JP2001303252A - Material generating method and apparatus thereof - Google Patents
Material generating method and apparatus thereofInfo
- Publication number
- JP2001303252A JP2001303252A JP2000123000A JP2000123000A JP2001303252A JP 2001303252 A JP2001303252 A JP 2001303252A JP 2000123000 A JP2000123000 A JP 2000123000A JP 2000123000 A JP2000123000 A JP 2000123000A JP 2001303252 A JP2001303252 A JP 2001303252A
- Authority
- JP
- Japan
- Prior art keywords
- substance
- reaction chamber
- chemical
- gas
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 title claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 64
- 239000010949 copper Substances 0.000 claims abstract description 47
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052802 copper Inorganic materials 0.000 claims abstract description 43
- 239000007789 gas Substances 0.000 claims abstract description 40
- 239000002994 raw material Substances 0.000 claims abstract description 29
- 229910052786 argon Inorganic materials 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000013626 chemical specie Substances 0.000 claims abstract description 17
- 230000005283 ground state Effects 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims description 32
- 238000005229 chemical vapour deposition Methods 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000010494 dissociation reaction Methods 0.000 claims description 7
- 230000005593 dissociations Effects 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 6
- 230000027455 binding Effects 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- 239000002609 medium Substances 0.000 claims 1
- 239000006163 transport media Substances 0.000 claims 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 34
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000003446 ligand Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- -1 argon ion Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- MBDSOAUNPWENPB-UHFFFAOYSA-N copper 3-methylbut-2-en-2-ylsilane Chemical compound [Cu].CC(C)=C(C)[SiH3] MBDSOAUNPWENPB-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、反応室内で主に気
体の化学反応を起こして所望の物質を生成する物質生成
方法及びその装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substance producing method for producing a desired substance by causing a chemical reaction of gas mainly in a reaction chamber, and an apparatus therefor.
【0002】[0002]
【従来の技術】以下の説明では、簡単のため、半導体基
板への銅配線形成用化学気相蒸着(以下必要に応じて
「CVD」と略記する)を代表例として説明する。2. Description of the Related Art In the following description, for the sake of simplicity, chemical vapor deposition for forming copper wiring on a semiconductor substrate (hereinafter abbreviated as "CVD" as necessary) will be described as a typical example.
【0003】LSI動作の高速化、高集積化、低消費電
力化に対する要求がますます大きくなる傾向がある。こ
れに伴って半導体配線構造の微細化が急速に進行してい
る。ところが半導体の配線部分が、微細化=高密度化す
るに従って伝送線幅と線相互間隔が減少して線間容量が
拡大すると共に電流密度が著しく(〜1×104A/c
m2以上へと)増大する結果、信号伝達の遅延及び、
エレクトロマイグレーション(EM)の発生頻度上
昇、の2つが由々しい問題となっている。[0003] There is a tendency that demands for higher speed, higher integration, and lower power consumption of LSI operation are increasing. Along with this, miniaturization of a semiconductor wiring structure is rapidly progressing. However, as the wiring portion of the semiconductor becomes finer and higher in density, the transmission line width and the line-to-line distance decrease, the line-to-line capacitance increases, and the current density significantly increases (up to 1 × 10 4 A / c).
m 2 or more), resulting in delays in signal transmission and
The increase in the frequency of occurrence of electromigration (EM) is a serious problem.
【0004】,を解消することを狙って、従来の配
線材料たるアルミニウム(Al)系に替わる、低い電気
抵抗率で高いエレクトロマイグレーション耐性を有する
銅(Cu)系が注目を集めている。In order to solve the problems described above, a copper (Cu) system having a low electric resistivity and high electromigration resistance, which is a substitute for the conventional wiring material of aluminum (Al) system, has attracted attention.
【0005】実際、銅の電気抵抗率はアルミニウムの約
2/3と小さく、限界電流密度はAl−Cu合金系のそ
れの4倍にもなる。更に前者のエレクトロマイグレーシ
ョン耐性は後者のそれよりも室温寿命の点では3桁も改
善するという報告がある。[0005] In fact, the electrical resistivity of copper is as small as about 2/3 that of aluminum, and the limiting current density is four times that of the Al-Cu alloy system. Further, there is a report that the former electromigration resistance is improved by three orders of magnitude in terms of room temperature life over the latter.
【0006】しかしながら微細な凹み内部を銅で埋込む
ダマシン法は、配線幅が小さくなるにつれて極端に困難
となることが予想されている。銅ダマシン法のために提
案された具体的手段の比較・検討例から判断すると、導
電線幅が0.13μm以下となる高集積半導体世代では
配線形成を従来のスパッタリングによる給電層堆積とそ
れに続く電解めっきによる微細埋込み工程の組合せによ
って行うことは困難となる。[0006] However, it is expected that the damascene method of embedding the inside of a fine recess with copper becomes extremely difficult as the wiring width becomes smaller. Judging from the comparison and examination examples of the specific means proposed for the copper damascene method, in the highly integrated semiconductor generation in which the conductive line width is 0.13 μm or less, the wiring is formed by the conventional power supply layer deposition by sputtering and the subsequent electrolysis. It is difficult to perform this by a combination of the fine embedding steps by plating.
【0007】したがって、少なくとも給電層形成だけを
化学気相蒸着法(CVD)によって行うか、又は給電層
形成を省いた一括埋込みを同じ化学気相蒸着法(CV
D)によって行うことが不可避との認識が定着しつつあ
る。Therefore, at least only the power supply layer is formed by the chemical vapor deposition (CVD) method, or the simultaneous embedding without forming the power supply layer is performed by the same chemical vapor deposition method (CV).
The recognition that it is unavoidable to carry out according to D) is becoming established.
【0008】化学気相蒸着法においては銅を含む有機錯
体原料を気化して反応室に送り、他の気体と混合して、
原料の分解とそれに引続いた銅の堆積を行うことが常法
となっている。ここで、常法で用いる原料たる銅有機錯
体はその構成要素として多量の炭素を含むので、原料分
解に伴って起る不都合な反応による銅膜中への炭素の混
入が起きやすいという潜在的欠点がある。In the chemical vapor deposition method, a raw material of an organic complex containing copper is vaporized and sent to a reaction chamber, mixed with another gas, and
It is common practice to decompose the raw material and subsequently deposit copper. Here, since the raw material copper organic complex used in the ordinary method contains a large amount of carbon as a constituent element, the potential disadvantage is that carbon is easily mixed into the copper film due to an inconvenient reaction caused by decomposition of the raw material. There is.
【0009】上記炭素の混入を生じた場合、銅の結晶格
子内に炭素原子が不純物として侵入型で介在することに
なるので純銅結晶構造に大規模な格子歪を導入したこと
になる。それに伴って、内部応力や電気抵抗率が著しく
増大する。When the carbon is mixed, carbon atoms are interstitial as impurities in the copper crystal lattice, so that a large-scale lattice strain is introduced into the pure copper crystal structure. Accompanying this, the internal stress and the electrical resistivity increase significantly.
【0010】金属の電気抵抗率ρは温度及び不純物含有
量に依存してその値が変化し、次式(1)のマティーセ
ンの規則によって記述できる。 ρ=α+βT (1) (α、βはTと独立)The electric resistivity ρ of a metal changes its value depending on the temperature and the impurity content, and can be described by Mathiesen's rule in the following equation (1). ρ = α + βT (1) (α and β are independent of T)
【0011】ここでTは温度、αは不純物や格子欠陥に
よって生じる残留電気抵抗=絶対零度におけるその金属
の電気抵抗率、βTは温度Tの母体金属が完全結晶状態
にあるときのフォノン散乱による電気抵抗率を示す。Here, T is the temperature, α is the electric resistivity of the metal at a residual electric resistance caused by impurities or lattice defects = absolute zero degree, and βT is the electric power by phonon scattering when the base metal at the temperature T is in a completely crystalline state. Indicates resistivity.
【0012】βは特に温度係数と呼ばれており、温度2
0℃における銅の場合、Kを絶対温度の単位として式
(2)の値をとる。 β=4.33×10-3K-1 (2)Β is particularly called a temperature coefficient, and the temperature 2
In the case of copper at 0 ° C., the value of equation (2) is taken with K as the unit of absolute temperature. β = 4.33 × 10 −3 K −1 (2)
【0013】また、不純物による電気抵抗率の変化は1
次の関数に従っており、不純物が増すとその濃度に比例
して式(1)の定数項αが増加する。The change in electrical resistivity due to impurities is 1
According to the following function, as the impurity increases, the constant term α in the equation (1) increases in proportion to the concentration.
【0014】化学気相蒸着法によって銅の堆積を行った
場合、前述のように、生成した銅膜には使用した有機錯
体原料の構成要素たるリガンド及びアダクトから多量の
C、Oが混入する恐れが大きい。When copper is deposited by the chemical vapor deposition method, as described above, a large amount of C and O may be mixed into the formed copper film from ligands and adducts, which are constituents of the organic complex raw materials used. Is big.
【0015】実際に、化学気相蒸着法によって形成した
直後の銅薄膜の電気抵抗率は3μΩcm程度以上とバル
クのそれ(=1.7μΩcm)よりも大幅に高くなるこ
とがしばしば報告されている。In fact, it is often reported that the electrical resistivity of a copper thin film immediately after being formed by a chemical vapor deposition method is about 3 μΩcm or more, which is much higher than that of bulk (= 1.7 μΩcm).
【0016】前述のように半導体配線用金属材料として
従来から使用しているアルミニウムに替えて、銅を使用
しようとする最大の根拠の一つが電気抵抗率を低減する
ことにある以上、アルミニウムの電気抵抗率2.7μΩ
cmよりも高い値を示すことは論外とされる。このよう
に高い電気抵抗率を有することは、銅膜に含有する炭
素、酸素等の不純物が許容値以上に多くなっていること
に起因する可能性が極めて大きいと考えられる。したが
って、原料プリカーサの持つ有機成分を排除し、金属銅
の部分だけを抽出して膜形成に充当する必要がある。As described above, one of the main reasons for using copper instead of aluminum which has been conventionally used as a metal material for semiconductor wiring is to reduce the electrical resistivity. 2.7μΩ resistivity
Showing values higher than cm is out of the question. It is considered that having such a high electrical resistivity is extremely likely to be caused by the fact that impurities such as carbon and oxygen contained in the copper film are larger than an allowable value. Therefore, it is necessary to eliminate the organic components of the precursor precursor and extract only the copper metal portion to be used for film formation.
【0017】[0017]
【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたものでありその目的は、生成しようとする
物質(例えば金属銅)だけを抽出できる物質生成方法及
びその装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to provide a method and apparatus for producing a substance capable of extracting only a substance (for example, metallic copper) to be produced. It is in.
【0018】[0018]
【課題を解決するための手段】上記問題点を解決するた
め本発明は、反応室内に主原料となる気体、補助原料と
なる気体、搬送媒体となる気体を流入し、前記反応室内
で気体間に化学反応を起こさせることによって所望の物
質を生成する物質生成方法において、前記化学反応を起
こす気体とは別に、基底状態よりも高いエネルギー状態
にある一定量の原子量が4以上の元素からなる化学種を
前記反応室内に直接若しくは前記反応室に接続した管路
系の所定箇所に導入することを特徴とする。前記化学種
として生成しようとする物質に必要なエネルギー(不純
物が生じないエネルギー範囲のもの)だけを放出する化
学種を用いることで、生成される物質に不純物が混入せ
ずに、生成しようとする物質(例えば金属銅)だけを抽
出できる。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method in which a gas serving as a main material, a gas serving as an auxiliary material, and a gas serving as a carrier medium are introduced into a reaction chamber, and a gas between the gases is introduced into the reaction chamber. In a substance producing method for producing a desired substance by causing a chemical reaction to occur, a chemical substance comprising a certain amount of atoms having an atomic weight of 4 or more in an energy state higher than the ground state separately from the gas causing the chemical reaction. The method is characterized in that the seed is introduced directly into the reaction chamber or at a predetermined position in a pipeline system connected to the reaction chamber. By using a chemical species that emits only the energy necessary for the substance to be generated as the chemical species (with an energy range in which impurities do not occur), it is attempted to generate the substance without mixing impurities. Only substances (eg metallic copper) can be extracted.
【0019】また本発明は、前記反応室内での気体間の
化学反応による物質生成が、化学気相蒸着法による基材
表面での膜形成であることを特徴とする。Further, the present invention is characterized in that the generation of a substance by a chemical reaction between gases in the reaction chamber is a film formation on a substrate surface by a chemical vapor deposition method.
【0020】また本発明は、前記基材は半導体基板であ
り、前記所望の物質は銅であり、前記化学気相蒸着は半
導体の銅配線形成を目的として前記基板に設けた微細凹
み内に給電層又は触媒層を堆積するため、若しくは前記
微細凹みを直接埋込むために行われ、導入する一定量の
化学種は不活性ガス(He,Ne,Ar,Kr,Xe,
Rn等)のうちの少なくとも1種類を起源とするもので
あることを特徴とする。Further, according to the present invention, the base material is a semiconductor substrate, the desired substance is copper, and the chemical vapor deposition supplies power to a fine recess provided in the substrate for the purpose of forming copper wiring of the semiconductor. A certain amount of chemical species introduced for depositing a layer or a catalyst layer or for directly filling the micro-dents is an inert gas (He, Ne, Ar, Kr, Xe, Xe).
Rn, etc.).
【0021】また本発明は、前記化学種を基底状態より
も高いエネルギー状態にするために、マイクロ波の印
加、熱エネルギーの付与、紫外線又はレーザ光線の照
射、電子ビーム又は荷電粒子ビームの照射、電離波、又
は原子線の照射、磁場又は電界の印加、プラズマの生
成、高温物体又は加熱源の投与、弾性波の付与又は反応
促進物質(触媒などを含む)との接触のうち少なくとも
一つの手段を用いて導入化学種の解離、結合、励起又は
電離等を起こすことを特徴とする。The present invention also provides a method for applying a microwave, applying heat energy, irradiating an ultraviolet ray or a laser beam, irradiating an electron beam or a charged particle beam, so as to bring the chemical species into an energy state higher than the ground state. At least one of ionizing wave or atomic beam irradiation, application of a magnetic field or electric field, generation of plasma, administration of a high-temperature object or a heating source, application of an elastic wave, or contact with a reaction promoting substance (including a catalyst or the like) Is used to cause dissociation, bonding, excitation or ionization of introduced chemical species.
【0022】また本発明にかかる物質生成装置は、主原
料となる気体、補助原料となる気体、搬送媒体となる気
体を供給する原料供給機構と、前記原料供給機構から供
給された気体を反応させる反応室とを具備し、前記反応
室に直接又は前記反応室に接続した管路系の所定箇所に
基底状態より高い状態にある化学種を供給する化学種供
給手段を設けたことを特徴とする。Further, in the substance generating apparatus according to the present invention, a raw material supply mechanism for supplying a gas as a main raw material, a gas as an auxiliary raw material, and a gas as a carrier medium, and reacts the gas supplied from the raw material supply mechanism. A reaction chamber for supplying a chemical species in a state higher than the ground state directly to the reaction chamber or at a predetermined position of a pipeline system connected to the reaction chamber. .
【0023】[0023]
【発明の実施の形態】以下、原料から純度の良い銅を分
離する条件等を説明した上で、具体的手段を説明する。 〔原料から純度の良い銅を分離する条件〕図1は化学気
相蒸着法で採用する原料の一例としてヘキサフルオロア
セチルアセトネート・トリメチルビニルシラン銅の分子
構造を示す図である。同図に示す原料から純度の良いC
u薄膜を生成・堆積するためには、銅(Cu)とアダ
クト(tmvs)及びリガンド(hfac)を切り離
し、遊離の銅(Cu)を得ることと共に、分離したア
ダクト及びリガンドが不都合な分解を生じて遊離の炭素
(C)や酸素(O)を残すことなく全て気化・飛散して
しまうこと、が必要不可欠となる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, specific conditions will be described after the conditions for separating high-purity copper from a raw material are described. [Conditions for Separating Pure Copper from Raw Material] FIG. 1 is a diagram showing the molecular structure of hexafluoroacetylacetonate / trimethylvinylsilane copper as an example of a raw material employed in the chemical vapor deposition method. The raw material shown in FIG.
In order to form and deposit a u thin film, copper (Cu) is separated from an adduct (tmvs) and a ligand (hfac) to obtain free copper (Cu), and the separated adduct and ligand cause inconvenient decomposition. It is indispensable to completely vaporize and scatter without leaving free carbon (C) and oxygen (O).
【0024】今、図1の分子構造内部の結合の強さを考
えると、Cu−tmvs間は比較的弱いエネルギーで結
びついており、通常気相中でこの部分の解離が起こる。
一方Cu−リガンド(hfac)間はそれよりやや高い
結合エネルギーでつながっており、この部分の解離は通
常気相中とは異なり、基板表面で生じている。そして (1)Cu−tmvs間の結合エネルギーは2.34e
V程度に近いと考えられている。Now, considering the strength of the bond inside the molecular structure of FIG. 1, Cu-tmvs is connected by relatively weak energy, and this portion is usually dissociated in the gas phase.
On the other hand, the Cu-ligand (hfac) is connected with a slightly higher binding energy, and the dissociation of this portion occurs on the substrate surface, unlike in the normal gas phase. And (1) the binding energy between Cu and tmvs is 2.34 e
It is considered to be close to V.
【0025】一方、リガンドやアダクトがそれらを構成
する個々の原子に分解することを回避するためには少な
くともいくつかのC=C結合やC−O結合の解離を防ぐ
ことが必要になる。 (2)これらの、炭素が絡む部分の結合エネルギーは少
なくとも4eV程度以上に相当する。On the other hand, it is necessary to prevent at least some C = C bonds and CO bonds from being dissociated in order to avoid the decomposition of the ligands and adducts into the individual atoms constituting them. (2) The binding energy of the portion where carbon is involved corresponds to at least about 4 eV or more.
【0026】上記(1)、(2)によって所望の反応を
起こすために付与すべきエネルギーは少なくとも2.3
eV以上で4eV以下のものであることがわかる。即ち
エネルギーが2.3eV未満であれば、有用な反応は起
きず、4eVを越えれば不都合な反応を生じる。このエ
ネルギーを照射すべき光の波長に換算すると310〜5
17nmの範囲に相当する。According to the above (1) and (2), the energy to be applied to cause a desired reaction is at least 2.3.
It can be seen that it is not less than eV and not more than 4 eV. That is, if the energy is less than 2.3 eV, a useful reaction does not occur, and if the energy exceeds 4 eV, an unfavorable reaction occurs. When this energy is converted into the wavelength of light to be irradiated, it is 310 to 5
This corresponds to a range of 17 nm.
【0027】〔解離エネルギーの付与の方法〕反応室に
レーザ、紫外線、プラズマ等の熱に代るエネルギーを照
射、印加することによって基板上に銅膜を得るCVDの
研究例はいくつか見受けられる。図3と図4は、それぞ
れ従来用いられてきた紫外線による光CVD装置、及び
高周波プラズマCVD装置の例を各々示す図である。図
3に示す光CVD装置は、反応室80内においてヒータ
81を具備するサセプタ83上に基板85を載置し、こ
の反応室80内に石英製の透明窓87を介して設置した
紫外線源(水銀灯)89から光を照射し、原料供給装置
91から気化装置93を経て気化され、反応室80内に
導入された原料に前記紫外線を照射しながら反応させる
ことによって基板85上に銅膜を形成するものである。[Method of Applying Dissociation Energy] There are several examples of CVD research for obtaining a copper film on a substrate by irradiating and applying energy instead of heat, such as laser, ultraviolet light, or plasma, to a reaction chamber. FIGS. 3 and 4 are diagrams respectively showing examples of a conventional photo-CVD apparatus using ultraviolet light and a high-frequency plasma CVD apparatus which are conventionally used. In the photo-assisted CVD apparatus shown in FIG. 3, a substrate 85 is placed on a susceptor 83 having a heater 81 in a reaction chamber 80, and an ultraviolet light source ( A copper film is formed on the substrate 85 by irradiating light from a mercury lamp (89) and vaporizing from a raw material supply device 91 through a vaporizer 93 and reacting the raw material introduced into the reaction chamber 80 while irradiating the ultraviolet light. Is what you do.
【0028】また図4に示す高周波プラズマCVD装置
は、反応室80内においてヒータ81を具備するサセプ
タ83上に基板85を載置し、原料供給装置91から気
化装置93を経由して気化され、ノズル95から噴出さ
れた原料をプラズマ中で反応させることによって基板8
5上に銅膜を形成するものである。なお97はRF電源
である。In the high-frequency plasma CVD apparatus shown in FIG. 4, a substrate 85 is placed on a susceptor 83 having a heater 81 in a reaction chamber 80, and is vaporized from a raw material supply device 91 via a vaporization device 93. The substrate 8 is reacted by reacting the raw material ejected from the nozzle 95 in the plasma.
5 is to form a copper film. Reference numeral 97 denotes an RF power supply.
【0029】しかしながら上記方法を用いた場合、上述
のように得られた銅膜中には酸素や炭素が不純物として
含まれているので、電気抵抗率がバルクのそれよりも大
幅に高くなるという問題がある。However, when the above method is used, since the copper film obtained as described above contains oxygen and carbon as impurities, the electric resistivity is significantly higher than that of the bulk. There is.
【0030】これは主として、前述のようなリガンドや
アダクト自体の分解が生じた結果、遊離の酸素や炭素が
反応室内の気相や基板表面上に生成して、これが堆積銅
膜中に侵入したことによると考えられる。This is mainly due to the decomposition of the ligand and the adduct itself as described above, and as a result, free oxygen and carbon are generated in the gas phase in the reaction chamber and on the surface of the substrate, and these enter the deposited copper film. It is thought to be possible.
【0031】そしてリガンドやアダクトの解離が生じた
理由として、前述の付与エネルギー制限範囲:2.3e
V以上で4eV以下の条件を逸脱した可能性を指摘し得
る。The reason why the dissociation of the ligand or the adduct occurs is that the above-mentioned limited energy supply range: 2.3 e
It is possible to point out a possibility of deviating from the condition of not less than V and not more than 4 eV.
【0032】実際上、放電によるプラズマや紫外光照射
によってエネルギー付与を行う場合、そのエネルギーは
一定の法則で分布するので厳密な数値の限定が難しい。
また、レーザの照射においては、単光子のエネルギーは
限定できるものの、一定の確率で二光子以上の吸収が起
きると、制限した以上のエネルギーを付与したと同じ結
果になってしまう。In practice, when energy is applied by plasma or ultraviolet light irradiation by discharge, the energy is distributed according to a certain law, so that it is difficult to strictly limit the numerical value.
In the laser irradiation, the energy of a single photon can be limited, but if absorption of two or more photons occurs with a certain probability, the same result as applying more than the limited energy is obtained.
【0033】以上の状況に鑑み、本発明では、反応を起
こすために、光やプラズマ等の形態でなく、高いエネル
ギー状態にある化学種を系内に導入するという方法を採
用している。In view of the above situation, the present invention employs a method in which a chemical species in a high energy state is introduced into the system, not in the form of light or plasma, in order to cause a reaction.
【0034】〔本発明実現のための具体的手段〕図2は
本発明の一実施形態に係る活性アルゴン生成装置を付加
した銅CVD装置を示す概略図である。同図に示すよう
にこの銅CVD装置は、反応室10内にヒータ11を内
蔵したサセプタ13を設置し、このサセプタ13の上に
基板Wを載置すると共に、反応室10内にノズル15を
設置し、ノズル15には移送管17によって活性アルゴ
ン生成装置19を接続し、またこの移送管17には気化
装置21を介して原料供給装置23を接続して構成され
ている。なお活性アルゴン生成装置19にはアルゴン貯
蔵容器25からアルゴンが供給される。[Specific Means for Realizing the Present Invention] FIG. 2 is a schematic view showing a copper CVD apparatus to which an active argon generator according to an embodiment of the present invention is added. As shown in FIG. 1, the copper CVD apparatus has a susceptor 13 having a built-in heater 11 installed in a reaction chamber 10, a substrate W placed on the susceptor 13, and a nozzle 15 installed in the reaction chamber 10. The nozzle 15 is connected to an active argon generator 19 via a transfer pipe 17, and the transfer pipe 17 is connected to a raw material supply device 23 via a vaporizer 21. Note that argon is supplied from the argon storage container 25 to the active argon generator 19.
【0035】次にこの装置の動作を説明する。まず活性
アルゴン生成装置19では、アルゴンイオンレーザの生
成原理を応用して、内部に大電流放電プラズマを起こ
し、これによってアルゴン貯蔵容器25から供給された
アルゴン(Ar)ガスに励起・電離エネルギーを付与す
る。そしてここで発生した基底状態より高いエネルギー
をもったAr原子又はイオンを移送管17から反応室に
導入するが、その途中で原料ガスと混合する。Next, the operation of this device will be described. First, in the active argon generator 19, a large current discharge plasma is generated inside by applying the generation principle of an argon ion laser, thereby giving excitation / ionization energy to the argon (Ar) gas supplied from the argon storage container 25. I do. Then, Ar atoms or ions having higher energy than the ground state generated here are introduced into the reaction chamber from the transfer pipe 17, and are mixed with the raw material gas on the way.
【0036】ノズル15内で十分混合されたガスは反応
室10内で膨張すると共に、原料成分の解離とそれに続
く基板W上への銅の堆積を起こす。The gas sufficiently mixed in the nozzle 15 expands in the reaction chamber 10 and causes dissociation of the raw material components and subsequent deposition of copper on the substrate W.
【0037】前述の活性アルゴン生成装置19内で放電
によるエネルギーを付与されたアルゴンの一部は次式
(3)に示す反応によって1,2価のアルゴンイオンと
なる。A part of the argon to which energy has been imparted by the discharge in the active argon generator 19 is converted into monovalent argon ions by a reaction represented by the following formula (3).
【化1】 Embedded image
【0038】一方、反応室10内に到達した式(3)の
アルゴンイオンの一部は次式(4)によって特定波長の
光を放出して還元し、中性のアルゴン原子に戻る。On the other hand, part of the argon ions of the formula (3) reaching the reaction chamber 10 emits light of a specific wavelength and is reduced by the following formula (4) to return to neutral argon atoms.
【化2】 Embedded image
【0039】前述のように、本発明の原理によって銅の
原料ガスに付与すべき有効なエネルギーEの範囲は、次
式(5)で表示され、これを照射光の波長λに換算する
と式(6)のようになる。 2.3eV≦E≦4.0eV (5) 310nm≦λ≦517nm (6)As described above, the range of the effective energy E to be applied to the copper source gas according to the principle of the present invention is expressed by the following equation (5). It becomes like 6). 2.3 eV ≦ E ≦ 4.0 eV (5) 310 nm ≦ λ ≦ 517 nm (6)
【0040】式(4),(6)から明らかなように、A
r2+、Ar+の還元に際して放出する光(波長351,
364,488,515nm)を全て利用することによ
って、銅原料ガスの解離を有効に行うことができる。加
えて、式(6)の範囲の波長の光である限り、アダクト
やリガンド自体の分解を起こすことはないので反応室1
0内で遊離の炭素や酸素を生じる恐れはない。したがっ
て、得られた堆積膜中に無用の不純物が侵入することを
回避できる。As is apparent from equations (4) and (6), A
Light emitted upon reduction of r 2+ and Ar + (wavelength 351,
(364, 488, 515 nm), the copper source gas can be effectively dissociated. In addition, as long as the light has a wavelength in the range of the expression (6), the decomposition of the adduct or the ligand itself does not occur, so that the reaction chamber 1
There is no danger of free carbon or oxygen being generated within zero. Therefore, unnecessary impurities can be prevented from entering the obtained deposited film.
【0041】ところで放電エネルギーの付与によって生
成したArイオンは周囲粒子や金属内壁面との衝突・吸
着等によってエネルギーを失い易い(壁面再結合係数が
大きい)。これに対処するため、実験検証によって活性
アルゴン生成装置19と反応室10を結ぶ移送管17は
フッ素樹脂製とし、内径35mm以上で長さ70mm以
下になるように製作されている。更に反応室10を含む
内部接ガス部材の表面はフッ素樹脂による表面被覆を行
うことを必須の製作条件としている。By the way, Ar ions generated by application of discharge energy easily lose energy due to collision or adsorption with surrounding particles or metal inner wall surfaces (the wall recombination coefficient is large). To cope with this, the transfer pipe 17 connecting the active argon generator 19 and the reaction chamber 10 is made of fluororesin by experimental verification, and is manufactured to have an inner diameter of 35 mm or more and a length of 70 mm or less. Further, it is an essential manufacturing condition that the surface of the internal gas contact member including the reaction chamber 10 is coated with a fluororesin.
【0042】一方従来、反応室(主反応室)からある距
離だけ隔てた別の部分で基底状態よりも高いエネルギー
状態にある活性な原子、分子、原子団、イオン等の化学
種を生成し、これを主反応室に送り込んで、主反応室内
で所望の反応を促進するシステム(遠方活性種応用シス
テム)として種々のものが提案されている。しかしなが
ら従来のこの種のシステムは、何れも発生した活性種
が、目的とする反応式に参入してそれ自身も化学変化を
起こす役割を担っている。On the other hand, conventionally, at another portion separated from the reaction chamber (main reaction chamber) by a certain distance, active species, such as active atoms, molecules, atomic groups, and ions, which are in an energy state higher than the ground state, are generated, Various systems have been proposed as a system (distantly active species application system) for feeding this into the main reaction chamber and promoting a desired reaction in the main reaction chamber. However, in the conventional system of this kind, any generated active species plays a role of causing a chemical change by participating in a target reaction formula.
【0043】それに対して本発明で用いる活性種は、そ
れ自体反応式中の化学種となることは無く、反応を生じ
させるために必要なエネルギーの伝達媒体の役割だけを
担っている点でその構成が大きく異なっている。On the other hand, the active species used in the present invention does not become a chemical species in the reaction formula itself, but plays a role only as a medium for transmitting energy necessary for causing a reaction. The configuration is very different.
【0044】以上本発明の実施形態を説明したが、本発
明は上記実施形態に限定されるものではなく、特許請求
の範囲、及び明細書と図面に記載された技術的思想の範
囲内において種々の変形が可能である。なお直接明細書
及び図面に記載がなくても、本願発明の作用・効果を奏
する以上、本願発明の技術的思想の範囲内である。Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims and the technical idea described in the specification and the drawings. Is possible. Even if not directly described in the specification and the drawings, it is within the scope of the technical idea of the present invention as long as the functions and effects of the present invention are achieved.
【0045】即ち例えば上記実施形態では本発明を半導
体基板の銅配線形成用化学気相蒸着に利用した例を示し
たが、他の各種物質生成方法に利用しても良い。要は反
応室内に主原料となる気体、補助原料となる気体、搬送
媒体となる気体等を流入し、前記反応室内で気体間に化
学反応を起こさせることによって所望の物質を生成する
物質生成方法であれば本発明を適用できる。That is, for example, in the above-described embodiment, an example is shown in which the present invention is applied to chemical vapor deposition for forming copper wiring on a semiconductor substrate. However, the present invention may be applied to other various substance generation methods. The point is that a gas as a main material, a gas as an auxiliary material, a gas as a carrier medium, and the like flow into the reaction chamber, and a chemical reaction is caused between the gases in the reaction chamber to produce a desired substance. Then, the present invention can be applied.
【0046】また上記実施形態では化学種を基底状態よ
りも高いエネルギー状態にするために、大電流放電プラ
ズマを起こしたが、他の各種方法によって高いエネルギ
ー状態にしても良い。即ちマイクロ波の印加、熱エネル
ギーの付与、紫外線又はレーザ光線の照射、電子ビーム
又は荷電粒子ビームの照射、電離波、又は原子線の照
射、磁場又は電界の印加、プラズマの生成、高温物体又
は加熱源の投与、弾性波の付与又は反応促進物質(触媒
などを含む)との接触などのうち少なくとも一つの手段
を用いて化学種の解離、結合、励起又は電離等を起こす
ものであれば良い。In the above embodiment, a large-current discharge plasma is generated in order to bring the chemical species into an energy state higher than the ground state. However, the energy state may be increased by other various methods. That is, application of microwaves, application of thermal energy, irradiation of ultraviolet rays or laser beams, irradiation of electron beams or charged particle beams, irradiation of ionizing waves or atomic beams, application of magnetic fields or electric fields, generation of plasma, high-temperature objects or heating Any substance can be used as long as it causes dissociation, binding, excitation, or ionization of chemical species using at least one of administration of a source, application of an elastic wave, and contact with a reaction promoting substance (including a catalyst or the like).
【0047】[0047]
【発明の効果】以上詳細に説明したように本発明によれ
ば、不純物が混入せずに、生成しようとする物質(例え
ば金属銅)だけが抽出できるという優れた効果を有す
る。As described above in detail, according to the present invention, there is an excellent effect that only the substance to be formed (eg, metallic copper) can be extracted without mixing impurities.
【図1】化学気相蒸着法で採用する原料の一例としてヘ
キサフルオロアセチルアセトネート・トリメチルビニル
シラン銅の分子構造を示す図である。FIG. 1 is a diagram showing a molecular structure of hexafluoroacetylacetonate / trimethylvinylsilane copper as an example of a raw material employed in a chemical vapor deposition method.
【図2】本発明の一実施形態に係る活性アルゴン生成装
置を付加した銅CVD装置を示す概略図である。FIG. 2 is a schematic view showing a copper CVD apparatus to which an active argon generator according to one embodiment of the present invention is added.
【図3】従来の紫外線による光CVD装置の例を示す概
略図である。FIG. 3 is a schematic view showing an example of a conventional photo-CVD apparatus using ultraviolet light.
【図4】従来の高周波プラズマCVD装置の例を示す概
略図である。FIG. 4 is a schematic view showing an example of a conventional high-frequency plasma CVD apparatus.
10 反応室 11 ヒータ 13 サセプタ W 基板(基材) 15 ノズル 17 移送管 19 活性アルゴン生成装置(化学種供給手段) 21 気化装置(原料供給機構) 23 原料供給装置(原料供給機構) 25 アルゴン貯蔵容器(化学種供給手段) DESCRIPTION OF SYMBOLS 10 Reaction chamber 11 Heater 13 Susceptor W Substrate (substrate) 15 Nozzle 17 Transfer pipe 19 Active argon generator (chemical species supply means) 21 Vaporizer (raw material supply mechanism) 23 Raw material supply apparatus (raw material supply mechanism) 25 Argon storage container (Chemical species supply means)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 裕二 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4K030 AA16 BA01 CA04 CA12 EA03 FA01 FA07 FA08 FA10 FA12 FA14 FA15 4M104 BB04 CC01 DD44 DD45 HH16 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Araki 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation 4K030 AA16 BA01 CA04 CA12 EA03 FA01 FA07 FA08 FA10 FA12 FA14 FA15 4M104 BB04 CC01 DD44 DD45 HH16
Claims (5)
となる気体、搬送媒体となる気体を流入し、前記反応室
内で気体間に化学反応を起こさせることによって所望の
物質を生成する物質生成方法において、 前記化学反応を起こす気体とは別に、基底状態よりも高
いエネルギー状態にある原子量が4以上の元素からなる
化学種を前記反応室内に直接若しくは前記反応室に接続
した管路系の所定箇所に導入することを特徴とする物質
生成方法。1. A substance that flows into a reaction chamber as a main raw material, a gas as an auxiliary raw material, and a gas as a carrier medium, and generates a desired substance by causing a chemical reaction between the gases in the reaction chamber. In the production method, aside from the gas that causes the chemical reaction, a chemical species composed of an element having an atomic weight of 4 or more in an energy state higher than the ground state is directly in the reaction chamber or a pipe system connected to the reaction chamber. A method for producing a substance, wherein the substance is introduced into a predetermined location.
る物質生成は、化学気相蒸着法による基材表面での膜形
成であることを特徴とする請求項1記載の物質生成方
法。2. The method for producing a substance according to claim 1, wherein the substance production by a chemical reaction between gases in the reaction chamber is a film formation on a substrate surface by a chemical vapor deposition method.
の物質は銅であり、前記化学気相蒸着は半導体の銅配線
形成を目的として前記基板に設けた微細凹み内に給電層
又は触媒層を堆積するため、若しくは前記微細凹みを直
接埋込むために行われ、導入する一定量の化学種は不活
性ガス(He,Ne,Ar,Kr,Xe,Rn等)のう
ちの少なくとも1種類を起源とするものであることを特
徴とする請求項2記載の物質生成方法。3. The method according to claim 1, wherein the base material is a semiconductor substrate, the desired material is copper, and the chemical vapor deposition is a power supply layer or a catalyst formed in a fine recess formed in the substrate for the purpose of forming copper wiring of the semiconductor. A certain amount of chemical species introduced for depositing a layer or for directly filling the micro-dents is at least one of inert gases (He, Ne, Ar, Kr, Xe, Rn, etc.). 3. The method for producing a substance according to claim 2, wherein the substance originates from:
ギー状態にするために、マイクロ波の印加、熱エネルギ
ーの付与、紫外線又はレーザ光線の照射、電子ビーム又
は荷電粒子ビームの照射、電離波、又は原子線の照射、
磁場又は電界の印加、プラズマの生成、高温物体又は加
熱源の投与、弾性波の付与又は反応促進物質(触媒など
を含む)との接触のうち少なくとも一つの手段を用いて
導入化学種の解離、結合、励起又は電離等を起こすこと
を特徴とする請求項1又は2又は3記載の物質生成方
法。4. Applying a microwave, applying heat energy, irradiating an ultraviolet ray or a laser beam, irradiating an electron beam or a charged particle beam, ionizing wave, Or atomic beam irradiation,
Dissociation of introduced species using at least one of application of a magnetic field or an electric field, generation of plasma, administration of a high-temperature object or a heating source, application of elastic waves or contact with a reaction promoting substance (including a catalyst or the like), The method for producing a substance according to claim 1, wherein binding, excitation or ionization is caused.
体、搬送媒体となる気体を供給する原料供給機構と、 前記原料供給機構から供給された気体を反応させる反応
室とを具備し、 前記反応室に直接又は前記反応室に接続した管路系の所
定箇所に、基底状態より高い状態にある化学種を供給す
る化学種供給手段を設けたことを特徴とする物質生成装
置。5. A source supply mechanism for supplying a gas serving as a main material, a gas serving as an auxiliary material, and a gas serving as a transport medium, and a reaction chamber for reacting the gas supplied from the material supply mechanism. A substance producing apparatus, characterized in that chemical substance supply means for supplying a chemical species in a state higher than a ground state is provided at a predetermined position of a pipe system directly to the reaction chamber or connected to the reaction chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000123000A JP2001303252A (en) | 2000-04-24 | 2000-04-24 | Material generating method and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000123000A JP2001303252A (en) | 2000-04-24 | 2000-04-24 | Material generating method and apparatus thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001303252A true JP2001303252A (en) | 2001-10-31 |
Family
ID=18633404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000123000A Pending JP2001303252A (en) | 2000-04-24 | 2000-04-24 | Material generating method and apparatus thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001303252A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
-
2000
- 2000-04-24 JP JP2000123000A patent/JP2001303252A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7214280B2 (en) | 2002-05-08 | 2007-05-08 | Btu International Inc. | Plasma-assisted decrystallization |
US7227097B2 (en) | 2002-05-08 | 2007-06-05 | Btu International, Inc. | Plasma generation and processing with multiple radiation sources |
US7309843B2 (en) | 2002-05-08 | 2007-12-18 | Btu International, Inc. | Plasma-assisted joining |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7592564B2 (en) | 2002-05-08 | 2009-09-22 | Btu International Inc. | Plasma generation and processing with multiple radiation sources |
US7608798B2 (en) | 2002-05-08 | 2009-10-27 | Btu International Inc. | Plasma catalyst |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100228259B1 (en) | Thin film formation method and semiconductor device | |
US6171661B1 (en) | Deposition of copper with increased adhesion | |
EP1475456B1 (en) | Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus | |
US5508066A (en) | Method for forming a thin film | |
JP2001303252A (en) | Material generating method and apparatus thereof | |
EP0996973A1 (en) | Improved deposition of tungsten nitride using plasma pretreatment in a chemical vapor deposition chamber | |
JPS63203772A (en) | Vapor phase growth method for copper thin film | |
US5653810A (en) | Apparatus for forming metal film and process for forming metal film | |
TW498456B (en) | A method of improving the adhesion of copper | |
JP2002359242A (en) | Film forming method and film forming apparatus, insulating film and semiconductor integrated circuit | |
JP2002510143A (en) | A method for eliminating edge effects in chemical vapor deposition of metals. | |
KR100624351B1 (en) | Chemical vapor deposition method of metal film | |
JPH11265885A (en) | Deposition of film through plasma-assisted process | |
US7314651B2 (en) | Film forming method and film forming device | |
JP3243722B2 (en) | Thin film forming method and semiconductor device | |
Chiang et al. | Ion-induced chemical vapor deposition of high purity Cu films at room temperature using a microwave discharge H atom beam source | |
JPH05211134A (en) | Forming method of thin film and forming equipment of thin film | |
JPS58158916A (en) | Preparation of semiconductor device | |
JP2001240967A (en) | Method and apparatus for covering and embedding micro recess on base material | |
Promdet et al. | Self-limiting deposition of copper from copper beta-diketonates and plasma electrons | |
JPH0426769A (en) | Formation of copper thin film | |
JP6944699B2 (en) | Method for manufacturing hexagonal boron nitride film | |
JPH11256318A (en) | Conductive thin film and its formation as well as semiconductor device and its production | |
JP2831770B2 (en) | Deposition film formation method | |
KR100719805B1 (en) | Capacitor electrode deposition method with transition metal added |