[go: up one dir, main page]

US7189940B2 - Plasma-assisted melting - Google Patents

Plasma-assisted melting Download PDF

Info

Publication number
US7189940B2
US7189940B2 US10/449,600 US44960003A US7189940B2 US 7189940 B2 US7189940 B2 US 7189940B2 US 44960003 A US44960003 A US 44960003A US 7189940 B2 US7189940 B2 US 7189940B2
Authority
US
United States
Prior art keywords
plasma
cavity
catalyst
gas
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/449,600
Other versions
US20040107796A1 (en
Inventor
Satyendra Kumar
Devendra Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTU International Inc
Original Assignee
BTU International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2003/014133 external-priority patent/WO2003096747A2/en
Priority to US10/449,600 priority Critical patent/US7189940B2/en
Application filed by BTU International Inc filed Critical BTU International Inc
Priority to EP03812501A priority patent/EP1579023A4/en
Priority to AU2003297636A priority patent/AU2003297636A1/en
Priority to PCT/US2003/038459 priority patent/WO2004050939A2/en
Assigned to DANA CORPORATION reassignment DANA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, DEVENDRA, KUMAR, SATYENDRA
Publication of US20040107796A1 publication Critical patent/US20040107796A1/en
Assigned to BTU INTERNATIONAL INC. reassignment BTU INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANA CORPORATION
Publication of US7189940B2 publication Critical patent/US7189940B2/en
Application granted granted Critical
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces
    • C21B13/125By using plasma
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5205Manufacture of steel in electric furnaces in a plasma heated furnace
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/226Remelting metals with heating by wave energy or particle radiation by electric discharge, e.g. plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • H05B6/784Arrangements for continuous movement of material wherein the material is moved using a tubular transport line, e.g. screw transport systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0026Electric heating elements or system with a generator of electromagnetic radiations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/336Changing physical properties of treated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Definitions

  • This invention relates to methods and apparatus for plasma-assisted heating and melting, and in particular to melting metals and other solid materials.
  • Blast furnaces have been used to chemically reduce and physically convert iron oxides into liquid iron.
  • the blast furnace includes a large steel stack lined with refractory brick, where iron ore, coke, and limestone are dumped into the top, and preheated air is blown into the bottom. These materials descend to the bottom of the furnace where they become the final product of liquid slag and liquid iron, which are normally drained from the furnace at regular intervals. Once a blast furnace has been started, it can continuously run for years.
  • the cupola plasma furnace functions similarly to a blast furnace, except that it makes molten cast iron from scrap steel or scrap substitutes.
  • the fuel for this furnace is usually coke and often requires megawatts of plasma power.
  • heated air is boosted in temperature with a plasma torch and blown into the bottom of the cupola.
  • the coke can be burned creating more heat, which melts the iron.
  • the iron can then exit the furnace and run through a trough to an iron ladle.
  • Vacuum equipment can be expensive, slow, and energy-consuming. Moreover, the use of such equipment can limit the applications of such furnaces.
  • plasma heating and melting apparatus and methods are provided.
  • a plasma-assisted melting method may be provided.
  • the method can include forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, heating a second gas with the plasma, adding a solid to a melting vessel, directing the heated second gas toward the solid sufficient to at least melt the solid into a liquid, and collecting the liquid.
  • a plasma-assisted melting method may be provided.
  • the method can include adding a solid to a melting region, forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall, sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid, and collecting the liquid.
  • a plasma-assisted melting method may include forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, conveying metal through the plasma until the metal melts into a molten metal, and collecting the molten metal.
  • Plasma catalysts and methods and apparatus for igniting, modulating, and sustaining a plasma consistent with this invention are also provided.
  • FIG. 1 shows a schematic diagram of an illustrative apparatus consistent with this invention
  • FIG. 2 shows an illustrative embodiment of a portion of a plasma system for adding a powder plasma catalyst to a plasma cavity for igniting, modulating, or sustaining a plasma in a cavity consistent with this invention
  • FIG. 3 shows an illustrative plasma catalyst fiber with at least one component having a concentration gradient along its length consistent with this invention
  • FIG. 4 shows an illustrative plasma catalyst fiber with multiple components at a ratio that varies along its length consistent with this invention
  • FIG. 5A shows another illustrative plasma catalyst fiber that includes a core underlayer and a coating consistent with this invention
  • FIG. 5B shows a cross-sectional view of the plasma catalyst fiber of FIG. 5A , taken from line 5 B— 5 B of FIG. 5A , consistent with this invention
  • FIG. 6 shows an illustrative embodiment of another portion of a plasma system including an elongated plasma catalyst that extends through ignition port consistent with this invention
  • FIG. 7 shows an illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 6 consistent with this invention
  • FIG. 8 shows another illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 6 consistent with this invention
  • FIG. 9 shows an illustrative embodiment of a portion of a plasma system for directing ionizing radiation into a radiation chamber consistent with this invention
  • FIG. 10 shows a cross-sectional view of illustrative plasma-assisted heating apparatus consistent with this invention
  • FIG. 11 shows a flow-chart of an illustrative method for plasma-assisted heating consistent with this invention
  • FIG. 12 shows a cross-sectional view of another illustrative plasma-assisted heating apparatus consistent with this invention.
  • FIG. 13 shows a cross-sectional perspective view of another illustrative plasma-assisted heating apparatus consistent with this invention.
  • FIG. 14 shows a cross-sectional perspective view of yet another illustrative plasma-assisted heating apparatus consistent with this invention.
  • FIG. 15 shows a cross-sectional view of an illustrative plasma-assisted melting furnace consistent with this invention
  • FIG. 15A shows a cross-sectional view of another illustrative plasma-assisted melting furnace in which its inner tube is porous consistent with this invention
  • FIG. 16 shows a cross-sectional view of yet another illustrative plasma-assisted melting furnace with multiple electromagnetic radiation sources consistent with this invention
  • FIG. 17 shows still another embodiment of plasma-assisted furnace for melting solids, such as metals, consistent with this invention.
  • FIG. 18 shows a simplified cross-sectional view of yet another plasma-assisted melting furnace that includes a crucible and at least one plasma cavity in thermal contact with an outer surface of the crucible consistent with this invention.
  • FIG. 19 shows another illustrative embodiment of plasma-assisted melting furnace that includes a conveyor consistent with this invention.
  • any type of matter e.g., solid, fluid, or gas
  • the cavity may have a radiation-transmissive wall and a thermally conductive wall.
  • a plasma can be formed in the cavity by irradiating a gas located in the cavity with electromagnetic radiation. As the temperature of the plasma rises, radiative energy absorbed by the plasma can be transferred, in the form of thermal energy, to the matter (in an adjacent chamber, for example) through the thermally conductive wall.
  • a radiation source such as a microwave radiation source, may direct radiation at the gas.
  • a catalyst for initiating, modulating, and sustaining a plasma are also provided.
  • a catalyst can be passive or active.
  • a passive plasma catalyst can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention without necessarily adding additional energy through the catalyst, such as by applying a voltage to create a spark.
  • An active plasma catalyst may be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule, in the presence of electromagnetic radiation.
  • PCT/US03/14134 subsequently filed on Nov. 3, 2004 as U.S. patent application Ser. No. 10/513,220, PCT Patent Application No. PCT/US03/14122, PCT Patent Application No. PCT/US03/14055, subsequently filed on Nov. 5, 2004 as U.S. patent application Ser. No. 10/513,605, PCT Patent Application No. PCT/US03/14137, Ser. No. 10/430426 PCT Patent Application No. PCT/US03/14121, PCT Patent Application No. PCT/US03/14136, subsequently filed on Nov. 5, 2004 as U.S. patent application Ser. No. 10/513,604.
  • FIG. 1 shows illustrative plasma system 10 consistent with one aspect of this invention.
  • cavity 12 is formed in a vessel that is positioned inside radiation chamber (i.e., applicator) 14 .
  • vessel 12 and radiation chamber 14 are the same, thereby eliminating the need for two separate components.
  • the vessel in which cavity 12 is formed can include one or more radiation-transmissive insulating layers to improve its thermal insulation properties without significantly shielding cavity 12 from the radiation.
  • cavity 12 is formed in a vessel made of ceramic. Due to the extremely high temperatures that can be achieved with plasmas consistent with this invention, a ceramic capable of operating at about 3,000 degrees Fahrenheit can be used.
  • the ceramic material can include, by weight, 29.8% silica, 68.2% alumina, 0.4% ferric oxide, 1% titania, 0.1% lime, 0.1% magnesia, 0.4% alkalies, which is sold under Model No. LW-30 by New Castle Refractories Company, of New Castle, Pa. It will be appreciated by those of ordinary skill in the art, however, that other materials, such as quartz, and those different from the one described above, can also be used consistent with the invention. It will also be appreciated that because the furnace operating temperature can be different for different types of applications, the material used to make the vessel may only need to withstand temperatures substantially below 3,000 degrees Fahrenheit, such as about 2,500 degrees, or about 1,000 degrees Fahrenheit, or even lower.
  • a plasma was formed in a partially open cavity inside a first brick and topped with a second brick.
  • the cavity had dimensions of about 2 inches by about 2 inches by about 1.5 inches.
  • At least two holes were also provided in the brick in communication with the cavity: one for viewing the plasma and at least one hole for providing the gas.
  • the size of the cavity can depend on the desired plasma process being performed. Also, for some applications, the cavity can be configured to prevent the plasma from rising/floating away from the primary heating region.
  • Cavity 12 can be connected to one or more gas sources 24 (e.g., a source of argon, nitrogen, hydrogen, xenon, krypton) by line 20 and control valve 22 , which may be powered by power supply 28 or any other supply.
  • Line 20 may be tubing (e.g., between about 1/16 inch and about 1 ⁇ 4 inch, such as about 1 ⁇ 8′′), but can be any channel or device capable of supplying a gas to cavity 12 .
  • a vacuum pump (not shown) can be connected to chamber 14 to remove any undesirable fumes that may be generated during plasma processing.
  • a radiation leak detector (not shown) can be installed near source 26 and waveguide 30 and connected to a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm 2 ), was detected.
  • a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm 2 ), was detected.
  • the radiation apparatus may include radiation source 26 for directing radiation into the cavity.
  • the radiation apparatus may further include other radiation sources (not shown) for directing additional radiation into the cavity.
  • Radiation source 26 which may be powered by electrical power supply 28 , can direct radiation into chamber 14 through one or more waveguides 30 . It will be appreciated by those of ordinary skill in the art that source 26 can be connected directly to chamber 14 or cavity 12 , thereby eliminating waveguides 30 .
  • the radiation energy entering cavity 12 can be used to ignite a plasma within the cavity. This plasma can be modulated or substantially sustained and confined to the cavity by coupling additional radiation with the catalyst.
  • Radiation source 26 may be a magnetron, a klystron, a gyrotron, a traveling-wave tube amplifier, or any other device capable of generating radiation. Radiation having any frequency less than about 333 GHz can be used consistent with this invention. For example, frequencies, such as power line frequencies (about 50 Hz to about 60 Hz), can be used, although the pressure of the gas from which the plasma is formed may be lowered to assist with plasma ignition. Also, any radio frequency or microwave frequency can be used consistent with this invention, including frequencies greater than about 100 kHz. In most cases, the gas pressure for such relatively high frequencies need not be lowered to ignite, modulate, or sustain a plasma, thereby enabling many plasma-processes to occur over a broad range of pressures, including atmospheric pressure and above.
  • the invention may be practiced by employing microwave sources at both 915 MHz and 2.45 GHz provided by Communications and Power Industries (CPI), although radiation having any frequency less than about 333 GHz can be used.
  • CPI Communications and Power Industries
  • a 3-stub tuner may allow impedance matching for maximum power transfer and a dual directional coupler may be used to measure forward and reflected powers.
  • Radiation energy can be supplied by radiation source 26 through circulator 32 and tuner 34 (e.g., 3-stub tuner).
  • Tuner 34 can be used to minimize the reflected power as a function of changing ignition or processing conditions, especially before the plasma has formed because microwave power, for example, will be strongly absorbed by the plasma, although the use of a circulator and a tuner is optional.
  • the location of radiation-transmissive cavity 12 in chamber 14 may not be critical if chamber 14 supports multiple modes, and especially when the modes are continually or periodically mixed.
  • motor 36 can be connected to mode-mixer 38 for making the time-averaged radiation energy distribution substantially uniform throughout chamber 14 .
  • window 40 e.g., a quartz window
  • temperature sensor 42 e.g., an optical pyrometer
  • the optical pyrometer output can increase from zero volts as the temperature rises to within the tracking range.
  • Sensor 42 can develop output signals as a function of the temperature or any other monitorable condition associated with a work piece (not shown) within cavity 12 and provide the signals to controller 44 . Dual temperature sensing and heating, as well as automated cooling gas flow control, can also be used. Controller 44 in turn can be used to control operation of power supply 28 , which can have one output connected to source 26 as described above and another output connected to valve 22 to control gas flow into cavity 12 .
  • the equipment may be computer controlled using Lab View 6 i software, which may provide real-time temperature monitoring and microwave power control. Noise may be reduced by using sliding averages of suitable number of data points. Also, by using shift registers and buffer sizing the number of stored data points in the array may be limited to improve speed and computational efficiency.
  • the pyrometer may measure the temperature of a sensitive area of about 1 cm.sup.2, which may be used to calculate an average temperature. The pyrometer may sense radiant intensities at two wavelengths and fit those intensities using Planck's law to determine the temperature. It will be appreciated, however, that other devices and methods for monitoring and controlling temperature are also available and can be used consistent with this invention. Control software that can be used consistent with this invention is described, for example, in commonly owned PCT Patent Application No. PCT/US03/14135, filed May 7, 2003, which is hereby incorporated by reference in its entirety.
  • Chamber 14 may have several glass-covered viewing ports with radiation shields and a quartz window for pyrometer access. Several ports for connection to a vacuum pump and a gas source may also be provided, although not necessarily used.
  • the exemplary furnace may also include a closed-loop deionized water cooling system (not shown) with an external heat exchanger cooled by tap water.
  • the deionized water may first cool the magnetron, then the load-dump in the circulator (used to protect the magnetron), and finally the radiation chamber through water channels welded on the outer surface of the chamber.
  • a plasma catalyst consistent with this invention can include one or more different materials and may be either passive or active.
  • a plasma catalyst can be used, among other things, to ignite, modulate, and/or sustain a plasma at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
  • One method of forming a plasma consistent with this invention can include subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a passive plasma catalyst.
  • a passive plasma catalyst consistent with this invention can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention, without necessarily adding additional energy through the catalyst, such as by applying an electric voltage to create a spark.
  • a passive plasma catalyst consistent with this invention can also be a nano-particle or a nano-tube.
  • the term “nano-particle” can include any particle having a maximum physical dimension less than about 100 nm that is at least electrically semi-conductive.
  • both single-walled and multi-walled carbon nanotubes, doped and undoped can be particularly effective for igniting plasmas consistent with this invention because of their exceptional electrical conductivity and elongated shape.
  • the nanotubes can have any convenient length and can be a powder fixed to a substrate. If fixed, the nanotubes can be oriented randomly on the surface of the substrate or fixed to the substrate (e.g., at some predetermined orientation) while the plasma is ignited or sustained.
  • a passive plasma catalyst can also be a powder consistent with this invention, and need not comprise nano-particles or nano-tubes. It can be formed, for example, from fibers, dust particles, flakes, sheets, etc.
  • the catalyst can be suspended, at least temporarily, in a gas. By suspending the powder in the gas, the powder can be quickly dispersed throughout the cavity and more easily consumed, if desired.
  • a powder catalyst can be carried into the cavity and at least temporarily suspended with a carrier gas.
  • the carrier gas can be the same or different from the gas that forms the plasma.
  • the powder can be added to the gas prior to being introduced to the cavity.
  • radiation source 52 can supply radiation to radiation cavity 55 , in which plasma cavity 60 is placed.
  • Powder source 65 can provide catalytic powder 70 into gas stream 75 .
  • powder 70 can be first added to cavity 60 in bulk (e.g., in a pile) and then distributed in the cavity in any number of ways, including flowing a gas through or over the bulk powder.
  • the powder can be added to the gas for igniting, modulating, or sustaining a plasma by moving, conveying, drizzling, sprinkling, blowing, or otherwise, feeding the powder into or within the cavity.
  • a plasma was ignited in a cavity by placing a pile of carbon fiber powder in a copper pipe that extended into the cavity. Although sufficient radiation was directed into the cavity, the copper pipe shielded the powder from the radiation and no plasma ignition took place. However, once a carrier gas began flowing through the pipe, forcing the powder out of the pipe and into the cavity, and thereby subjecting the powder to the radiation, a plasma was nearly instantaneously ignited in the cavity.
  • a powder plasma catalyst consistent with this invention can be substantially non-combustible, thus it need not contain oxygen or burn in the presence of oxygen.
  • the catalyst can include a metal, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, and any combination thereof.
  • powder catalysts can be substantially uniformly distributed in the plasma cavity (e.g., when suspended in a gas), and plasma ignition can be precisely controlled within the cavity. Uniform ignition can be important in certain applications, including those applications requiring brief plasma exposures, such as in the form of one or more bursts. Still, a certain amount of time can be required for a powder catalyst to distribute itself throughout a cavity, especially in complicated, multi-chamber cavities. Therefore, consistent with another aspect of this invention, a powder catalyst can be introduced into the cavity through a plurality of ignition ports to more rapidly obtain a more uniform catalyst distribution therein (see below).
  • a passive plasma catalyst consistent with this invention can include, for example, one or more microscopic or macroscopic fibers, sheets, needles, threads, strands, filaments, yarns, twines, shavings, slivers, chips, woven fabrics, tape, whiskers, or any combination thereof.
  • the plasma catalyst can have at least one portion with one physical dimension substantially larger than another physical dimension.
  • the ratio between at least two orthogonal dimensions should be at least about 1:2, but could be greater than about 1:5, or even greater than about 1:10.
  • a passive plasma catalyst can include at least one portion of material that is relatively thin compared to its length.
  • a bundle of catalysts e.g., fibers
  • a bundle of catalysts may also be used and can include, for example, a section of graphite tape.
  • a section of tape having approximately thirty thousand strands of graphite fiber, each about 2–3 microns in diameter, was successfully used.
  • the number of fibers in and the length of a bundle are not critical to igniting, modulating, or sustaining the plasma. For example, satisfactory results have been obtained using a section of graphite tape about one-quarter inch long.
  • One type of carbon fiber that has been successfully used consistent with this invention is sold under the trademark Magnamite®, Model No. AS4C-GP3K, by the Hexcel Corporation, of Anderson, S. C. Also, silicon-carbide fibers have been successfully used.
  • a passive plasma catalyst consistent with another aspect of this invention can include one or more portions that are, for example, substantially spherical, annular, pyramidal, cubic, planar, cylindrical, rectangular or elongated.
  • the passive plasma catalysts discussed above include at least one material that is at least electrically semi-conductive.
  • the material can be highly conductive.
  • a passive plasma catalyst consistent with this invention can include a metal, an inorganic material, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, or any combination thereof.
  • Some of the possible inorganic materials that can be included in the plasma catalyst include carbon, silicon carbide, molybdenum, platinum, tantalum, tungsten, carbon nitride, and aluminum, although other electrically conductive inorganic materials are believed to work just as well.
  • a passive plasma catalyst consistent with this invention can include one or more additives (which need not be electrically conductive).
  • the additive can include any material that a user wishes to add to the plasma.
  • one or more dopants can be added to the plasma through the catalyst. See, e.g., commonly owned PCT Patent Application No. PCT/US03/14130 filed May 7, 2003, subsequently filed on Nov. 4, 2005 as U.S. patent application Ser. No. 10/513,397, which is hereby incorporated by reference in its entirety.
  • the catalyst can include the dopant itself, or it can include a precursor material that, upon decomposition, can form the dopant.
  • the plasma catalyst can include one or more additives and one or more electrically conductive materials in any desirable ratio, depending on the ultimate desired composition of the plasma and the process using the plasma.
  • the ratio of the electrically conductive components to the additives in a passive plasma catalyst can vary over time while being consumed.
  • the plasma catalyst could desirably include a relatively large percentage of electrically conductive components to improve the ignition conditions.
  • the catalyst could include a relatively large percentage of additives. It will be appreciated by those of ordinary skill in the art that the component ratio of the plasma catalyst used to ignite, modulate, and/or sustain the plasma could be the same.
  • a predetermined ratio profile can be used to simplify many plasma processes.
  • the components within the plasma are added as necessary, but such addition normally requires programmable equipment to add the components according to a predetermined schedule.
  • the ratio of components in the catalyst can be varied, and thus the ratio of components in the plasma itself can be automatically varied. That is, the ratio of components in the plasma at any particular time can depend on which of the catalyst portions is currently being consumed by the plasma.
  • the catalyst component ratio can be different at different locations within the catalyst.
  • the current ratio of components in a plasma can depend on the portions of the catalyst currently and/or previously consumed, especially when the flow rate of a gas passing through the plasma chamber is relatively slow.
  • a passive plasma catalyst consistent with this invention can be homogeneous, inhomogeneous, or graded.
  • the plasma catalyst component ratio can vary continuously or discontinuously throughout the catalyst. For example, in FIG. 3 , the ratio can vary smoothly forming a gradient along a length of catalyst 100 .
  • Catalyst 100 can include a strand of material that includes a relatively low concentration of a component at section 105 and a continuously increasing concentration toward section 110 .
  • the ratio can vary discontinuously in each portion of catalyst 120 , which includes, for example, alternating sections 125 and 130 having different concentrations. It will be appreciated that catalyst 120 can have more than two section types. Thus, the catalytic component ratio being consumed by the plasma can vary in any predetermined fashion. In one embodiment, when the plasma is monitored and a particular additive is detected, further processing can be automatically commenced or terminated.
  • an automated system can include a device by which a consumable plasma catalyst is mechanically inserted before and/or during plasma igniting, modulating, and/or sustaining.
  • a passive plasma catalyst consistent with this invention can also be coated.
  • a catalyst can include a substantially non-electrically conductive coating deposited on the surface of a substantially electrically conductive material.
  • the catalyst can include a substantially electrically conductive coating deposited on the surface of a substantially electrically non-conductive material.
  • FIGS. 5A and 5B show fiber 140 , which includes underlayer 145 and coating 150 .
  • a plasma catalyst including a carbon core is coated with nickel to prevent oxidation of the carbon.
  • a single plasma catalyst can also include multiple coatings. If the coatings are consumed during contact with the plasma, the coatings could be introduced into the plasma sequentially, from the outer coating to the innermost coating, thereby creating a time-release mechanism.
  • a coated plasma catalyst can include any number of materials, as long as a portion of the catalyst is at least electrically semi-conductive.
  • a plasma catalyst can be located entirely within a radiation cavity to substantially reduce or prevent radiation energy leakage.
  • the plasma catalyst does not electrically or magnetically couple with the vessel containing the cavity or to any electrically conductive object outside the cavity. This prevents sparking at the ignition port and prevents radiation from leaking outside the cavity during the ignition and possibly later if the plasma is sustained.
  • the catalyst can be located at a tip of a substantially electrically non-conductive extender that extends through an ignition port.
  • FIG. 6 shows radiation chamber 160 in which plasma cavity 165 is placed.
  • Plasma catalyst 170 is elongated and extends through ignition port 175 .
  • catalyst 170 can include electrically conductive distal portion 180 (which is placed in chamber 160 ) and electrically non-conductive portion 185 (which is placed substantially outside chamber 160 ). This configuration prevents an electrical connection (e.g., sparking) between distal portion 180 and chamber 160 .
  • the catalyst can be formed from a plurality of electrically conductive segments 190 separated by and mechanically connected to a plurality of electrically non-conductive segments 195 .
  • the catalyst can extend through the ignition port between a point inside the cavity and another point outside the cavity, but the electrically discontinuous profile significantly prevents sparking and energy leakage.
  • Another method of forming a plasma consistent with this invention includes subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of an active plasma catalyst, which generates or includes at least one ionizing particle.
  • An active plasma catalyst consistent with this invention can be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation.
  • the ionizing particles can be directed into the cavity in the form of a focused or collimated beam, or they may be sprayed, spewed, sputtered, or otherwise introduced.
  • FIG. 9 shows radiation source 200 directing radiation into radiation chamber 205 .
  • Plasma cavity 210 can be positioned inside of chamber 205 and may permit a gas to flow therethrough via its gas ports.
  • Source 220 directs ionizing particles 225 into cavity 210 .
  • Source 220 can be protected, for example, by a metallic screen which allows the ionizing particles to pass through but shields source 220 from radiation. If necessary, source 220 can be water-cooled.
  • Examples of ionizing particles consistent with this invention can include x-ray particles, gamma ray particles, alpha particles, beta particles, neutrons, protons, and any combination thereof.
  • an ionizing particle catalyst can be charged (e.g., an ion from an ion source) or uncharged and can be the product of a radioactive fission process.
  • the vessel in which the plasma cavity is formed could be entirely or partially transmissive to the ionizing particle catalyst.
  • the source can direct the fission products through the vessel to ignite the plasma.
  • the radioactive fission source can be located inside the radiation chamber to substantially prevent the fission products (i.e., the ionizing particle catalyst) from creating a safety hazard.
  • the ionizing particle can be a free electron, but it need not be emitted in a radioactive decay process.
  • the electron can be introduced into the cavity by energizing the electron source (such as a metal), such that the electrons have sufficient energy to escape from the source.
  • the electron source can be located inside the cavity, adjacent the cavity, or even in the cavity wall. It will be appreciated by those of ordinary skill in the art that the any combination of electron sources is possible.
  • a common way to produce electrons is to heat a metal, and these electrons can be further accelerated by applying an electric field.
  • free energetic protons can also be used to catalyze a plasma.
  • a free proton can be generated by ionizing hydrogen and, optionally, accelerated with an electric field.
  • a radiation waveguide, cavity, or chamber can be designed to support or facilitate propagation of at least one electromagnetic radiation mode.
  • the term “mode” refers to a particular pattern of any standing or propagating electromagnetic wave that satisfies Maxwell's equations and the applicable boundary conditions (e.g., of the cavity).
  • the mode can be any one of the various possible patterns of propagating or standing electromagnetic fields.
  • Each mode is characterized by its frequency and polarization of the electric field and/or the magnetic field vectors.
  • the electromagnetic field pattern of a mode depends on the frequency, refractive indices or dielectric constants, and waveguide or cavity geometry.
  • a transverse electric (TE) mode is one whose electric field vector is normal to the direction of propagation.
  • a transverse magnetic (TM) mode is one whose magnetic field vector is normal to the direction of propagation.
  • a transverse electric and magnetic (TEM) mode is one whose electric and magnetic field vectors are both normal to the direction of propagation.
  • a hollow metallic waveguide does not typically support a normal TEM mode of radiation propagation. Even though radiation appears to travel along the length of a waveguide, it may do so only by reflecting off the inner walls of the waveguide at some angle. Hence, depending upon the propagation mode, the radiation (e.g., microwave) may have either some electric field component or some magnetic field component along the axis of the waveguide (often referred to as the z-axis).
  • the actual field distribution inside a cavity or waveguide is a superposition of the modes therein.
  • Each of the modes can be identified with one or more subscripts (e.g., TE 10 (“tee ee one zero”).
  • the subscripts normally specify how many “half waves” at the guide wavelength are contained in the x and y directions. It will be appreciated by those skilled in the art that the guide wavelength can be different from the free space wavelength because radiation propagates inside the waveguide by reflecting at some angle from the inner walls of the waveguide.
  • a third subscript can be added to define the number of half waves in the standing wave pattern along the z-axis.
  • the size of the waveguide can be selected to be small enough so that it can support a single propagation mode.
  • the system is called a single-mode system (i.e., a single-mode applicator).
  • the TE 10 mode is usually dominant in a rectangular single-mode waveguide.
  • the waveguide or applicator can sometimes support additional higher order modes forming a multi-mode system.
  • the system is often referred to as highly moded.
  • a simple, single-mode system has a field distribution that includes at least one maximum and/or minimum.
  • the magnitude of a maximum largely depends on the amount of radiation supplied to the system.
  • the field distribution of a single mode system is strongly varying and substantially non-uniform.
  • a multi-mode cavity can support several propagation modes simultaneously, which, when superimposed, results in a complex field distribution pattern. In such a pattern, the fields tend to spatially smear and, thus, the field distribution usually does not show the same types of strong minima and maxima field values within the cavity.
  • a mode-mixer can be used to “stir” or “redistribute” modes (e.g., by mechanical movement of a radiation reflector). This redistribution desirably provides a more uniform time-averaged field distribution within the cavity.
  • a multi-mode cavity consistent with this invention can support at least two modes, and may support many more than two modes. Each mode has a maximum electric field vector. Although there may be two or more modes, one mode may be dominant and has a maximum electric field vector magnitude that is larger than the other modes.
  • a multi-mode cavity may be any cavity in which the ratio between the first and second mode magnitudes is less than about 1:10, or less than about 1:5, or even less than about 1:2. It will be appreciated by those of ordinary skill in the art that the smaller the ratio, the more distributed the electric field energy between the modes, and hence the more distributed the radiation energy is in the cavity.
  • the distribution of plasma within a processing cavity may strongly depend on the distribution of the applied radiation. For example, in a pure single mode system, there may only be a single location at which the electric field is a maximum. Therefore, a strong plasma may only form at that single location. In many applications, such a strongly localized plasma could undesirably lead to non-uniform plasma treatment or heating (i.e., localized overheating and underheating).
  • the cavity in which the plasma is formed can be completely closed or partially open.
  • the cavity could be entirely closed.
  • a cavity containing a uniform plasma is desirable.
  • radiation can have a relatively long wavelength (e.g., several tens of centimeters), obtaining a uniform distribution can be difficult to achieve.
  • the radiation modes in a multi-mode cavity can be mixed, or redistributed, over a period of time. Because the field distribution within the cavity must satisfy all of the boundary conditions set by the inner surface of the cavity, those field distributions can be changed by changing the position of any portion of that inner surface.
  • a movable reflective surface can be located inside the radiation cavity.
  • the shape and motion of the reflective surface should, when combined, change the inner surface of the cavity during motion.
  • an “L” shaped metallic object i.e., “mode-mixer”
  • mode-mixer when rotated about any axis will change the location or the orientation of the reflective surfaces in the cavity and therefore change the radiation distribution therein.
  • Any other asymmetrically shaped object can also be used (when rotated), but symmetrically shaped objects can also work, as long as the relative motion (e.g., rotation, translation, or a combination of both) causes some change in the location or orientation of the reflective surfaces.
  • a mode-mixer can be a cylinder that is rotatable about an axis that is not the cylinder's longitudinal axis.
  • Each mode of a multi-mode cavity may have at least one maximum electric field vector, but each of these vectors could occur periodically across the inner dimension of the cavity. Normally, these maxima are fixed, assuming that the frequency of the radiation does not change. However, by moving a mode-mixer such that it interacts with the radiation, it is possible to move the positions of the maxima.
  • mode-mixer 38 can be used to optimize the field distribution within cavity 12 such that the plasma ignition conditions and/or the plasma sustaining conditions are optimized.
  • the position of the mode-mixer can be changed to move the position of the maxima for a uniform time-averaged plasma process (e.g., heating).
  • mode-mixing can be useful during plasma ignition.
  • an electrically conductive fiber is used as a plasma catalyst, it is known that the fiber's orientation can strongly affect the minimum plasma-ignition conditions. It has been reported, for example, that when such a fiber is oriented at an angle that is greater than 60° to the electric field, the catalyst does little to improve, or relax, these conditions. By moving a reflective surface either in or near the cavity, however, the electric field distribution can be significantly changed.
  • Mode-mixing can also be achieved by launching the radiation into the applicator chamber through, for example, a rotating waveguide joint that can be mounted inside the applicator chamber.
  • the rotary joint can be mechanically moved (e.g., rotated) to effectively launch the radiation in different directions in the radiation chamber.
  • a changing field pattern can be generated inside the applicator chamber.
  • Mode-mixing can also be achieved by launching radiation in the radiation chamber through a flexible waveguide.
  • the waveguide can be mounted inside the chamber.
  • the waveguide can extend into the chamber.
  • the position of the end portion of the flexible waveguide can be continually or periodically moved (e.g., bent) in any suitable manner to launch the radiation (e.g., microwave radiation) into the chamber at different directions and/or locations.
  • This movement can also result in mode-mixing and facilitate more uniform plasma processing (e.g., heating) on a time-averaged basis. Alternatively, this movement can be used to optimize the location of a plasma for ignition or other plasma-assisted process.
  • the flexible waveguide is rectangular, a simple twisting of the open end of the waveguide will rotate the orientation of the electric and the magnetic field vectors in the radiation inside the applicator chamber. Then, a periodic twisting of the waveguide can result in mode-mixing as well as rotating the electric field, which can be used to assist ignition, modulation, or sustaining of a plasma.
  • mode-mixing can be continuous, periodic, or preprogrammed.
  • mode-mixing can be useful during subsequent plasma-assisted processing (e.g., heating) to reduce or create (e.g., tune) “hot spots” in the chamber.
  • plasma-assisted processing e.g., heating
  • one or more localized electric field maxima can lead to “hot spots” (e.g., within cavity 12 ).
  • these hot spots could be configured to coincide with one or more separate, but simultaneous, plasma ignitions or processing events.
  • the plasma catalyst can be located at one or more of those ignition or subsequent processing or heating positions.
  • a plasma can be ignited using multiple plasma catalysts at different locations.
  • multiple fibers can be used to ignite the plasma at different points within the cavity.
  • Such multi-point ignition can be especially beneficial when a uniform plasma ignition is desired. For example, when a plasma is modulated at a high frequency (i.e., tens of Hertz and higher), or ignited in a relatively large volume, or both, substantially uniform instantaneous striking and restriking of the plasma can be improved.
  • plasma catalysts when plasma catalysts are used at multiple points, they can be used to sequentially ignite a plasma at different locations within a plasma chamber by selectively introducing the catalyst at those different locations. In this way, a plasma ignition gradient can be controllably formed within the cavity, if desired.
  • each powder particle may have the effect of being placed at a different physical location within the cavity, thereby improving ignition uniformity within the cavity.
  • a system can include at least a first ignition cavity and a second cavity in fluid communication with the first cavity.
  • a gas in the first ignition cavity can be subjected to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst.
  • electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst.
  • the proximity of the first and second cavities may permit a plasma formed in the first cavity to ignite a plasma in the second cavity, which may be sustained with additional electromagnetic radiation.
  • the first cavity can be very small and designed primarily, or solely for plasma ignition. In this way, very little radiation energy may be required to ignite the plasma, permitting easier ignition, especially when a plasma catalyst is used consistent with this invention.
  • the first cavity may be a substantially single mode cavity and the second cavity is a multi-mode cavity.
  • the electric field distribution may strongly vary within the cavity, forming one or more precisely located electric field maxima.
  • maxima are normally the first locations at which plasmas ignite, making them ideal points for placing plasma catalysts. It will be appreciated, however, that when a plasma catalyst is used, it need not be placed in the electric field maximum and, many cases, need not be oriented in any particular direction.
  • a plasma catalyst can be used to facilitate the igniting, modulating, or sustaining of the plasma at gas pressures below, at, or above atmospheric pressure.
  • FIG. 10 shows a cross-sectional view of illustrative plasma-assisted heating apparatus 300 consistent with this invention.
  • Apparatus 300 can include cavity 305 for containing a gas, at least one radiation source 310 , and heating region 315 .
  • Radiation source 310 can be configured to irradiate a gas located in cavity 305 and to ignite, modulate, and/or sustain a plasma from the gas in cavity 305 .
  • Cavity 305 can have at least one thermally conductive wall 320 for conducting the energy absorbed by the plasma in cavity 305 to a location outside cavity 305 .
  • Heating region 315 can be located external to cavity 305 (as shown in FIG. 10 ) and adjacent to wall 320 .
  • a radiation-transmissive window 328 can be used to prevent the plasma from moving from cavity 305 to waveguide 325 .
  • Radiation source 310 can be, for example, a magnetron, a klystron, a gyrotron, a traveling wave tube, a solid state microwave source, or any other radiation source capable of supplying electromagnetic radiation having a frequency less than about 333 GHz. As shown in FIG. 10 , radiation source 310 can direct radiation through waveguide 325 . Alternatively, radiation source can be coupled to cavity 305 using a coaxial cable selected to propagate the desired type of radiation. In another embodiment, radiation source 310 can simply direct radiation toward cavity 305 without any physical connection.
  • radiation source 26 directs radiation into chamber 14 and that radiation passes through the vessel containing cavity 12 .
  • the cavity can have a wall portion that is at least partially radiation-transmissive (e.g., ceramic, quartz, etc.). It will be appreciated that any other technique for directing radiation into a plasma cavity can also be used consistent with this invention.
  • a plasma catalyst consistent with this invention.
  • the use of a plasma catalyst can cause a plasma to ignite nearly instantaneously when radiation first enters cavity 305 .
  • plasma strongly absorbs electromagnetic radiation, the existence of a plasma in cavity 305 can substantially prevent radiation from reflecting back into radiation source 310 at the early stages of plasma ignition.
  • An isolator (not shown in FIG. 10 ) can also be located between cavity 305 and source 310 to further prevent potentially damaging radiation from passing back to radiation source 310 , if desired.
  • one or more radiation sources can be used to direct radiation into cavity 305 consistent with this invention.
  • radiation generated by one radiation source can be undesirably directed into another radiation source, which can also lead to the same type of damage due to reflected power.
  • the use of a plasma catalyst consistent with this invention can essentially eliminate this danger because nearly all radiation will be strongly absorbed once the plasma is formed.
  • one of the sources can be activated before the others to ignite the plasma, and then subsequent source can be activated.
  • a first source can be cross-polarized with a second source.
  • a plasma catalyst can be located at any operational position.
  • a plasma catalyst can be located in the plasma cavity.
  • the catalyst could be subject to ongoing plasma exposure during the use of the furnace, which could undesirably degrade the catalyst over time. Therefore, a plasma catalyst can also be placed proximate to the cavity, including in a wall of cavity 305 or adjacent to such a wall.
  • the catalyst only needs to be placed close enough to cavity 305 such that it deforms the electromagnetic fields in the cavity.
  • the source can be placed outside the cavity, but the ionizing particles can be directed into the plasma cavity.
  • cavity 305 can be completely closed, or sealed.
  • cavity 305 can include one or more gas ports (not shown) for flowing gas into and out of cavity 305 during plasma generation.
  • gas flow can be used, if desired to control the temperature of the plasma. That is, higher gas flow rates could be used to cool, or at least substantially slow down the rate of heating, of a plasma-assisted furnace consistent with this invention.
  • plasma catalyst 327 can be located in cavity 305 .
  • the plasma catalyst can be coated with a thermal-protective layer.
  • the catalyst can be moved from an optimum position in the cavity for igniting the plasma to a less optimum position, where the plasma would be less likely to degrade or consume the catalyst during operation.
  • the plasma catalyst can be fixed in the cavity, but a mode-mixer can be used to change the field distribution within the cavity. For example, the distribution can be originally tuned such that a hot spot is located at the plasma catalyst but then subsequently tuned such that the hot spot is located adjacent to wall 320 .
  • heat conducting region 315 can include a thermally conductive conduit for channeling fluid.
  • the fluid can be, for example, a liquid or a gas, or a combination of both.
  • Water, oil, or any other fluid capable of absorbing energy, either by thermal conduction or radiative absorption, can be used.
  • heating region 315 can be configured to contain a heatable solid. Solids, such as iron, can be useful for storing energy in the form of thermal energy.
  • a furnace consistent with this invention can be used to heat any other type of solid, such as a semiconductor, to perform any type of processing requiring heat.
  • FIG. 11 shows a flow-chart of an illustrative method for plasma-assisted heating (e.g., melting) consistent with this invention.
  • radiation can be directed into a cavity containing a gas to ignite a plasma in the cavity.
  • the plasma can be modulated or sustained in the cavity for a period of time sufficient to heat at least one thermally conductive cavity wall.
  • heat can be conducted or radiated through the wall to transfer thermal energy to matter on an opposite side of the wall.
  • a plasma can be ignited in step 350 by subjecting a gas in the cavity to the radiation in the presence of a plasma catalyst, which may be active or passive.
  • the plasma can be modulated or sustained by directing radiation into the cavity from at least one radiation source.
  • a first source can direct radiation into the cavity before any of the other sources to ensure that a radiation absorbing plasma has been formed. This can help prevent radiation from reflecting or propagating into these radiation sources and damaging them.
  • FIG. 12 shows a cross-sectional view of another illustrative plasma-assisted heating apparatus 370 .
  • cavity 375 can include two functional walls: radiation-transmissive wall 322 and thermally conductive wall 324 .
  • radiation-transmissive wall 322 can be formed from any material capable of substantially transmitting radiation at the frequency provided by one or more radiation sources.
  • radiation-transmissive materials that can be used consistent with this invention include, for example, quartz, Al 2 O 3 , and many ceramics.
  • walls 322 and 324 can be configured to modulate or sustain a plasma in some regions, and to prevent formation of a plasma in other regions within cavity 375 .
  • plasma formation can be maximized near wall 324 , such that a maximum amount of energy can be transferred to heating region 330 , which can be located adjacent to heat-conductive wall 324 .
  • a heating region consistent with this invention can be used to heat a fluid or a solid, depending on the application.
  • region 330 is partially bound by outer wall 326 .
  • Walls 324 and 326 when combined, can form a channel through which a fluid can flow and be heated.
  • wall 324 can be curved to increase its surface area, which can increase the rate that energy passes through wall 324 . It will be appreciated that other shapes can also be used. It will also be appreciated that a single furnace could have multiple plasma cavities, and each of those cavities can have the same or different shape.
  • a plasma catalyst can be used with plasma apparatus 370 , and any other plasma-assisted furnace consistent with this invention, to facilitate igniting, modulating, and/or sustaining a plasma.
  • the use of a plasma catalyst can relax the conditions required to form a plasma, which can make the plasma more controllable, even at pressures at or above atmospheric pressure.
  • Such catalysts may be particularly useful due to their substantially continuous catalyzing effect, as opposed to spark plugs, for example, which only spark periodically. Continuous catalysis can be especially useful during periodic processes that require repeated striking and restriking of a plasma.
  • FIG. 13 shows a cross-sectional perspective view of another illustrative plasma-assisted heating apparatus 400 .
  • plasma cavity 405 is cylindrical, although it will be appreciated that the shape can also be rectangular, or any other convenient shape capable of supporting at least one mode of radiation propagation.
  • Cavity 405 can be formed in tube 410 that is at least thermally conductive. Radiation can be directed into cavity 405 in any convenient manner, such as by a waveguide or a coaxial cable. As shown in FIG. 13 , coaxial cable 415 can be used to direct radiation into cavity 405 .
  • Plasma tube 410 can be open or closed. If open, the gas can flow longitudinally.
  • Plasma tube 410 can be located inside of outer tube 420 .
  • heating region 430 can be located between tube 410 and 420 and a fluid can be heated while flowing through this region.
  • shape of outer tube 420 need not be cylindrical, but can be rectangular or any other convenient shape.
  • FIG. 14 shows a cross-sectional perspective view of yet another illustrative plasma-assisted heating apparatus 450 .
  • plasma cavity 480 can be an annular space between two electrically conducting tubes (e.g., in a co-axial waveguide). Tubes 460 and 470 are shown to be cylindrical, for example, but the shape can also be rectangular or any other convenient shape. Thus, cavity 480 can be formed between tube 460 , which can be thermally conductive, and tube 470 , which can be electrically conductive and surrounded by an insulating jacket (not shown).
  • radiation can be directed into cavity 480 in any convenient manner, such as by a waveguide or a coaxial cable.
  • coaxial cable 465 can be used to direct radiation into cavity 480 .
  • the radiation can be fed coaxially through a radiation-transmissive window (not shown).
  • heating region 455 can be located inside tube 460 and a fluid can be heated while flowing through this region.
  • tubes 410 and 420 of FIG. 13 and tubes 460 and 470 of FIG. 14 are shown as straight, they need not be.
  • the tubes can have a spiral, serpentine, or any other convenient form.
  • the positions of heating regions 430 and 480 can be reversed with plasma cavities 405 and 455 , respectively.
  • FIG. 15 shows a cross-sectional view of illustrative plasma-assisted melting furnace consistent with this invention.
  • Furnace 500 can include melting column 505 , surrounding plasma cavity 510 , and electromagnetic radiation source (not shown) for directing electromagnetic radiation 515 having a frequency less than about 333 GHz into plasma cavity 510 . Additional structural elements (shown and not shown) are described below in conjunction with a method for melting objects, such as metal ore, scrap metal, and other solids, including solid waste.
  • an illustrative method for melting metal ore can include adding metal ore 502 to a melting region (e.g., melting column 505 ), forming a plasma in cavity 510 by subjecting a gas (e.g., argon) to electromagnetic radiation 515 in the presence of plasma catalyst 520 (e.g., carbon fiber), sustaining the plasma in cavity 510 such that energy from the plasma passes through thermally conductive wall 525 of cavity 510 into melting column 505 and melts metal ore 502 into molten metal 530 and slag 535 , and then collecting molten metal 530 .
  • a gas e.g., argon
  • plasma catalyst 520 e.g., carbon fiber
  • Plasma catalyst 520 can be an active plasma catalyst and a passive plasma catalyst. Because these such catalysts have been described in detail above, they are not described here again, although it will be understood that any of the previously mentioned catalysts, and any of the associated methods, can be used to melt objects, such as metal ore or solid waste, consistent with this invention.
  • melting column 505 can be at least partially defined by conductive wall 525 of inner tube 540 .
  • cavity 510 can be defined between inner tube 540 and outer tube 545 .
  • Inner tube 540 can be located substantially inside outer tube 550 , if desired.
  • a first gas e.g., argon
  • argon which can form a plasma relatively easily, can be flowed into cavity 510 near inner tube 540 so that the gas flows close to wall 525 and forms a plasma there.
  • a second gas (not shown), which may not as easily form a plasma as the first gas, can also flow into cavity 510 near outer tube 545 while sustaining the plasma. It will be appreciated that additional embodiments for preferentially forming a plasma near wall 525 can also involve application of electric and/or magnetic fields.
  • melting column 505 can be substantially vertical. Then, metal ore can be added to top end 555 of melting column 505 and molten metal 530 can be collected at bottom end 560 of melting column 505 .
  • Radiation 515 can be directed into cavity 510 through coaxial waveguide 565 , which can be separated from cavity 510 by radiation-transmissive plate 570 .
  • inner tube 525 can have an outer diameter and outer tube 545 can have an inner diameter, such that the ratio of the inner diameter to the outer diameter is between about 2.5 and about 3.0, including about 2.72.
  • suitable reactant 575 e.g., a reducing agent, such as air plus coke, or carbon monoxide
  • a reducing agent such as air plus coke, or carbon monoxide
  • This addition can be used, for example, to separate metal from other related compounds.
  • a movable conductive plate (not shown) can be placed at one or both of the axial ends of cavity 510 to adjust its length. By adjusting this length, the electromagnetic radiation standing wave pattern can be shifted as desired. In one embodiment, the plate can be used to shift the pattern by at least about a quarter of a wavelength.
  • the spatial dependence of electromagnetic radiation absorption can also be adjusted by applying an electric potential difference between inner tube 540 and outer tube 545 .
  • the applied potential can attract the plasma radially inward and increase its concentration at the surface of wall 525 , thereby increasing the rate at which energy passes through conductive wall 525 .
  • FIG. 15A shows a cross-sectional view of another illustrative embodiment in which inner tube 640 is porous.
  • plasma formed in cavity 610 can flow into melting column 605 to heat the objects located there, although care should be taken to ensure that apertures 607 in tube 640 are located above slag 609 or any other liquid that may form in column 605 .
  • wall 625 need not be thermally conductive.
  • the plasma can be used to convey one or more reactants into column 605 .
  • the longitudinal axes of apertures 607 can be directed in a downward direction.
  • each aperture that opens into cavity 610 can be higher than the end of the same aperature that opens into column 605 .
  • Many of the components shown in FIG. 15A and subsequent FIGS. are not described here because they are already described above with respect to FIG. 15 .
  • the method can include forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, heating a second gas with the plasma, adding a solid to a melting vessel, directing the heated second gas toward the solid sufficient to at least melt the solid into a liquid, and collecting the liquid.
  • the solid can be metal ore, scrap metal, or any other solid
  • the liquid can be a molten metal, for example.
  • the first gas can be any gas known to form a plasma, such as argon, under suitable conditions.
  • the second gas can be air.
  • the first and second gases can be the same, if desired, and contain one or more additives.
  • plasma can be ignited, modulated, or sustained (e.g., at atmospheric pressure) using a plasma catalyst consistent with this invention, including passive and active catalysts. Accordingly, the many possible catalysts that can be used consistent with this invention will not be discussed here again.
  • FIG. 16 shows a cross-section of another illustrative plasma-assisted melting furnace 700 with multiple electromagnetic radiation sources 705 .
  • two layers of refractory bricks 710 line melting column 715 and the solid to be melted is shown schematically in furnace 700 .
  • the bottom of furnace 700 includes at least one outlet channel 720 for removing liquefied solid 722 .
  • furnace 700 can also include at least one channel 725 for removing slag 727 or any other undesirable melting byproduct.
  • a plasma can be formed in plasma cavity 730 .
  • the plasma can be formed from a gas that is fed through inlet 735 .
  • Plasma cavity 730 and radiation source 705 can be separated by window 740 , which can be substantially transmissive to the electromagnetic radiation generated by source 705 .
  • the radiation can be directed to plasma cavity 730 using any conventional technique, including coaxial cables, antennas, and waveguides of any kind.
  • source 705 can be coupled to plasma cavity 730 axially or otherwise using any of these techniques, or mounted directly to plasma cavity 730 .
  • a magnetic field can be applied to plasma cavity 730 using a magnet, such as electromagnet 745 .
  • electromagnet 745 can be a coil wrapped around plasma cavity 730 .
  • the coil can then be connected to a power source (not shown) configured to pass electric current through the coil.
  • the magnetic field can be oriented axially—that is, along the axis of an elongated plasma cavity.
  • FIG. 17 shows another embodiment of plasma-assisted furnace 750 for melting solids, such as metals.
  • Furnace 750 can include refractory housing 760 , which may be formed, for example, from refractory bricks, crucible 755 for containing the melting and/or melted solids, which may be formed from any material capable of withstanding the high temperatures necessary to melt the solid in crucible 755 , support frame 765 for supporting crucible 755 , at least one gas port 770 for supplying or evacuating gas from within housing 760 , at least one electromagnetic radiation port 775 for directing electromagnetic radiation into housing 760 , and optionally outer metallic shell 780 to prevent the radiation from escaping the housing and thus preventing a potential health hazard.
  • a gap (not shown) can be formed between shell 780 and housing 760 through which gas can flow. This can be used, for example, to preheat the gas supplied by port 770 and forms the plasma within housing 760 .
  • Housing 760 can further include metallic lid 790 (which may be thermally insulated) to prevent electromagnetic radiation from escaping.
  • Housing 760 can also include plate 774 , which may be metal and may include one or more holes to permit gas to flow therethrough and out of housing 760 through exhaust port 772 .
  • plate may be substantially nonporous, in which case exhaust gas can flow out through one or more gas ports 770 .
  • support frame 760 can be configured to tilt and drain its melted contents, if desired. It will also be appreciated that the temperature of the plasma-assisted melting process can be monitored, as described above, using (for example) a pyrometer. Also as described above, plasma catalyst 785 can be located in any convenient position to ignite, modulate, or sustain the plasma in housing 760 , above, at, or below atmospheric pressure. Finally, one or more magnetic fields may be applied to the plasma to effect its location and heating characteristics.
  • FIG. 18 shows a simplified cross-sectional view of yet another plasma-assisted melting furnace 800 , but does not show optional insulation jacket, drain pipe for molten metal, and lid.
  • Furnace 800 can include crucible 805 and at least one plasma cavity 810 in thermal contact with an outer surface of crucible 805 .
  • plasma cavity 810 can include one or more gas and electromagnet radiation ports. It will also be appreciated that plasma cavity 810 can be substantially spiral or serpentine (not shown) or straight (shown). In any case, when multiple plasma cavities are used, each cavity can be controlled separately to control the temperature of the crucible or the material inside.
  • each of the plasma cavity sections can be oriented vertically, horizontally, or any combination thereof, and can be supplied electromagnetic radiation by separate sources, if desired.
  • FIG. 19 shows another illustrative embodiment of plasma-assisted melting furnace 850 in which a plasma can be formed in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst.
  • Furnace 850 can include conveyor 875 and at least one plasma cavity 860 such that the solid can be conveyed through a plasma formed in cavity 860 until the solid melts and the liquid is collected.
  • solid particles 865 e.g., scrap iron
  • conveyor 875 can convey particles 865 through the plasma, which can be formed above or below conveyor 875 .
  • conveyor 875 can convey solid particles 865 through plasma cavity 860 .
  • conveyor 875 may be porous and permit melted portions 868 to pass beneath conveyor 875 into collection conduit 880 . It will be appreciated that when conveyor 875 is positioned in an upper portion of cavity 860 , it is possible to take advantage of the plasma's natural tendancy to rise in the cavity and substantially engulf particles 865 .
  • Conveyor 875 can also be positioned above or below a plasma cavity (not shown) that is different from housing 890 . In this case, the cavity can be used to form one or more plasma jets, which can be directed at conveyor 875 and particles 865 to melt them. Once conveyor 875 has conveyed the particles through a plasma, conveyor 875 can be recycled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Apparatus and methods for plasma-assisted melting are provided. In one embodiment, a plasma-assisted melting method can include: (1) adding a solid to a melting region, (2) forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall, (3) sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into a liquid, and (4) collecting the liquid. Solids that can be melted consistent with this invention can include metals, such as metal ore and scrap metal. Various plasma catalysts are also provided.

Description

CROSS-REFERENCE OF RELATED APPLICATIONS
This is a continuation-in-part of International Patent Application No. PCT/US03/14133, filed May 7, 2003, entitled “PLASMA HEATING APPARATUS AND METHODS” , and claims priority to U.S. Provisional Application Nos. 60/430,677, filed Dec. 4, 2002, 60/435,278, filed Dec. 23, 2002, all of which are fully incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates to methods and apparatus for plasma-assisted heating and melting, and in particular to melting metals and other solid materials.
BACKGROUND OF THE INVENTION
Blast furnaces have been used to chemically reduce and physically convert iron oxides into liquid iron. Often, the blast furnace includes a large steel stack lined with refractory brick, where iron ore, coke, and limestone are dumped into the top, and preheated air is blown into the bottom. These materials descend to the bottom of the furnace where they become the final product of liquid slag and liquid iron, which are normally drained from the furnace at regular intervals. Once a blast furnace has been started, it can continuously run for years.
The cupola plasma furnace functions similarly to a blast furnace, except that it makes molten cast iron from scrap steel or scrap substitutes. The fuel for this furnace is usually coke and often requires megawatts of plasma power. During operation, heated air is boosted in temperature with a plasma torch and blown into the bottom of the cupola. The coke can be burned creating more heat, which melts the iron. The iron can then exit the furnace and run through a trough to an iron ladle.
It is known that a plasma can be ignited by subjecting a gas to a sufficient amount of microwave radiation at reduced pressure. Vacuum equipment, however, can be expensive, slow, and energy-consuming. Moreover, the use of such equipment can limit the applications of such furnaces.
BRIEF SUMMARY OF A FEW ASPECTS OF THE INVENTION
Consistent with the present invention, plasma heating and melting apparatus and methods are provided.
In one embodiment, a plasma-assisted melting method may be provided. The method can include forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, heating a second gas with the plasma, adding a solid to a melting vessel, directing the heated second gas toward the solid sufficient to at least melt the solid into a liquid, and collecting the liquid.
In another embodiment, a plasma-assisted melting method may be provided. The method can include adding a solid to a melting region, forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall, sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid, and collecting the liquid.
In still another embodiment, a plasma-assisted melting method may include forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, conveying metal through the plasma until the metal melts into a molten metal, and collecting the molten metal.
Plasma catalysts, and methods and apparatus for igniting, modulating, and sustaining a plasma consistent with this invention are also provided.
BRIEF DESCRIPTION OF THE DRAWINGS
Further aspects of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
FIG. 1 shows a schematic diagram of an illustrative apparatus consistent with this invention;
FIG. 2 shows an illustrative embodiment of a portion of a plasma system for adding a powder plasma catalyst to a plasma cavity for igniting, modulating, or sustaining a plasma in a cavity consistent with this invention;
FIG. 3 shows an illustrative plasma catalyst fiber with at least one component having a concentration gradient along its length consistent with this invention;
FIG. 4 shows an illustrative plasma catalyst fiber with multiple components at a ratio that varies along its length consistent with this invention;
FIG. 5A shows another illustrative plasma catalyst fiber that includes a core underlayer and a coating consistent with this invention;
FIG. 5B shows a cross-sectional view of the plasma catalyst fiber of FIG. 5A, taken from line 5B—5B of FIG. 5A, consistent with this invention;
FIG. 6 shows an illustrative embodiment of another portion of a plasma system including an elongated plasma catalyst that extends through ignition port consistent with this invention;
FIG. 7 shows an illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 6 consistent with this invention;
FIG. 8 shows another illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 6 consistent with this invention;
FIG. 9 shows an illustrative embodiment of a portion of a plasma system for directing ionizing radiation into a radiation chamber consistent with this invention;
FIG. 10 shows a cross-sectional view of illustrative plasma-assisted heating apparatus consistent with this invention;
FIG. 11 shows a flow-chart of an illustrative method for plasma-assisted heating consistent with this invention;
FIG. 12 shows a cross-sectional view of another illustrative plasma-assisted heating apparatus consistent with this invention;
FIG. 13 shows a cross-sectional perspective view of another illustrative plasma-assisted heating apparatus consistent with this invention;
FIG. 14 shows a cross-sectional perspective view of yet another illustrative plasma-assisted heating apparatus consistent with this invention;
FIG. 15 shows a cross-sectional view of an illustrative plasma-assisted melting furnace consistent with this invention;
FIG. 15A shows a cross-sectional view of another illustrative plasma-assisted melting furnace in which its inner tube is porous consistent with this invention;
FIG. 16 shows a cross-sectional view of yet another illustrative plasma-assisted melting furnace with multiple electromagnetic radiation sources consistent with this invention;
FIG. 17 shows still another embodiment of plasma-assisted furnace for melting solids, such as metals, consistent with this invention;
FIG. 18 shows a simplified cross-sectional view of yet another plasma-assisted melting furnace that includes a crucible and at least one plasma cavity in thermal contact with an outer surface of the crucible consistent with this invention; and
FIG. 19 shows another illustrative embodiment of plasma-assisted melting furnace that includes a conveyor consistent with this invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Consistent with the present invention, systems and methods for plasma-assisted heating and melting are provided. As described more fully below, any type of matter (e.g., solid, fluid, or gas) can be heated by modulating or sustaining a plasma in a cavity, optionally with a plasma catalyst. In one embodiment, the cavity may have a radiation-transmissive wall and a thermally conductive wall. A plasma can be formed in the cavity by irradiating a gas located in the cavity with electromagnetic radiation. As the temperature of the plasma rises, radiative energy absorbed by the plasma can be transferred, in the form of thermal energy, to the matter (in an adjacent chamber, for example) through the thermally conductive wall. In one embodiment, a radiation source, such as a microwave radiation source, may direct radiation at the gas.
It will be appreciated that multiple radiation sources may be used consistent with this invention, such as described in commonly owned U.S. patent application Ser. No. 10/430,415, filed May 7, 2003, which is hereby incorporated by reference in its entirety. Thus, this invention can be used for controllably generating heat and for plasma-assisted melting with lower energy costs and increased efficiency.
Plasma catalysts for initiating, modulating, and sustaining a plasma are also provided. A catalyst can be passive or active. A passive plasma catalyst can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention without necessarily adding additional energy through the catalyst, such as by applying a voltage to create a spark. An active plasma catalyst, on the other hand, may be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule, in the presence of electromagnetic radiation.
The following commonly owned, patent applications, filed May 7, 2003, are also hereby incorporated by reference in their entireties: PCT Patent Application No. PCT/US03/14037, subsequently filed on Nov. 3, 2004 as U.S. patent application Ser. No. 10/513,221, PCT Patent Application No. PCT/(US03/14124, subsequently file on Nov. 4, 2004 as U.S. patent application Ser. No. 10/513,393, PCT Patent Application No. PCT/US03/14025, subsequently filed on Nov. 4, 2004 as U.S. patent application Ser. No. 10/513,394, PCT Patent Application No. PCT/US03/14054, subsequently filed on Nov. 3, 2004 as U.S. patent application Ser. No. 10/513,305, PCT Patent Application No. PCT/US03/14036, subsequently filed on Nov. 5, 2004 as U.S. patent application Ser. No. 10/513,607, Ser. No. 10/430,414, now issued as U.S. Patent No. 6,870,124, PCT Patent Application No. PCT/US03/14034, Ser. No. 10/430,416 PCT Patent Application No. PCT/US03/14035, subsequently filed on Nov. 5, 2004 as U.S. patent application Ser. No. 10/513,606, PCT Patent Application No. PCT/US03/14040, subsequently filed on Nov. 3, 2004 as U.S. patent application Ser. No. 10/513,309, PCT Patent Application No. PCT/US03/14134, subsequently filed on Nov. 3, 2004 as U.S. patent application Ser. No. 10/513,220, PCT Patent Application No. PCT/US03/14122, PCT Patent Application No. PCT/US03/14055, subsequently filed on Nov. 5, 2004 as U.S. patent application Ser. No. 10/513,605, PCT Patent Application No. PCT/US03/14137, Ser. No. 10/430426 PCT Patent Application No. PCT/US03/14121, PCT Patent Application No. PCT/US03/14136, subsequently filed on Nov. 5, 2004 as U.S. patent application Ser. No. 10/513,604.
Illustrative Plasma Furnace
FIG. 1 shows illustrative plasma system 10 consistent with one aspect of this invention. In this embodiment, cavity 12 is formed in a vessel that is positioned inside radiation chamber (i.e., applicator) 14. In another embodiment (not shown), vessel 12 and radiation chamber 14 are the same, thereby eliminating the need for two separate components. The vessel in which cavity 12 is formed can include one or more radiation-transmissive insulating layers to improve its thermal insulation properties without significantly shielding cavity 12 from the radiation.
In one embodiment, cavity 12 is formed in a vessel made of ceramic. Due to the extremely high temperatures that can be achieved with plasmas consistent with this invention, a ceramic capable of operating at about 3,000 degrees Fahrenheit can be used. The ceramic material can include, by weight, 29.8% silica, 68.2% alumina, 0.4% ferric oxide, 1% titania, 0.1% lime, 0.1% magnesia, 0.4% alkalies, which is sold under Model No. LW-30 by New Castle Refractories Company, of New Castle, Pa. It will be appreciated by those of ordinary skill in the art, however, that other materials, such as quartz, and those different from the one described above, can also be used consistent with the invention. It will also be appreciated that because the furnace operating temperature can be different for different types of applications, the material used to make the vessel may only need to withstand temperatures substantially below 3,000 degrees Fahrenheit, such as about 2,500 degrees, or about 1,000 degrees Fahrenheit, or even lower.
In one embodiment, a plasma was formed in a partially open cavity inside a first brick and topped with a second brick. The cavity had dimensions of about 2 inches by about 2 inches by about 1.5 inches. At least two holes were also provided in the brick in communication with the cavity: one for viewing the plasma and at least one hole for providing the gas. The size of the cavity can depend on the desired plasma process being performed. Also, for some applications, the cavity can be configured to prevent the plasma from rising/floating away from the primary heating region.
Cavity 12 can be connected to one or more gas sources 24 (e.g., a source of argon, nitrogen, hydrogen, xenon, krypton) by line 20 and control valve 22, which may be powered by power supply 28 or any other supply. Line 20 may be tubing (e.g., between about 1/16 inch and about ¼ inch, such as about ⅛″), but can be any channel or device capable of supplying a gas to cavity 12. Also, if desired, a vacuum pump (not shown) can be connected to chamber 14 to remove any undesirable fumes that may be generated during plasma processing.
A radiation leak detector (not shown) can be installed near source 26 and waveguide 30 and connected to a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm2), was detected.
In one embodiment, the radiation apparatus may include radiation source 26 for directing radiation into the cavity. The radiation apparatus may further include other radiation sources (not shown) for directing additional radiation into the cavity. Radiation source 26, which may be powered by electrical power supply 28, can direct radiation into chamber 14 through one or more waveguides 30. It will be appreciated by those of ordinary skill in the art that source 26 can be connected directly to chamber 14 or cavity 12, thereby eliminating waveguides 30. The radiation energy entering cavity 12 can be used to ignite a plasma within the cavity. This plasma can be modulated or substantially sustained and confined to the cavity by coupling additional radiation with the catalyst.
Radiation source 26 may be a magnetron, a klystron, a gyrotron, a traveling-wave tube amplifier, or any other device capable of generating radiation. Radiation having any frequency less than about 333 GHz can be used consistent with this invention. For example, frequencies, such as power line frequencies (about 50 Hz to about 60 Hz), can be used, although the pressure of the gas from which the plasma is formed may be lowered to assist with plasma ignition. Also, any radio frequency or microwave frequency can be used consistent with this invention, including frequencies greater than about 100 kHz. In most cases, the gas pressure for such relatively high frequencies need not be lowered to ignite, modulate, or sustain a plasma, thereby enabling many plasma-processes to occur over a broad range of pressures, including atmospheric pressure and above.
For example, the invention may be practiced by employing microwave sources at both 915 MHz and 2.45 GHz provided by Communications and Power Industries (CPI), although radiation having any frequency less than about 333 GHz can be used. A 3-stub tuner may allow impedance matching for maximum power transfer and a dual directional coupler may be used to measure forward and reflected powers.
Radiation energy can be supplied by radiation source 26 through circulator 32 and tuner 34 (e.g., 3-stub tuner). Tuner 34 can be used to minimize the reflected power as a function of changing ignition or processing conditions, especially before the plasma has formed because microwave power, for example, will be strongly absorbed by the plasma, although the use of a circulator and a tuner is optional.
As explained more fully below, the location of radiation-transmissive cavity 12 in chamber 14 may not be critical if chamber 14 supports multiple modes, and especially when the modes are continually or periodically mixed. As also explained more fully below, motor 36 can be connected to mode-mixer 38 for making the time-averaged radiation energy distribution substantially uniform throughout chamber 14. Furthermore, window 40 (e.g., a quartz window) can be disposed in one wall of chamber 14 adjacent to cavity 12, permitting temperature sensor 42 (e.g., an optical pyrometer) to be used to view a process inside cavity 12. In one embodiment, the optical pyrometer output can increase from zero volts as the temperature rises to within the tracking range.
Sensor 42 can develop output signals as a function of the temperature or any other monitorable condition associated with a work piece (not shown) within cavity 12 and provide the signals to controller 44. Dual temperature sensing and heating, as well as automated cooling gas flow control, can also be used. Controller 44 in turn can be used to control operation of power supply 28, which can have one output connected to source 26 as described above and another output connected to valve 22 to control gas flow into cavity 12.
The equipment may be computer controlled using Lab View 6 i software, which may provide real-time temperature monitoring and microwave power control. Noise may be reduced by using sliding averages of suitable number of data points. Also, by using shift registers and buffer sizing the number of stored data points in the array may be limited to improve speed and computational efficiency. The pyrometer may measure the temperature of a sensitive area of about 1 cm.sup.2, which may be used to calculate an average temperature. The pyrometer may sense radiant intensities at two wavelengths and fit those intensities using Planck's law to determine the temperature. It will be appreciated, however, that other devices and methods for monitoring and controlling temperature are also available and can be used consistent with this invention. Control software that can be used consistent with this invention is described, for example, in commonly owned PCT Patent Application No. PCT/US03/14135, filed May 7, 2003, which is hereby incorporated by reference in its entirety.
Chamber 14 may have several glass-covered viewing ports with radiation shields and a quartz window for pyrometer access. Several ports for connection to a vacuum pump and a gas source may also be provided, although not necessarily used.
The exemplary furnace may also include a closed-loop deionized water cooling system (not shown) with an external heat exchanger cooled by tap water. During operation, the deionized water may first cool the magnetron, then the load-dump in the circulator (used to protect the magnetron), and finally the radiation chamber through water channels welded on the outer surface of the chamber.
Plasma Catalysts
A plasma catalyst consistent with this invention can include one or more different materials and may be either passive or active. A plasma catalyst can be used, among other things, to ignite, modulate, and/or sustain a plasma at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
One method of forming a plasma consistent with this invention can include subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a passive plasma catalyst. A passive plasma catalyst consistent with this invention can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention, without necessarily adding additional energy through the catalyst, such as by applying an electric voltage to create a spark.
A passive plasma catalyst consistent with this invention can also be a nano-particle or a nano-tube. As used herein, the term “nano-particle” can include any particle having a maximum physical dimension less than about 100 nm that is at least electrically semi-conductive. Also, both single-walled and multi-walled carbon nanotubes, doped and undoped, can be particularly effective for igniting plasmas consistent with this invention because of their exceptional electrical conductivity and elongated shape. The nanotubes can have any convenient length and can be a powder fixed to a substrate. If fixed, the nanotubes can be oriented randomly on the surface of the substrate or fixed to the substrate (e.g., at some predetermined orientation) while the plasma is ignited or sustained.
A passive plasma catalyst can also be a powder consistent with this invention, and need not comprise nano-particles or nano-tubes. It can be formed, for example, from fibers, dust particles, flakes, sheets, etc. When in powder form, the catalyst can be suspended, at least temporarily, in a gas. By suspending the powder in the gas, the powder can be quickly dispersed throughout the cavity and more easily consumed, if desired.
In one embodiment, a powder catalyst can be carried into the cavity and at least temporarily suspended with a carrier gas. The carrier gas can be the same or different from the gas that forms the plasma. Also, the powder can be added to the gas prior to being introduced to the cavity. For example, as shown in FIG. 2, radiation source 52 can supply radiation to radiation cavity 55, in which plasma cavity 60 is placed. Powder source 65 can provide catalytic powder 70 into gas stream 75. In an alternative embodiment, powder 70 can be first added to cavity 60 in bulk (e.g., in a pile) and then distributed in the cavity in any number of ways, including flowing a gas through or over the bulk powder. In addition, the powder can be added to the gas for igniting, modulating, or sustaining a plasma by moving, conveying, drizzling, sprinkling, blowing, or otherwise, feeding the powder into or within the cavity.
In one experiment, a plasma was ignited in a cavity by placing a pile of carbon fiber powder in a copper pipe that extended into the cavity. Although sufficient radiation was directed into the cavity, the copper pipe shielded the powder from the radiation and no plasma ignition took place. However, once a carrier gas began flowing through the pipe, forcing the powder out of the pipe and into the cavity, and thereby subjecting the powder to the radiation, a plasma was nearly instantaneously ignited in the cavity.
A powder plasma catalyst consistent with this invention can be substantially non-combustible, thus it need not contain oxygen or burn in the presence of oxygen. Thus, as mentioned above, the catalyst can include a metal, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, and any combination thereof.
Also, powder catalysts can be substantially uniformly distributed in the plasma cavity (e.g., when suspended in a gas), and plasma ignition can be precisely controlled within the cavity. Uniform ignition can be important in certain applications, including those applications requiring brief plasma exposures, such as in the form of one or more bursts. Still, a certain amount of time can be required for a powder catalyst to distribute itself throughout a cavity, especially in complicated, multi-chamber cavities. Therefore, consistent with another aspect of this invention, a powder catalyst can be introduced into the cavity through a plurality of ignition ports to more rapidly obtain a more uniform catalyst distribution therein (see below).
In addition to powder, a passive plasma catalyst consistent with this invention can include, for example, one or more microscopic or macroscopic fibers, sheets, needles, threads, strands, filaments, yarns, twines, shavings, slivers, chips, woven fabrics, tape, whiskers, or any combination thereof. In these cases, the plasma catalyst can have at least one portion with one physical dimension substantially larger than another physical dimension. For example, the ratio between at least two orthogonal dimensions should be at least about 1:2, but could be greater than about 1:5, or even greater than about 1:10.
Thus, a passive plasma catalyst can include at least one portion of material that is relatively thin compared to its length. A bundle of catalysts (e.g., fibers) may also be used and can include, for example, a section of graphite tape. In one experiment, a section of tape having approximately thirty thousand strands of graphite fiber, each about 2–3 microns in diameter, was successfully used. The number of fibers in and the length of a bundle are not critical to igniting, modulating, or sustaining the plasma. For example, satisfactory results have been obtained using a section of graphite tape about one-quarter inch long. One type of carbon fiber that has been successfully used consistent with this invention is sold under the trademark Magnamite®, Model No. AS4C-GP3K, by the Hexcel Corporation, of Anderson, S. C. Also, silicon-carbide fibers have been successfully used.
A passive plasma catalyst consistent with another aspect of this invention can include one or more portions that are, for example, substantially spherical, annular, pyramidal, cubic, planar, cylindrical, rectangular or elongated.
The passive plasma catalysts discussed above include at least one material that is at least electrically semi-conductive. In one embodiment, the material can be highly conductive. For example, a passive plasma catalyst consistent with this invention can include a metal, an inorganic material, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, or any combination thereof. Some of the possible inorganic materials that can be included in the plasma catalyst include carbon, silicon carbide, molybdenum, platinum, tantalum, tungsten, carbon nitride, and aluminum, although other electrically conductive inorganic materials are believed to work just as well.
In addition to one or more electrically conductive materials, a passive plasma catalyst consistent with this invention can include one or more additives (which need not be electrically conductive). As used herein, the additive can include any material that a user wishes to add to the plasma. For example, in doping semiconductors and other materials, one or more dopants can be added to the plasma through the catalyst. See, e.g., commonly owned PCT Patent Application No. PCT/US03/14130 filed May 7, 2003, subsequently filed on Nov. 4, 2005 as U.S. patent application Ser. No. 10/513,397, which is hereby incorporated by reference in its entirety. The catalyst can include the dopant itself, or it can include a precursor material that, upon decomposition, can form the dopant. Thus, the plasma catalyst can include one or more additives and one or more electrically conductive materials in any desirable ratio, depending on the ultimate desired composition of the plasma and the process using the plasma.
The ratio of the electrically conductive components to the additives in a passive plasma catalyst can vary over time while being consumed. For example, during ignition, the plasma catalyst could desirably include a relatively large percentage of electrically conductive components to improve the ignition conditions. On the other hand, if used while modulating or sustaining the plasma, the catalyst could include a relatively large percentage of additives. It will be appreciated by those of ordinary skill in the art that the component ratio of the plasma catalyst used to ignite, modulate, and/or sustain the plasma could be the same.
A predetermined ratio profile can be used to simplify many plasma processes. In many conventional plasma processes, the components within the plasma are added as necessary, but such addition normally requires programmable equipment to add the components according to a predetermined schedule. However, consistent with this invention, the ratio of components in the catalyst can be varied, and thus the ratio of components in the plasma itself can be automatically varied. That is, the ratio of components in the plasma at any particular time can depend on which of the catalyst portions is currently being consumed by the plasma. Thus, the catalyst component ratio can be different at different locations within the catalyst. And, the current ratio of components in a plasma can depend on the portions of the catalyst currently and/or previously consumed, especially when the flow rate of a gas passing through the plasma chamber is relatively slow.
A passive plasma catalyst consistent with this invention can be homogeneous, inhomogeneous, or graded. Also, the plasma catalyst component ratio can vary continuously or discontinuously throughout the catalyst. For example, in FIG. 3, the ratio can vary smoothly forming a gradient along a length of catalyst 100. Catalyst 100 can include a strand of material that includes a relatively low concentration of a component at section 105 and a continuously increasing concentration toward section 110.
Alternatively, as shown in FIG. 4, the ratio can vary discontinuously in each portion of catalyst 120, which includes, for example, alternating sections 125 and 130 having different concentrations. It will be appreciated that catalyst 120 can have more than two section types. Thus, the catalytic component ratio being consumed by the plasma can vary in any predetermined fashion. In one embodiment, when the plasma is monitored and a particular additive is detected, further processing can be automatically commenced or terminated.
Another way to vary the ratio of components in a sustained plasma is by introducing multiple catalysts having different component ratios at different times or different rates. For example, multiple catalysts can be introduced at approximately the same location or at different locations within the cavity. When introduced at different locations, the plasma formed in the cavity can have a component concentration gradient determined by the locations of the various catalysts. Thus, an automated system can include a device by which a consumable plasma catalyst is mechanically inserted before and/or during plasma igniting, modulating, and/or sustaining.
A passive plasma catalyst consistent with this invention can also be coated. In one embodiment, a catalyst can include a substantially non-electrically conductive coating deposited on the surface of a substantially electrically conductive material. Alternatively, the catalyst can include a substantially electrically conductive coating deposited on the surface of a substantially electrically non-conductive material. FIGS. 5A and 5B, for example, show fiber 140, which includes underlayer 145 and coating 150. In one embodiment, a plasma catalyst including a carbon core is coated with nickel to prevent oxidation of the carbon.
A single plasma catalyst can also include multiple coatings. If the coatings are consumed during contact with the plasma, the coatings could be introduced into the plasma sequentially, from the outer coating to the innermost coating, thereby creating a time-release mechanism. Thus, a coated plasma catalyst can include any number of materials, as long as a portion of the catalyst is at least electrically semi-conductive.
Consistent with another embodiment of this invention, a plasma catalyst can be located entirely within a radiation cavity to substantially reduce or prevent radiation energy leakage. In this way, the plasma catalyst does not electrically or magnetically couple with the vessel containing the cavity or to any electrically conductive object outside the cavity. This prevents sparking at the ignition port and prevents radiation from leaking outside the cavity during the ignition and possibly later if the plasma is sustained. In one embodiment, the catalyst can be located at a tip of a substantially electrically non-conductive extender that extends through an ignition port.
FIG. 6, for example, shows radiation chamber 160 in which plasma cavity 165 is placed. Plasma catalyst 170 is elongated and extends through ignition port 175. As shown in FIG. 7, and consistent with this invention, catalyst 170 can include electrically conductive distal portion 180 (which is placed in chamber 160) and electrically non-conductive portion 185 (which is placed substantially outside chamber 160). This configuration prevents an electrical connection (e.g., sparking) between distal portion 180 and chamber 160.
In another embodiment, shown in FIG. 8, the catalyst can be formed from a plurality of electrically conductive segments 190 separated by and mechanically connected to a plurality of electrically non-conductive segments 195. In this embodiment, the catalyst can extend through the ignition port between a point inside the cavity and another point outside the cavity, but the electrically discontinuous profile significantly prevents sparking and energy leakage.
Another method of forming a plasma consistent with this invention includes subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of an active plasma catalyst, which generates or includes at least one ionizing particle.
An active plasma catalyst consistent with this invention can be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation. Depending on the source, the ionizing particles can be directed into the cavity in the form of a focused or collimated beam, or they may be sprayed, spewed, sputtered, or otherwise introduced.
For example, FIG. 9 shows radiation source 200 directing radiation into radiation chamber 205. Plasma cavity 210 can be positioned inside of chamber 205 and may permit a gas to flow therethrough via its gas ports. Source 220 directs ionizing particles 225 into cavity 210. Source 220 can be protected, for example, by a metallic screen which allows the ionizing particles to pass through but shields source 220 from radiation. If necessary, source 220 can be water-cooled.
Examples of ionizing particles consistent with this invention can include x-ray particles, gamma ray particles, alpha particles, beta particles, neutrons, protons, and any combination thereof. Thus, an ionizing particle catalyst can be charged (e.g., an ion from an ion source) or uncharged and can be the product of a radioactive fission process. In one embodiment, the vessel in which the plasma cavity is formed could be entirely or partially transmissive to the ionizing particle catalyst. Thus, when a radioactive fission source is located outside the cavity, the source can direct the fission products through the vessel to ignite the plasma. The radioactive fission source can be located inside the radiation chamber to substantially prevent the fission products (i.e., the ionizing particle catalyst) from creating a safety hazard.
In another embodiment, the ionizing particle can be a free electron, but it need not be emitted in a radioactive decay process. For example, the electron can be introduced into the cavity by energizing the electron source (such as a metal), such that the electrons have sufficient energy to escape from the source. The electron source can be located inside the cavity, adjacent the cavity, or even in the cavity wall. It will be appreciated by those of ordinary skill in the art that the any combination of electron sources is possible. A common way to produce electrons is to heat a metal, and these electrons can be further accelerated by applying an electric field.
In addition to electrons, free energetic protons can also be used to catalyze a plasma. In one embodiment, a free proton can be generated by ionizing hydrogen and, optionally, accelerated with an electric field.
Multi-Mode Radiation Cavities
A radiation waveguide, cavity, or chamber can be designed to support or facilitate propagation of at least one electromagnetic radiation mode. As used herein, the term “mode” refers to a particular pattern of any standing or propagating electromagnetic wave that satisfies Maxwell's equations and the applicable boundary conditions (e.g., of the cavity). In a waveguide or cavity, the mode can be any one of the various possible patterns of propagating or standing electromagnetic fields. Each mode is characterized by its frequency and polarization of the electric field and/or the magnetic field vectors. The electromagnetic field pattern of a mode depends on the frequency, refractive indices or dielectric constants, and waveguide or cavity geometry.
A transverse electric (TE) mode is one whose electric field vector is normal to the direction of propagation. Similarly, a transverse magnetic (TM) mode is one whose magnetic field vector is normal to the direction of propagation. A transverse electric and magnetic (TEM) mode is one whose electric and magnetic field vectors are both normal to the direction of propagation. A hollow metallic waveguide does not typically support a normal TEM mode of radiation propagation. Even though radiation appears to travel along the length of a waveguide, it may do so only by reflecting off the inner walls of the waveguide at some angle. Hence, depending upon the propagation mode, the radiation (e.g., microwave) may have either some electric field component or some magnetic field component along the axis of the waveguide (often referred to as the z-axis).
The actual field distribution inside a cavity or waveguide is a superposition of the modes therein. Each of the modes can be identified with one or more subscripts (e.g., TE10 (“tee ee one zero”). The subscripts normally specify how many “half waves” at the guide wavelength are contained in the x and y directions. It will be appreciated by those skilled in the art that the guide wavelength can be different from the free space wavelength because radiation propagates inside the waveguide by reflecting at some angle from the inner walls of the waveguide. In some cases, a third subscript can be added to define the number of half waves in the standing wave pattern along the z-axis.
For a given radiation frequency, the size of the waveguide can be selected to be small enough so that it can support a single propagation mode. In such a case, the system is called a single-mode system (i.e., a single-mode applicator). The TE10 mode is usually dominant in a rectangular single-mode waveguide.
As the size of the waveguide (or the cavity to which the waveguide is connected) increases, the waveguide or applicator can sometimes support additional higher order modes forming a multi-mode system. When many modes are capable of being supported simultaneously, the system is often referred to as highly moded.
A simple, single-mode system has a field distribution that includes at least one maximum and/or minimum. The magnitude of a maximum largely depends on the amount of radiation supplied to the system. Thus, the field distribution of a single mode system is strongly varying and substantially non-uniform.
Unlike a single-mode cavity, a multi-mode cavity can support several propagation modes simultaneously, which, when superimposed, results in a complex field distribution pattern. In such a pattern, the fields tend to spatially smear and, thus, the field distribution usually does not show the same types of strong minima and maxima field values within the cavity. In addition, as explained more fully below, a mode-mixer can be used to “stir” or “redistribute” modes (e.g., by mechanical movement of a radiation reflector). This redistribution desirably provides a more uniform time-averaged field distribution within the cavity.
A multi-mode cavity consistent with this invention can support at least two modes, and may support many more than two modes. Each mode has a maximum electric field vector. Although there may be two or more modes, one mode may be dominant and has a maximum electric field vector magnitude that is larger than the other modes. As used herein, a multi-mode cavity may be any cavity in which the ratio between the first and second mode magnitudes is less than about 1:10, or less than about 1:5, or even less than about 1:2. It will be appreciated by those of ordinary skill in the art that the smaller the ratio, the more distributed the electric field energy between the modes, and hence the more distributed the radiation energy is in the cavity.
The distribution of plasma within a processing cavity may strongly depend on the distribution of the applied radiation. For example, in a pure single mode system, there may only be a single location at which the electric field is a maximum. Therefore, a strong plasma may only form at that single location. In many applications, such a strongly localized plasma could undesirably lead to non-uniform plasma treatment or heating (i.e., localized overheating and underheating).
Whether or not a single or multi-mode cavity is used consistent with this invention, it will be appreciated by those of ordinary skill in the art that the cavity in which the plasma is formed can be completely closed or partially open. For example, in certain applications, such as in plasma-assisted furnaces, the cavity could be entirely closed. In other applications, however, it may be desirable to flow a gas through the cavity, and therefore the cavity must be open to some degree. In this way, the flow, type, and pressure of the flowing gas can be varied over time. This may be desirable because certain gases that facilitate plasma formation, such as argon, are easier to ignite but may not be needed during subsequent plasma processing.
Mode-mixing
For many applications, a cavity containing a uniform plasma is desirable. However, because radiation can have a relatively long wavelength (e.g., several tens of centimeters), obtaining a uniform distribution can be difficult to achieve. As a result, consistent with one aspect of this invention, the radiation modes in a multi-mode cavity can be mixed, or redistributed, over a period of time. Because the field distribution within the cavity must satisfy all of the boundary conditions set by the inner surface of the cavity, those field distributions can be changed by changing the position of any portion of that inner surface.
In one embodiment consistent with this invention, a movable reflective surface can be located inside the radiation cavity. The shape and motion of the reflective surface should, when combined, change the inner surface of the cavity during motion. For example, an “L” shaped metallic object (i.e., “mode-mixer”) when rotated about any axis will change the location or the orientation of the reflective surfaces in the cavity and therefore change the radiation distribution therein. Any other asymmetrically shaped object can also be used (when rotated), but symmetrically shaped objects can also work, as long as the relative motion (e.g., rotation, translation, or a combination of both) causes some change in the location or orientation of the reflective surfaces. In one embodiment, a mode-mixer can be a cylinder that is rotatable about an axis that is not the cylinder's longitudinal axis.
Each mode of a multi-mode cavity may have at least one maximum electric field vector, but each of these vectors could occur periodically across the inner dimension of the cavity. Normally, these maxima are fixed, assuming that the frequency of the radiation does not change. However, by moving a mode-mixer such that it interacts with the radiation, it is possible to move the positions of the maxima. For example, mode-mixer 38 can be used to optimize the field distribution within cavity 12 such that the plasma ignition conditions and/or the plasma sustaining conditions are optimized. Thus, once a plasma is excited, the position of the mode-mixer can be changed to move the position of the maxima for a uniform time-averaged plasma process (e.g., heating).
Thus, consistent with this invention, mode-mixing can be useful during plasma ignition. For example, when an electrically conductive fiber is used as a plasma catalyst, it is known that the fiber's orientation can strongly affect the minimum plasma-ignition conditions. It has been reported, for example, that when such a fiber is oriented at an angle that is greater than 60° to the electric field, the catalyst does little to improve, or relax, these conditions. By moving a reflective surface either in or near the cavity, however, the electric field distribution can be significantly changed.
Mode-mixing can also be achieved by launching the radiation into the applicator chamber through, for example, a rotating waveguide joint that can be mounted inside the applicator chamber. The rotary joint can be mechanically moved (e.g., rotated) to effectively launch the radiation in different directions in the radiation chamber. As a result, a changing field pattern can be generated inside the applicator chamber.
Mode-mixing can also be achieved by launching radiation in the radiation chamber through a flexible waveguide. In one embodiment, the waveguide can be mounted inside the chamber. In another embodiment, the waveguide can extend into the chamber. The position of the end portion of the flexible waveguide can be continually or periodically moved (e.g., bent) in any suitable manner to launch the radiation (e.g., microwave radiation) into the chamber at different directions and/or locations. This movement can also result in mode-mixing and facilitate more uniform plasma processing (e.g., heating) on a time-averaged basis. Alternatively, this movement can be used to optimize the location of a plasma for ignition or other plasma-assisted process.
If the flexible waveguide is rectangular, a simple twisting of the open end of the waveguide will rotate the orientation of the electric and the magnetic field vectors in the radiation inside the applicator chamber. Then, a periodic twisting of the waveguide can result in mode-mixing as well as rotating the electric field, which can be used to assist ignition, modulation, or sustaining of a plasma.
Thus, even if the initial orientation of the catalyst is perpendicular to the electric field, the redirection of the electric field vectors can change the ineffective orientation to a more effective one. Those skilled in the art will appreciate that mode-mixing can be continuous, periodic, or preprogrammed.
In addition to plasma ignition, mode-mixing can be useful during subsequent plasma-assisted processing (e.g., heating) to reduce or create (e.g., tune) “hot spots” in the chamber. When a cavity only supports a small number of modes (e.g., less than 5), one or more localized electric field maxima can lead to “hot spots” (e.g., within cavity 12). In one embodiment, these hot spots could be configured to coincide with one or more separate, but simultaneous, plasma ignitions or processing events. Thus, the plasma catalyst can be located at one or more of those ignition or subsequent processing or heating positions.
Multi-location Ignition
A plasma can be ignited using multiple plasma catalysts at different locations. In one embodiment, multiple fibers can be used to ignite the plasma at different points within the cavity. Such multi-point ignition can be especially beneficial when a uniform plasma ignition is desired. For example, when a plasma is modulated at a high frequency (i.e., tens of Hertz and higher), or ignited in a relatively large volume, or both, substantially uniform instantaneous striking and restriking of the plasma can be improved. Alternatively, when plasma catalysts are used at multiple points, they can be used to sequentially ignite a plasma at different locations within a plasma chamber by selectively introducing the catalyst at those different locations. In this way, a plasma ignition gradient can be controllably formed within the cavity, if desired.
Also, in a multi-mode cavity, random distribution of the catalyst throughout multiple locations in the cavity increases the likelihood that at least one of the fibers, or any other passive plasma catalyst consistent with this invention, is optimally oriented with the electric field lines. Still, even where the catalyst is not optimally oriented (not substantially aligned with the electric field lines), the ignition conditions are improved.
Furthermore, because a catalytic powder can be suspended in a gas, it is believed that each powder particle may have the effect of being placed at a different physical location within the cavity, thereby improving ignition uniformity within the cavity.
Dual-Cavity Plasma Igniting/Sustaining
A dual-cavity arrangement can be used to ignite and sustain a plasma consistent with this invention. In one embodiment, a system can include at least a first ignition cavity and a second cavity in fluid communication with the first cavity. To ignite a plasma, a gas in the first ignition cavity can be subjected to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst. In this way, the proximity of the first and second cavities may permit a plasma formed in the first cavity to ignite a plasma in the second cavity, which may be sustained with additional electromagnetic radiation.
In one embodiment of this invention, the first cavity can be very small and designed primarily, or solely for plasma ignition. In this way, very little radiation energy may be required to ignite the plasma, permitting easier ignition, especially when a plasma catalyst is used consistent with this invention.
In one embodiment, the first cavity may be a substantially single mode cavity and the second cavity is a multi-mode cavity. When the first ignition cavity only supports a single mode, the electric field distribution may strongly vary within the cavity, forming one or more precisely located electric field maxima. Such maxima are normally the first locations at which plasmas ignite, making them ideal points for placing plasma catalysts. It will be appreciated, however, that when a plasma catalyst is used, it need not be placed in the electric field maximum and, many cases, need not be oriented in any particular direction.
Illustrative Plasma-Assisted Heating and Melting
Methods and apparatus for plasma-assisted heating may be provided consistent with this invention. A plasma catalyst can be used to facilitate the igniting, modulating, or sustaining of the plasma at gas pressures below, at, or above atmospheric pressure.
FIG. 10 shows a cross-sectional view of illustrative plasma-assisted heating apparatus 300 consistent with this invention. Apparatus 300 can include cavity 305 for containing a gas, at least one radiation source 310, and heating region 315. Radiation source 310 can be configured to irradiate a gas located in cavity 305 and to ignite, modulate, and/or sustain a plasma from the gas in cavity 305. Cavity 305 can have at least one thermally conductive wall 320 for conducting the energy absorbed by the plasma in cavity 305 to a location outside cavity 305. Heating region 315 can be located external to cavity 305 (as shown in FIG. 10) and adjacent to wall 320. A radiation-transmissive window 328 can be used to prevent the plasma from moving from cavity 305 to waveguide 325.
Radiation source 310 can be, for example, a magnetron, a klystron, a gyrotron, a traveling wave tube, a solid state microwave source, or any other radiation source capable of supplying electromagnetic radiation having a frequency less than about 333 GHz. As shown in FIG. 10, radiation source 310 can direct radiation through waveguide 325. Alternatively, radiation source can be coupled to cavity 305 using a coaxial cable selected to propagate the desired type of radiation. In another embodiment, radiation source 310 can simply direct radiation toward cavity 305 without any physical connection.
For example, as shown in FIG. 1, radiation source 26 directs radiation into chamber 14 and that radiation passes through the vessel containing cavity 12. In this case, the cavity can have a wall portion that is at least partially radiation-transmissive (e.g., ceramic, quartz, etc.). It will be appreciated that any other technique for directing radiation into a plasma cavity can also be used consistent with this invention.
When radiation source 310 is turned on, or activated, care should be taken to prevent radiation from reflecting from an inner surface of cavity 305 and reentering source 310, which could damage it. One way to prevent such damage is to use a plasma catalyst consistent with this invention. As described above, the use of a plasma catalyst can cause a plasma to ignite nearly instantaneously when radiation first enters cavity 305. Because plasma strongly absorbs electromagnetic radiation, the existence of a plasma in cavity 305 can substantially prevent radiation from reflecting back into radiation source 310 at the early stages of plasma ignition. An isolator (not shown in FIG. 10) can also be located between cavity 305 and source 310 to further prevent potentially damaging radiation from passing back to radiation source 310, if desired.
In addition, one or more radiation sources can be used to direct radiation into cavity 305 consistent with this invention. In this case, radiation generated by one radiation source can be undesirably directed into another radiation source, which can also lead to the same type of damage due to reflected power. Once again, the use of a plasma catalyst consistent with this invention can essentially eliminate this danger because nearly all radiation will be strongly absorbed once the plasma is formed. For this reason, and as described in commonly owned filed U.S. patent application Ser. No. 10/430,415, filed May 7, 2003, which is hereby incorporated by reference in its entirety, one of the sources can be activated before the others to ignite the plasma, and then subsequent source can be activated. Alternatively, a first source can be cross-polarized with a second source.
As explained more fully above, a plasma catalyst can be located at any operational position. For example, a plasma catalyst can be located in the plasma cavity. In this case, the catalyst could be subject to ongoing plasma exposure during the use of the furnace, which could undesirably degrade the catalyst over time. Therefore, a plasma catalyst can also be placed proximate to the cavity, including in a wall of cavity 305 or adjacent to such a wall. For example, in the case of passive plasma catalyst, the catalyst only needs to be placed close enough to cavity 305 such that it deforms the electromagnetic fields in the cavity. In the case of an active catalyst, the source can be placed outside the cavity, but the ionizing particles can be directed into the plasma cavity.
As shown in FIG. 10, cavity 305 can be completely closed, or sealed. Thus, once a sufficient amount of gas in placed in cavity 305, the same gas can be used to repeatedly form a plasma within cavity 305. Alternatively, cavity 305 can include one or more gas ports (not shown) for flowing gas into and out of cavity 305 during plasma generation. Although in this configuration the cavity would not be completely sealed, it could still substantially confine a plasma and be used to generate heat consistent with this invention. Moreover, gas flow can be used, if desired to control the temperature of the plasma. That is, higher gas flow rates could be used to cool, or at least substantially slow down the rate of heating, of a plasma-assisted furnace consistent with this invention.
When cavity 305 is sealed, plasma catalyst 327, as well as the gas, can be located in cavity 305. In this case, the plasma catalyst can be coated with a thermal-protective layer. Alternatively, the catalyst can be moved from an optimum position in the cavity for igniting the plasma to a less optimum position, where the plasma would be less likely to degrade or consume the catalyst during operation. In another embodiment, the plasma catalyst can be fixed in the cavity, but a mode-mixer can be used to change the field distribution within the cavity. For example, the distribution can be originally tuned such that a hot spot is located at the plasma catalyst but then subsequently tuned such that the hot spot is located adjacent to wall 320.
As shown in FIG. 10, heat conducting region 315 can include a thermally conductive conduit for channeling fluid. The fluid can be, for example, a liquid or a gas, or a combination of both. Water, oil, or any other fluid capable of absorbing energy, either by thermal conduction or radiative absorption, can be used. Alternatively, heating region 315 can be configured to contain a heatable solid. Solids, such as iron, can be useful for storing energy in the form of thermal energy. In addition, a furnace consistent with this invention can be used to heat any other type of solid, such as a semiconductor, to perform any type of processing requiring heat.
FIG. 11 shows a flow-chart of an illustrative method for plasma-assisted heating (e.g., melting) consistent with this invention. In step 350, radiation can be directed into a cavity containing a gas to ignite a plasma in the cavity. In step 355, the plasma can be modulated or sustained in the cavity for a period of time sufficient to heat at least one thermally conductive cavity wall. And, in step 360, heat can be conducted or radiated through the wall to transfer thermal energy to matter on an opposite side of the wall.
As previously explained with respect to apparatus 300, a plasma can be ignited in step 350 by subjecting a gas in the cavity to the radiation in the presence of a plasma catalyst, which may be active or passive. As also previously explained, the plasma can be modulated or sustained by directing radiation into the cavity from at least one radiation source. When multiple radiation sources are used, a first source can direct radiation into the cavity before any of the other sources to ensure that a radiation absorbing plasma has been formed. This can help prevent radiation from reflecting or propagating into these radiation sources and damaging them.
FIG. 12 shows a cross-sectional view of another illustrative plasma-assisted heating apparatus 370. In this example, cavity 375 can include two functional walls: radiation-transmissive wall 322 and thermally conductive wall 324. As previously explained, radiation-transmissive wall 322 can be formed from any material capable of substantially transmitting radiation at the frequency provided by one or more radiation sources. Some of the radiation-transmissive materials that can be used consistent with this invention include, for example, quartz, Al2O3, and many ceramics.
Based on the mode pattern of the radiation within the outer walls of apparatus 370, walls 322 and 324 can be configured to modulate or sustain a plasma in some regions, and to prevent formation of a plasma in other regions within cavity 375. For example, in one embodiment, plasma formation can be maximized near wall 324, such that a maximum amount of energy can be transferred to heating region 330, which can be located adjacent to heat-conductive wall 324. As explained above, a heating region consistent with this invention can be used to heat a fluid or a solid, depending on the application. In this case, region 330 is partially bound by outer wall 326. Walls 324 and 326, when combined, can form a channel through which a fluid can flow and be heated.
As shown in FIG. 12, wall 324 can be curved to increase its surface area, which can increase the rate that energy passes through wall 324. It will be appreciated that other shapes can also be used. It will also be appreciated that a single furnace could have multiple plasma cavities, and each of those cavities can have the same or different shape.
Also, although not shown in FIG. 12, a plasma catalyst can be used with plasma apparatus 370, and any other plasma-assisted furnace consistent with this invention, to facilitate igniting, modulating, and/or sustaining a plasma. As previously explained, the use of a plasma catalyst can relax the conditions required to form a plasma, which can make the plasma more controllable, even at pressures at or above atmospheric pressure.
It will be appreciated that such catalysts may be particularly useful due to their substantially continuous catalyzing effect, as opposed to spark plugs, for example, which only spark periodically. Continuous catalysis can be especially useful during periodic processes that require repeated striking and restriking of a plasma.
FIG. 13 shows a cross-sectional perspective view of another illustrative plasma-assisted heating apparatus 400. In this apparatus, plasma cavity 405 is cylindrical, although it will be appreciated that the shape can also be rectangular, or any other convenient shape capable of supporting at least one mode of radiation propagation. Cavity 405 can be formed in tube 410 that is at least thermally conductive. Radiation can be directed into cavity 405 in any convenient manner, such as by a waveguide or a coaxial cable. As shown in FIG. 13, coaxial cable 415 can be used to direct radiation into cavity 405. Plasma tube 410 can be open or closed. If open, the gas can flow longitudinally.
Plasma tube 410 can be located inside of outer tube 420. In this way, heating region 430 can be located between tube 410 and 420 and a fluid can be heated while flowing through this region. It will be appreciated that the shape of outer tube 420 need not be cylindrical, but can be rectangular or any other convenient shape.
FIG. 14 shows a cross-sectional perspective view of yet another illustrative plasma-assisted heating apparatus 450. In this apparatus, plasma cavity 480 can be an annular space between two electrically conducting tubes (e.g., in a co-axial waveguide). Tubes 460 and 470 are shown to be cylindrical, for example, but the shape can also be rectangular or any other convenient shape. Thus, cavity 480 can be formed between tube 460, which can be thermally conductive, and tube 470, which can be electrically conductive and surrounded by an insulating jacket (not shown).
During operation, radiation can be directed into cavity 480 in any convenient manner, such as by a waveguide or a coaxial cable. As shown in FIG. 14, coaxial cable 465 can be used to direct radiation into cavity 480. Alternatively, the radiation can be fed coaxially through a radiation-transmissive window (not shown). Also, heating region 455 can be located inside tube 460 and a fluid can be heated while flowing through this region.
It will also be appreciated that although tubes 410 and 420 of FIG. 13 and tubes 460 and 470 of FIG. 14 are shown as straight, they need not be. For example, the tubes can have a spiral, serpentine, or any other convenient form. It will also be appreciated that the positions of heating regions 430 and 480 can be reversed with plasma cavities 405 and 455, respectively.
FIG. 15 shows a cross-sectional view of illustrative plasma-assisted melting furnace consistent with this invention. Furnace 500 can include melting column 505, surrounding plasma cavity 510, and electromagnetic radiation source (not shown) for directing electromagnetic radiation 515 having a frequency less than about 333 GHz into plasma cavity 510. Additional structural elements (shown and not shown) are described below in conjunction with a method for melting objects, such as metal ore, scrap metal, and other solids, including solid waste.
In one embodiment, an illustrative method for melting metal ore can include adding metal ore 502 to a melting region (e.g., melting column 505), forming a plasma in cavity 510 by subjecting a gas (e.g., argon) to electromagnetic radiation 515 in the presence of plasma catalyst 520 (e.g., carbon fiber), sustaining the plasma in cavity 510 such that energy from the plasma passes through thermally conductive wall 525 of cavity 510 into melting column 505 and melts metal ore 502 into molten metal 530 and slag 535, and then collecting molten metal 530.
Plasma catalyst 520 can be an active plasma catalyst and a passive plasma catalyst. Because these such catalysts have been described in detail above, they are not described here again, although it will be understood that any of the previously mentioned catalysts, and any of the associated methods, can be used to melt objects, such as metal ore or solid waste, consistent with this invention.
As shown in FIG. 15, melting column 505 can be at least partially defined by conductive wall 525 of inner tube 540. Similarly, cavity 510 can be defined between inner tube 540 and outer tube 545. Inner tube 540 can be located substantially inside outer tube 550, if desired. When tubes 540 and 545 are oriented substantially vertically, two or more gases can be used to preferentially form a plasma closer to inner tube 540. In one embodiment, a first gas (e.g., argon), which can form a plasma relatively easily, can be flowed into cavity 510 near inner tube 540 so that the gas flows close to wall 525 and forms a plasma there. A second gas (not shown), which may not as easily form a plasma as the first gas, can also flow into cavity 510 near outer tube 545 while sustaining the plasma. It will be appreciated that additional embodiments for preferentially forming a plasma near wall 525 can also involve application of electric and/or magnetic fields.
During operation, melting column 505 can be substantially vertical. Then, metal ore can be added to top end 555 of melting column 505 and molten metal 530 can be collected at bottom end 560 of melting column 505. Radiation 515 can be directed into cavity 510 through coaxial waveguide 565, which can be separated from cavity 510 by radiation-transmissive plate 570. In one embodiment, inner tube 525 can have an outer diameter and outer tube 545 can have an inner diameter, such that the ratio of the inner diameter to the outer diameter is between about 2.5 and about 3.0, including about 2.72. Depending on the solid being melted, treated, or extracted, suitable reactant 575 (e.g., a reducing agent, such as air plus coke, or carbon monoxide) can be added to the components. This addition can be used, for example, to separate metal from other related compounds.
It will be appreciated that a movable conductive plate (not shown) can be placed at one or both of the axial ends of cavity 510 to adjust its length. By adjusting this length, the electromagnetic radiation standing wave pattern can be shifted as desired. In one embodiment, the plate can be used to shift the pattern by at least about a quarter of a wavelength.
The spatial dependence of electromagnetic radiation absorption can also be adjusted by applying an electric potential difference between inner tube 540 and outer tube 545. The applied potential can attract the plasma radially inward and increase its concentration at the surface of wall 525, thereby increasing the rate at which energy passes through conductive wall 525.
FIG. 15A shows a cross-sectional view of another illustrative embodiment in which inner tube 640 is porous. In this case, plasma formed in cavity 610 can flow into melting column 605 to heat the objects located there, although care should be taken to ensure that apertures 607 in tube 640 are located above slag 609 or any other liquid that may form in column 605. Thus, wall 625 need not be thermally conductive. As already described above, the plasma can be used to convey one or more reactants into column 605. To prevent molten metal and other undesirable liquids and gases from flowing from column 605 into cavity 610, the longitudinal axes of apertures 607 can be directed in a downward direction. That is, the end of each aperture that opens into cavity 610 can be higher than the end of the same aperature that opens into column 605. Many of the components shown in FIG. 15A and subsequent FIGS. are not described here because they are already described above with respect to FIG. 15.
Additional plasma-assisted melting methods and apparatus are also provided consistent with this invention. For example, in one embodiment, the method can include forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, heating a second gas with the plasma, adding a solid to a melting vessel, directing the heated second gas toward the solid sufficient to at least melt the solid into a liquid, and collecting the liquid.
It will be appreciated that the solid can be metal ore, scrap metal, or any other solid, and the liquid can be a molten metal, for example. The first gas can be any gas known to form a plasma, such as argon, under suitable conditions. Similarly, the second gas can be air. Moreover, the first and second gases can be the same, if desired, and contain one or more additives. As already discussed above in detail, plasma can be ignited, modulated, or sustained (e.g., at atmospheric pressure) using a plasma catalyst consistent with this invention, including passive and active catalysts. Accordingly, the many possible catalysts that can be used consistent with this invention will not be discussed here again.
FIG. 16 shows a cross-section of another illustrative plasma-assisted melting furnace 700 with multiple electromagnetic radiation sources 705. In this case, two layers of refractory bricks 710 line melting column 715 and the solid to be melted is shown schematically in furnace 700. As shown in FIGS. 15 and 15A, the bottom of furnace 700 includes at least one outlet channel 720 for removing liquefied solid 722. In addition, furnace 700 can also include at least one channel 725 for removing slag 727 or any other undesirable melting byproduct.
During operation, a plasma can be formed in plasma cavity 730. The plasma can be formed from a gas that is fed through inlet 735. Plasma cavity 730 and radiation source 705 can be separated by window 740, which can be substantially transmissive to the electromagnetic radiation generated by source 705. As discussed more fully above, the radiation can be directed to plasma cavity 730 using any conventional technique, including coaxial cables, antennas, and waveguides of any kind. Thus, source 705 can be coupled to plasma cavity 730 axially or otherwise using any of these techniques, or mounted directly to plasma cavity 730.
In one embodiment, a magnetic field can be applied to plasma cavity 730 using a magnet, such as electromagnet 745. As shown in FIG. 16, electromagnet 745 can be a coil wrapped around plasma cavity 730. The coil can then be connected to a power source (not shown) configured to pass electric current through the coil. In this way, the magnetic field can be oriented axially—that is, along the axis of an elongated plasma cavity.
FIG. 17 shows another embodiment of plasma-assisted furnace 750 for melting solids, such as metals. Furnace 750 can include refractory housing 760, which may be formed, for example, from refractory bricks, crucible 755 for containing the melting and/or melted solids, which may be formed from any material capable of withstanding the high temperatures necessary to melt the solid in crucible 755, support frame 765 for supporting crucible 755, at least one gas port 770 for supplying or evacuating gas from within housing 760, at least one electromagnetic radiation port 775 for directing electromagnetic radiation into housing 760, and optionally outer metallic shell 780 to prevent the radiation from escaping the housing and thus preventing a potential health hazard. In one embodiment, a gap (not shown) can be formed between shell 780 and housing 760 through which gas can flow. This can be used, for example, to preheat the gas supplied by port 770 and forms the plasma within housing 760.
Housing 760 can further include metallic lid 790 (which may be thermally insulated) to prevent electromagnetic radiation from escaping. Housing 760 can also include plate 774, which may be metal and may include one or more holes to permit gas to flow therethrough and out of housing 760 through exhaust port 772. Alternatively, plate may be substantially nonporous, in which case exhaust gas can flow out through one or more gas ports 770.
It will be appreciated by one of ordinary skill in the art that support frame 760 can be configured to tilt and drain its melted contents, if desired. It will also be appreciated that the temperature of the plasma-assisted melting process can be monitored, as described above, using (for example) a pyrometer. Also as described above, plasma catalyst 785 can be located in any convenient position to ignite, modulate, or sustain the plasma in housing 760, above, at, or below atmospheric pressure. Finally, one or more magnetic fields may be applied to the plasma to effect its location and heating characteristics.
FIG. 18 shows a simplified cross-sectional view of yet another plasma-assisted melting furnace 800, but does not show optional insulation jacket, drain pipe for molten metal, and lid. Furnace 800 can include crucible 805 and at least one plasma cavity 810 in thermal contact with an outer surface of crucible 805. As described repeatedly above, plasma cavity 810 can include one or more gas and electromagnet radiation ports. It will also be appreciated that plasma cavity 810 can be substantially spiral or serpentine (not shown) or straight (shown). In any case, when multiple plasma cavities are used, each cavity can be controlled separately to control the temperature of the crucible or the material inside. Moreover, each of the plasma cavity sections can be oriented vertically, horizontally, or any combination thereof, and can be supplied electromagnetic radiation by separate sources, if desired.
FIG. 19 shows another illustrative embodiment of plasma-assisted melting furnace 850 in which a plasma can be formed in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst. Furnace 850 can include conveyor 875 and at least one plasma cavity 860 such that the solid can be conveyed through a plasma formed in cavity 860 until the solid melts and the liquid is collected. As shown in FIG. 19, solid particles 865 (e.g., scrap iron) can be fed into hopper 870 and deposited on to heat-resistant conveyor 875. In this way, conveyor 875 can convey particles 865 through the plasma, which can be formed above or below conveyor 875.
In one embodiment, conveyor 875 can convey solid particles 865 through plasma cavity 860. As shown in FIG. 19, conveyor 875 may be porous and permit melted portions 868 to pass beneath conveyor 875 into collection conduit 880. It will be appreciated that when conveyor 875 is positioned in an upper portion of cavity 860, it is possible to take advantage of the plasma's natural tendancy to rise in the cavity and substantially engulf particles 865. Conveyor 875 can also be positioned above or below a plasma cavity (not shown) that is different from housing 890. In this case, the cavity can be used to form one or more plasma jets, which can be directed at conveyor 875 and particles 865 to melt them. Once conveyor 875 has conveyed the particles through a plasma, conveyor 875 can be recycled.
In the foregoing described embodiments, various features are grouped together in a single embodiment for purposes of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description of Embodiments, with each claim standing on its own as a separate preferred embodiment of the invention.

Claims (49)

We claim:
1. A plasma-assisted melting method comprising:
Forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst;
wherein the plasma catalyst comprises at least one of an active plasma catalyst and a passive plasma catalyst;
wherein the catalyst comprises at least one of metal, inorganic material, carbon, carbon-based alloy, carbon-based composite, electrically conductive polymer, conductive silicone elastomer, polymer nanocomposite, and an organic-inorganic composite;
heating a second gas with the plasma;
adding a solid to a melting vessel;
directing the heated second gas toward the solid sufficient to at least melt the solid into a liquid; and
collecting the liquid.
2. The method of claim 1, wherein the solid comprises a metal and the liquid comprises a molten metal.
3. The method of claim 1, wherein the forming occurs at a gas pressure that is at least atmospheric pressure.
4. The method of claim 1, wherein the subjecting comprises directing the electromagnetic radiation from a plurality of radiation sources into the cavity.
5. The method of claim 1, wherein the first and second gases are the substantially the same.
6. A plasma-assisted melting method comprising:
forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst;
wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker;
heating a second gas with the plasma;
adding a solid to a melting vessel;
directing the heated second gas toward the solid sufficient to at least melt the solid into a liquid; and
collecting the liquid.
7. A plasma-assisted melting method comprising:
forming a plasma in a cavity by subjecting a first gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma, catalyst;
wherein the plasma catalyst comprises an active plasma catalyst including at least one ionizing particle;
heating a second gas with the plasma;
adding a solid to a melting vessel;
directing the heating second gas toward the solid sufficient to at least melt the solid into a liquid; and
collecting the liquid.
8. The method of claim 7, wherein the at least one ionizing particle comprises a beam of particles.
9. The method of claim 7, wherein the particle is at least one of an x-ray particle, a gamma ray particle, an alpha particle, a beta particle, a neutron, and a proton.
10. The method of claim 7, wherein the at least one ionizing particle is a charged particle.
11. The method of claim 7, wherein the ionizing particle comprises a radioactive fission product.
12. A plasma-assisted melting method comprising:
adding a solid to a melting region;
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall;
wherein the plasma catalyst comprises at least one of an active plasma catalyst and a passive plasma catalyst;
wherein the catalyst comprises at least one metal, inorganic material, carbon, carbon-based alloy, carbon-based composite, electrically conductive polymer, conductive silicone elastomer, polymer nanocomposite, and an organic-inorganic composite;
sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid; and
collecting the liquid.
13. The method of claim 12, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
14. The method of claim 13, wherein the catalyst comprises carbon fiber.
15. The method of claim 12, wherein the forming occurs at a gas pressure that is at least atmospheric pressur.
16. The method of claim 12, wherein the melting region is substantially defined by the wall of an inner tube and wherein the cavity is defined between the inner tube and an outer tube substantially surrounding the inner tube.
17. The method of claim 12, further comprising:
flowing the gas into the cavity near the inner tube during the sustaining; and
flowing a second gas into the cavity near the outer tube during the sustaining, wherein the second gas does not substantially form the plasma.
18. The method of claim 17, wherein the melting region is a substantially vertical channel, and wherein the adding comprises adding metal ore to a top end of the melting region and collecting molten metal near a bottom end of the melting region.
19. The method of claim 12, further comprising flowing the gas into the cavity during the sustaining.
20. The method of claim 12, further comprising directing the radiation into the cavity through a coaxial waveguide.
21. The method of claim 12, wherein the subjecting comprises directing the electromagnetic radiation from a plurality of radiation sources into the cavity.
22. The method of claim 21, wherein the plurality of radiation sources comprises at least one ring of magnetrons.
23. The method of claim 21 wherein the sustaining comprises permitting thermal energy to conduct through the wall.
24. The method of claim 12, wherein the cavity comprises a plurality of elongated cavities in thermal communication with the melting region.
25. A plasma-assisted melting method comprising:
adding a solid to a melting region;
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall;
wherein the plasma catalyst comprises at least one of an active plasma catalyst and a passive plasma catalyst; and
wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
26. A plasma-assisted melting method comprising:
adding a solid to a melting region;
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall;
wherein the plasma catalyst comprises an active plasma catalyst including at least one ionizing particle;
sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid; and
collecting the liquid.
27. The method of claim 26, wherein the at least one ionizing particle comprises a beam of particles.
28. The method of claim 26, wherein the particle is at least one of an x-ray particle, a gamma ray particle, an alpha particle, a beta particle, a neutron, and a proton.
29. The method of claim 26, wherein the at least one ionizing particle is a charged particle.
30. The method of claim 26, wherein the ionizing particle comprises a radioactive fission product.
31. A plasma-assisted melting method comprising:
adding a solid to a melting region;
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall;
sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid;
wherein the melting region is substantially defined by the wall of an inner tube and wherein the cavity is defined between the inner tube and an outer tube substantially surrounding the inner tube;
wherein the inner tube has an outer diameter and the outer tube has an inner diameter, wherein the ratio of the inner diameter to the outer diameter is between about 2.5 and about 3.0; and
collecting the liquid.
32. The method of claim 31, wherein the ratio is about 2.72.
33. A plasma-assisted melting method comprising:
adding a solid to a melting region;
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall; and
wherein the cavity has a first axial end, the method further comprises launching the radiation into the main cavity from at least the first axial end;
sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid; and
collecting the liquid.
34. A plasma-assisted melting method comprising:
adding a solid to a melting region;
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall;
sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into liquid;
wherein the cavity has a spiral shape that is wrapped around the melting region; and
collecting the liquid.
35. A plasma-assisted melting method comprising:
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst;
wherein the subjecting comprises directing the electromagnetic radiation from a plurality of radiation sources into the cavity;
wherein the plurality of radiation sources comprises at least one ring of magnetrons;
conveying metal through the plasma until the metal melts into a molten metal; and
collecting the molten metal.
36. The method of claim 1, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
37. The method of claim 36, wherein the catalyst comprises carbon fiber.
38. The method of claim 35, wherein the cavity is in fluid communication with the melting region through a plurality of apertures, the method further comprising forming a plurality of respective plasma jets directed into the melting region at the apertures.
39. A plasma-assisted melting method comprising:
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst;
wherein the plasma catalyst comprises at least one of an active plasma catalyst and a passive plasma catalyst;
conveying metal through the plasma until the metal melts into a molten metal; and
collecting the molten metal.
40. The method of claim 39, wherein the catalyst comprises at least one of metal, inorganic material, carbon, carbon-based alloy, carbon-based composite, electrically conductive polymer, conductive silicone elastomer, polymer nanocomposite, and an organic-inorganic composite.
41. The method of claim 40, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
42. The method of claim 41, wherein the catalyst comprises carbon fiber.
43. The method of claim 39, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
44. The method of claim 39, wherein the plasma catalyst comprises an active plasma catalyst including at least one ionizing particle.
45. The method of claim 44, wherein the at least one ionizing particle comprises a beam of particles.
46. The method of claim 44, wherein the particle is at least one of an x-ray particle, a gamma ray particle, an alpha particle, a beta particle, a neutron, and a proton.
47. The method of claim 44, wherein the at least one ionizing particle is a charged particle.
48. The method of claim 44, wherein the ionizing particle comprises a radioactive fission product.
49. A plasma-assisted melting method comprising:
forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst;
conveying metal through the plasma until the metal melts into a molten metal;
wherein the conveying is on a heat-resistant conveyor and the plasma is formed beneath the conveyer; and
collecting the molten metal.
US10/449,600 2002-12-04 2003-06-02 Plasma-assisted melting Expired - Fee Related US7189940B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/449,600 US7189940B2 (en) 2002-12-04 2003-06-02 Plasma-assisted melting
EP03812501A EP1579023A4 (en) 2002-12-04 2003-12-04 Plasma-assisted melting
AU2003297636A AU2003297636A1 (en) 2002-12-04 2003-12-04 Plasma-assisted melting
PCT/US2003/038459 WO2004050939A2 (en) 2002-12-04 2003-12-04 Plasma-assisted melting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US43067702P 2002-12-04 2002-12-04
US43527802P 2002-12-23 2002-12-23
PCT/US2003/014133 WO2003096747A2 (en) 2002-05-08 2003-05-07 Plasma heating apparatus and methods
US10/449,600 US7189940B2 (en) 2002-12-04 2003-06-02 Plasma-assisted melting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/014133 Continuation-In-Part WO2003096747A2 (en) 2002-05-08 2003-05-07 Plasma heating apparatus and methods

Publications (2)

Publication Number Publication Date
US20040107796A1 US20040107796A1 (en) 2004-06-10
US7189940B2 true US7189940B2 (en) 2007-03-13

Family

ID=32475650

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/449,600 Expired - Fee Related US7189940B2 (en) 2002-12-04 2003-06-02 Plasma-assisted melting

Country Status (1)

Country Link
US (1) US7189940B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233091A1 (en) * 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
US20060148370A1 (en) * 2002-12-24 2006-07-06 Koji Kadono Method of manufacturing micro structure, and method of manufacturing mold material
US20070254206A1 (en) * 2006-01-17 2007-11-01 Gillan Edward G Methods for production of metals on carbon nitride powders and composites and their use as catalysts in fuel cell electrochemistry
US20090295509A1 (en) * 2008-05-28 2009-12-03 Universal Phase, Inc. Apparatus and method for reaction of materials using electromagnetic resonators
US20100099319A1 (en) * 2004-01-15 2010-04-22 Nanocomp Technologies, Inc. Systems and Methods for Synthesis of Extended Length Nanostructures
US20110140607A1 (en) * 2008-05-30 2011-06-16 Colorado State University Research Foundation System, method and apparatus for generating plasma
US8070042B1 (en) * 2010-11-22 2011-12-06 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Process for joining stainless steel part and silicon carbide ceramic part and composite articles made by same
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US20120285935A1 (en) * 2011-05-10 2012-11-15 Hitachi High-Technologies Corporation Heat treatment apparatus
US20130112670A1 (en) * 2011-11-08 2013-05-09 Hitachi High-Technologies Corporation Heat treatment apparatus
US20130277354A1 (en) * 2012-04-18 2013-10-24 Hitachi High-Technologies Corporation Method and apparatus for plasma heat treatment
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US9028656B2 (en) 2008-05-30 2015-05-12 Colorado State University Research Foundation Liquid-gas interface plasma device
US9272359B2 (en) 2008-05-30 2016-03-01 Colorado State University Research Foundation Liquid-gas interface plasma device
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
DE102021004675A1 (en) 2021-09-17 2023-03-23 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Hybrid process and hybrid device for low-CO2 or CO2-free high-temperature technologies for thermal treatment or production of inorganic materials
DE102022122280A1 (en) 2022-09-02 2024-03-07 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Combination of electric heating elements, containing a composite material, with microwave plasma burners for high temperature applications in the metallurgy, chemical and cement industries

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361437A1 (en) * 2002-05-07 2003-11-12 Centre National De La Recherche Scientifique (Cnrs) A novel biological cancer marker and methods for determining the cancerous or non-cancerous phenotype of cells
US7638727B2 (en) 2002-05-08 2009-12-29 Btu International Inc. Plasma-assisted heat treatment
US7494904B2 (en) * 2002-05-08 2009-02-24 Btu International, Inc. Plasma-assisted doping
US7465362B2 (en) * 2002-05-08 2008-12-16 Btu International, Inc. Plasma-assisted nitrogen surface-treatment
US7498066B2 (en) * 2002-05-08 2009-03-03 Btu International Inc. Plasma-assisted enhanced coating
US7432470B2 (en) 2002-05-08 2008-10-07 Btu International, Inc. Surface cleaning and sterilization
US7497922B2 (en) 2002-05-08 2009-03-03 Btu International, Inc. Plasma-assisted gas production
US7560657B2 (en) * 2002-05-08 2009-07-14 Btu International Inc. Plasma-assisted processing in a manufacturing line
US20060062930A1 (en) * 2002-05-08 2006-03-23 Devendra Kumar Plasma-assisted carburizing
WO2003095591A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted doping
US7445817B2 (en) 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
US7189940B2 (en) 2002-12-04 2007-03-13 Btu International Inc. Plasma-assisted melting
CA2627997C (en) * 2005-11-04 2014-08-12 Nanocomp Technologies, Inc. Nanostructured antennas and methods of manufacturing same
US8357885B2 (en) * 2007-04-26 2013-01-22 Southwire Company Microwave furnace
US9258852B2 (en) * 2007-04-26 2016-02-09 Southwire Company, Llc Microwave furnace
CN101731022B (en) * 2007-04-26 2013-10-09 南方电线公司 Microwave furnace
CN102948254A (en) * 2010-04-30 2013-02-27 量子波有限公司 Microwave and radio frequency material processing
WO2015166515A2 (en) * 2014-04-28 2015-11-05 SARTONI, Stefano Container for induced plasma and ionizing radiation
GB2566581B (en) * 2018-07-03 2019-09-18 Clive Wright Andrew Cooking device
CN113047837B (en) 2021-03-30 2022-02-01 东北大学 Metal ore microwave-mechanical fluidization mining system and mining method
US20230088387A1 (en) * 2021-09-17 2023-03-23 Microtech Energy LLC Metal recycling system for in-space manufacturing
US12224474B2 (en) * 2021-12-07 2025-02-11 The University Of Toledo Power-efficient microwave plasma jet based on evanescent-mode cavity technology
AT526238B1 (en) * 2022-08-09 2024-01-15 Thermal Proc Solutions Gmbh Device for providing a plasma
AT526353B1 (en) 2022-08-09 2024-02-15 Thermal Proc Solutions Gmbh Device for the thermal treatment of a substance
AT526239B1 (en) 2022-08-09 2024-01-15 Thermal Proc Solutions Gmbh Device for providing a plasma

Citations (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432296A (en) 1967-07-13 1969-03-11 Commw Scient Ind Res Org Plasma sintering
US3612686A (en) 1968-01-03 1971-10-12 Iit Res Inst Method and apparatus for gas analysis utilizing a direct current discharge
US3731047A (en) 1971-12-06 1973-05-01 Mc Donnell Douglas Corp Plasma heating torch
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
US4025818A (en) 1976-04-20 1977-05-24 Hughes Aircraft Company Wire ion plasma electron gun
US4090055A (en) 1977-02-10 1978-05-16 Northern Telecom Limited Apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4147911A (en) 1975-08-11 1979-04-03 Nippon Steel Corporation Method for sintering refractories and an apparatus therefor
US4151034A (en) 1976-12-22 1979-04-24 Tokyo Shibaura Electric Co., Ltd. Continuous gas plasma etching apparatus
US4213818A (en) 1979-01-04 1980-07-22 Signetics Corporation Selective plasma vapor etching process
US4230448A (en) 1979-05-14 1980-10-28 Combustion Electromagnetics, Inc. Burner combustion improvements
US4265730A (en) 1979-03-30 1981-05-05 Tokyo Shibaura Denki K.K. Surface treating apparatus utilizing plasma generated by microwave discharge
US4307277A (en) 1978-08-03 1981-12-22 Mitsubishi Denki Kabushiki Kaisha Microwave heating oven
US4339326A (en) 1979-11-22 1982-07-13 Tokyo Shibaura Denki Kabushiki Kaisha Surface processing apparatus utilizing microwave plasma
JPS5825073A (en) 1981-08-07 1983-02-15 Mitsubishi Electric Corp Electrodeless discharge lamp
US4404456A (en) 1981-03-26 1983-09-13 Cann Gordon L Micro-arc welding/brazing of metal to metal and metal to ceramic joints
JPS59103348A (en) 1982-12-06 1984-06-14 Toyota Central Res & Dev Lab Inc Manufacturing method of semiconductor device
JPS59169053A (en) 1983-03-16 1984-09-22 Toshiba Corp Electrodeless electric-discharge lamp
US4473736A (en) 1980-04-10 1984-09-25 Agence Nationale De Valorisation De La Recherche (Anvar) Plasma generator
US4479075A (en) 1981-12-03 1984-10-23 Elliott William G Capacitatively coupled plasma device
US4500564A (en) 1982-02-01 1985-02-19 Agency Of Industrial Science & Technology Method for surface treatment by ion bombardment
US4504007A (en) 1982-09-14 1985-03-12 International Business Machines Corporation Solder and braze fluxes and processes for using the same
DD222348A1 (en) 1983-12-27 1985-05-15 Erste Maschinenfabrik K Marx S METHOD OF INTENSIVATING THE INFLUENCING OF MATERIAL IN THERMAL-CHEMICAL TREATMENT OF MATERIALS
US4611108A (en) 1982-09-16 1986-09-09 Agence National De Valorisation De La Recherche (Anuar) Plasma torches
US4624738A (en) 1985-07-12 1986-11-25 E. T. Plasma, Inc. Continuous gas plasma etching apparatus and method
JPS62535A (en) 1985-06-27 1987-01-06 Isuzu Motors Ltd Continuous plasma treatment apparatus
US4666775A (en) 1985-04-01 1987-05-19 Kennecott Corporation Process for sintering extruded powder shapes
US4687560A (en) 1985-08-16 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides
US4698234A (en) 1985-04-01 1987-10-06 Energy Conversion Devices, Inc. Vapor deposition of semiconductor material
US4760230A (en) 1985-09-27 1988-07-26 Stiftelsen Institutet For Mikrovagsteknik Vid Tekniska Hogskolan I Stockholm Method and an apparatus for heating glass tubes
US4767902A (en) 1986-09-24 1988-08-30 Questech Inc. Method and apparatus for the microwave joining of ceramic items
US4772770A (en) 1986-06-30 1988-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus for joining ceramics by microwave
US4792348A (en) 1987-03-02 1988-12-20 Powerplex Technologies, Inc. Method of forming glass bonded joint of beta-alumina
US4840139A (en) 1986-10-01 1989-06-20 Canon Kabushiki Kaisha Apparatus for the formation of a functional deposited film using microwave plasma chemical vapor deposition process
US4871581A (en) 1987-07-13 1989-10-03 Semiconductor Energy Laboratory Co., Ltd. Carbon deposition by ECR CVD using a catalytic gas
EP0335675A2 (en) 1988-03-29 1989-10-04 Canon Kabushiki Kaisha Large area microwave plasma apparatus
US4877938A (en) 1986-09-26 1989-10-31 U.S. Philips Corporation Plasma activated deposition of an insulating material on the interior of a tube
US4877589A (en) 1988-09-19 1989-10-31 Hare Louis R O Nitrogen fixation by electric arc and catalyst
US4883570A (en) 1987-06-08 1989-11-28 Research-Cottrell, Inc. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves
US4888088A (en) 1989-03-06 1989-12-19 Tegal Corporation Ignitor for a microwave sustained plasma
US4891488A (en) 1987-07-16 1990-01-02 Texas Instruments Incorporated Processing apparatus and method
US4908492A (en) 1988-05-11 1990-03-13 Hitachi, Ltd. Microwave plasma production apparatus
US4919077A (en) 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus
US4924061A (en) 1987-06-10 1990-05-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Microwave plasma torch, device comprising such a torch and process for manufacturing powder by the use thereof
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US4956590A (en) 1988-10-06 1990-09-11 Techco Corporation Vehicular power steering system
US4963709A (en) 1987-07-24 1990-10-16 The United States Of America As Represented By The Department Of Energy Method and device for microwave sintering large ceramic articles
US4972799A (en) 1989-01-26 1990-11-27 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus for mass-producing functional deposited films
US5003152A (en) 1987-04-27 1991-03-26 Nippon Telegraph And Telephone Corporation Microwave transforming method and plasma processing
EP0420101A2 (en) 1989-09-25 1991-04-03 Ryohei Itatani Microwave plasma generating apparatus
US5010220A (en) 1988-02-16 1991-04-23 Alcan International Limited Process and apparatus for heating bodies at high temperature and pressure utilizing microwave energy
US5015349A (en) 1988-12-23 1991-05-14 University Of Connecticut Low power density microwave discharge plasma excitation energy induced chemical reactions
US5017404A (en) 1988-09-06 1991-05-21 Schott Glaswerke Plasma CVD process using a plurality of overlapping plasma columns
US5023056A (en) 1989-12-27 1991-06-11 The United States Of America As Represented By The Secretary Of The Navy Plasma generator utilizing dielectric member for carrying microwave energy
EP0435591A2 (en) * 1989-12-27 1991-07-03 Exxon Research And Engineering Company Conversion of methane using microwave radiation
EP0436361A1 (en) 1989-12-27 1991-07-10 Exxon Research And Engineering Company Method for improving the activity maintenance of plasma initiator
US5058527A (en) 1990-07-24 1991-10-22 Ricoh Company, Ltd. Thin film forming apparatus
US5072650A (en) 1990-08-03 1991-12-17 Techco Corporation Power steering system with improved stability
US5074112A (en) 1990-02-21 1991-12-24 Atomic Energy Of Canada Limited Microwave diesel scrubber assembly
US5085885A (en) 1990-09-10 1992-02-04 University Of Delaware Plasma-induced, in-situ generation, transport and use or collection of reactive precursors
US5087272A (en) 1990-10-17 1992-02-11 Nixdorf Richard D Filter and means for regeneration thereof
JPH0474858A (en) 1990-07-16 1992-03-10 Asahi Chem Ind Co Ltd Production of nitride film
US5103715A (en) 1989-03-17 1992-04-14 Techco Corporation Power steering system
US5120567A (en) 1990-05-17 1992-06-09 General Electric Company Low frequency plasma spray method in which a stable plasma is created by operating a spray gun at less than 1 mhz in a mixture of argon and helium gas
US5122633A (en) 1989-06-07 1992-06-16 Wolfgang Moshammer Method and apparatus for radiation microwave energy into material containing water or mixed with water
US5131993A (en) 1988-12-23 1992-07-21 The Univeristy Of Connecticut Low power density plasma excitation microwave energy induced chemical reactions
US5164130A (en) 1990-04-20 1992-11-17 Martin Marietta Energy Systems, Inc. Method of sintering ceramic materials
US5202541A (en) 1991-01-28 1993-04-13 Alcan International Limited Microwave heating of workpieces
US5224117A (en) 1989-04-17 1993-06-29 Siemens Aktiengesellschaft Gas lasers, in particular co2 lasers
US5223308A (en) 1991-10-18 1993-06-29 Energy Conversion Devices, Inc. Low temperature plasma enhanced CVD process within tubular members
US5222448A (en) * 1992-04-13 1993-06-29 Columbia Ventures Corporation Plasma torch furnace processing of spent potliner from aluminum smelters
US5227695A (en) 1989-06-05 1993-07-13 Centre National De La Recherche Scientifique Device for coupling microwave energy with an exciter and for distributing it therealong for the purpose of producing a plasma
US5271963A (en) 1992-11-16 1993-12-21 Materials Research Corporation Elimination of low temperature ammonia salt in TiCl4 NH3 CVD reaction
US5276297A (en) * 1990-09-18 1994-01-04 Naraseiki Kabushiki Kaisha Melting disposal apparatus for injection needles
US5276386A (en) 1991-03-06 1994-01-04 Hitachi, Ltd. Microwave plasma generating method and apparatus
US5277773A (en) 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
US5284544A (en) 1990-02-23 1994-02-08 Hitachi, Ltd. Apparatus for and method of surface treatment for microelectronic devices
US5304766A (en) 1991-01-25 1994-04-19 Prolabo Methods and apparatus for simultaneously treating a plurality of samples in a moist medium
US5307892A (en) 1990-08-03 1994-05-03 Techco Corporation Electronically controlled power steering system
US5310426A (en) 1989-08-03 1994-05-10 Uha Mikakuto Precision Engineering Research Institute Co., Ltd. High-speed film forming method by microwave plasma chemical vapor deposition (CVD) under high pressure and an apparatus therefor
US5311906A (en) 1992-02-04 1994-05-17 Techco Corporation Preload mechanism for power steering apparatus
US5316043A (en) 1992-02-04 1994-05-31 Techco Corporation Preload mechanism for power steering apparatus
US5321223A (en) 1991-10-23 1994-06-14 Martin Marietta Energy Systems, Inc. Method of sintering materials with microwave radiation
US5349154A (en) 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
US5366764A (en) 1992-06-15 1994-11-22 Sunthankar Mandar B Environmentally safe methods and apparatus for depositing and/or reclaiming a metal or semi-conductor material using sublimation
US5370525A (en) 1993-03-22 1994-12-06 Blue Pacific Environments Corporation Microwave combustion enhancement device
JPH06345541A (en) 1993-06-11 1994-12-20 Fuji Denpa Kogyo Kk Microwave sintering method and furnace therefor
WO1995011442A1 (en) 1993-10-22 1995-04-27 Massachusetts Institute Of Technology Continuous, real time microwave plasma element sensor
US5423180A (en) 1993-01-20 1995-06-13 Matsushita Electric Industrial Co., Ltd. Filter regenerating apparatus and method for an internal combustion engine
JPH07153405A (en) 1993-11-30 1995-06-16 Nissin Electric Co Ltd Plasma application device
US5435698A (en) 1993-07-29 1995-07-25 Techco Corporation Bootstrap power steering systems
US5449887A (en) 1993-03-25 1995-09-12 Martin Marietta Energy Systems, Inc. Thermal insulation for high temperature microwave sintering operations and method thereof
US5487811A (en) 1990-08-23 1996-01-30 Fujitsu Limited Process for preparation of semiconductor device
US5505275A (en) 1993-09-09 1996-04-09 Techo Corporation Power steering system
US5514217A (en) 1990-11-16 1996-05-07 Canon Kabushiki Kaisha Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
US5521360A (en) 1994-09-14 1996-05-28 Martin Marietta Energy Systems, Inc. Apparatus and method for microwave processing of materials
US5520740A (en) 1989-06-28 1996-05-28 Canon Kabushiki Kaisha Process for continuously forming a large area functional deposited film by microwave PCVD method and apparatus suitable for practicing the same
EP0520719B1 (en) 1991-06-25 1996-05-29 Dana Corporation Counterweight attachment technique
US5523126A (en) 1990-10-29 1996-06-04 Canon Kabushiki Kaisha Method of continuously forming a large area functional deposited film by microwave PCVD
US5527391A (en) 1989-06-28 1996-06-18 Canon Kabushiki Kaisha Method and apparatus for continuously forming functional deposited films with a large area by a microwave plasma CVD method
US5536477A (en) 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
JPH08217558A (en) 1995-02-15 1996-08-27 Mitsubishi Heavy Ind Ltd Ceramic bonding device
JPH08281423A (en) 1995-04-07 1996-10-29 Tamura Seisakusho Co Ltd Method and equipment for fluxless soldering
WO1996038311A1 (en) 1995-06-02 1996-12-05 The University Of Tennessee Research Corporation Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
JPH0917597A (en) 1995-06-27 1997-01-17 Kao Corp Device and method for generating plasma
JPH0923458A (en) 1995-07-07 1997-01-21 Nec Corp Time division switch
JPH0927459A (en) 1995-07-10 1997-01-28 Canon Inc Processing equipment for semiconductor device
JPH0927482A (en) 1995-07-11 1997-01-28 Speedfam Co Ltd Plasma etching apparatus
US5597456A (en) 1993-06-07 1997-01-28 Hiroshi Kashiwagi Method for producing medical materials
US5607509A (en) 1992-11-04 1997-03-04 Hughes Electronics High impedance plasma ion implantation apparatus
JPH0978240A (en) 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd Hard carbon film forming device and production of hard carbon film forming substrate
US5616373A (en) 1990-09-14 1997-04-01 Balzers Aktiengesellschaft Plasma CVD method for producing a diamond coating
WO1997013141A1 (en) 1995-10-06 1997-04-10 Massachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
JPH09102488A (en) 1995-10-06 1997-04-15 Sumitomo Metal Ind Ltd Alumina microwave introduction window and manufacturing method thereof
JPH09102400A (en) 1995-07-31 1997-04-15 Hitachi Ltd Process equipment using microwave plasma
JPH09111461A (en) 1995-08-11 1997-04-28 Sumitomo Electric Ind Ltd Film forming or etching equipment
DE19542352A1 (en) 1995-11-14 1997-05-15 Fraunhofer Ges Forschung Microwave bonding of ceramic to ceramic or metal
JPH09137274A (en) 1995-08-24 1997-05-27 Univ Nagoya Formation of thin film by radical regulation microfabricating method and device therefor
US5637180A (en) 1994-09-28 1997-06-10 Sony Corporation Plasma processing method and plasma generator
JPH09157048A (en) 1995-12-06 1997-06-17 Hitachi Ltd Composite ceramics and their manufacturing method
US5645897A (en) 1992-02-15 1997-07-08 Andra; Jurgen Process and device for surface-modification by physico-chemical reactions of gases or vapors on surfaces, using highly-charged ions
US5651825A (en) 1994-03-02 1997-07-29 Nissin Electric Co., Ltd. Plasma generating apparatus and plasma processing apparatus
JPH09223596A (en) 1996-02-15 1997-08-26 Bridgestone Corp Microwave plasma generator
US5662965A (en) 1990-06-29 1997-09-02 Matsushita Electric Industrial Co., Ltd. Method of depositing crystalline carbon-based thin films
JPH09235686A (en) 1996-02-29 1997-09-09 Kazuo Sugiyama Method for cleaning surface for solder joining, modifying method therefor and soldering method therefor
JPH09251971A (en) 1996-03-15 1997-09-22 Kazuo Sugiyama Method of removing organic compd. from substance surface
US5670065A (en) 1994-07-05 1997-09-23 Buck Werke Gmbh & Co. Apparatus for plasma treatment of fine grained materials
US5682745A (en) 1993-07-29 1997-11-04 Techco Corporation Bootstrap power steering systems
JPH09295900A (en) 1996-02-19 1997-11-18 Hitachi Ltd Microwave plasma substrate processing equipment
US5688477A (en) 1994-01-31 1997-11-18 Atomic Energy Corporation Of South Africa Limited Process for reacting dissociated zircon with gaseous hydrogen fluoride
US5689949A (en) 1995-06-05 1997-11-25 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using microwave energy
US5712000A (en) 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US5714010A (en) 1989-06-28 1998-02-03 Canon Kabushiki Kaisha Process for continuously forming a large area functional deposited film by a microwave PCVD method and an apparatus suitable for practicing the same
US5715677A (en) 1996-11-13 1998-02-10 The Regents Of The University Of California Diesel NOx reduction by plasma-regenerated absorbend beds
JPH1066948A (en) 1996-08-27 1998-03-10 Sharp Corp Crude refuse treating device
US5734501A (en) 1996-11-01 1998-03-31 Minnesota Mining And Manufacturing Company Highly canted retroreflective cube corner article
JPH1081588A (en) 1996-09-05 1998-03-31 Matsushita Electric Ind Co Ltd Semiconductor diamond and its formation
JPH1081970A (en) 1997-03-31 1998-03-31 Semiconductor Energy Lab Co Ltd Formation of thin coating
JPH1087310A (en) 1996-09-13 1998-04-07 Mitsubishi Heavy Ind Ltd Production of fullerene and device therefor
US5741364A (en) 1988-09-14 1998-04-21 Fujitsu Limited Thin film formation apparatus
US5755097A (en) 1993-07-29 1998-05-26 Techco Corporation Bootstrap power steering systems
JPH10204641A (en) 1997-01-21 1998-08-04 Nichimen Denshi Koken Kk Diamondlike carbon thin film depositing device
US5794113A (en) 1995-05-01 1998-08-11 The Regents Of The University Of California Simultaneous synthesis and densification by field-activated combustion
US5796080A (en) 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
US5808282A (en) 1994-03-31 1998-09-15 Microwear Corporation Microwave sintering process
JPH10259420A (en) 1997-03-19 1998-09-29 Nkk Corp Method for reducing oxide of metallic plate
US5828338A (en) 1996-05-23 1998-10-27 Hughes Electronics Thyratron switched beam steering array
JPH10294306A (en) 1997-04-18 1998-11-04 Mitsubishi Electric Corp Plasma etching device, plasma etching method and plasma cleaning method for plasma etching device
US5841237A (en) 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
US5847355A (en) 1996-01-05 1998-12-08 California Institute Of Technology Plasma-assisted microwave processing of materials
US5848348A (en) 1995-08-22 1998-12-08 Dennis; Mahlon Denton Method for fabrication and sintering composite inserts
US5859404A (en) 1995-10-12 1999-01-12 Hughes Electronics Corporation Method and apparatus for plasma processing a workpiece in an enveloping plasma
JPH1131599A (en) 1997-07-08 1999-02-02 Sumitomo Metal Ind Ltd Preheating method and plasma processing apparatus in plasma processing apparatus
US5868871A (en) 1996-06-06 1999-02-09 Dowa Mining Co., Ltd. Method and apparatus for carburizing, quenching and tempering
US5874705A (en) 1994-07-19 1999-02-23 Ea Technology Limited Method of and apparatus for microwave-plasma production
JPH11106947A (en) 1997-09-29 1999-04-20 Nkk Corp Surface modifying method of metallic sheet
US5904993A (en) 1994-09-22 1999-05-18 Sumitomo Electric Industries, Ltd. Joint body of aluminum and silicon nitride and method of preparing the same
JPH11145116A (en) 1997-11-04 1999-05-28 Nec Corp Microwave plasma processing apparatus and opposed electrodes using the same
JPH11186222A (en) 1997-12-24 1999-07-09 Sony Corp Ecr etching device
US5939026A (en) 1997-01-31 1999-08-17 Hitachi, Ltd. Apparatus for processing gas by electron beam
JPH11228290A (en) 1998-02-03 1999-08-24 Micro Denshi Kk Diamond growing apparatus utilizing microwave
US5945351A (en) 1996-05-31 1999-08-31 Siemens Aktiengesellschaft Method for etching damaged zones on an edge of a semiconductor substrate, and etching system
JPH11265885A (en) 1997-11-20 1999-09-28 Tokyo Electron Ltd Deposition of film through plasma-assisted process
US5961773A (en) 1996-03-28 1999-10-05 Hitachi, Ltd. Plasma processing apparatus and plasma processing method using the same
US5961871A (en) 1991-11-14 1999-10-05 Lockheed Martin Energy Research Corporation Variable frequency microwave heating apparatus
JPH11273895A (en) 1998-03-24 1999-10-08 Micro Denshi Kk Plasma generating device using microwave
US5973289A (en) * 1995-06-07 1999-10-26 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
JPH11297266A (en) 1998-04-13 1999-10-29 Hitachi Ltd Mass spectrometer and ion source
US5976429A (en) 1993-02-10 1999-11-02 The Morgan Crucible Company, Plc Process for producing dense, self-sintered silicon carbide/carbon-graphite composites
US5980999A (en) 1995-08-24 1999-11-09 Nagoya University Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
US5980843A (en) 1995-07-05 1999-11-09 Katator Ab Method and apparatus in catalytic reactions
US5989477A (en) 1994-11-24 1999-11-23 Arplas Gesellschaft Fur Plasmatechnologie Mbh Process for the chemical modification of solids containing alkyl groups
US5993612A (en) 1996-12-13 1999-11-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for purifying a gas and apparatus for the implementation of such a process
US5998774A (en) 1997-03-07 1999-12-07 Industrial Microwave Systems, Inc. Electromagnetic exposure chamber for improved heating
US6011248A (en) 1996-07-26 2000-01-04 Dennis; Mahlon Denton Method and apparatus for fabrication and sintering composite inserts
JP2000012526A (en) 1998-06-25 2000-01-14 Mitsubishi Electric Corp Plasma processing apparatus and method
US6028393A (en) 1998-01-22 2000-02-22 Energy Conversion Devices, Inc. E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials
US6038854A (en) 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
US6039834A (en) 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US6054700A (en) 1997-04-10 2000-04-25 Nucon Systems Process and apparatus for joining thick-walled ceramic parts
US6054693A (en) 1997-01-17 2000-04-25 California Institute Of Technology Microwave technique for brazing materials
JP2000173989A (en) 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Plasma processing equipment
JP2000203990A (en) 1999-01-19 2000-07-25 Japan Science & Technology Corp Method for growing crystal thin film at low temperature by plasma sputtering
US6096389A (en) 1995-09-14 2000-08-01 Canon Kabushiki Kaisha Method and apparatus for forming a deposited film using a microwave CVD process
US6101969A (en) 1992-11-12 2000-08-15 Ngk Insulators, Ltd. Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
US6103068A (en) 1996-04-26 2000-08-15 Bayer Aktiengesellschaft Process for antifelting finishing of wool using a low-temperature plasma treatment
US6121109A (en) 1998-10-03 2000-09-19 United Semiconductor Corp. Method of forming hemispherical grain polysilicon over lower electrode capacitor
US6122912A (en) 1997-10-16 2000-09-26 Techco Corporation Electro-hydraulic power steering systems having improved efficiency
JP2000269182A (en) 1999-03-16 2000-09-29 Hitachi Ltd Method and apparatus for manufacturing semiconductor device
US6132550A (en) 1995-08-11 2000-10-17 Sumitomo Electric Industries, Ltd. Apparatuses for desposition or etching
JP2000288382A (en) 1999-04-09 2000-10-17 Mitsubishi Heavy Ind Ltd Apparatus for decomposing organohalogen compound
US6131386A (en) 1995-12-14 2000-10-17 Central Research Laboratories Limited Single mode resonant cavity
US6139656A (en) 1995-07-10 2000-10-31 Ford Global Technologies, Inc. Electrochemical hardness modification of non-allotropic metal surfaces
JP2000306901A (en) 2000-01-01 2000-11-02 Hitachi Ltd Plasma treatment device and plasma treatment method
JP2000310874A (en) 1999-04-27 2000-11-07 Nippon Zeon Co Ltd Developer for developing electrostatic images
JP2000310876A (en) 1999-04-27 2000-11-07 Nippon Zeon Co Ltd Developer for developing electrostatic images
JP2000317303A (en) 2000-01-01 2000-11-21 Hitachi Ltd Plasma treatment apparatus and method
US6149985A (en) 1999-07-07 2000-11-21 Eastman Kodak Company High-efficiency plasma treatment of imaging supports
JP2000323463A (en) 2000-01-01 2000-11-24 Hitachi Ltd Plasma processing method
US6152254A (en) 1998-06-23 2000-11-28 Techco Corporation Feedback and servo control for electric power steering system with hydraulic transmission
US6153868A (en) 1996-01-19 2000-11-28 Groupe Danone Microwave application device, particularly for baking products on a metal carrier
JP2000348897A (en) 1999-05-31 2000-12-15 Sumitomo Metal Ind Ltd Plasma processing equipment
JP2001013719A (en) 1999-07-02 2001-01-19 Nippon Zeon Co Ltd Developer for developing electrostatic images
US6183689B1 (en) 1997-11-25 2001-02-06 Penn State Research Foundation Process for sintering powder metal components
US6186090B1 (en) 1999-03-04 2001-02-13 Energy Conversion Devices, Inc. Apparatus for the simultaneous deposition by physical vapor deposition and chemical vapor deposition and method therefor
US6189482B1 (en) 1997-02-12 2001-02-20 Applied Materials, Inc. High temperature, high flow rate chemical vapor deposition apparatus and related methods
JP2001053069A (en) 1999-08-10 2001-02-23 Matsushita Electric Ind Co Ltd Plasma processing method and apparatus
JP2001058127A (en) 1999-06-24 2001-03-06 Leybold Syst Gmbh Apparatus for generating plasma in chamber by microwave excitation
US6204190B1 (en) 1998-08-20 2001-03-20 Murata Manufacturing Co., Ltd. Method for producing an electronic device
US6204606B1 (en) 1998-10-01 2001-03-20 The University Of Tennessee Research Corporation Slotted waveguide structure for generating plasma discharges
JP2001093871A (en) 1999-09-24 2001-04-06 Tadahiro Omi Plasma arc cutting apparatus, manufacturing process and device
EP1093846A1 (en) 1999-04-09 2001-04-25 Mitsubishi Heavy Industries, Ltd. Device for decomposing organic halogen compound and fluid heating device
US6224836B1 (en) 1997-04-25 2001-05-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for exciting a gas by a surface wave plasma and gas treatment apparatus incorporating such a device
US6228773B1 (en) 1998-04-14 2001-05-08 Matrix Integrated Systems, Inc. Synchronous multiplexed near zero overhead architecture for vacuum processes
US6238629B1 (en) 1999-04-28 2001-05-29 BARáNKOVá HANA Apparatus for plasma treatment of a gas
JP2001149918A (en) 1999-11-30 2001-06-05 Japan Organo Co Ltd Treating apparatus of wastewater including volatile organic substance and treating method thereof
JP2001149754A (en) 1999-11-30 2001-06-05 Japan Organo Co Ltd Method and device for treating waste gas containing volatile organic material
US6248206B1 (en) 1996-10-01 2001-06-19 Applied Materials Inc. Apparatus for sidewall profile control during an etch process
JP2001196420A (en) 2000-01-13 2001-07-19 Hitachi Ltd Semiconductor device manufacturing method and device
US6264812B1 (en) 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
WO2001055487A2 (en) 2000-01-28 2001-08-02 Ut-Battelle, Llc. Carbon fiber manufacturing via plasma technology
DE10005146A1 (en) 2000-02-04 2001-08-09 Widia Gmbh Device for setting a microwave energy density distribution in an applicator and use of this device
WO2001058223A1 (en) 2000-02-01 2001-08-09 Intevac, Inc. Plasma processing system and method
US6284202B1 (en) 1997-10-03 2001-09-04 Cha Corporation Device for microwave removal of NOx from exhaust gas
US6287980B1 (en) 1999-04-22 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Plasma processing method and plasma processing apparatus
US6287988B1 (en) 1997-03-18 2001-09-11 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device
US6297172B1 (en) 1999-06-07 2001-10-02 Sony Corporation Method of forming oxide film
US20010027023A1 (en) 2000-02-15 2001-10-04 Shigenori Ishihara Organic substance removing methods, methods of producing semiconductor device, and organic substance removing apparatuses
US20010028919A1 (en) 2000-04-11 2001-10-11 Osg Corporation Method of removing diamond coating and method of manufacturing diamond-coated body
JP2001303252A (en) 2000-04-24 2001-10-31 Ebara Corp Material generating method and apparatus thereof
WO2001082332A1 (en) 2000-04-26 2001-11-01 Cornell Research Foundation, Inc. Lamp utilizing fiber for enhanced starting field
JP2001332532A (en) 2000-05-23 2001-11-30 Shibaura Mechatronics Corp Device and method for ashing resist
US6329628B1 (en) 1998-12-10 2001-12-11 Polytechnic University Methods and apparatus for generating a plasma torch
JP2001351915A (en) 2000-06-06 2001-12-21 Univ Nagoya Method of manufacturing Ta1-XTiXO hybrid dielectric thin film and Ta1-XTiXO hybrid dielectric thin film
JP2002022135A (en) 2000-07-10 2002-01-23 Mitsubishi Heavy Ind Ltd Method and equipment for waste-oil combustion
JP2002028487A (en) 2000-07-18 2002-01-29 Nippon Corrosion Engineering Co Ltd Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen
US6342195B1 (en) 1993-10-01 2002-01-29 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
US6345497B1 (en) 2000-03-02 2002-02-12 The Regents Of The University Of California NOx reduction by electron beam-produced nitrogen atom injection
US6348158B1 (en) 1998-07-23 2002-02-19 Nec Corporation Plasma processing with energy supplied
JP2002069643A (en) 2000-08-29 2002-03-08 National Institute Of Advanced Industrial & Technology Method for producing carbon nanotube
JP2002075960A (en) 2000-08-25 2002-03-15 Kobe Steel Ltd Method of etching carbonic material
US6358361B1 (en) 1998-06-19 2002-03-19 Sumitomo Metal Industries Limited Plasma processor
US20020034461A1 (en) 1998-01-29 2002-03-21 Segal David Leslie Plasma assisted processing of gas
US6362449B1 (en) * 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
WO2002026005A1 (en) 2000-09-25 2002-03-28 Dilthey, Ulrich Plasma torch, especially a plasma positive pole torch
US20020036187A1 (en) 2000-06-14 2002-03-28 Nobuo Ishll Plasma processing device
US6365885B1 (en) 1999-10-18 2002-04-02 The Penn State Research Foundation Microwave processing in pure H fields and pure E fields
US6367412B1 (en) 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source
US6370459B1 (en) 1998-07-21 2002-04-09 Techco Corporation Feedback and servo control for electric power steering systems
US6372304B1 (en) 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD
US6376027B1 (en) 2000-05-01 2002-04-23 Korea Advanced Institute Of Science And Technology Method for crystallizing lithium transition metal oxide thin film by plasma treatment
US6383333B1 (en) 1998-04-28 2002-05-07 Tokai Carbon Company, Ltd. Protective member for inner surface of chamber and plasma processing apparatus
US6383576B1 (en) 1997-08-01 2002-05-07 Canon Kabushiki Kaisha Method of producing a microcrystal semiconductor thin film
JP2002126502A (en) 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Air-tight supporting device of discharge tube for decomposition device of organic halogenated compound
US6388225B1 (en) 1998-04-02 2002-05-14 Bluem Heinz-Juergen Plasma torch with a microwave transmitter
US6392350B1 (en) 1998-06-30 2002-05-21 Tokyo Electron Limited Plasma processing method
US6407359B1 (en) 1999-08-04 2002-06-18 Metal Process (Societe A Responsabilite Limitee) Method of producing individual plasmas in order to create a uniform plasma for a work surface, and apparatus for producing such a plasma
US20020100751A1 (en) * 2001-01-30 2002-08-01 Carr Jeffrey W. Apparatus and method for atmospheric pressure reactive atom plasma processing for surface modification
WO2002061171A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Method for the production of a functional coating by means of a high-frequency icp plasma beam source
WO2002061165A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Device for ceramic-type coating of a substrate
WO2002062114A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Plasma unit and method for generation of a functional coating
WO2002062115A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Plasma installation and method for producing a functional coating
WO2002067285A2 (en) 2001-02-23 2002-08-29 Robert Bosch Gmbh Device and method for discharging dielectric surfaces
US20020124867A1 (en) 2001-01-08 2002-09-12 Apl Co., Ltd. Apparatus and method for surface cleaning using plasma
JP2002273161A (en) 2001-03-16 2002-09-24 Mitsubishi Electric Corp Method and apparatus for decomposing nitrogen oxide
JP2002273168A (en) 2001-03-15 2002-09-24 Alpha Tekku:Kk Device and method for removal of hazard
US20020135308A1 (en) 2001-11-01 2002-09-26 Janos Alan C. Plasma process and apparatus
US6488112B1 (en) 1999-11-16 2002-12-03 Trw Fahrwerksysteme Gmbh & Co. Kg Electrohydraulic steering system
US20020197882A1 (en) 2001-06-20 2002-12-26 Hiroaki Niimi Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
US6512216B2 (en) 2001-01-17 2003-01-28 The Penn State Research Foundation Microwave processing using highly microwave absorbing powdered material layers
US6522055B2 (en) 2000-02-16 2003-02-18 Novitake Itron Corporation Electron-emitting source, electron-emitting module, and method of manufacturing electron-emitting source
WO2003018862A2 (en) 2001-08-25 2003-03-06 Robert Bosch Gmbh Method for producing a nanostructured coating
JP2003075070A (en) 2001-09-05 2003-03-12 Natl Inst For Fusion Science Continuous calcination furnace, and manufacturing method for sintered product using the same
WO2003028081A2 (en) 2001-09-14 2003-04-03 Robert Bosch Gmbh Method for etching structures in an etching body by means of a plasma
US20030071037A1 (en) 2001-09-05 2003-04-17 Motoyasu Sato Microwave sintering furnace and microwave sintering method
US6575264B2 (en) 1999-01-29 2003-06-10 Dana Corporation Precision electro-hydraulic actuator positioning system
US20030111462A1 (en) 2000-10-19 2003-06-19 Motoyasu Sato Burning furnace,burnt body producing method, and burnt body
US20030111334A1 (en) 2000-05-11 2003-06-19 Jean-Pol Dodelet Process for preparing carbon nanotubes
US6592664B1 (en) 1999-09-09 2003-07-15 Robert Bosch Gmbh Method and device for epitaxial deposition of atoms or molecules from a reactive gas on a deposition surface of a substrate
JP2003264057A (en) 2001-12-28 2003-09-19 Mino Ceramic Co Ltd Electromagnetic wave continuous furnace, electromagnetic wave leakage preventing device, and continuous baking method of baked thing using electromagnetic wave
WO2003096747A2 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma heating apparatus and methods
WO2003096766A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma control using phase and/or frequency of multiple radiation sources
US6712298B2 (en) 2000-02-29 2004-03-30 Schott Glas Method and device for crushing glass bodies by means of microwave heating
US6717368B1 (en) 2001-03-15 2004-04-06 Mikuro Denshi Corporation Limited Plasma generator using microwave
US20040070347A1 (en) 2000-11-22 2004-04-15 Yasushi Nishida Plasma generating apparatus using microwave
US20040089631A1 (en) 2002-11-12 2004-05-13 Blalock Guy T. Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly
EP1427265A2 (en) 2002-12-03 2004-06-09 Robert Bosch Gmbh Device and method for coating a substrate and substrate coating
US20040107796A1 (en) 2002-12-04 2004-06-10 Satyendra Kumar Plasma-assisted melting
WO2004050939A2 (en) 2002-12-04 2004-06-17 Dana Corporation Plasma-assisted melting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60015252T2 (en) * 1999-08-10 2006-02-02 Sumitomo Wiring Systems, Ltd., Yokkaichi A wire connection method and a wire connection arrangement

Patent Citations (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432296A (en) 1967-07-13 1969-03-11 Commw Scient Ind Res Org Plasma sintering
US3612686A (en) 1968-01-03 1971-10-12 Iit Res Inst Method and apparatus for gas analysis utilizing a direct current discharge
US3731047A (en) 1971-12-06 1973-05-01 Mc Donnell Douglas Corp Plasma heating torch
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
US4147911A (en) 1975-08-11 1979-04-03 Nippon Steel Corporation Method for sintering refractories and an apparatus therefor
US4025818A (en) 1976-04-20 1977-05-24 Hughes Aircraft Company Wire ion plasma electron gun
US4151034A (en) 1976-12-22 1979-04-24 Tokyo Shibaura Electric Co., Ltd. Continuous gas plasma etching apparatus
US4090055A (en) 1977-02-10 1978-05-16 Northern Telecom Limited Apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4307277A (en) 1978-08-03 1981-12-22 Mitsubishi Denki Kabushiki Kaisha Microwave heating oven
US4213818A (en) 1979-01-04 1980-07-22 Signetics Corporation Selective plasma vapor etching process
US4265730A (en) 1979-03-30 1981-05-05 Tokyo Shibaura Denki K.K. Surface treating apparatus utilizing plasma generated by microwave discharge
US4230448A (en) 1979-05-14 1980-10-28 Combustion Electromagnetics, Inc. Burner combustion improvements
US4339326A (en) 1979-11-22 1982-07-13 Tokyo Shibaura Denki Kabushiki Kaisha Surface processing apparatus utilizing microwave plasma
US4473736A (en) 1980-04-10 1984-09-25 Agence Nationale De Valorisation De La Recherche (Anvar) Plasma generator
US4609808A (en) 1980-04-10 1986-09-02 Agence Nationale De Valorisation De La Rechere (Anvar) Plasma generator
US4404456A (en) 1981-03-26 1983-09-13 Cann Gordon L Micro-arc welding/brazing of metal to metal and metal to ceramic joints
JPS5825073A (en) 1981-08-07 1983-02-15 Mitsubishi Electric Corp Electrodeless discharge lamp
US4479075A (en) 1981-12-03 1984-10-23 Elliott William G Capacitatively coupled plasma device
US4500564A (en) 1982-02-01 1985-02-19 Agency Of Industrial Science & Technology Method for surface treatment by ion bombardment
US4504007A (en) 1982-09-14 1985-03-12 International Business Machines Corporation Solder and braze fluxes and processes for using the same
US4611108A (en) 1982-09-16 1986-09-09 Agence National De Valorisation De La Recherche (Anuar) Plasma torches
JPS59103348A (en) 1982-12-06 1984-06-14 Toyota Central Res & Dev Lab Inc Manufacturing method of semiconductor device
JPS59169053A (en) 1983-03-16 1984-09-22 Toshiba Corp Electrodeless electric-discharge lamp
DD222348A1 (en) 1983-12-27 1985-05-15 Erste Maschinenfabrik K Marx S METHOD OF INTENSIVATING THE INFLUENCING OF MATERIAL IN THERMAL-CHEMICAL TREATMENT OF MATERIALS
US4698234A (en) 1985-04-01 1987-10-06 Energy Conversion Devices, Inc. Vapor deposition of semiconductor material
US4666775A (en) 1985-04-01 1987-05-19 Kennecott Corporation Process for sintering extruded powder shapes
JPS62535A (en) 1985-06-27 1987-01-06 Isuzu Motors Ltd Continuous plasma treatment apparatus
US4624738A (en) 1985-07-12 1986-11-25 E. T. Plasma, Inc. Continuous gas plasma etching apparatus and method
US4687560A (en) 1985-08-16 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides
US4760230A (en) 1985-09-27 1988-07-26 Stiftelsen Institutet For Mikrovagsteknik Vid Tekniska Hogskolan I Stockholm Method and an apparatus for heating glass tubes
EP0228864B1 (en) 1986-01-03 1991-03-13 The Carborundum Company Process for sintering extruded powder shapes
US4772770A (en) 1986-06-30 1988-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus for joining ceramics by microwave
US4767902A (en) 1986-09-24 1988-08-30 Questech Inc. Method and apparatus for the microwave joining of ceramic items
US4877938A (en) 1986-09-26 1989-10-31 U.S. Philips Corporation Plasma activated deposition of an insulating material on the interior of a tube
US4840139A (en) 1986-10-01 1989-06-20 Canon Kabushiki Kaisha Apparatus for the formation of a functional deposited film using microwave plasma chemical vapor deposition process
US4919077A (en) 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus
US4792348A (en) 1987-03-02 1988-12-20 Powerplex Technologies, Inc. Method of forming glass bonded joint of beta-alumina
US5003152A (en) 1987-04-27 1991-03-26 Nippon Telegraph And Telephone Corporation Microwave transforming method and plasma processing
US4883570A (en) 1987-06-08 1989-11-28 Research-Cottrell, Inc. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves
US4924061A (en) 1987-06-10 1990-05-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Microwave plasma torch, device comprising such a torch and process for manufacturing powder by the use thereof
US4871581A (en) 1987-07-13 1989-10-03 Semiconductor Energy Laboratory Co., Ltd. Carbon deposition by ECR CVD using a catalytic gas
US4891488A (en) 1987-07-16 1990-01-02 Texas Instruments Incorporated Processing apparatus and method
US4963709A (en) 1987-07-24 1990-10-16 The United States Of America As Represented By The Department Of Energy Method and device for microwave sintering large ceramic articles
US5010220A (en) 1988-02-16 1991-04-23 Alcan International Limited Process and apparatus for heating bodies at high temperature and pressure utilizing microwave energy
EP0335675A2 (en) 1988-03-29 1989-10-04 Canon Kabushiki Kaisha Large area microwave plasma apparatus
US4893584A (en) 1988-03-29 1990-01-16 Energy Conversion Devices, Inc. Large area microwave plasma apparatus
US4908492A (en) 1988-05-11 1990-03-13 Hitachi, Ltd. Microwave plasma production apparatus
US5017404A (en) 1988-09-06 1991-05-21 Schott Glaswerke Plasma CVD process using a plurality of overlapping plasma columns
US5741364A (en) 1988-09-14 1998-04-21 Fujitsu Limited Thin film formation apparatus
US4877589A (en) 1988-09-19 1989-10-31 Hare Louis R O Nitrogen fixation by electric arc and catalyst
US4956590A (en) 1988-10-06 1990-09-11 Techco Corporation Vehicular power steering system
US5131993A (en) 1988-12-23 1992-07-21 The Univeristy Of Connecticut Low power density plasma excitation microwave energy induced chemical reactions
US5015349A (en) 1988-12-23 1991-05-14 University Of Connecticut Low power density microwave discharge plasma excitation energy induced chemical reactions
US4972799A (en) 1989-01-26 1990-11-27 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus for mass-producing functional deposited films
US4888088A (en) 1989-03-06 1989-12-19 Tegal Corporation Ignitor for a microwave sustained plasma
US5103715A (en) 1989-03-17 1992-04-14 Techco Corporation Power steering system
US5224117A (en) 1989-04-17 1993-06-29 Siemens Aktiengesellschaft Gas lasers, in particular co2 lasers
US5227695A (en) 1989-06-05 1993-07-13 Centre National De La Recherche Scientifique Device for coupling microwave energy with an exciter and for distributing it therealong for the purpose of producing a plasma
US5122633A (en) 1989-06-07 1992-06-16 Wolfgang Moshammer Method and apparatus for radiation microwave energy into material containing water or mixed with water
US5527391A (en) 1989-06-28 1996-06-18 Canon Kabushiki Kaisha Method and apparatus for continuously forming functional deposited films with a large area by a microwave plasma CVD method
US5520740A (en) 1989-06-28 1996-05-28 Canon Kabushiki Kaisha Process for continuously forming a large area functional deposited film by microwave PCVD method and apparatus suitable for practicing the same
US5714010A (en) 1989-06-28 1998-02-03 Canon Kabushiki Kaisha Process for continuously forming a large area functional deposited film by a microwave PCVD method and an apparatus suitable for practicing the same
US5310426A (en) 1989-08-03 1994-05-10 Uha Mikakuto Precision Engineering Research Institute Co., Ltd. High-speed film forming method by microwave plasma chemical vapor deposition (CVD) under high pressure and an apparatus therefor
EP0420101A2 (en) 1989-09-25 1991-04-03 Ryohei Itatani Microwave plasma generating apparatus
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
EP0435591A2 (en) * 1989-12-27 1991-07-03 Exxon Research And Engineering Company Conversion of methane using microwave radiation
US5023056A (en) 1989-12-27 1991-06-11 The United States Of America As Represented By The Secretary Of The Navy Plasma generator utilizing dielectric member for carrying microwave energy
EP0436361A1 (en) 1989-12-27 1991-07-10 Exxon Research And Engineering Company Method for improving the activity maintenance of plasma initiator
US5277773A (en) 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
US5074112A (en) 1990-02-21 1991-12-24 Atomic Energy Of Canada Limited Microwave diesel scrubber assembly
US5284544A (en) 1990-02-23 1994-02-08 Hitachi, Ltd. Apparatus for and method of surface treatment for microelectronic devices
US5164130A (en) 1990-04-20 1992-11-17 Martin Marietta Energy Systems, Inc. Method of sintering ceramic materials
US5120567A (en) 1990-05-17 1992-06-09 General Electric Company Low frequency plasma spray method in which a stable plasma is created by operating a spray gun at less than 1 mhz in a mixture of argon and helium gas
US5662965A (en) 1990-06-29 1997-09-02 Matsushita Electric Industrial Co., Ltd. Method of depositing crystalline carbon-based thin films
JPH0474858A (en) 1990-07-16 1992-03-10 Asahi Chem Ind Co Ltd Production of nitride film
US5058527A (en) 1990-07-24 1991-10-22 Ricoh Company, Ltd. Thin film forming apparatus
US5307892A (en) 1990-08-03 1994-05-03 Techco Corporation Electronically controlled power steering system
US5072650A (en) 1990-08-03 1991-12-17 Techco Corporation Power steering system with improved stability
US5487811A (en) 1990-08-23 1996-01-30 Fujitsu Limited Process for preparation of semiconductor device
US5085885A (en) 1990-09-10 1992-02-04 University Of Delaware Plasma-induced, in-situ generation, transport and use or collection of reactive precursors
US5616373A (en) 1990-09-14 1997-04-01 Balzers Aktiengesellschaft Plasma CVD method for producing a diamond coating
US5276297A (en) * 1990-09-18 1994-01-04 Naraseiki Kabushiki Kaisha Melting disposal apparatus for injection needles
US5087272A (en) 1990-10-17 1992-02-11 Nixdorf Richard D Filter and means for regeneration thereof
US5523126A (en) 1990-10-29 1996-06-04 Canon Kabushiki Kaisha Method of continuously forming a large area functional deposited film by microwave PCVD
US5514217A (en) 1990-11-16 1996-05-07 Canon Kabushiki Kaisha Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
US5304766A (en) 1991-01-25 1994-04-19 Prolabo Methods and apparatus for simultaneously treating a plurality of samples in a moist medium
US5202541A (en) 1991-01-28 1993-04-13 Alcan International Limited Microwave heating of workpieces
US5276386A (en) 1991-03-06 1994-01-04 Hitachi, Ltd. Microwave plasma generating method and apparatus
EP0520719B1 (en) 1991-06-25 1996-05-29 Dana Corporation Counterweight attachment technique
US5349154A (en) 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
US5223308A (en) 1991-10-18 1993-06-29 Energy Conversion Devices, Inc. Low temperature plasma enhanced CVD process within tubular members
US5321223A (en) 1991-10-23 1994-06-14 Martin Marietta Energy Systems, Inc. Method of sintering materials with microwave radiation
US5961871A (en) 1991-11-14 1999-10-05 Lockheed Martin Energy Research Corporation Variable frequency microwave heating apparatus
US5316043A (en) 1992-02-04 1994-05-31 Techco Corporation Preload mechanism for power steering apparatus
US5311906A (en) 1992-02-04 1994-05-17 Techco Corporation Preload mechanism for power steering apparatus
US5645897A (en) 1992-02-15 1997-07-08 Andra; Jurgen Process and device for surface-modification by physico-chemical reactions of gases or vapors on surfaces, using highly-charged ions
US5222448A (en) * 1992-04-13 1993-06-29 Columbia Ventures Corporation Plasma torch furnace processing of spent potliner from aluminum smelters
US5366764A (en) 1992-06-15 1994-11-22 Sunthankar Mandar B Environmentally safe methods and apparatus for depositing and/or reclaiming a metal or semi-conductor material using sublimation
US5607509A (en) 1992-11-04 1997-03-04 Hughes Electronics High impedance plasma ion implantation apparatus
US6101969A (en) 1992-11-12 2000-08-15 Ngk Insulators, Ltd. Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
US5271963A (en) 1992-11-16 1993-12-21 Materials Research Corporation Elimination of low temperature ammonia salt in TiCl4 NH3 CVD reaction
US5423180A (en) 1993-01-20 1995-06-13 Matsushita Electric Industrial Co., Ltd. Filter regenerating apparatus and method for an internal combustion engine
US5976429A (en) 1993-02-10 1999-11-02 The Morgan Crucible Company, Plc Process for producing dense, self-sintered silicon carbide/carbon-graphite composites
US5370525A (en) 1993-03-22 1994-12-06 Blue Pacific Environments Corporation Microwave combustion enhancement device
US5449887A (en) 1993-03-25 1995-09-12 Martin Marietta Energy Systems, Inc. Thermal insulation for high temperature microwave sintering operations and method thereof
US5597456A (en) 1993-06-07 1997-01-28 Hiroshi Kashiwagi Method for producing medical materials
JPH06345541A (en) 1993-06-11 1994-12-20 Fuji Denpa Kogyo Kk Microwave sintering method and furnace therefor
US5755097A (en) 1993-07-29 1998-05-26 Techco Corporation Bootstrap power steering systems
US5435698A (en) 1993-07-29 1995-07-25 Techco Corporation Bootstrap power steering systems
US5682745A (en) 1993-07-29 1997-11-04 Techco Corporation Bootstrap power steering systems
US5505275A (en) 1993-09-09 1996-04-09 Techo Corporation Power steering system
US6342195B1 (en) 1993-10-01 2002-01-29 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
WO1995011442A1 (en) 1993-10-22 1995-04-27 Massachusetts Institute Of Technology Continuous, real time microwave plasma element sensor
US5671045A (en) 1993-10-22 1997-09-23 Masachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
EP0724720B1 (en) 1993-10-22 2000-05-03 Massachusetts Institute Of Technology Continuous, real time microwave plasma element sensor
JPH07153405A (en) 1993-11-30 1995-06-16 Nissin Electric Co Ltd Plasma application device
US5688477A (en) 1994-01-31 1997-11-18 Atomic Energy Corporation Of South Africa Limited Process for reacting dissociated zircon with gaseous hydrogen fluoride
EP0670666B1 (en) 1994-03-02 1998-06-03 Nissin Electric Company, Limited Plasma generating apparatus and plasma processing apparatus
US5651825A (en) 1994-03-02 1997-07-29 Nissin Electric Co., Ltd. Plasma generating apparatus and plasma processing apparatus
US5808282A (en) 1994-03-31 1998-09-15 Microwear Corporation Microwave sintering process
US5670065A (en) 1994-07-05 1997-09-23 Buck Werke Gmbh & Co. Apparatus for plasma treatment of fine grained materials
US5874705A (en) 1994-07-19 1999-02-23 Ea Technology Limited Method of and apparatus for microwave-plasma production
US5521360A (en) 1994-09-14 1996-05-28 Martin Marietta Energy Systems, Inc. Apparatus and method for microwave processing of materials
US5904993A (en) 1994-09-22 1999-05-18 Sumitomo Electric Industries, Ltd. Joint body of aluminum and silicon nitride and method of preparing the same
US5637180A (en) 1994-09-28 1997-06-10 Sony Corporation Plasma processing method and plasma generator
US5989477A (en) 1994-11-24 1999-11-23 Arplas Gesellschaft Fur Plasmatechnologie Mbh Process for the chemical modification of solids containing alkyl groups
JPH08217558A (en) 1995-02-15 1996-08-27 Mitsubishi Heavy Ind Ltd Ceramic bonding device
US5536477A (en) 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
JPH08281423A (en) 1995-04-07 1996-10-29 Tamura Seisakusho Co Ltd Method and equipment for fluxless soldering
US5794113A (en) 1995-05-01 1998-08-11 The Regents Of The University Of California Simultaneous synthesis and densification by field-activated combustion
WO1996038311A1 (en) 1995-06-02 1996-12-05 The University Of Tennessee Research Corporation Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
US5689949A (en) 1995-06-05 1997-11-25 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using microwave energy
US5973289A (en) * 1995-06-07 1999-10-26 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
JPH0917597A (en) 1995-06-27 1997-01-17 Kao Corp Device and method for generating plasma
US5980843A (en) 1995-07-05 1999-11-09 Katator Ab Method and apparatus in catalytic reactions
JPH0923458A (en) 1995-07-07 1997-01-21 Nec Corp Time division switch
JPH0927459A (en) 1995-07-10 1997-01-28 Canon Inc Processing equipment for semiconductor device
US6139656A (en) 1995-07-10 2000-10-31 Ford Global Technologies, Inc. Electrochemical hardness modification of non-allotropic metal surfaces
JPH0927482A (en) 1995-07-11 1997-01-28 Speedfam Co Ltd Plasma etching apparatus
JPH09102400A (en) 1995-07-31 1997-04-15 Hitachi Ltd Process equipment using microwave plasma
US6132550A (en) 1995-08-11 2000-10-17 Sumitomo Electric Industries, Ltd. Apparatuses for desposition or etching
JPH09111461A (en) 1995-08-11 1997-04-28 Sumitomo Electric Ind Ltd Film forming or etching equipment
US5848348A (en) 1995-08-22 1998-12-08 Dennis; Mahlon Denton Method for fabrication and sintering composite inserts
US5980999A (en) 1995-08-24 1999-11-09 Nagoya University Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
JPH09137274A (en) 1995-08-24 1997-05-27 Univ Nagoya Formation of thin film by radical regulation microfabricating method and device therefor
JPH0978240A (en) 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd Hard carbon film forming device and production of hard carbon film forming substrate
US6096389A (en) 1995-09-14 2000-08-01 Canon Kabushiki Kaisha Method and apparatus for forming a deposited film using a microwave CVD process
US5796080A (en) 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
WO1997013141A1 (en) 1995-10-06 1997-04-10 Massachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
JPH09102488A (en) 1995-10-06 1997-04-15 Sumitomo Metal Ind Ltd Alumina microwave introduction window and manufacturing method thereof
US5712000A (en) 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US5859404A (en) 1995-10-12 1999-01-12 Hughes Electronics Corporation Method and apparatus for plasma processing a workpiece in an enveloping plasma
DE19542352A1 (en) 1995-11-14 1997-05-15 Fraunhofer Ges Forschung Microwave bonding of ceramic to ceramic or metal
US6264812B1 (en) 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
US6297595B1 (en) 1995-11-15 2001-10-02 Applied Materials, Inc. Method and apparatus for generating a plasma
JPH09157048A (en) 1995-12-06 1997-06-17 Hitachi Ltd Composite ceramics and their manufacturing method
US6131386A (en) 1995-12-14 2000-10-17 Central Research Laboratories Limited Single mode resonant cavity
US5847355A (en) 1996-01-05 1998-12-08 California Institute Of Technology Plasma-assisted microwave processing of materials
US6153868A (en) 1996-01-19 2000-11-28 Groupe Danone Microwave application device, particularly for baking products on a metal carrier
JPH09223596A (en) 1996-02-15 1997-08-26 Bridgestone Corp Microwave plasma generator
JPH09295900A (en) 1996-02-19 1997-11-18 Hitachi Ltd Microwave plasma substrate processing equipment
JPH09235686A (en) 1996-02-29 1997-09-09 Kazuo Sugiyama Method for cleaning surface for solder joining, modifying method therefor and soldering method therefor
JPH09251971A (en) 1996-03-15 1997-09-22 Kazuo Sugiyama Method of removing organic compd. from substance surface
US5961773A (en) 1996-03-28 1999-10-05 Hitachi, Ltd. Plasma processing apparatus and plasma processing method using the same
US6103068A (en) 1996-04-26 2000-08-15 Bayer Aktiengesellschaft Process for antifelting finishing of wool using a low-temperature plasma treatment
US5828338A (en) 1996-05-23 1998-10-27 Hughes Electronics Thyratron switched beam steering array
US5945351A (en) 1996-05-31 1999-08-31 Siemens Aktiengesellschaft Method for etching damaged zones on an edge of a semiconductor substrate, and etching system
US5868871A (en) 1996-06-06 1999-02-09 Dowa Mining Co., Ltd. Method and apparatus for carburizing, quenching and tempering
US6372304B1 (en) 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD
US6011248A (en) 1996-07-26 2000-01-04 Dennis; Mahlon Denton Method and apparatus for fabrication and sintering composite inserts
US6038854A (en) 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
JPH1066948A (en) 1996-08-27 1998-03-10 Sharp Corp Crude refuse treating device
JPH1081588A (en) 1996-09-05 1998-03-31 Matsushita Electric Ind Co Ltd Semiconductor diamond and its formation
JPH1087310A (en) 1996-09-13 1998-04-07 Mitsubishi Heavy Ind Ltd Production of fullerene and device therefor
US6248206B1 (en) 1996-10-01 2001-06-19 Applied Materials Inc. Apparatus for sidewall profile control during an etch process
US5734501A (en) 1996-11-01 1998-03-31 Minnesota Mining And Manufacturing Company Highly canted retroreflective cube corner article
US5715677A (en) 1996-11-13 1998-02-10 The Regents Of The University Of California Diesel NOx reduction by plasma-regenerated absorbend beds
US5993612A (en) 1996-12-13 1999-11-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for purifying a gas and apparatus for the implementation of such a process
US6054693A (en) 1997-01-17 2000-04-25 California Institute Of Technology Microwave technique for brazing materials
JPH10204641A (en) 1997-01-21 1998-08-04 Nichimen Denshi Koken Kk Diamondlike carbon thin film depositing device
US5939026A (en) 1997-01-31 1999-08-17 Hitachi, Ltd. Apparatus for processing gas by electron beam
US6189482B1 (en) 1997-02-12 2001-02-20 Applied Materials, Inc. High temperature, high flow rate chemical vapor deposition apparatus and related methods
US6039834A (en) 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US5998774A (en) 1997-03-07 1999-12-07 Industrial Microwave Systems, Inc. Electromagnetic exposure chamber for improved heating
US6287988B1 (en) 1997-03-18 2001-09-11 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device
JPH10259420A (en) 1997-03-19 1998-09-29 Nkk Corp Method for reducing oxide of metallic plate
JPH1081970A (en) 1997-03-31 1998-03-31 Semiconductor Energy Lab Co Ltd Formation of thin coating
US6054700A (en) 1997-04-10 2000-04-25 Nucon Systems Process and apparatus for joining thick-walled ceramic parts
JPH10294306A (en) 1997-04-18 1998-11-04 Mitsubishi Electric Corp Plasma etching device, plasma etching method and plasma cleaning method for plasma etching device
US6224836B1 (en) 1997-04-25 2001-05-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for exciting a gas by a surface wave plasma and gas treatment apparatus incorporating such a device
JPH1131599A (en) 1997-07-08 1999-02-02 Sumitomo Metal Ind Ltd Preheating method and plasma processing apparatus in plasma processing apparatus
US5841237A (en) 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
US6383576B1 (en) 1997-08-01 2002-05-07 Canon Kabushiki Kaisha Method of producing a microcrystal semiconductor thin film
JPH11106947A (en) 1997-09-29 1999-04-20 Nkk Corp Surface modifying method of metallic sheet
US6284202B1 (en) 1997-10-03 2001-09-04 Cha Corporation Device for microwave removal of NOx from exhaust gas
US6122912A (en) 1997-10-16 2000-09-26 Techco Corporation Electro-hydraulic power steering systems having improved efficiency
JPH11145116A (en) 1997-11-04 1999-05-28 Nec Corp Microwave plasma processing apparatus and opposed electrodes using the same
JPH11265885A (en) 1997-11-20 1999-09-28 Tokyo Electron Ltd Deposition of film through plasma-assisted process
US6183689B1 (en) 1997-11-25 2001-02-06 Penn State Research Foundation Process for sintering powder metal components
JPH11186222A (en) 1997-12-24 1999-07-09 Sony Corp Ecr etching device
US6028393A (en) 1998-01-22 2000-02-22 Energy Conversion Devices, Inc. E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials
US20020034461A1 (en) 1998-01-29 2002-03-21 Segal David Leslie Plasma assisted processing of gas
JPH11228290A (en) 1998-02-03 1999-08-24 Micro Denshi Kk Diamond growing apparatus utilizing microwave
JPH11273895A (en) 1998-03-24 1999-10-08 Micro Denshi Kk Plasma generating device using microwave
US6388225B1 (en) 1998-04-02 2002-05-14 Bluem Heinz-Juergen Plasma torch with a microwave transmitter
JPH11297266A (en) 1998-04-13 1999-10-29 Hitachi Ltd Mass spectrometer and ion source
US6228773B1 (en) 1998-04-14 2001-05-08 Matrix Integrated Systems, Inc. Synchronous multiplexed near zero overhead architecture for vacuum processes
US6383333B1 (en) 1998-04-28 2002-05-07 Tokai Carbon Company, Ltd. Protective member for inner surface of chamber and plasma processing apparatus
US6358361B1 (en) 1998-06-19 2002-03-19 Sumitomo Metal Industries Limited Plasma processor
US6152254A (en) 1998-06-23 2000-11-28 Techco Corporation Feedback and servo control for electric power steering system with hydraulic transmission
JP2000012526A (en) 1998-06-25 2000-01-14 Mitsubishi Electric Corp Plasma processing apparatus and method
US6392350B1 (en) 1998-06-30 2002-05-21 Tokyo Electron Limited Plasma processing method
US6370459B1 (en) 1998-07-21 2002-04-09 Techco Corporation Feedback and servo control for electric power steering systems
US6348158B1 (en) 1998-07-23 2002-02-19 Nec Corporation Plasma processing with energy supplied
US6362449B1 (en) * 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
US6204190B1 (en) 1998-08-20 2001-03-20 Murata Manufacturing Co., Ltd. Method for producing an electronic device
US6204606B1 (en) 1998-10-01 2001-03-20 The University Of Tennessee Research Corporation Slotted waveguide structure for generating plasma discharges
US6121109A (en) 1998-10-03 2000-09-19 United Semiconductor Corp. Method of forming hemispherical grain polysilicon over lower electrode capacitor
JP2000173989A (en) 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Plasma processing equipment
US6329628B1 (en) 1998-12-10 2001-12-11 Polytechnic University Methods and apparatus for generating a plasma torch
JP2000203990A (en) 1999-01-19 2000-07-25 Japan Science & Technology Corp Method for growing crystal thin film at low temperature by plasma sputtering
US6575264B2 (en) 1999-01-29 2003-06-10 Dana Corporation Precision electro-hydraulic actuator positioning system
US6186090B1 (en) 1999-03-04 2001-02-13 Energy Conversion Devices, Inc. Apparatus for the simultaneous deposition by physical vapor deposition and chemical vapor deposition and method therefor
JP2000269182A (en) 1999-03-16 2000-09-29 Hitachi Ltd Method and apparatus for manufacturing semiconductor device
JP2000288382A (en) 1999-04-09 2000-10-17 Mitsubishi Heavy Ind Ltd Apparatus for decomposing organohalogen compound
EP1093846A1 (en) 1999-04-09 2001-04-25 Mitsubishi Heavy Industries, Ltd. Device for decomposing organic halogen compound and fluid heating device
US6287980B1 (en) 1999-04-22 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Plasma processing method and plasma processing apparatus
JP2000310876A (en) 1999-04-27 2000-11-07 Nippon Zeon Co Ltd Developer for developing electrostatic images
JP2000310874A (en) 1999-04-27 2000-11-07 Nippon Zeon Co Ltd Developer for developing electrostatic images
US6238629B1 (en) 1999-04-28 2001-05-29 BARáNKOVá HANA Apparatus for plasma treatment of a gas
JP2000348897A (en) 1999-05-31 2000-12-15 Sumitomo Metal Ind Ltd Plasma processing equipment
US6297172B1 (en) 1999-06-07 2001-10-02 Sony Corporation Method of forming oxide film
JP2001058127A (en) 1999-06-24 2001-03-06 Leybold Syst Gmbh Apparatus for generating plasma in chamber by microwave excitation
JP2001013719A (en) 1999-07-02 2001-01-19 Nippon Zeon Co Ltd Developer for developing electrostatic images
US6149985A (en) 1999-07-07 2000-11-21 Eastman Kodak Company High-efficiency plasma treatment of imaging supports
US6407359B1 (en) 1999-08-04 2002-06-18 Metal Process (Societe A Responsabilite Limitee) Method of producing individual plasmas in order to create a uniform plasma for a work surface, and apparatus for producing such a plasma
JP2001053069A (en) 1999-08-10 2001-02-23 Matsushita Electric Ind Co Ltd Plasma processing method and apparatus
US6592664B1 (en) 1999-09-09 2003-07-15 Robert Bosch Gmbh Method and device for epitaxial deposition of atoms or molecules from a reactive gas on a deposition surface of a substrate
JP2001093871A (en) 1999-09-24 2001-04-06 Tadahiro Omi Plasma arc cutting apparatus, manufacturing process and device
US6365885B1 (en) 1999-10-18 2002-04-02 The Penn State Research Foundation Microwave processing in pure H fields and pure E fields
US6488112B1 (en) 1999-11-16 2002-12-03 Trw Fahrwerksysteme Gmbh & Co. Kg Electrohydraulic steering system
JP2001149918A (en) 1999-11-30 2001-06-05 Japan Organo Co Ltd Treating apparatus of wastewater including volatile organic substance and treating method thereof
JP2001149754A (en) 1999-11-30 2001-06-05 Japan Organo Co Ltd Method and device for treating waste gas containing volatile organic material
JP2000317303A (en) 2000-01-01 2000-11-21 Hitachi Ltd Plasma treatment apparatus and method
JP2000306901A (en) 2000-01-01 2000-11-02 Hitachi Ltd Plasma treatment device and plasma treatment method
JP2000323463A (en) 2000-01-01 2000-11-24 Hitachi Ltd Plasma processing method
JP2001196420A (en) 2000-01-13 2001-07-19 Hitachi Ltd Semiconductor device manufacturing method and device
WO2001055487A2 (en) 2000-01-28 2001-08-02 Ut-Battelle, Llc. Carbon fiber manufacturing via plasma technology
WO2001058223A1 (en) 2000-02-01 2001-08-09 Intevac, Inc. Plasma processing system and method
DE10005146A1 (en) 2000-02-04 2001-08-09 Widia Gmbh Device for setting a microwave energy density distribution in an applicator and use of this device
US20020190061A1 (en) 2000-02-04 2002-12-19 Thorsten Gerdes Device for adjusting the distribution of microwave energy density in an applicator and use of this device
US20010027023A1 (en) 2000-02-15 2001-10-04 Shigenori Ishihara Organic substance removing methods, methods of producing semiconductor device, and organic substance removing apparatuses
US6522055B2 (en) 2000-02-16 2003-02-18 Novitake Itron Corporation Electron-emitting source, electron-emitting module, and method of manufacturing electron-emitting source
US6367412B1 (en) 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source
US6712298B2 (en) 2000-02-29 2004-03-30 Schott Glas Method and device for crushing glass bodies by means of microwave heating
US6345497B1 (en) 2000-03-02 2002-02-12 The Regents Of The University Of California NOx reduction by electron beam-produced nitrogen atom injection
US20010028919A1 (en) 2000-04-11 2001-10-11 Osg Corporation Method of removing diamond coating and method of manufacturing diamond-coated body
US6610611B2 (en) 2000-04-11 2003-08-26 Osg Corporation Method of removing diamond coating and method of manufacturing diamond-coated body
JP2001303252A (en) 2000-04-24 2001-10-31 Ebara Corp Material generating method and apparatus thereof
WO2001082332A1 (en) 2000-04-26 2001-11-01 Cornell Research Foundation, Inc. Lamp utilizing fiber for enhanced starting field
US20020140381A1 (en) 2000-04-26 2002-10-03 Czeslaw Golkowski Lamp utilizing fiber for enhanced starting field
US6376027B1 (en) 2000-05-01 2002-04-23 Korea Advanced Institute Of Science And Technology Method for crystallizing lithium transition metal oxide thin film by plasma treatment
US20030111334A1 (en) 2000-05-11 2003-06-19 Jean-Pol Dodelet Process for preparing carbon nanotubes
JP2001332532A (en) 2000-05-23 2001-11-30 Shibaura Mechatronics Corp Device and method for ashing resist
JP2001351915A (en) 2000-06-06 2001-12-21 Univ Nagoya Method of manufacturing Ta1-XTiXO hybrid dielectric thin film and Ta1-XTiXO hybrid dielectric thin film
US20020036187A1 (en) 2000-06-14 2002-03-28 Nobuo Ishll Plasma processing device
JP2002022135A (en) 2000-07-10 2002-01-23 Mitsubishi Heavy Ind Ltd Method and equipment for waste-oil combustion
JP2002028487A (en) 2000-07-18 2002-01-29 Nippon Corrosion Engineering Co Ltd Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen
JP2002075960A (en) 2000-08-25 2002-03-15 Kobe Steel Ltd Method of etching carbonic material
JP2002069643A (en) 2000-08-29 2002-03-08 National Institute Of Advanced Industrial & Technology Method for producing carbon nanotube
WO2002026005A1 (en) 2000-09-25 2002-03-28 Dilthey, Ulrich Plasma torch, especially a plasma positive pole torch
US20030111462A1 (en) 2000-10-19 2003-06-19 Motoyasu Sato Burning furnace,burnt body producing method, and burnt body
JP2002126502A (en) 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Air-tight supporting device of discharge tube for decomposition device of organic halogenated compound
US20040070347A1 (en) 2000-11-22 2004-04-15 Yasushi Nishida Plasma generating apparatus using microwave
US20020124867A1 (en) 2001-01-08 2002-09-12 Apl Co., Ltd. Apparatus and method for surface cleaning using plasma
US6512216B2 (en) 2001-01-17 2003-01-28 The Penn State Research Foundation Microwave processing using highly microwave absorbing powdered material layers
US20020100751A1 (en) * 2001-01-30 2002-08-01 Carr Jeffrey W. Apparatus and method for atmospheric pressure reactive atom plasma processing for surface modification
WO2002061171A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Method for the production of a functional coating by means of a high-frequency icp plasma beam source
WO2002062114A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Plasma unit and method for generation of a functional coating
WO2002062115A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Plasma installation and method for producing a functional coating
WO2002061165A1 (en) 2001-02-02 2002-08-08 Robert Bosch Gmbh Device for ceramic-type coating of a substrate
WO2002067285A3 (en) 2001-02-23 2002-10-10 Bosch Gmbh Robert Device and method for discharging dielectric surfaces
WO2002067285A2 (en) 2001-02-23 2002-08-29 Robert Bosch Gmbh Device and method for discharging dielectric surfaces
US6717368B1 (en) 2001-03-15 2004-04-06 Mikuro Denshi Corporation Limited Plasma generator using microwave
JP2002273168A (en) 2001-03-15 2002-09-24 Alpha Tekku:Kk Device and method for removal of hazard
JP2002273161A (en) 2001-03-16 2002-09-24 Mitsubishi Electric Corp Method and apparatus for decomposing nitrogen oxide
US20020197882A1 (en) 2001-06-20 2002-12-26 Hiroaki Niimi Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
WO2003018862A2 (en) 2001-08-25 2003-03-06 Robert Bosch Gmbh Method for producing a nanostructured coating
WO2003018862A3 (en) 2001-08-25 2003-06-26 Bosch Gmbh Robert Method for producing a nanostructured coating
US20030071037A1 (en) 2001-09-05 2003-04-17 Motoyasu Sato Microwave sintering furnace and microwave sintering method
JP2003075070A (en) 2001-09-05 2003-03-12 Natl Inst For Fusion Science Continuous calcination furnace, and manufacturing method for sintered product using the same
WO2003028081A2 (en) 2001-09-14 2003-04-03 Robert Bosch Gmbh Method for etching structures in an etching body by means of a plasma
US20020135308A1 (en) 2001-11-01 2002-09-26 Janos Alan C. Plasma process and apparatus
JP2003264057A (en) 2001-12-28 2003-09-19 Mino Ceramic Co Ltd Electromagnetic wave continuous furnace, electromagnetic wave leakage preventing device, and continuous baking method of baked thing using electromagnetic wave
WO2003096369A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted gas production
WO2003095807A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted engine exhaust treatment
WO2003095130A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted sintering
WO2003096380A2 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted nitrogen surface-treatment
WO2003096772A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted decrystallization
WO2003096773A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted joining
WO2003095058A2 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted multi-part processing
WO2003095090A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted carburizing
WO2003095699A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted enhanced coating
WO2003096382A2 (en) 2002-05-08 2003-11-20 Dana Corporation Methods and apparatus for plasma processing control
WO2003096771A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma generation and processing with multiple radiation sources
WO2003096383A2 (en) 2002-05-08 2003-11-20 Dana Corporation Cavity shapes for plasma-assisted processing
WO2003096766A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma control using phase and/or frequency of multiple radiation sources
WO2003096774A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma catalyst
WO2003096770A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted coating
WO2003096381A2 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted processing in a manufacturing line
WO2003095591A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted doping
WO2003096749A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted heat treatment
WO2003095089A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma-assisted formation of carbon structures
US20040001295A1 (en) 2002-05-08 2004-01-01 Satyendra Kumar Plasma generation and processing with multiple radiation sources
US20040004062A1 (en) 2002-05-08 2004-01-08 Devendra Kumar Plasma-assisted joining
WO2003096768A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma assisted dry processing
WO2003096747A2 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma heating apparatus and methods
WO2003096370A1 (en) 2002-05-08 2003-11-20 Dana Corporation Methods and apparatus for forming and using plasma jets
US6870124B2 (en) 2002-05-08 2005-03-22 Dana Corporation Plasma-assisted joining
US20040118816A1 (en) 2002-05-08 2004-06-24 Satyendra Kumar Plasma catalyst
US20040107896A1 (en) 2002-05-08 2004-06-10 Devendra Kumar Plasma-assisted decrystallization
US20040089631A1 (en) 2002-11-12 2004-05-13 Blalock Guy T. Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly
EP1427265A2 (en) 2002-12-03 2004-06-09 Robert Bosch Gmbh Device and method for coating a substrate and substrate coating
US20040107796A1 (en) 2002-12-04 2004-06-10 Satyendra Kumar Plasma-assisted melting
WO2004050939A2 (en) 2002-12-04 2004-06-17 Dana Corporation Plasma-assisted melting

Non-Patent Citations (243)

* Cited by examiner, † Cited by third party
Title
"Classical Plasma Applications," 2 pages (2002)—http://www.plasma.iinpe.br/English/Classical—Applications.htm.
"Heat Treatment of Steels—The Processes," AZoM.com, 9 pages, (2002)—www.azom.com.
"How A Blast Furnace Works—The Blast Furnace Plant," AISI Learning Center, 7 pages. http://www.steel.org/learning/howmade/blast—furnace.htm., Undated.
"How Is Steel Made," Answer Discussion, 6 pages—http://ourworld.compuserve.com/homepages/Dyaros/stlmanuf.htm, Undated.
"IRC in Materials Processing: Advanced Melting, Atomisation, Powder and Spray Forming, Plasma Melting—Operation of a Plasma Furnace," University of Birmingham website, 3 pages—http://www.irc.bham.ac.uk/theme1/plasma/furnace.htm, Undated.
"Micro-fabricated Palladium-Silver Membrane for Hydrogen Separation and Hydro/Dehydrogenation Reactions," Research Education Group webpage, 5 pages—http://utep.el.utwente.nl/tt/projects/sepmem/—Undated.
"Microwave Welding of Plastics," TWI World Centre for Materials Joining Technology, 2 pages, (Aug. 2002)—http://www.twi.co.uk/j32k/protected/band—3/ksab001.htm.
"Microwave Welding," EWi WeldNet, 1 page—(2003) http://www.ferris.edu/cot/accounts/plastics/ htdocs/Prey/Microwave%20Homepage.htm.
"Nitriding," Treat All Metals, Inc., 2 pages—Undated—http://www.treatallmetals.com/nitrid.htm.
"Novel Plasma Catalysts Significantly Reduce NOx from Diesel Engines," US Department of Energy research summary, 2 pages (Apr. 2001)—http://www.ott.doe.gov/success.html.
"Optoelectronic Packaging Applications," March Plasma Systems, Product Description, 2 pages (2002)—http://www.marchplasma.com/opto—app.htm.
"Plasma Carburizing," 1 page—Undated, http://www.ndkinc.co.jp/ndke04.html.
"Plasma Direct Melting Furnace," Materials Magic, Hitachi Metals Ltd., 3 pages—Undated, http://www.hitachi-metals.co.jp/e/prod/prod07/p07—2—02.html.
"Plasma Nitride Process Description," Northeast Coating Technologies, 2 pages, Undated, www.northeastcoating.com.
"Powder Metallurgy—Overview of the Powder Metallurgy Process," AZoM.com, 3 pages (2002)—http://www.azom.com/details.asp?ArticleID=1414.
"Printed Circuit Board (PCB) Plasma Applications," March Plasma Systems product descriptions, 2 pages (2002)—http://www.marchplasma.com/pcb—app.01.htm.
"testMAS: Pressure Sintering," 11 pages, Undated—http://cybercut.berkley.edu/mas2/processes/sinter—pressure.
"Using Non-Thermal Plasma Reactor to Reduce NOx Emissions from CIDI Engines," Office of Energy Efficiency and Renewable Energy, Office of Transportation, 1 page (Apr. 1999).
"Welding Plastic Parts," Business New Publishing Company, 4 pages (Nov. 2000)—http://www.assemblymag.com/Common/print—article.asp?rID=E455512C17534C31B96D.
Accentus-http://www.accentus.co.uk/ipco/html/techenv6<SUB>-</SUB>txt<SUB>-</SUB>fr.html.
Accentus—http://www.accentus.co.uk/ipco/html/techenv6—txt—fr.html.
Agrawal et al., "Grain Growth Control in Microwave Sintering of Ultrafine WC-Co Composite Powder Compacts," Euro PM99, Sintering, Italy, 8 pages (1999).
Agrawal et al., "Microwave Sintering of Commercial WC/Co Based Hard Metal Tools," Euro PM99, Sintering, Italy, 8 pages (1999).
Agrawal, D., "Metal Parts from Microwaves," 2 pages.
Agrawal, D., "Microwave Processing of Ceramics," Current Opinion in Solid State and Material Science, 3:480-485 (1998).
Ahmed et al., "Microwave Joining of Alumina and Zirconia Ceramics," IRIS Research Topics 1998, 1 page (1988).
Air Liquide, Heat Treatment-Gas Quenching,-http://www.airliquide.com/en/business/industry/ metals/applications/heat<SUB>-</SUB>treatment/quenching, 1 page (2000).
Air Liquide, Heat Treatment—Gas Quenching,—http://www.airliquide.com/en/business/industry/ metals/applications/heat—treatment/quenching, 1 page (2000).
Alexander et al., "Electrically Conducive Polymer Nanocomposite Materials," AFRL's Materials and Manufacturing Directorate, Nonmetallic Materials Division, Polymer Branch, Wright-Patterson AFB OH-http://www.afrlhorizons.com/Briefs/Sept02/ML0206.html , 2 pages (Sep. 2002).
Al-Shamma'a et al., "Microwave Atmospheric Plasma for Cleaning Exhaust Gases and Particulates," University of Liverpool, Dept. of Electrical Engineering and Electronics.
Alton et al., "A High-Density, RF Plasma-Sputter Negative Ion Source," 3 pages.
Anklekar et al., Microwave Sintering And Mechanical Properties of PM Copper Steel, pp. 355-362 (2001).
Application as filed in U.S. Appl. No. 11/378,779, filed on Mar. 17, 2006.
Application as filed in U.S. Appl. No. 11/384,104, filed on Mar. 17, 2006.
Application as filed in U.S. Appl. No. 11/384,126 filed on Mar. 17, 2006.
Batanov et al., "Plasmachemical Deposition of Thin Films in a Localized Free-Space Microwave Discharge," Technical Physics, 38:6, pp. 475-479 (1993).
Carbonitriding, Treat All Metals, Inc., 2 pages-http://www.treatallmetals.com/carbon.htm.
Carburizing,-Heat Treating by Treat All Metals-http://www.treatallmetals.com/gas.htm, 2 pages.
Cheng et al., "Microwave Processing of WC-Co Composites And Ferroic Titanates" (Original Article), Mat Res Innovat (1):44-52 (1997).
Cheng, J., "Fabricating Transparent Ceramics by Microwave Sintering," Focus on Electronics, 79:9, pp. 71-74 (2000).
Circle Group Holdings, Inc. eMentor Companies "StarTech Environmental Corp."-http://www.crgq.com/cgiweb/HTML/eMentor<SUB>-</SUB>Companies/startech.html, 9 pages.
Circle Group Holdings, Inc. eMentor Companies "StarTech Environmental Corp."—http://www.crgq.com/cgiweb/HTML/eMentor—Companies/startech.html, 9 pages.
Classification of Cast Iron-Key to Steel-Article-http://www.key-to-steel.com/Articles/Art63.htm, 3 pages.
Collin, Foundations for Microwave Engineering, 2d Ed., IEEE Press, NY, pp. 180-192 (2001).
Controlled Atmosphere Sinter-Hardening, 2 pages.
Egashira, "Decomposition of Trichloroethylene by Microwave-induced Plasma Generated from SiC whiskers," J. Electrochem. Soc., 145:1, pp. 229-235 (Jan. 1998).
Examination Report issued on Apr. 26, 2004, in PCT/US03/14053.
Examination Report issued on Apr. 26, 2004, in PCT/US03/14123.
Examination Report issued on Feb. 24, 2004, in PCT/US03/14054.
Fincke, "Hydrogen Separation Membrane,—Advanced Gas Separation: H2 Separation," Summary of research proposal, 1 page (2003).
Ford 1.3L Catalytic Converter (1988-1989)-http://catalyticconverters.com/FO13L43778889.html, 1 page.
Ford Contour Catalytic Converter (1995-1996)-http://www.all-catalytic-converters.com/ford-contour-converter.html, 2 pages.
Fraunhofer ILT, "Plasma-Reactors for Aftertreatment of Automobile Exhaust Gas," Fraunhofer-Gesellschaft (2002)-http://www.ilt.fhg.de/eng/jb01-s35.html, 1 page.
Fraunhofer ILT, "Plasma-Reactors for Aftertreatment of Automobile Exhaust Gas," Fraunhofer-Gesellschaft—http://www.ilt.fhg.de/eng/jb01-s35.html, 1 page (2002).
French, "The Plasma Waste Converter-From Waste Disposal to Energy Creation,"-http://www.arofe.army.mil/Conferences/CWC2001/French.htm, p. 1.
French, "The Plasma Waste Converter—From Waste Disposal to Energy Creation," The International Chemical Weapons Demilitarization Conference, Gifu City, Japan (May 22-24, 2001)—http://www.arofe.army.mil/Conferences/CWC2001/French.htm, 1 page.
Gao et al., "Superfast Densification of Oxide/Oxide Ceramic Composites," J. Am. Ceram. Soc. 82[4]1061-63 (1999)-http://216.239.39.100/search?q=cache:b-TFhQInU6YC:www.umr.edu/~hruiz/GaoShen.ppt+spark+plasma.
Gao et al., "Superfast Densification of Oxide/Oxide Ceramic Composites," J. Am. Ceram. Soc. 82(4)1061-1063 (1999).
Gao et al., "Superfast Densification of Oxide/Oxide Ceramic Composites," J. Am. Ceram. Soc. 82[4]1061-63 (1999)—http://216.239.39.100/search?q=cache:b-TFhQInU6YC:www.umr.edu/˜hruiz/GaoShen.ppt+spark+plasma.
Gedevanishivili et al., "Microwave Combustion Synthesis And Sintering of Intermetallics And Alloys," Journal of Materials Science Letters, (18), pp. 665-668 (1999).
Gedevanishvili et al., "Microwave Combustion Synthesis And Sintering of Intermetallics and Alloys," J. Mat. Sci. Lett. 18(9):665-668 (1999).
General Eastern, "Semiconductor Manufacturing—Using the HygroTwin 2850 to Reduce Costs, Improve Quality,", 3 pages, www.generaleastern.net (1997).
General Eastern, Semiconductor Manufacturing-Using the HygroTwin 2850 to Reduce Costs, Improve Quality, TIM 003, 3 pages, (1997).
George, "The Catalytic Converter," 5 pages, (2002)—http://krioma.net/articles/Catalytic%20Converter/Catalytic%20Converter.htm.
George, S.J., "The Catalytic Converter," 5 pages, (2002)-http://krioma.net/Articles/Catalytic%20Converter/Catalytic%20Converter.html.
GlassTesseract.Org website, "Tech Procedures and Tips: Exhaust Manifolds and Catalytic Converters Removal—and Installation", 4 pages (2003). http://glasstesseract.org/tech/catalytic.html.
GlassTesseract.Org-The Home of Kenz Benz, "Tech Procedures and Tips: Exhaust Manifolds and Catalytic Converters Removal-and Installation", 4 pages (2003)-http://glasstesseract.org/tech/catalytic.html.
Grant, J., Hackh's Chemical Dictionary, 3rd ed. p. 174-175.
Hackh's Chemical Dictionary, 3rd edition, J. Grant, Ed., McGraw Hill Book Co., NY, pp. 174-175 (1944).
Holt Walton & Hill, Heat Treatment of Steels-The Processes, Azom.com, 9 pages, (2002).
Holt Walton & Hill, Powder Metallurgy-Overview of the Powder Metallurgy Process, Azom.com, 3 pages (2002)-http://www.azom.com/details.asp?ArticleID=1414.
Honda Automobile News Press Release, "Honda Introduces Its First Two Clean Air Vehicles, the Civic Ferio LEV and Partners 1.6 LEV", 3 pages (Feb. 1997)-http://world.honda.com/news/1997/4970217a.html.
Honda Automobile News Press Release, "Honda Introduces Its First Two Clean Air Vehicles, the Civic Ferio LEV and Partner 1.6 LEV," 3 pages (Feb. 1997)—http://world.honda.com/news/1997/4970217a.html.
Honda Civic CX Catalytic Converter, (1996-2000) 1 page—http://www.catalyticconverters.com/HOCIVICCX4349600.html, Undated.
Honda Civic CX Catalytic Converter, 1 page (1996-2000)-http://www.catalyticconverters.com/HOCIVICCX4349600.html.
How A Blast Furnace Works-The Blast Furnace Plant, AISI Learning Center: http://www.steel.org/learning/howmade/blast<SUB>-</SUB>furnace.htm.
How A Blast Furnace Works—The Blast Furnace Plant, AISI Learning Center: http://www.steel.org/learning/howmade/blast—furnace.htm.
How Is Steel Made, Answer Discussion, 6 pages-http://ourworld.compuserve.com/homepages/Dyaros/stlmanuf.htm.
Hsu et al., "Palladium-Coated Kieselguhr for Simultaneous Separation and Storage of Hydrogen," Westinghouse Savannah River Company, U.S. Dept. of Commerce, National Technical Information Service, 14 pages (2001).
Hydrogen Separation Membrane,-Advanced Gas Separation: H2 Separation, 1 page (2001).
International Preliminary Examination Report completed on Feb. 22, 2005, in PCT/US03/014037.
International Search Report dated Jun. 14, 2005, from corresponding PCT Application No. PCT/US03/38459.
International Search Report issued on Apr. 27, 2004, in PCT/US03/14036.
International Search Report issued on Apr. 30, 2004, in PCT/US03/140137.
International Search Report issued on Apr. 30, 2004, in PCT/US03/14055.
International Search Report issued on Aug. 14, 2003, in PCT/US03/14052.
International Search Report issued on Aug. 14, 2003, in PCT/US03/14054.
International Search Report issued on Aug. 15, 2003, in PCT/US03/14124.
International Search Report issued on Aug. 21, 2003, in PCT/US03/14038.
International Search Report issued on Aug. 21, 2003, in PCT/US03/14053.
International Search Report issued on Aug. 21, 2003, in PCT/US03/14123.
International Search Report issued on Aug. 24, 2003, in PCT/US03/14133.
International Search Report issued on Aug. 24, 2003, in PCT/US03/14136.
International Search Report issued on Aug. 28, 2003, in PCT/US03/14035.
International Search Report issued on Aug. 29, 2003, in PCT/US03/14038.
International Search Report issued on Aug. 29, 2003, in PCT/US03/14039.
International Search Report issued on Aug. 29, 2003, in PCT/US03/14121.
International Search Report issued on Aug. 29, 2003, in PCT/US03/14122.
International Search Report issued on Aug. 29, 2003, in PCT/US03/14123.
International Search Report issued on Aug. 9, 2003, in PCT/US03/14053.
International Search Report issued on Dec. 30, 2003, in PCT/US03/14133.
International Search Report issued on Feb. 25, 2004, in PCT/US03/14034.
International Search Report issued on Feb. 8, 2004, in PCT/US03/14034.
International Search Report issued on Jul 28, 2003, in PCT/US03/14035.
International Search Report issued on Jul. 17, 2003, in PCT/US03/14134.
International Search Report issued on Jul. 23, 2003, in PCT/US03/14037.
International Search Report issued on Jul. 29, 2003, in PCT/US03/14040.
International Search Report issued on Jul. 29, 2003, in PCT/US03/14052.
International Search Report issued on Jul. 29, 2003, in PCT/US03/14054.
International Search Report issued on Jul. 29, 2003, in PCT/US03/14121.
International Search Report issued on Jul. 8, 2003, in PCT/US03/14124.
International Search Report issued on Jun. 14, 2005, in PCT/US03/38459.
International Search Report issued on Jun. 24, 2003, in PCT/US03/14130.
International Search Report issued on Jun. 24, 2003, in PCT/US03/14132.
International Search Report issued on Jun. 26, 2003, in PCT/US03/14037.
International Search Report issued on Jun. 27, 2003, in PCT/US03/14040.
International Search Report issued on Jun. 27, 2003, in PCT/US03/14122.
International Search Report issued on May 10, 2004, in PCT/US03/14036.
International Search Report issued on May 24, 2004, in PCT/US03/14055.
International Search Report issued on May 25, 2003, in PCT/US03/14135.
International Search Report issued on May 26, 2004, in PCT/US03/14137.
International Search Report issued on May 3, 2004, in PCT/US03/14135.
International Search Report issued on Sep. 10, 2003, in PCT/US03/14132.
International Search Report issued on Sep. 10, 2003, in PCT/US03/14134.
International Search Report issued on Sep. 16, 2003, in PCT/US03/14136.
International Search Report issued on Sep. 19, 2003, in PCT/US03/14039.
International Search Report issued on Sep. 30, 2003, in PCT/US03/14130.
IRC in Materials Processing, "Advanced Melting, Atomisation, Powder and Spray Forming, Plasma Melting-Operation of a Plasma Furnace," University of Birmingham, 3 pages-http://www.irc.bham.ac.uk/theme1/plasma/furnace.htm.
Iron and Steel, 6:(16-22).
Japanese Advanced Environment Equipment, "Waste and Recycling Equipment-Mitsubishi Graphi Electrode Type Plasma Furnace," 3 pages-http://nett21.unep.or.jp/JSIM<SUB>-</SUB>DATA/WASTE/WASTE<SUB>-</SUB>3/html/Doc<SUB>-</SUB>467.html.
Japanese Advanced Environment Equipment, "Mitsubishi Graphite Electrode Type Plasma Furnace," 3 pages, Undated—http://nett21.unep.or.jp/JSIM—DATA/WASTE/WASTE—3/html/Doc—467.html.
Japanese Advanced Environment Equipment, "Waste and Recycling Equipment—Mitsubishi Graphi Electrode Type Plasma Furnace," 3 pages—http://nett21.unep.or.jp/JSIM—DATA/WASTE/WASTE—3/html/Doc—467.html.
Johnson , Faculty Biography webpage, Dept. of Materials Science & Engineering, Northwestern University, 2 pages—http://www.matsci.northerwestern.edu/faculty/ dlj.html, Undated.
Johnson, D.L., "Fundamentals of Novel Materials Processing," Dept. of Materials Science & Engineering, Northwestern University, 2 pages-http://www.matsci.northerwestern.edu/faculty/ dlj.html.
Kalyanaraman et al., "Synthesis and Consolidation of Iron Nanopowders," NanoStructured Materilas, vol. 10, No. 8, pp. 1379-1392 (1998).
Kalyanaraman et al., "Synthesis and Consolidation of Iron Nanopowders," NanoStructured Materials 10(8):1379-1392 (1998).
Karger, Odo-Area of Work: Microwave Welding, 2 pages (Nov. 2002).
Karger, Scientific Staff Research Areas for KTP Company, 2 pages (Nov. 2002)—http://wwwfb10.upb.de/KTP/KTP-ENG/Staff/Karger/body—karger.html.
Kong et al., "Nuclear-Energy-Assisted Plasma Technology for Producing Hydrogen," Nuclear Energy Research Initiative, 4 pages (2002).
Kong et al., "Nuclear-Energy-Assisted Plasma Technology for Producing Hydrogen," Nuclear Energy Research Initiative Research Proposal, 4 pages (2002).
Letter from Chinese Associate enclosing office action in CN Appl. No. 03810271.4, dated Dec. 27, 2005.
Lewis, Hawley's Condensed Chemical Dictionary, 12th ed., pp. 230-232, Van Nostrand Reinhold, NY (1993).
Lewis, R. J. Sr., "Hawley's Condensed Chemical Dictionary," 12th ed., p. 230-232 (1993).
Lucas, "Welding Breakthrough: Generating and Handling a Microwave Powered Plasma," Australian Industry News, Information & Suppliers, 7 pages (Sep. 2001)—http://www.industry/search.com.au/features/microwave.asp.
Lucas, "Welding Using Microwave Power Supplies," Faculty webpage, 1 page—http://www.liv.ac.uk/EEE/research/cer/project6.htm, Undated.
Lucas, J., "Welding Using Microwave Power Supplies," Computer Electronics & Robotics-http://www.liv.ac.uk/EEE/research/cer/project6.htm.
Luggenholscher et al., "Investigations on Electric Field Distributions in a Microwave Discharge in Hydrogen," Institute fur Laser- und Plasmaphysik, Univsitat Essen, Germany, 4 pages.
Luggenholscher et al., "Investigations on Electric Field Distributions in a Microwave Discharge in Hydrogen," Institute fur Laser- und Plasmaphysik, Univsitat Essen, Germany, 4 pages, Undated.
March Plasma Systems, product descriptions,2 pages (2002)—http://www.marchplasma.com/micro—app.htm, Undated.
Microelectronics Plasma Applications,-March Plasma Systems, 2 pages (2002)-http://www.marchplasma.com/micro<SUB>-</SUB>app.htm.
Microelectronics Plasma Applications,—March Plasma Systems, 2 pages (2002)—http://www.marchplasma.com/micro—app.htm.
Micro-fabricated Palladium-Silver Membrane for Hydrogen Separation and Hydro/Dehydrogenation Reactions, Research Education Group, 5 pages-http://utep.el.utwente.nl/tt/projects/sepmem/.
Microwave Joining of Alumina and Zirconia Ceramics, IRIS, Research Topics 1998, 1 page.
Microwave Welding (EWi Welding Network) 1 page-http://www.ferris.edu/cot/accounts/plastics/ htdocs/Prey/Microwave%20Homepage.htm.
Microwave Welding of Plastics, TWI World Centre for Materials Joining Technology, 2 pages, (Aug. 2002)-http://www.twi.co.uk/j32k/protected/band<SUB>-</SUB>3/ksab001.htm.
Microwave Welding of Plastics, TWI World Centre for Materials Joining Technology, 2 pages, (Aug. 2002)—http://www.twi.co.uk/j32k/protected/band—3/ksab001.htm.
Microwave Welding, Welding and Joining Information Network, 3 pages (Nov. 2002)-http://www.ewi.org/technologies/plastics/microwave.asp.
Moss et al., "Experimental Investigation of Hydrogen Transport Through Metals," Los Alamos National Library, 5 pages-http://www.education.lanl.gov/RESOURCES/h2/dye/education.html.
Moss et al., "Experimental Investigation of Hydrogen Transport Through Metals," Experiment Description, Los Alamos National Library, 5 pages—Undated. http://www.education.lanl.gov/RESOURCES/h2/dye/education.html.
Nitriding, Treat All Metals, Inc., 2 pages-http://www.treatallmetals.com/nitrid.htm.
Non-Thermal Plasma Aftertreatment of Particulates-Theoretical Limits and Impact on Reactor Design, 27 pages-http://www.aeat.com/electrocat/sae/intro . . .references.htm.
Office Action in Chinese Appl. No. 03810272.2, issued Feb. 10, 2006.
Office Action issued on Feb. 24, 2005, in U.S. Appl. No. 10/430,426.
Office Action issued on May 18, 2004, in U.S. Appl. No. 10/430,426.
Office Action mailed Apr. 5, 2006 for U.S. Appl. No. 10/430,415.
Office Action mailed Jul. 27, 2005 for U.S. Appl. No. 10/430,415.
Office Action mailed Nov. 10, 2005 for U.S. Appl. No. 10/430,416.
Office of Energy Efficiency, "Using Non-Thermal Plasma Reactor to Reduce NOx Emissions from CIDI Engines," 1 page (Apr. 1999).
Optoelectronic Packaging Applications, March Plasma Systems, 2 pages (2002)-http://www.marchplasma.com/opto<SUB>-</SUB>app.htm.
Optoelectronic Packaging Applications, March Plasma Systems, 2 pages (2002)—http://www.marchplasma.com/opto—app.htm.
Paglieri et al., "Palladium Alloy Composite Membranes for Hydrogen Separation," Abstract, Los Alamos National Library, 5 pages.
Paglieri et al., "Palladium Alloy Composite Membranes for Hydrogen Separation," 15th Annual Conf. Fossil Energy Matter, Knoxville, TN (2001), 5 pages.
Peelamedu et al., "Anisothermal Reaction Synthesis of Garnets, Ferrites, And Spinels In Microwave Field," Materials Research Bulletin (36):2723-2739 (2001).
Peelamedu et al., "Anisothermal Reaction Synthesis of Garnets, Ferrites, and Spinels In Microwave Field," Materials Research Bulletin 36:2723-2739 (Dec. 2001).
PerfectH2 PE8000 Series Product Description, Palladium Diffusion Hydrogen Purifier For High Flow Rate MOCVD Applications, Matheson Tri.Gas, 2 pages (2002).
PerfectH2TM PE8000 Series, "Palladium Diffusion Hydrogen Purifier For High Flow Rate MOCVD Applications" Matheson Tri.Gas, 2 pages (2002).
Photonics Dictionary, "Definition for Word(s): Thyratron" (Laurin Publishing), 2 pages (1996-2003)-http://www.photonics.com/dictionary/lookup/lookup.asp?url=lookup&entrynum=538.
Photonics Directory, Definition for Thyratron, (Laurin Publishing), 2 pages http://www.photonics.com/dictionary/.
Pingel, "About What Every P/A Should Know About P/M," Powder Metallurgy Co., 9 pages—http://www.powdermetallurgyco.com/pm—about.htm.
Pingel, V.J., "About What Every P/A Should Know About P/M," Powder Metallurgy Co., 9 pages-http://www.powdermetallurgyco.com/pm<SUB>-</SUB>about.htm.
Pingel, V.J., "About What Every P/A Should Know About P/M," Powder Metallurgy Co., 9 pages—http://www.powdermetallurgyco.com/pm—about.htm.
Plasma Applications, Coalition for Plasma Science, 2 pages (1999, 2000)-http://www.plasmacoalition.org/applications.htm.
Plasma Carburizing, 1 page-http://www.ndkinc.co.jp/ndke04.html.
Plasma Direct Melting Furnace, Materials Magic, Hitachi Metals Ltd., 3 pages-http://www.hitachi-metals.co.jp/e/prod/prod07/p07<SUB>-</SUB>2<SUB>-</SUB>02.html.
Plasma Direct Melting Furnace, Materials Magic, Hitachi Metals Ltd., 3 pages—http://www.hitachi-metals.co.jp/e/prod/prod07/p07—2—02.html.
Plasma Electronics, Classical Plasma Applications, 2 pages (2002)-http://www.plasma.iinpe.br/English/Classical<SUB>-</SUB>Applications.htm.
Plasma Electronics, Classical Plasma Applications, 2 pages (2002)—http://www.plasma.iinpe.br/English/Classical—Applications.htm.
Plasma Nitride Process Description, Northeast Coating Technologies, 2 pages.
Plasma Science and Technology, "Plasmas for Home, Business and Transportation," p. 4-http://www.plasmas.org/rot-home.htm.
Plasma Science and Technology, "Plasmas for Home, Business and Transportation," 4 pages—Undated. http://www.plasmas.org/rot-home.htm.
Plasma-Assisted Catalyst Systems, Novel Plasma Catalysts Significantly Reduce NOx from Diesel Engines, 2 pages (Apr. 2001)-http://www.ott.doe.gov/success.html (2 pages).
Preliminary Amendment filed Jul. 15, 2005 in U.S. Appl. No. 11/182,172.
Printed Circuit Board (PCB) Plasma Applications, March Plasma Systems, 2 pages (2002)-http://www.marchplasma.com/pcb<SUB>-</SUB>app.01.htm.
Printed Circuit Board (PCB) Plasma Applications, March Plasma Systems, 2 pages (2002)—http://www.marchplasma.com/pcb—app.01.htm.
Quayle Action issued on Apr. 19, 2004, in U.S. Appl. No. 10/430,414.
Reply to Office Action filed on Nov. 18, 2004, in U.S. Appl. No. 10/430,426.
Response to Office Action dated Dec. 21, 2005 for U.S. Appl. No. 10/430,415.
Response to Office Action filed Apr. 10, 2006 for U.S. Appl. No. 10/430,416.
Roy et al., "Definitive Experimental Evidence for Microwave Effects: Radically New Effects of Separated E and H Fields, Such As Decrystallization of Oxides in Seconds," Materials Research Innovations, Springer-Verlag, vol. 6, No. 3, pp. 129-140 (2002).
Roy et al., "Full Sintering of Powdered-Metal Bodies In A Microwave Field," Nature, vol. 399, pp. 668-670 (Jun. 17, 1999).
Roy et al., "Major phase transformations and magnetic property changescaused by electromagnetic fields at microwave frequencies," Journal Of Material Research, 17:12, pp. 3008-3011 (2002).
Roy et al., "Microwave Processing: Triumph of Applications-Driven Science in WC-Composites And Ferroic Titanates," Ceramic Transactions, vol. 80, pp. 3-26, (1997).
Rusanov, V. D., Hydrogen Energy & Plasma Technologies Institute: Russian Research Centre Kurchatov Institute, 13 pages,-http://www.kiae.ru/eng/str/ihept/oiivept.htm.
Samant et al., "Glow Discharge Nitriding Al 6063 Samples and Study of Their Surface Hardness," Metallofizika I Noveishe Takhnologii, 23(3), pp. 325-333 (2001).
Sato et al., Surface Modification of Pure Iron by RF Plasma Nitriding with DC Bias Voltage Impression, Hyomen Gijutsu 48(3), pp. 317-323 (1997) (English Abstract).
Saveliev Y. "Effect of Cathode End Caps and a Cathode Emissive Surface on Relativistic Magnetron Opeartion," IEEE Transactions on Plasma Science, 28:3, pp. 478-484 (Jun. 2000).
Saville, Iron and Steel, Chapter 6, pp. 16-22, Wayland Publ., England (1976)..
SC/Tetra Engine Manifold Application, 2 pages (2001)-http://www.sctetra.com/applications/01<SUB>-</SUB>manifold.htm.
SC/Tetra Engine Manifold Application, 2 pages (2001)—http://www.sctetra.com/applications/01—manifold.htm.
Shulman et al., "Microwaves In High-Temperature Processes," GrafTech, 8 pages (Mar. 2003) http://www.industrialheating.com/CDA/ArticleInformation/features/BNP<SUB>-</SUB>Features<SUB>-</SUB>Item/0,2832,94035,00.html.
Shulman et al., "Microwaves In High-Temperature Processes," GrafTech, 8 pages (Mar. 2003) http://www.industrialheating.com/CDA/ArticleInformation/features/BNP—Features—Item/0,2832,94035,00.html.
Slone et al., "Nox Reduction For Lean Exhaust Using Plasma Assisted Catalysis," Noxtech Inc., 5 pages (2000)-http://www.osti.gov/fcvt/deer2000/bhattpa.pdf.
Specification and Claims as filed in PCT/US05/39642, on Nov. 1, 2005.
Stockwell Rubber Company, Inc., "Conductive Silicone Rubber Compounds Product Selection Guide," Electrically Conducive Materials, 3 pages-http://www.stockwell.com/electrically<SUB>-</SUB>conducive<SUB>-</SUB>produc.htm.
Stockwell Rubber Company, Inc., "Conductive Silicone Rubber Compounds Product Selection Guide," Electrically Conducive Materials, 3 pages—http://www.stockwell.com/electrically—conducive—produc.htm.
Sumitomo Heavy Industries, Ltd., "Spark Plasma Sintering-What is Spark Plasma Sintering," 3 pages (2001)-http://www.shi.co.jp/sps/eng/.
Surface Hardening AHS Corp., 5 pages-http://www.ahscorp.com/surfaceh.html.
Takizawa et al. "Synthesis of inorganic materials by 28 GHz MW radiation," Proceed. Of The Symposium On Mw Effects And Applications, Aug. 2, 2001, Kokushikau Univ., Tokyo, Japan, pp. 52-53, (2001).
Taube et al. "Advances in Design of Microwave Resonance Plasma Source," American Institute of Chemical Engineering, 2004 Annual Meeting, Presentation (Nov. 2004).
testMAS: Pressure Sintering, 11 pages-http://cybercut.berkley.edu/mas2/processes/sinter<SUB>-</SUB>pressure.
testMAS: Pressure Sintering, 11 pages—http://cybercut.berkley.edu/mas2/processes/sinter—pressure.
The Amazing Metal Sponge: Simulations of Palladium-Hydride, Design of New Materials, 3 pages-http://www.psc.edu/science/Wolf/Wolf.html.
Thomas et al., "Non-Thermal Plasma Aftertreatment of Particulates—Theoretical Limits and Impact on Reactor Design," SAE Spring Fuels and Lubes Conference, Paris, France, 27 pages—Jun. 19-22, 2000—http://www.aeat.co.uk/electrocat/sae/saepaper.htm.
Toyota Motor Sales, "Emission Sub Systems-Catalytic Converter," 10 pages.
Toyota Motor Sales, "Emission Sub Systems—Catalytic Converter," 10 pages, Undated.
Uchikawa et al., "New Technique of Activating Palladium Surface for Absorption of Hydrogen or Deuterium," Japanese Journal of Applied Physics, vol. 32 (1993), pp. 5095-5096, Part 1, No. 11A (Nov. 1993).
Uchikawa et al., "New Technique of Activating Palladium Surface for Absorption of Hydrogen or Deuterium," Japanese J. Appl. Phys. 32:5095-5096, Part 1, No. 11A (Nov. 1993).
Wang et al., "Densification of Al2O3 Powder Using Spark Plasma Sintering," J. Mater. Res., 15:4, pp. 982-987 (Apr. 2000).
Wang et al., "Densification of Al2O3 Powder Using Spark Plasma Sintering," J. Mater. Res., 15(4):982-987 (Apr. 2000).
Way et al., "Palladium/Copper Allow Composite Membranes for High Temperature Hydrogen Separation from Coal-Derived Gas Streams," Dept. of Chemical Engineering, Colorado School of Mines, 3 pages (1999).
Way et al., "Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation from Coal-Derived Gas Streams," Research Grant Report, Dept. of Chemical Engineering, Colorado School of Mines, 3 pages (1999).
Welding Breakthrough: Generating and Handling a Microwave Powered Plasma, Australian Industry News, Information & Suppliers, 7 pages (Sep. 2001)-http://www.industry/search.com.au/features/microwave.asp.
Welding Plastic Parts, Business New Publishing Company, 4 pages (Nov. 2002)-http://www.assemblymag.com/Common/print<SUB>-</SUB>article.asp?rID=E455512C17534C31B96D.
Welding Plastic Parts, Business New Publishing Company, 4 pages (Nov. 2002)—http://www.assemblymag.com/Common/print—article.asp?rID=E455512C17534C31B96D.
Willert-Porada, M., "Alternative Sintering Methods" 1 page Abstract dated Nov. 8, 2001, http://www.itap.physik.uni-stuttgart.de/˜gkig/neu/english/welcome.php?/˜gkig/neu/abstracts/abstract—willert-porada.html.
Wolf et al., "The Amazing Metal Sponge: Simulations of Palladium-Hydride," 2 pages, Undated—http://www.psc.edu/science/Wolf/Wolf.html.
Written Opinion issued on Apr. 13, 2004, in PCT/US03/014037.
Written Opinion issued on Dec. 22, 2003, in PCT/US03/14053.
Written Opinion issued on Dec. 22, 2003, in PCT/US03/14123.
Xie et al., "Effect of Rare Earth in Steel on Thermochemical Treatment," Xiuou Jinshu Cailiao Yu Gongcheng, 26(1), pp. 52-55 (Feb. 1997) (English Abstract).
Xie et al., "Effect of Rare Earths in Steels on the Thermochemical Treatments and the Functional Mechanisms of the Rare Earths," Rare Metals Materials and Engineering 26(1):52-55 (Feb. 1997) (English Abstract).
Yahoo Canada-Autos, "Catalytic Converter Answer2," 4 pages (2001)-http://ca.autos.yahoo.com/maintain/catalytic<SUB>-</SUB>converteranswer2.html.
Yahoo Canada—Autos, "Catalytic Converter Answer2," 4 pages (2001)—http://ca.autos.yahoo.com/maintain/catalytic—converteranswer2.html.

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233091A1 (en) * 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
US8030191B2 (en) 2002-12-24 2011-10-04 Sony Corporation Method of manufacturing micro structure, and method of manufacturing mold material
US20060148370A1 (en) * 2002-12-24 2006-07-06 Koji Kadono Method of manufacturing micro structure, and method of manufacturing mold material
US7538015B2 (en) * 2002-12-24 2009-05-26 Sony Corporation Method of manufacturing micro structure, and method of manufacturing mold material
US20100021650A1 (en) * 2002-12-24 2010-01-28 Sony Corporation Method of manufacturing micro structure, and method of manufacturing mold material
US20100099319A1 (en) * 2004-01-15 2010-04-22 Nanocomp Technologies, Inc. Systems and Methods for Synthesis of Extended Length Nanostructures
US20070254206A1 (en) * 2006-01-17 2007-11-01 Gillan Edward G Methods for production of metals on carbon nitride powders and composites and their use as catalysts in fuel cell electrochemistry
US20090295509A1 (en) * 2008-05-28 2009-12-03 Universal Phase, Inc. Apparatus and method for reaction of materials using electromagnetic resonators
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US9028656B2 (en) 2008-05-30 2015-05-12 Colorado State University Research Foundation Liquid-gas interface plasma device
US20110140607A1 (en) * 2008-05-30 2011-06-16 Colorado State University Research Foundation System, method and apparatus for generating plasma
US9287091B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation System and methods for plasma application
US9272359B2 (en) 2008-05-30 2016-03-01 Colorado State University Research Foundation Liquid-gas interface plasma device
US8575843B2 (en) 2008-05-30 2013-11-05 Colorado State University Research Foundation System, method and apparatus for generating plasma
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US8878434B2 (en) 2009-10-27 2014-11-04 Covidien Lp Inductively-coupled plasma device
US8070042B1 (en) * 2010-11-22 2011-12-06 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Process for joining stainless steel part and silicon carbide ceramic part and composite articles made by same
US8569647B2 (en) * 2011-05-10 2013-10-29 Hitachi High-Technologies Corporation Heat treatment apparatus
US20120285935A1 (en) * 2011-05-10 2012-11-15 Hitachi High-Technologies Corporation Heat treatment apparatus
US20130112670A1 (en) * 2011-11-08 2013-05-09 Hitachi High-Technologies Corporation Heat treatment apparatus
US9490104B2 (en) * 2011-11-08 2016-11-08 Hitachi High-Technologies Corporation Heat treatment apparatus
US20130277354A1 (en) * 2012-04-18 2013-10-24 Hitachi High-Technologies Corporation Method and apparatus for plasma heat treatment
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US10524848B2 (en) 2013-03-06 2020-01-07 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
DE102021004675A1 (en) 2021-09-17 2023-03-23 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Hybrid process and hybrid device for low-CO2 or CO2-free high-temperature technologies for thermal treatment or production of inorganic materials
WO2023041684A1 (en) 2021-09-17 2023-03-23 Technische Universität Bergakademie Freiberg Hybrid process and hybrid device for low-co2 or for co2-free high-temperature technologies for the thermal treatment or production of inorganic materials
DE102021004675B4 (en) 2021-09-17 2024-02-01 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Hybrid process and hybrid device for low-CO2 or CO2-free high-temperature technologies for the thermal treatment or production of inorganic materials
DE102022122280A1 (en) 2022-09-02 2024-03-07 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Combination of electric heating elements, containing a composite material, with microwave plasma burners for high temperature applications in the metallurgy, chemical and cement industries
WO2024047232A1 (en) 2022-09-02 2024-03-07 Technische Universität Bergakademie Freiberg Combination of electric heating elements, containing a composite material, with microwave plasma torches for high-temperature applications in metallurgy, in the chemical industry and in the cement industry

Also Published As

Publication number Publication date
US20040107796A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US7189940B2 (en) Plasma-assisted melting
WO2003096747A2 (en) Plasma heating apparatus and methods
US7497922B2 (en) Plasma-assisted gas production
US20060057016A1 (en) Plasma-assisted sintering
US7560657B2 (en) Plasma-assisted processing in a manufacturing line
US7432470B2 (en) Surface cleaning and sterilization
WO2004050939A2 (en) Plasma-assisted melting
US20060062930A1 (en) Plasma-assisted carburizing
ZA200408532B (en) Plasma Catalyst.

Legal Events

Date Code Title Description
AS Assignment

Owner name: DANA CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, SATYENDRA;KUMAR, DEVENDRA;REEL/FRAME:014976/0729

Effective date: 20040130

AS Assignment

Owner name: BTU INTERNATIONAL INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANA CORPORATION;REEL/FRAME:017777/0430

Effective date: 20060531

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110313