JPS59169053A - Electrodeless electric-discharge lamp - Google Patents
Electrodeless electric-discharge lampInfo
- Publication number
- JPS59169053A JPS59169053A JP4234883A JP4234883A JPS59169053A JP S59169053 A JPS59169053 A JP S59169053A JP 4234883 A JP4234883 A JP 4234883A JP 4234883 A JP4234883 A JP 4234883A JP S59169053 A JPS59169053 A JP S59169053A
- Authority
- JP
- Japan
- Prior art keywords
- discharge lamp
- sealed
- radioactive
- rare gas
- matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/044—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明はマイクロ波放電を利用し九無電極放電灯に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electrodeless discharge lamp using microwave discharge.
従来、一般に放電灯は対向する一対の電極を設け、この
電極間に生ずる放電によシ発生する光を利用するものが
普通である。しかしながら、この種放電灯は、電極物質
の消耗、電極の蒸発飛散等に原因する放電灯管内面の黒
化による光出力の低下、あるいは電極自体の特性の低下
等の欠点が生じるのが不可避であった。Conventionally, a discharge lamp generally has a pair of electrodes facing each other and utilizes light generated by a discharge occurring between the electrodes. However, this type of discharge lamp inevitably has disadvantages such as a decrease in light output due to consumption of the electrode material, blackening of the inner surface of the discharge lamp tube due to evaporation and scattering of the electrode, and a decrease in the characteristics of the electrode itself. there were.
このような欠点を改良するものとして、近年高周波放電
、特に高周波のマイクロ波によって励起される無電極放
電灯が実用化され始めている。この放電灯は電極を有し
ないため、前記従来の電極を有する放電灯に比べ、長寿
命化できる利点を有する。In order to improve these drawbacks, in recent years, electrodeless discharge lamps excited by high-frequency discharge, particularly high-frequency microwaves, have begun to be put into practical use. Since this discharge lamp does not have electrodes, it has the advantage of having a longer life than the conventional discharge lamps having electrodes.
無電極放電灯を点灯させる装置としては9例えば特開昭
57−172649号公報に開示されているものがある
。すなわち、第1図に示すようにマグネトロン(1)に
よって発生されたマイクロ波はマグネトロンアンテナ(
Sj) kよシ導波管(3)内に放射され。As an example of a device for lighting an electrodeless discharge lamp, there is one disclosed in Japanese Patent Application Laid-Open No. 57-172649. That is, as shown in Figure 1, the microwaves generated by the magnetron (1) are transmitted to the magnetron antenna (
Sj) k is radiated into the waveguide (3).
給電口(6)を通して空胴(4)中に放射されて空胴(
4)内でマイクロ波の電磁界を形成する。この電磁界に
よシ、マず無電極放電灯(7)内に封入された始動用希
ガスが放電し、放電灯壁が加熱され、封入金属が蒸発し
て金属蒸気放電となり安定状態になる。It is radiated into the cavity (4) through the feed port (6) and the cavity (
4) Form a microwave electromagnetic field within. Due to this electromagnetic field, the starting rare gas sealed in the electrodeless discharge lamp (7) is discharged, the discharge lamp wall is heated, the sealed metal evaporates, and a metal vapor discharge becomes a stable state. .
このとき封入金属の種類に応じてその金属特有の発光ス
ペクトルをもった発光が生じる。この発光を有効に利用
するためには、空胴壁(5)を光反射体として用い、前
面は光を透過するがマイクロ波は透過しないたとえば金
属メツシュ板aDで構成し。At this time, light is emitted with an emission spectrum unique to the metal depending on the type of metal encapsulated. In order to effectively utilize this light emission, the cavity wall (5) is used as a light reflector, and the front surface is made of, for example, a metal mesh plate aD that transmits light but does not transmit microwaves.
光を前方に放射させる。また2箱体(121に設けられ
た冷却ファン(8)によってマグネトロン(1)を冷却
し。Emit light forward. In addition, the magnetron (1) is cooled by a cooling fan (8) provided in the two-box body (121).
更にこの冷却風は送風管(9)、送風ロα呻、導波管(
3)内、給電口(6)を介して空胴(4)内に導かれ、
無電極放電灯(7)を冷却した後メツシュ板0υから排
出されるように構成育れている。Furthermore, this cooling air flows through the air pipe (9), the air blower, and the waveguide (
3), guided into the cavity (4) via the power supply port (6),
The structure is such that after the electrodeless discharge lamp (7) is cooled, it is discharged from the mesh plate 0υ.
しかしながら、この種放電灯は無電極であるが故に、単
にマイクロ波で励起しただけでは放電開始が困難であシ
、この対策としてたとえば特開昭58−25073号公
報に天然放射性元素を発光管内に封入する手段が開示さ
れている。ところが、天然放射性元素はその崩壊定数す
なわち半減期が10
θ 年程度と非常に長く、シたがって必要な初期電子を
得るためには数■単位の多量の放射性元素が必要である
。しかるに放射性元素特にその取扱い量が多量となると
人体に放射性障害を生じたり。However, since this type of discharge lamp has no electrodes, it is difficult to start the discharge simply by exciting it with microwaves.As a countermeasure, for example, Japanese Patent Laid-Open No. 58-25073 discloses that a natural radioactive element is added to the arc tube. A means of encapsulation is disclosed. However, natural radioactive elements have very long decay constants, that is, half-lives of about 10 θ years, and therefore a large amount of radioactive elements, on the order of several square meters, is required to obtain the necessary initial electrons. However, when radioactive elements, especially when handled in large quantities, can cause radiation damage to the human body.
また発光管内に封入する発光金属たとえばよう化スカン
ジウムのような希土類金属と反応し、その量が多量であ
ると必然的に発光金属量が少なくなって光効率の低下、
短寿命等の不都合を生じる欠点がある。It also reacts with the luminescent metal sealed in the arc tube, such as rare earth metals such as scandium iodide, and if the amount is large, the amount of luminescent metal will inevitably decrease, resulting in a decrease in light efficiency.
There are drawbacks such as short lifespan.
本発明は前記欠点に対処してなされたもので。 The present invention has been made to address the above drawbacks.
放電開始を容易にするとともに9人体に悪影響がなく、
シかも光効率の低下をも防止できる無電極放電灯を提供
することを目的とする。It facilitates the start of discharge and has no adverse effects on the human body.
It is an object of the present invention to provide an electrodeless discharge lamp which can also prevent a decrease in light efficiency.
本発明は放電灯の透光性容器内に希ガス、水銀。 The present invention uses a rare gas and mercury in a light-transmitting container of a discharge lamp.
発光物質とともに半減期が0.5年以上10年以下の放
射性物質を分散密封したセラミック体を封入した無電極
放電灯である。It is an electrodeless discharge lamp that encloses a ceramic body in which a radioactive substance with a half-life of 0.5 to 10 years is dispersed and sealed together with a luminescent substance.
以下2本発明につき一実施例を参照して説明する0
内容積が約14 c*cの透光性容器たとえば石英容器
内忙始動用希ガスとしてアルゴンガスを100torr
、水銀を前記容器内容積1 cec当、り 3 X 1
0−’グラム原子9発光物質としては金属化合物たとえ
ばよう化ジスプロシウムをジスプ四シウムとしてl c
ac当り0.2X10 グラム原子となるような量を
封入し、これ等封入物に加えて更に半減期が0.5年〜
10年程度の放射性物質たとえばプロメチウム147(
Pm)をセラミック体に分散密封したものを追加封入し
て放電灯を作製する。The following two aspects of the present invention will be described with reference to one embodiment. Argon gas is applied at 100 torr as a rare gas for starting the inside of a transparent container, such as a quartz container, with an internal volume of about 14 c*c.
, mercury per 1 cec of the internal volume of the container 3 X 1
0-'gram atom 9 As a luminescent substance, a metal compound such as dysprosium iodide is used as dysprosium iodide l c
Enclose in an amount such that 0.2 x 10 gram atoms per ac, and in addition to these inclusions, have a half-life of 0.5 years to
Radioactive substances that last about 10 years, such as promethium 147 (
A discharge lamp is produced by additionally enclosing a ceramic body in which Pm) is dispersed and sealed.
ところで、 (Pm)のような半減期の短かい放射性
物質は人体に悪影響を及ぼし易く、その取扱は非常な注
意が必要である。By the way, radioactive substances with short half-lives such as (Pm) tend to have an adverse effect on the human body, and must be handled with great care.
すなわち、放射性物質が人体に触れると放射線障害を招
くため、放射性物質は飛散しないよう密封線源として取
シ扱うことが要求される。密封とはスミャーテストで剥
離しないこと、すなわち放射線源を濾紙で拭き、この濾
紙の表面から放射線が出ているか否かを計数管等で調べ
たときに放射線が検出されないことであシ、結局放射性
物質がその線源から濾紙へ移動しないととを言う。In other words, if radioactive materials come into contact with the human body, they will cause radiation damage, so radioactive materials must be handled as sealed radiation sources to prevent them from scattering. Sealing means that the radiation source does not peel off in a smear test, that is, when the radiation source is wiped with a filter paper and the surface of the filter paper is examined to see if radiation is emitted using a counter, no radiation is detected. This means that the radiation must not migrate from the source to the filter paper.
しかして、前記(Pm)はセラミック体に分散密封され
ていることから、セラミック体から容易に剥れることが
なく、いわゆるスミャーテストで落ちないので人体に付
着するなどの危険性がなく。Since the (Pm) is dispersed and sealed in the ceramic body, it does not easily peel off from the ceramic body and does not come off in a so-called smear test, so there is no risk of it adhering to the human body.
取扱い上においても安全である。It is also safe to handle.
このような無電極放電灯を第1図に示した点灯装置内の
無電極放電管(7)の位置に設置し9図示しないが適当
な支持具で放電管を支持し、前記記載の通り点灯装置を
作動させると、放電管内忙封入した放射性物質(Pm)
から放射される初期電子によりその近傍のアルゴンガス
は電離されて電子を生じる。一方、マグネトロン(1)
によって発生されたマイクロ波は空胴(4)中に放射さ
れて空胴(4)内でマイクロ波の電磁界が形成され、こ
の電磁界による励起作用によって前記電子は加速されて
放電灯(7)内の絶縁破壊を生じ容易に始動させること
ができる。Install such an electrodeless discharge lamp in the position of the electrodeless discharge tube (7) in the lighting device shown in Figure 1, support the discharge tube with a suitable support (not shown), and light it up as described above. When the device is activated, radioactive substances (Pm) sealed inside the discharge tube are released.
The initial electrons emitted from the argon gas ionize the argon gas in the vicinity and generate electrons. On the other hand, magnetron (1)
The microwaves generated are radiated into the cavity (4) and a microwave electromagnetic field is formed within the cavity (4), and the electrons are accelerated by the excitation effect of this electromagnetic field and are discharged into the discharge lamp (7). ) and can be easily started.
この本発明放電灯のマイクロ波励起による放電開始電圧
の相対値は、従来の放射性物質分散セラミック体を使用
しない無電極放電灯忙対して115以下、放電開始所要
時間でいえば1/100以下にすることが可能で、従来
の無電極放電灯の放電開始所要時間が5分間製上も要し
たのに対し本発明放電灯では瞬時に放電を開始させるこ
とができた。The relative value of the discharge starting voltage due to microwave excitation of the discharge lamp of the present invention is 115 or less compared to conventional electrodeless discharge lamps that do not use a radioactive substance dispersed ceramic body, and the time required for starting discharge is less than 1/100. Unlike the conventional electrodeless discharge lamp, which required 5 minutes to manufacture, the discharge lamp of the present invention was able to start discharge instantly.
しかも、放射性物質はセラミック体に密封されているか
ら、取扱い上の人体への危険も全くない。Moreover, since the radioactive material is sealed in a ceramic body, there is no danger to the human body when handling it.
また、放射性物質は密封線源の形態で取扱うようにして
も、法律で100マイク四キユリー以下であることを規
制されており、したがって放電灯1個当りの放射能量は
100マイクロキユリー以下にしておく必要がある。Furthermore, even if radioactive materials are handled in the form of a sealed source, the law restricts the amount of radioactivity to less than 100 microcuries, so the amount of radioactivity per discharge lamp must be less than 100 microcuries. It is necessary to keep it.
さらに半減期が0.5年〜10年の放射性物質を使用す
れば、無電極放電灯を始動するための必要量は前記従来
の天然放射性元素の場合には数■も必要としたのに対し
僅か数ng (ナノグラム)程度で極めて少量ですむし
、しかも放射性物質はセラミックに分散密封した密封線
源化されているので。Furthermore, if a radioactive substance with a half-life of 0.5 to 10 years is used, the amount required to start an electrodeless discharge lamp would be several square meters in the case of the conventional natural radioactive element mentioned above. It requires only a few ng (nanograms), which is an extremely small amount, and the radioactive material is sealed in a sealed radiation source that is dispersed in ceramic.
セラミックが発光金属と放射性物質との反応を阻止し、
まず前記両者の反応は生じないがたとえ反応が生じた場
合でも放射性物質量が極めて少ないから当然これと反応
する発光金属量も少なくなり。Ceramic prevents the reaction between luminescent metals and radioactive substances,
First, a reaction between the two does not occur, but even if a reaction occurs, the amount of the radioactive substance is extremely small, so naturally the amount of the luminescent metal that reacts with it will also be small.
したがって光効率の低下、短寿命化等の欠点は回避する
ことが可能となる。Therefore, disadvantages such as a decrease in optical efficiency and a shortened lifespan can be avoided.
なお、半減期が0.5年未満の放射性物質であれば、減
衰が急速であるため放電灯の寿命中に減衰が完了してし
まって始動性能が寿命末期には著しく低下することにな
る。一方、半減期が長すぎると、放射線の減衰に時間が
かかり始動性が悪くなるとともに、放射性物質は多量に
封入する必要が生じる。しかして放射性物質は100年
程度で生活環境に悪影響を及はさない程度に減衰するこ
とが望ましく、100年で□程度に減衰すると000
とを一応の目安とすればその半減期は約10年となる。Note that if the radioactive substance has a half-life of less than 0.5 years, the attenuation is rapid and the attenuation is completed during the life of the discharge lamp, resulting in a significant drop in starting performance at the end of the life. On the other hand, if the half-life is too long, it will take time for the radiation to decay, resulting in poor startability, and it will be necessary to encapsulate a large amount of radioactive material. However, it is desirable for radioactive substances to decay to the extent that they do not have a negative impact on the living environment in about 100 years, and if we assume that if they decay to about □ in 100 years, it will be 000, then their half-life will be about 10 years. becomes.
なお、半減期が0.5年〜10年程度の放射性物質とし
ては、たとえば炭素14(C)、ナトリウム22 (”
Na)、カルシラA 45 (45Ca)、鉄55(5
5Fe)、コバルト6 o (60Co)、 = ツ)
y /l/ 63 (”Ni)。In addition, examples of radioactive substances with a half-life of about 0.5 to 10 years include carbon-14 (C) and sodium-22 ("
Na), Calcilla A 45 (45Ca), Iron 55 (5
5Fe), cobalt 6o (60Co), = TS)
y /l/ 63 (”Ni).
亜鉛65 (”Zn)、 マyガy 54 (”Mn)
、 ストayチウム90(90Sr)、ルテニウム10
6 (”’Ru)、銀110(Ag)、アンチモン12
5(Sb)、セシウム134 (Cs)、セシウムl
37 (Cs)、バリウA 133 (Ba)、 *リ
ウA 144 (Ce)。Zinc 65 ("Zn), Mygay 54 ("Mn)
, Staythium 90 (90Sr), Ruthenium 10
6 (”'Ru), silver 110 (Ag), antimony 12
5 (Sb), cesium-134 (Cs), cesium l
37 (Cs), Valiu A 133 (Ba), *Liu A 144 (Ce).
プ四メチウム147 (Pm)、ユウロピウム154(
154Eu)、ユウロピウム155 (”’Eu)、金
195(195Au)、タリクA 204 (20’T
#)、アクチニウム227(Ac)、アメリシウム24
1 (Am)、−+ユリラム242 (Cm)、 $z
タリク 244 (”’Cm)、カリホルニウA 25
2 (Cf)、鉛21010
(pb)、ラジウム226(Ra)、ラジウム228
(228Ra)、 )グラム228 (228Th)な
どのうち少くとも1種を選択使用することが望ましい。tetramethium-147 (Pm), europium-154 (
154Eu), europium 155 (''Eu), gold 195 (195Au), Tariq A 204 (20'T
#), actinium-227 (Ac), americium-24
1 (Am), -+Yuriram 242 (Cm), $z
Tarik 244 ('''Cm), Kaliforniv A 25
2 (Cf), lead 21010 (pb), radium 226 (Ra), radium 228
(228Ra), )gram 228 (228Th), etc., is preferably selected and used.
また。Also.
セラミックとしては酸化けい素のような非金属酸化物、
酸化アルミニウム、酸化ナトリウム、酸化マグネシウム
、酸化ベリリウム、酸化チタン、酸化カルシウムなどの
金属酸化物、炭化アルミニウム、炭化ナトリウム、炭化
カルシウムなどの金属炭化物、窒化アルミニウム、窒化
ナトリウム、窒化マグネシウムなどの金属窒化物等が使
用される。Ceramics include nonmetallic oxides such as silicon oxide,
Metal oxides such as aluminum oxide, sodium oxide, magnesium oxide, beryllium oxide, titanium oxide, and calcium oxide; metal carbides such as aluminum carbide, sodium carbide, and calcium carbide; metal nitrides such as aluminum nitride, sodium nitride, and magnesium nitride, etc. is used.
さらに、前記実施例では石英容器内に発光物質として金
属ハロゲン化物を封入したものを挙げたが9本発明はこ
れに限定されるものではなく2例えは発光物質としてナ
トリウムと水銀のアマルガムをアルゴンガス等と共に透
光性セラミック容器に封入した無電極放電灯等にも適用
できるものである。Furthermore, in the above embodiment, a metal halide was sealed as a luminescent material in a quartz container, but the present invention is not limited thereto. It can also be applied to an electrodeless discharge lamp etc. sealed in a translucent ceramic container.
以上詳述したように9本発明によれば無電極放電灯内に
半減期が0.5年〜10年程度の放射性物質分散セラミ
ック体を封入するようにしたので。As detailed above, according to the present invention, a radioactive material-dispersed ceramic body having a half-life of about 0.5 to 10 years is enclosed in an electrodeless discharge lamp.
放電開始をきわめて容易にできるとともに9人体への悪
影響がなく、シかも光効率の低下をも防止できる利点を
有する。It has the advantage that it is possible to start the discharge very easily, has no adverse effect on the human body, and can also prevent a decrease in light efficiency.
図は無電極放電灯の点灯装置の一例を示すものである。
(1)・・・・・・マグネトロン、(4)・・・・・・
空胴。
(7)・・・・・・無電極放電灯、 aυ・・・・・・
金属メツシュ板。
代理人 弁理士 則 近 憲 佑
(ほか1名)The figure shows an example of a lighting device for an electrodeless discharge lamp. (1)・・・Magnetron, (4)・・・・・・
Hollow body. (7)... Electrodeless discharge lamp, aυ...
Metal mesh plate. Agent: Patent attorney Kensuke Chika (and 1 other person)
Claims (1)
いて、前記放電灯は透光性容器内に希ガス、水銀および
発光物質とともに半減期が0.5年以上10年以下の放
射性物質を分散密封したセラミック体を封入したことを
特徴とする無電極放電灯。In an electrodeless discharge lamp that emits light when excited by microwaves, the discharge lamp has a radioactive substance with a half-life of 0.5 to 10 years dispersed together with a rare gas, mercury, and a luminescent substance in a translucent container. An electrodeless discharge lamp characterized by encapsulating a sealed ceramic body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4234883A JPS59169053A (en) | 1983-03-16 | 1983-03-16 | Electrodeless electric-discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4234883A JPS59169053A (en) | 1983-03-16 | 1983-03-16 | Electrodeless electric-discharge lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59169053A true JPS59169053A (en) | 1984-09-22 |
Family
ID=12633520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4234883A Pending JPS59169053A (en) | 1983-03-16 | 1983-03-16 | Electrodeless electric-discharge lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59169053A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003096771A1 (en) * | 2002-05-08 | 2003-11-20 | Dana Corporation | Plasma generation and processing with multiple radiation sources |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
-
1983
- 1983-03-16 JP JP4234883A patent/JPS59169053A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7309843B2 (en) | 2002-05-08 | 2007-12-18 | Btu International, Inc. | Plasma-assisted joining |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US6870124B2 (en) | 2002-05-08 | 2005-03-22 | Dana Corporation | Plasma-assisted joining |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
US7214280B2 (en) | 2002-05-08 | 2007-05-08 | Btu International Inc. | Plasma-assisted decrystallization |
US7227097B2 (en) | 2002-05-08 | 2007-06-05 | Btu International, Inc. | Plasma generation and processing with multiple radiation sources |
WO2003096774A1 (en) * | 2002-05-08 | 2003-11-20 | Dana Corporation | Plasma catalyst |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
JP2005524963A (en) * | 2002-05-08 | 2005-08-18 | ダナ・コーポレーション | Plasma catalyst |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
WO2003096771A1 (en) * | 2002-05-08 | 2003-11-20 | Dana Corporation | Plasma generation and processing with multiple radiation sources |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7592564B2 (en) | 2002-05-08 | 2009-09-22 | Btu International Inc. | Plasma generation and processing with multiple radiation sources |
US7608798B2 (en) | 2002-05-08 | 2009-10-27 | Btu International Inc. | Plasma catalyst |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0076648A2 (en) | Electrodeless fluorescent light source | |
JPS59169053A (en) | Electrodeless electric-discharge lamp | |
JPH09185957A (en) | Electrodeless reflection type fluorescent lamp | |
JP3892901B2 (en) | Low pressure mercury discharge lamp | |
EP0507533A2 (en) | A mercury-free electrodeless metal halide lamp | |
JPS5825073A (en) | Electrodeless discharge lamp | |
CN1265420C (en) | Gas discharge lamp with descending-conversion light emitter | |
JPS6034223B2 (en) | metal vapor discharge lamp | |
JP2002543577A (en) | Low pressure mercury vapor discharge lamp | |
JP3189285B2 (en) | Electrodeless low pressure discharge lamp | |
JP3080318B2 (en) | Fluorescent lamp, lighting device using the same, and liquid crystal display device | |
JP2000113857A (en) | Fluorescent lamp and light source device | |
JPH01243304A (en) | Electrodeless discharge lamp | |
JP2007080705A (en) | Microwave discharge lamp and microwave discharge light source device including the microwave discharge lamp | |
JP3275772B2 (en) | Metal halide lamp | |
JPH03101045A (en) | metal halide lamp | |
JPS63158737A (en) | Metallic vapor discharge lamp | |
JPH05225960A (en) | Electrodeless low pressure rare gas type fluorescent lamp | |
JP3389954B2 (en) | Fluorescent lamp, its manufacturing method and lighting equipment | |
JPS60158544A (en) | Electrodeless discharge lamp | |
JPS5983338A (en) | Metal vapor electric-discharge lamp | |
JPH03101046A (en) | Metal halide lamp | |
JPH0340463B2 (en) | ||
JPS6034222B2 (en) | metal vapor discharge lamp | |
JP3117007B2 (en) | Fluorescent lamp, lighting device and display device using the same |