオナート等の二価カルボン酸と一価アルコールとのエステル化合物、(2)アルキルメルカプトプロピオナート等の1価カルボン酸と1価アルコールとのエステル化合物等が挙げられる。
例えば、(1)ポリエチレングリコールジアルキレート、ポリオキシエチレンソルビタンモノアルキレート、ポリオキシブチレンソルビタントリアルキレート、ポリオキシプロピレンひまし油、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンプロピレン硬化ひまし油トリアルキレート、ポリオキシエチレン硬化ひまし油トリアルキレート、ひまし油のエチレンオキサイド(以下、EOという。)付加物及び硬化ひまし油のEO付加物から選ばれる少なくとも1種の化合物と、モノカルボン酸及びジカルボン酸とを縮合させたエーテルエステル化合物等のポリオキシアルキレン多価アルコール脂肪酸エステル型ノニオン界面活性剤、(2)有機酸、有機アルコール、有機アミン、及び有機アミドから選ばれる少なくとも一種に炭素数2~4のアルキレンオキサイドを付加した化合物、より具体的には、例えばポリオキシエチレン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルメチルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンノニルフェニルエーテル、ポリオキシエチレンアルキルアミノエーテル、ポリオキシエチレン脂肪酸アミドエーテル等のエーテル型ノニオン界面活性剤、(3)ソルビタンモノ脂肪酸エステル、ソルビタントリ脂肪酸エステル、グリセリンモノ脂肪酸エステル等の多価アルコール部分エステル型ノニオン界面活性剤、(4)ジエタノールアミンモノ脂肪酸アミド等のアルキルアミド型ノニオン界面活性剤等が挙げられる。これらの成分は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
仕上剤は鉱物油などで希釈してもよく、水系のエマルジョンにしてもよい。特に限定されるものではないが、後工程における水との相溶性を考慮した際には、エマルジョンにして用いることが好ましい。
ウォータージェットルーム織機において、緯糸に前記エアバッグ用合成繊維を用いて、製織速度800rpm以上で、織物を製織する工程;
を含む、エアバッグ用織物の製造方法である。
WJLにおいて飛走性が良いエアバッグ用合成繊維を得るためには、特に前記した、トラバース条件の調整による交絡均一性の向上と、仕上剤の選定による糸の親水性の向上がポイントとなる。
紡糸油剤に用いる仕上剤を以下の方法で調合した。
まず、ベースとなる組成Aを作製した。組成Aの組成内容は下記であった。
・ジアルキル(C12~18)チオジプロピオネート:40重量部
・硬化ひまし油のエチレンオキサイド25モル付加物:30重量部
・プロピレンオキサイド/エチレンオキサイドアルキル(C12~18)ポリエーテル:30重量部
上記ベースの組成Aに、イオン性界面活性剤であるアルキル(C12~16)リン酸アミン塩を、以下の表1、2に記載の「仕上剤中のイオン界面活性剤含有率(重量%)」となるように加え仕上剤を調整した。仕上剤の含有量が22重量%となるように水を添加してエマルジョン液を作製した。
水滴接触角の測定は、自動極小接触角計(協和界面科学(株)製“MCA-J”)で行った。図4は水滴接触角の計測における説明図である。測定条件としては、気温25℃湿度50%の室内の大気中で、測定治具間に単糸を固定し、24℃の水を20pL単糸に乗せ、水滴の様子を側方からカメラにて動画撮影して接触角αを測定する。接触角αは経時的に低下する(水が糸になじんでいく)が、糸の瞬間的な水なじみを確認するため100ms内(動画の1フレームは8ms)での接触角の最大値を測定値とした。この操作を別の単糸で繰り返し行い、全5回の平均値をそれぞれの単糸の水に対する水滴接触角とした。
水滴接触角について、1本の単糸について5cmおきに10点測定し、以下の計算で単糸のCV値を求めた。
CV(%)=(s/X)×100
ここで、sは標準偏差であり、Xは平均値である。
この操作を別の5本の単糸で繰り返し行い、各単糸のCV値の平均値を水滴接触角の糸長方向の変動係数CVとした。CV値が高いほど、ばらつきが大きいことを示す。
交絡度測定用の水浴バスは、長さ1.2m、幅20cm、高さ(水深)15cmの大きさで、両端から各10cmの部分、つまり間隔が1mとなるように白線があり、供給口から供給された水はバスから溢流により排水される。すなわち、常に新しい水を約500cc/分の流量で供給することによって測定バス内の水を更新させる。測定方法は、1.2mほどにカットした糸条の両端を持って、測定バス内に約10cNの張力をかけた状態で浸漬させ、水面で弛緩状態になった時の白線間の交絡数(個/m)を目視により読み取る。これらの測定を50回繰り返し、その平均値を評価する。
上記(4)と同様に測定バス内に糸条を浸漬させ、図5に示すように水面に拡がった糸条の非交絡部の長さa、及び非交絡部の幅bをスケールにて測定し、a×bを非交絡部面積とする。糸長さ20cm区域で、水面上に広がった非交絡部面積を合計して1回の測定とし、この測定を毎回異なる20cm区域について25回繰り返して平均値を求めた。
上記(5)で測定した非交絡部面積について以下の計算で求めた。CV値が高いほど、ばらつきが大きいことを示す。
CV(%)=(s/X)×100
ここで、sは標準偏差であり、Xは平均値である。
JIS L 1017 8.3aにより測定した。尚、試料は巻き取りパッケージから枠周1.25mの検尺機を用いて50m採取した。
試料を標準状態(20℃、65%)で12時間放置した後、JIS L 1017 8.5aにより測定した。尚、試料長は250mm、引張速度は300mm/分で測定した。
JIS L 1017 8.14により測定した。尚、沸騰水に浸漬後は標準状態(20℃、65%)の室内にて12時間放置した。
JIS L 1017 8.16bにより測定した。抽出溶剤にはシクロヘキサンを用いた。
上記(10)で測定した値(仕上剤付着率(重量%))と仕上剤中のイオン性界面活性剤濃度(仕上剤中イオン性界面活性剤含有率(%))から算出した。
サンプルを基布幅方向に5か所採取する工程を基布長さ方向に5回、つまり計25点のサンプルを採取し、それらの緯糸滑脱抵抗力(N)をASTM D6479にしたがって測定し、その平均値を算出した。
上記(12)緯糸滑脱抵抗力EC試験でサンプルの近接部位からサンプルをとり、得られた25点のサンプルの基布剛軟度(N)をASTM D4032にしたがって測定し、その平均値を算出した。
図2に示す装置により、常法の重合方法にて得られた90%蟻酸相対粘度が80のナイロン66ポリマーを300℃にて溶融後、スピンヘッド3により均温化させ、孔数136の紡糸口金4により吐出して、直接紡糸延伸プロセスによって巻取り、470dtex、136フィラメントのポリアミド66繊維を製糸した。すなわち、吐出されたナイロン66ポリマーは、冷風チャンバー5にて冷却固化され糸条を形成した後、給油装置6、引取りローラ7、第1ローラ8から第4ローラ11を順次通過させ、糸道規制ガイド12にて糸走を安定させた後、交絡付与装置13にて糸条に交絡を付与し、糸道規制ガイド12を通過させ、巻取り機14にて巻き取った。
給油工程にて、イオン性界面活性剤の付着率を490ppmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。水滴接触角が適切な程度となり、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
給油工程にて、イオン性界面活性剤の付着率を210ppmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。水滴接触角が適切な程度なかでも少々大きくなり、EC/Vの変動係数がやや大きく、ややバラつきのある織物となった。
給油工程にて、イオン性界面活性剤の付着率を490ppmとし、巻取工程にて、パッケージ幅Wを8.5cmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。水滴接触角が適切な程度となり、非交絡部面積の変動係数が小さく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
巻取工程にて、短周期揺動幅比率Bを1.5%、パッケージ幅Wを8.5cmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。非交絡部面積の変動係数が小さく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
巻取工程にて、短周期揺動幅比率Bを0.8%、パッケージ幅Wを8.5cmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。非交絡部面積の変動係数がやや大きくなり、EC/Vの変動係数がやや大きく、ややバラつきのある織物となった。
巻取工程にて、パッケージ幅Wを19.0cmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。非交絡部面積の変動係数がやや大きくなり、EC/Vの変動係数がやや大きく、ややバラつきのある織物となった。
交絡付与工程にて、糸道規制ガイド12間の距離を7.8cmとした以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表1に示す。非交絡部面積が大きく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
交絡付与工程にて、空気供給エネルギーを0.7kWとした以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。非交絡部面積が大きく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
ポリマーの吐出工程にて、紡糸口金4の孔数を72とし、470dtex、72フィラメントのポリアミド66繊維を製糸した以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。水滴接触角がやや大きく、EC/Vの変動係数がやや大きく、ややバラつきのある織物となった。
ポリマーの吐出工程にて、350dtex、136フィラメントのポリアミド66繊維を製糸した。製織工程にて、経糸及び緯糸の織密度を2.54cmあたり60本×60本とし、カバーファクターが2245の織物を得た。上記の吐出工程と製織工程以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。水滴接触角が適切な程度となり、非交絡部面積の変動係数が小さく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
ポリマーの吐出工程にて、紡糸口金4の孔数を216とし、350dtex、216フィラメントのポリアミド66繊維を製糸した。上記の吐出工程以外は実施例11と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。水滴接触角のばらつきが大きくなり、EC/Vの変動係数がやや大きく、ややバラつきのある織物となった。
ポリマーの吐出工程にて、紡糸口金4の孔数を216とし、給油工程にて給油装置を糸道方向の異なる位置に2個、かつその給油部の方向を正対させて仕上剤を付与し、350dtex、216フィラメントのポリアミド66繊維を製糸した。上記の吐出工程と給油工程以外は実施例11と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。水滴接触角が適切な程度となり、単糸が細いながらも水滴接触角のばらつきが小さく、非交絡部面積の変動係数が小さく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
ポリマーの吐出工程にて、紡糸口金4の孔数を216とし、235dtex、216フィラメントのポリアミド66繊維を製糸した。製織工程にて、経糸及び緯糸の織密度を2.54cmあたり72本×72本とし、カバーファクターが2207の織物を得た。上記の吐出工程と製織工程以外は実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。水滴接触角のばらつきが大きくなり、EC/Vの変動係数がやや大きく、ややバラつきのある織物となった。
ポリマーの吐出工程にて、紡糸口金4の孔数を216とし、給油工程にて給油装置を糸道方向の異なる位置に2個、かつその給油部の方向を正対させて仕上剤を付与し、235dtex、216フィラメントのポリアミド66繊維を製糸した。上記の給油工程以外は実施例14と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表2に示す。水滴接触角が適切な程度となり、単糸が細いながらも水滴接触角のばらつきが小さく、非交絡部面積の変動係数が小さく、EC/Vの変動係数が小さく、バラつきの少ない織物となった。
給油工程にて、イオン性界面活性剤付着率を70ppmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表3に示す。水滴接触角が大きく、EC/Vの変動係数が大きく、バラつきの大きい織物となった。
給油工程にて、イオン性界面活性剤付着率を840ppmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表3に示す。水滴接触角が小さく、EC/Vの変動係数が大きく、バラつきのある織物となった。
巻取工程にて、短周期揺動幅比率Bを0.2とし、パッケージ幅Wを8.5cmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表3に示す。非交絡部面積の変動係数が大きくなり、EC/Vの変動係数が大きく、バラつきのある織物となった。
巻取工程にて、パッケージ幅Wを32cmとした以外は、実施例1と同様に実施した。得られたポリアミド66繊維の物性等と織物の評価結果等を以下の表3に示す。非交絡部面積の変動係数が大きくなり、EC/Vの変動係数が大きく、バラつきのある織物となった。
2 紙管
3 スピンヘッド
4 紡口口金
5 冷風チャンバー
6 給油装置(仕上剤付与装置)
7 引き取りローラ
8 第1ローラ
9 第2ローラ
10 第3ローラ
11 第4ローラ
12 糸道規制ガイド
13 交絡付与装置
14 巻取り機
15 単糸
16 水滴
W 巻き取りパッケージの幅
B 短周期搖動幅比率
θ 巻き始めの綾角
α 水滴接触角
a 非交絡部の長さ
b 非交絡部の幅
Claims (16)
- 交絡部と非交絡部を有するエアバッグ用マルチフィラメント合成繊維であって、単糸表面の水滴接触角が50~75°であり、かつ、20cmごとの非交絡部面積のバラつきがCV値で10%以下であることを特徴とするエアバッグ用合成繊維。
- 前記非交絡部面積が糸長方向に20cm範囲ごとの評価で12.5~20cm2の範囲である、請求項1に記載のエアバッグ用合成繊維。
- 単糸数が60~250本である、請求項1又は2に記載のエアバッグ用合成繊維。
- 単糸繊度が1~7dtexである、請求項1又は2に記載のエアバッグ用合成繊維。
- 単糸数が200~250本、かつ、単糸繊度が1.0dtex~1.8dtexである、請求項1又は2に記載のエアバッグ用合成繊維。
- 交絡度が10~35個/mである、請求項1又は2に記載のエアバッグ用合成繊維。
- 単糸表面の水滴接触角の長さ方向のバラつきがCV値で5%以下である、請求項1又は2に記載のエアバッグ用合成繊維。
- 仕上剤付着率が0.6~1.2重量%である、請求項1又は2に記載のエアバッグ用合成繊維。
- リン原子を含むアニオン性界面活性剤及び/又は硫黄原子を含むアニオン性界面活性剤が繊維重量に対して200~500ppm付着している、請求項1又は2に記載のエアバッグ用合成繊維。
- 下記要件(1)~(4):
(1)総繊度が150~800dtexである;
(2)強度が7.5~9cN/dtexである;
(3)伸度が15~25%である;及び
(4)沸水収縮率が4~11%である;
を満たす、請求項1又は2に記載のエアバッグ用合成繊維。 - パッケージの幅Wが8~22cmである、請求項1又は2に記載のエアバッグ用合成繊維の巻き取りパッケージ。
- 以下の工程:
溶融紡糸により紡糸された合成繊維を、1つ以上の仕上剤付与(給油)装置、多段延伸ローラ、交絡付与装置、及び該交絡付与装置の前後に設けられた1つ以上の糸道規制ガイドを経由して、管軸方向に糸条を搖動するためのトラバーサーを備えた巻き取り機を用いて、管に巻き取る工程;
を含む、エアバッグ用合成繊維の製造方法であって、該工程における、巻き取り前の張力が0.1~0.3cNであり、かつ、トラバーサーによる糸条の搖動における短周期揺動幅比率Bが0.5~5%であることを特徴とする前記方法。 - 合成繊維を管に巻き取ることで得られるパッケージの幅Wが8~22cmである、請求項12に記載のエアバッグ用合成繊維の製造方法。
- 前記仕上剤付与装置によって、リン原子を含むアニオン性界面活性剤及び/又は硫黄原子を含むアニオン性界面活性剤が繊維重量に対して200~500ppm付着するように仕上剤を付与する、請求項12又は13に記載のエアバッグ用合成繊維の製造方法。
- 前記仕上剤付与装置が糸道方向の異なる位置に2つ以上あり、かつ少なくとも2つの仕上剤付与装置の給油部の方向が正対している、請求項12又は13に記載のエアバッグ用合成繊維の製造方法
- 以下の工程:
ウォータージェットルーム織機において、緯糸に請求項1又は2に記載のエアバッグ用合成繊維を用いて、製織速度800rpm以上で、織物を製織する工程;
を含む、エアバッグ用織物の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280025344.0A CN117098882A (zh) | 2021-04-02 | 2022-04-01 | 气囊用合成纤维和使用其的气囊用机织物的制造方法 |
JP2023511764A JP7560657B2 (ja) | 2021-04-02 | 2022-04-01 | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
JP2024162431A JP2024169601A (ja) | 2021-04-02 | 2024-09-19 | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-063485 | 2021-04-02 | ||
JP2021063485 | 2021-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022211130A1 true WO2022211130A1 (ja) | 2022-10-06 |
Family
ID=83459659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/017011 WO2022211130A1 (ja) | 2021-04-02 | 2022-04-01 | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7560657B2 (ja) |
CN (1) | CN117098882A (ja) |
WO (1) | WO2022211130A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001288638A (ja) * | 2000-03-31 | 2001-10-19 | Toray Ind Inc | 交絡糸および織物ならびにエアバッグ |
JP2006124859A (ja) * | 2004-10-28 | 2006-05-18 | Toray Ind Inc | エアバッグ用原糸パッケージおよびそれを用いたエアバッグ用基布 |
JP2007284826A (ja) * | 2006-04-18 | 2007-11-01 | Toray Ind Inc | エアバッグ用基布の製造方法 |
JP2009185421A (ja) * | 2008-02-08 | 2009-08-20 | Toray Ind Inc | シリコーンコートエアバッグ用基布およびその製造方法 |
WO2013084322A1 (ja) * | 2011-12-07 | 2013-06-13 | 旭化成せんい株式会社 | 合成繊維 |
-
2022
- 2022-04-01 WO PCT/JP2022/017011 patent/WO2022211130A1/ja active Application Filing
- 2022-04-01 JP JP2023511764A patent/JP7560657B2/ja active Active
- 2022-04-01 CN CN202280025344.0A patent/CN117098882A/zh active Pending
-
2024
- 2024-09-19 JP JP2024162431A patent/JP2024169601A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001288638A (ja) * | 2000-03-31 | 2001-10-19 | Toray Ind Inc | 交絡糸および織物ならびにエアバッグ |
JP2006124859A (ja) * | 2004-10-28 | 2006-05-18 | Toray Ind Inc | エアバッグ用原糸パッケージおよびそれを用いたエアバッグ用基布 |
JP2007284826A (ja) * | 2006-04-18 | 2007-11-01 | Toray Ind Inc | エアバッグ用基布の製造方法 |
JP2009185421A (ja) * | 2008-02-08 | 2009-08-20 | Toray Ind Inc | シリコーンコートエアバッグ用基布およびその製造方法 |
WO2013084322A1 (ja) * | 2011-12-07 | 2013-06-13 | 旭化成せんい株式会社 | 合成繊維 |
Also Published As
Publication number | Publication date |
---|---|
JP7560657B2 (ja) | 2024-10-02 |
JPWO2022211130A1 (ja) | 2022-10-06 |
CN117098882A (zh) | 2023-11-21 |
JP2024169601A (ja) | 2024-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5253685B1 (ja) | 合成繊維 | |
US8261779B2 (en) | Base cloth for air bag, raw yarn for air bag, and method for producing the raw yarn | |
KR101642155B1 (ko) | 고강인도 저수축성 폴리아미드 얀 | |
JP5365272B2 (ja) | エアバッグ用織物およびエアバッグ用織物の製造方法 | |
JP2007284826A (ja) | エアバッグ用基布の製造方法 | |
WO2019039396A1 (ja) | エアバッグ用織物およびエアバッグ用コーティング織物、ならびにそれを用いたエアバッグ | |
WO2022211130A1 (ja) | エアバック用合成繊維、及びこれを用いたエアバック用織物の製造方法 | |
US10549711B2 (en) | Airbag-use woven fabric and airbag | |
JP4603297B2 (ja) | ポリヘキサメチレンアジパミド繊維 | |
JP4538967B2 (ja) | エアバッグ用布帛 | |
JP4770152B2 (ja) | エアバック用原糸パッケージ、それを用いたエアバック用基布およびエアバック用原糸パッケージの製造方法 | |
JP2008057085A (ja) | ポリアミドモノフィラメントの製造方法および製造装置 | |
TW201623714A (zh) | 聚醯胺單絲及纖維捲裝物 | |
JP4306391B2 (ja) | エアバッグ用基布およびその製法 | |
JP4749838B2 (ja) | 交絡糸およびその製造方法 | |
JP2002293209A (ja) | エアバッグ用繊維、その製造方法およびノンコートエアバッグ用基布 | |
JP2001288638A (ja) | 交絡糸および織物ならびにエアバッグ | |
EP4227453A1 (en) | Polyamide fibers for airbag and method for producing same | |
JP2008133566A (ja) | ポリアミド繊維の製造方法 | |
JPWO2018062132A1 (ja) | エアバッグ用ノンコーティング織物及びそれを用いたエアバッグ | |
JP2006265758A (ja) | ポリアミドモノフィラメントおよびその製造方法 | |
JP2003020567A (ja) | 脂肪族ポリエステル繊維 | |
JPH11222769A (ja) | ポリエステルフィラメント繊維の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22781337 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023511764 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280025344.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301006297 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22781337 Country of ref document: EP Kind code of ref document: A1 |