JP2003075070A - Continuous calcination furnace, and manufacturing method for sintered product using the same - Google Patents
Continuous calcination furnace, and manufacturing method for sintered product using the sameInfo
- Publication number
- JP2003075070A JP2003075070A JP2001268935A JP2001268935A JP2003075070A JP 2003075070 A JP2003075070 A JP 2003075070A JP 2001268935 A JP2001268935 A JP 2001268935A JP 2001268935 A JP2001268935 A JP 2001268935A JP 2003075070 A JP2003075070 A JP 2003075070A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- fired
- heat insulating
- firing
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 238000001354 calcination Methods 0.000 title abstract description 8
- 239000002826 coolant Substances 0.000 claims abstract description 8
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 238000010304 firing Methods 0.000 claims description 72
- 238000005192 partition Methods 0.000 claims description 15
- 230000035699 permeability Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 description 12
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 241001024304 Mino Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Constitution Of High-Frequency Heating (AREA)
- Tunnel Furnaces (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Furnace Details (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、陶磁器材料やファ
インセラミックス材料などで形成された被焼成体を連続
的に焼成する連続焼成炉及びそれを用いた焼成体の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous firing furnace for continuously firing an article to be fired formed of a ceramic material, a fine ceramics material or the like, and a method for producing a fired body using the same.
【0002】[0002]
【従来の技術】図6(a)は、本発明者らが先に提案し
た連続焼成炉の一部を模式的に示す平断面図である。同
図に一部を示す連続焼成炉は、焼成室21内を装入口か
ら抽出口に向かって搬送される被焼成体22に対してマ
イクロ波を照射して当該被焼成体22を加熱焼成するも
のである。なお、前記焼成室21は、断熱性及びマイク
ロ波透過性を有する断熱層23aを含む隔壁23により
炉内(炉壁24の内側)に区画形成されている。2. Description of the Related Art FIG. 6 (a) is a plan sectional view schematically showing a part of a continuous firing furnace previously proposed by the present inventors. In the continuous firing furnace, a portion of which is shown in the figure, microwaves are irradiated to the body to be fired 22 which is conveyed from the charging port to the extraction port in the firing chamber 21 to heat and fire the body to be fired 22. It is a thing. The firing chamber 21 is partitioned and formed in the furnace (inside the furnace wall 24) by a partition wall 23 including a heat insulating layer 23a having a heat insulating property and a microwave transmitting property.
【0003】本発明者らは、焼成室21を囲む隔壁23
の断熱層23aの厚みを炉長方向で異ならしめることに
よって、焼成室21内の炉長方向(被焼成体22の搬送
方向)の温度分布を任意のパターン(例えば図6(b)
に示すようなパターン)に形成することができることを
見出した。また、断熱層23aの材質を一部代えて該断
熱層23aの断熱特性やマイクロ波吸収特性を炉長方向
で異ならしめることによっても、同様に焼成室21内の
炉長方向の温度分布のパターン(以下、焼成室21内の
炉長方向の温度分布のパターンを焼成室21内の温度プ
ロファイルという。)を任意に形成することができるこ
とを見出した。The inventors of the present invention have made a partition 23 surrounding the firing chamber 21.
By varying the thickness of the heat insulating layer 23a in the furnace length direction, the temperature distribution in the furnace length direction (conveying direction of the object to be fired 22) in the firing chamber 21 can be set to an arbitrary pattern (for example, FIG. 6B).
It was found that it can be formed into a pattern as shown in FIG. In addition, the pattern of the temperature distribution in the furnace length direction in the firing chamber 21 can also be obtained by partially changing the material of the heat insulation layer 23a and making the heat insulation characteristics and the microwave absorption characteristics of the heat insulation layer 23a different in the furnace length direction. It has been found that (hereinafter, the pattern of the temperature distribution in the firing chamber 21 in the furnace length direction is referred to as a temperature profile in the firing chamber 21) can be arbitrarily formed.
【0004】こうした知見によれば、炉を設計するに際
して焼成室21内の温度プロファイルを任意に設定する
ことができるので、同温度プロファイルを被焼成体22
の焼成に容易に最適化することができる。According to such knowledge, the temperature profile in the firing chamber 21 can be arbitrarily set when designing the furnace, and therefore the temperature profile of the firing target 22 is set.
Can be easily optimized for firing.
【0005】[0005]
【発明が解決しようとする課題】ところで、被焼成体2
2の材質や形状、大きさが異なると、それに伴ってその
焼成に最適な焼成室21内の温度プロファイルも異なっ
てくる。このため、一つの連続焼成炉で種々の被焼成体
22を焼成するためには、各被焼成体22の焼成に適し
た温度プロファイルを焼成室21内に形成可能であるこ
とが要求される。しかし、上記従来の連続焼成炉では、
断熱層23aの厚み、断熱特性又はマイクロ波吸収特性
を炉長方向で異ならしめることで焼成室21内の温度プ
ロファイルを調節しているので、いったん炉を設計した
後に焼成室21内の温度プロファイルを任意に設定する
ことは困難である。The object to be fired 2
If the materials, shapes, and sizes of the two differ, the temperature profile in the firing chamber 21 that is optimal for the firing also changes accordingly. For this reason, in order to fire various objects 22 to be fired in one continuous firing furnace, it is required that a temperature profile suitable for firing each object 22 can be formed in the firing chamber 21. However, in the above conventional continuous firing furnace,
Since the temperature profile in the firing chamber 21 is adjusted by making the thickness, the heat insulation property, or the microwave absorption property of the heat insulating layer 23a different in the furnace length direction, once the furnace is designed, the temperature profile in the firing chamber 21 can be changed. It is difficult to set it arbitrarily.
【0006】本発明は、上記のような従来技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、焼成室内の温度プロファイルを任意に設定
可能な連続焼成炉及びそれを用いた焼成体の製造方法を
提供することにある。The present invention has been made by paying attention to the problems existing in the prior art as described above. An object of the invention is to provide a continuous firing furnace in which the temperature profile in the firing chamber can be arbitrarily set and a method for producing a fired body using the continuous firing furnace.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明は、断熱性及びマイクロ波
透過性を有する断熱層を含む隔壁により区画された焼成
室を有し、その焼成室内を装入口から抽出口に向かって
搬送される被焼成体に対してマイクロ波を照射して当該
被焼成体を加熱焼成する連続焼成炉において、前記断熱
層に冷却媒体の流路を設けたことを要旨とする。In order to achieve the above object, the invention according to claim 1 has a firing chamber defined by a partition wall including a heat insulating layer having heat insulating property and microwave transmitting property. In the continuous firing furnace for irradiating the object to be fired conveyed from the charging port toward the extraction port in the baking chamber with microwaves to heat and fire the object to be fired, a channel of a cooling medium is provided in the heat insulating layer. The main point is to provide.
【0008】請求項2に記載の発明は、請求項1に記載
の連続焼成炉を用いて被焼成体を焼成し焼成体を製造す
ることを要旨とする。A second aspect of the present invention is characterized in that the object to be fired is fired by using the continuous firing furnace according to the first aspect to manufacture the fired body.
【0009】[0009]
【発明の実施の形態】以下、本発明を、陶磁器材料又は
セラミックス材料で形成された被焼成体を焼成するロー
ラハース式の連続焼成炉に具体化した一実施形態につい
て図面に基づき説明する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is embodied in a roller hearth type continuous firing furnace for firing an object to be fired formed of a ceramic material or a ceramic material will be described with reference to the drawings.
【0010】図1(a)は本実施形態の連続焼成炉の一
部を模式的に示す炉長方向断面図(平断面図)、図2は
図1(a)の2−2線における断面を示す模式図であ
る。これらの図に示すように、連続焼成炉は平面直線状
に延びるトンネル状の炉壁11を備えるとともに、その
炉壁11の内側に炉長方向に沿って平面直線状に延びる
筒状の隔壁12により区画された焼成室13を備えてい
る。この連続焼成炉では、図示しない装入口から連続的
に炉内に装入されてローラコンベア(図示せず。ただし
図2に該ローラコンベアを構成するローラ14を示
す。)によって図示しない抽出口の方向(図1(a)で
は右側)に向かって焼成室13内を搬送される被焼成体
15に対して、マイクロ波発振器(図示せず)から出力
して炉内(炉壁11の内側)に入射するマイクロ波が照
射され、当該被焼成体15が加熱焼成されるようになっ
ている。FIG. 1A is a sectional view (plane sectional view) in the furnace length direction schematically showing a part of the continuous firing furnace of this embodiment, and FIG. 2 is a sectional view taken along line 2-2 of FIG. 1A. It is a schematic diagram which shows. As shown in these figures, the continuous firing furnace is provided with a tunnel-shaped furnace wall 11 extending in a plane straight shape, and a cylindrical partition wall 12 extending in a plane straight shape along the furnace length direction inside the furnace wall 11. It is provided with a firing chamber 13 partitioned by. In this continuous calcination furnace, the furnace is continuously charged into the furnace through a charging port (not shown), and a roller conveyor (not shown; however, FIG. 2 shows the rollers 14 constituting the roller conveyor) is used to extract the extraction port (not shown). The inside of the furnace (inside the furnace wall 11) is output from a microwave oscillator (not shown) with respect to the object to be baked 15 that is conveyed in the baking chamber 13 in the direction (right side in FIG. Is irradiated with the microwave incident on the object to be fired 15, and the object to be fired 15 is heated and fired.
【0011】前記炉壁11の内面は、マイクロ波を反射
する材料で形成されている。前記マイクロ波を反射する
材料の具体例としては、ステンレス鋼などの金属が挙げ
られる。The inner surface of the furnace wall 11 is made of a material that reflects microwaves. Specific examples of the material that reflects the microwave include metals such as stainless steel.
【0012】前記隔壁12は、発熱層12aと該発熱層
12aの外側を包囲する断熱層12bからなる二層構造
になっている。発熱層12aは、マイクロ波によって自
己発熱する材料で形成されている。前記マイクロ波によ
って自己発熱する材料の具体例としては、ムライト系材
料、窒化ケイ素系材料、アルミナなどが挙げられる。一
方、断熱層12bは、断熱性及びマイクロ波透過性を有
する材料で形成されている。前記断熱性及びマイクロ波
透過性を有する材料の具体例としては、アルミナファイ
バー、発泡アルミナなどが挙げられる。The partition wall 12 has a two-layer structure comprising a heat generating layer 12a and a heat insulating layer 12b surrounding the heat generating layer 12a. The heat generating layer 12a is formed of a material that self-heats by microwaves. Specific examples of the material that self-heats by the microwave include a mullite material, a silicon nitride material, and alumina. On the other hand, the heat insulating layer 12b is formed of a material having a heat insulating property and a microwave transmitting property. Specific examples of the material having the heat insulating property and the microwave transmitting property include alumina fiber and foamed alumina.
【0013】図1(a)に示すように、隔壁12には、
抽出口側に向かうにつれて徐々に断熱層12bの厚みが
増大する領域Aと、断熱層12bの厚みが最大でなおか
つ炉長方向で一定な領域Bと、抽出口側に向かうにつれ
て徐々に厚みが減少する領域Cとが、被焼成体15の搬
送方向に沿って順にある。そのうち、領域Aと領域Cの
断熱層12bには、周方向(炉長方向に直交する方向)
に延びる空孔16(冷却媒体の流路に相当)が多数形成
されている。As shown in FIG. 1A, the partition wall 12 has
A region A in which the thickness of the heat insulating layer 12b gradually increases toward the extraction port side, a region B in which the thickness of the heat insulating layer 12b is maximum and which is constant in the furnace length direction, and the thickness gradually decreases toward the extraction port side. The region C to be formed is in order along the conveyance direction of the body to be fired 15. Of these, in the heat insulating layer 12b in the regions A and C, the circumferential direction (direction orthogonal to the furnace length direction)
A large number of holes 16 (corresponding to the flow path of the cooling medium) extending to the are formed.
【0014】図2に示すように、各空孔16は上下の二
箇所で開口しており、各開口には配管17,18が接続
されている。下側の配管17は、圧縮空気を封入したボ
ンベ(図示せず)に対してバルブ(図示せず)を介し接
続されており、前記バルブの開度に応じて前記ボンベ内
の空気(常温空気;冷却媒体に相当)が配管17を経由
して空孔16に導入されるようになっている。配管17
を経由して空孔16に導入された空気は、上側の開口に
向かって空孔16内を流通し、上側の配管18を経由し
て炉外に導出されるようになっている。As shown in FIG. 2, each of the holes 16 is open at two locations, an upper side and a lower side, and pipes 17 and 18 are connected to the respective openings. The lower pipe 17 is connected via a valve (not shown) to a cylinder (not shown) in which compressed air is sealed, and the air in the cylinder (normal temperature air) is connected according to the opening of the valve. (Corresponding to the cooling medium) is introduced into the holes 16 via the pipe 17. Piping 17
The air introduced into the air holes 16 via the above flows through the air holes 16 toward the upper opening, and is led out of the furnace via the upper pipe 18.
【0015】本実施形態によって得られる作用効果につ
いて、以下に記載する。マイクロ波によって発熱層12
aが自己発熱して焼成室13内が高温状態にあるとき、
断熱層12bに形成された空孔16にボンベから空気
(常温空気)を導入してやる。そうすると、空孔16に
導入された空気が空孔16内を流通するときにその空孔
16近傍の発熱層12aとの間で熱交換することによっ
て、空孔16近傍の限られた領域で焼成室13内の温度
が低下する。また、この空孔16内を流通する空気によ
る焼成室13内の温度低下の度合いは、空孔16に導入
する空気の量(導入速度)を調節して熱交換効率を変化
させることで、任意に制御することができる。従って本
実施形態によれば、各空孔16に導入する空気の量(導
入速度)を調節することで、たとえ設計後の炉であって
も焼成室13内の温度プロフィルを任意に設定すること
ができる。よって、被焼成体15の材質や形状、大きさ
に応じて焼成室13内の温度プロファイルを最適化する
ことで、一つの連続焼成炉で種々の被焼成体15の焼成
に対応することができる。The operation and effect obtained by this embodiment will be described below. Heating layer 12 by microwave
When a is self-heated and the temperature inside the firing chamber 13 is high,
Air (normal temperature air) is introduced from a cylinder into the holes 16 formed in the heat insulating layer 12b. Then, when the air introduced into the holes 16 exchanges heat with the heat generating layer 12a near the holes 16 when flowing through the holes 16, the air is fired in a limited region near the holes 16. The temperature inside the chamber 13 decreases. The degree of temperature decrease in the firing chamber 13 due to the air flowing through the holes 16 is adjusted by adjusting the amount of air introduced into the holes 16 (introduction speed) to change the heat exchange efficiency. Can be controlled. Therefore, according to the present embodiment, the temperature profile in the firing chamber 13 can be set arbitrarily by adjusting the amount of air (introduction speed) introduced into each hole 16 even in a furnace after design. You can Therefore, by optimizing the temperature profile in the firing chamber 13 according to the material, shape, and size of the body to be fired 15, it is possible to handle various firing of the body to be fired 15 in one continuous firing furnace. .
【0016】本実施形態の連続焼成炉で空孔16に空気
を導入しない状態でマイクロ波を炉内に入射させた場合
には、断熱層12bの厚みを炉長方向で異ならしめてい
るので図1(b)に実線αで示すような温度分布が焼成
室13内に形成される。このとき、隔壁12の領域A及
び領域Cにある空孔16にボンベから所定の速度で空気
を導入してやると、その領域で焼成室13内の温度が低
下して例えば同図に二点鎖線βで示すような温度分布が
形成される。また空気の導入速度を上げてやると、その
領域の焼成室13内の温度がさらに低下して例えば同図
に二点鎖線β′で示すような温度分布が形成される。In the continuous firing furnace of this embodiment, when microwaves are made to enter the furnace without introducing air into the holes 16, the thickness of the heat insulating layer 12b is made different in the furnace length direction. A temperature distribution as shown by a solid line α in FIG. At this time, when air is introduced into the holes 16 in the regions A and C of the partition wall 12 from the cylinder at a predetermined speed, the temperature in the firing chamber 13 decreases in that region, and the two-dot chain line β in FIG. A temperature distribution as shown by is formed. Further, when the air introduction speed is increased, the temperature in the firing chamber 13 in that region further decreases, and a temperature distribution as shown by a chain double-dashed line β ′ in the figure is formed.
【0017】なお、前記実施形態を次のように変更して
構成することもできる。
・ 前記実施形態では本発明をローラコンベアで被焼成
体15を搬送するローラハース式の連続焼成炉に具体化
したが、被焼成体15を搬送する方式はそれに限定され
ない。例えば台車で被焼成体15を搬送する台車方式の
連続焼成炉に具体化してもよい。The above embodiment may be modified as follows. In the above embodiment, the present invention is embodied in the roller hearth type continuous firing furnace that conveys the body to be fired 15 by the roller conveyor, but the method of conveying the body to be fired 15 is not limited thereto. For example, it may be embodied as a trolley-type continuous firing furnace in which the article to be fired 15 is transported by a trolley.
【0018】・ 前記実施形態では断熱層12bの厚み
を炉長方向で異ならしめたが、断熱層12bの厚みは炉
長方向で一定であってもよい。
・ 前記実施形態では隔壁12の領域Aと領域Cに相当
する部位の断熱層12bのみに限定的に空孔16を形成
したが、炉長方向全体にわたって空孔16を形成するよ
うにしてもよい。また断熱層12bの限定した部位のみ
に空孔16を設ける場合であっても、その位置は前記実
施形態の態様に特に限定されない。Although the thickness of the heat insulating layer 12b is made different in the furnace length direction in the above embodiment, the thickness of the heat insulating layer 12b may be constant in the furnace length direction. In the above-described embodiment, the holes 16 are formed only in the heat insulating layer 12b at the portions corresponding to the regions A and C of the partition wall 12, but the holes 16 may be formed throughout the furnace length direction. . Further, even when the holes 16 are provided only in a limited part of the heat insulating layer 12b, the position thereof is not particularly limited to the aspect of the embodiment.
【0019】・ 前記実施形態では隔壁12を周方向に
一周するように各空孔16が形成されているが、必ずし
も一周しなくてもよく、一周に満たなくてもよい。
・ 図3に示すように、断熱層12bを板状の部材を張
り合わせた構成に変更するとともに、該板状の部材の張
り合わせ面に溝を形成し、その溝を前記実施形態の空孔
16のように冷却媒体の流路として用いるように構成を
変更してもよい。In the above-mentioned embodiment, each hole 16 is formed so as to make one round in the circumferential direction of the partition wall 12, but it does not necessarily have to make one round, and need not fill one round. As shown in FIG. 3, the heat insulating layer 12b is changed to a structure in which plate-shaped members are bonded together, and a groove is formed in the bonding surface of the plate-shaped member, and the groove is formed in the holes 16 of the above-described embodiment. The configuration may be changed so that it is used as the flow path of the cooling medium.
【0020】・ 前記実施形態では空孔16を周方向
(炉長方向に直交する方向)に延びるように形成した
が、炉長方向に延びるように形成してもよい。この構成
の場合、例えば図4(a),(b)に示すように炉長方
向で空孔16の径を段階的又は連続的(図4に示す例で
は段階的)に異ならしめたり、図5に示すように隔壁1
2の径方向における空孔16の位置、すなわち空孔16
と発熱層12aとの間の距離を炉長方向で異ならしめた
りすれば、たとえ断熱層12bの厚みが炉長方向で一定
であっても焼成室13内の温度を炉長方向で異ならしめ
ることができる。In the above-described embodiment, the holes 16 are formed so as to extend in the circumferential direction (direction orthogonal to the furnace length direction), but they may be formed so as to extend in the furnace length direction. In the case of this configuration, for example, as shown in FIGS. 4 (a) and 4 (b), the diameters of the holes 16 are made different stepwise or continuously (stepwise in the example shown in FIG. 4) in the furnace length direction. Partition wall 1 as shown in FIG.
2, the position of the hole 16 in the radial direction, that is, the hole 16
If the distance between the heating layer 12a and the heating layer 12a is made different in the furnace length direction, the temperature in the firing chamber 13 is made different in the furnace length direction even if the thickness of the heat insulating layer 12b is constant in the furnace length direction. You can
【0021】・ 前記実施形態では本発明を平面直線状
に延びる筒状の隔壁12により区画された焼成室13を
備えた連続焼成炉に具体化したが、平面円形状又は平面
弓形状に延びる筒状の隔壁12により区画された焼成室
13を備えた連続焼成炉に具体化してもよい。In the above embodiment, the present invention is embodied in a continuous firing furnace including a firing chamber 13 defined by a cylindrical partition wall 12 extending in a straight line in a plane, but a tube extending in a circular plane shape or a plane bow shape. It may be embodied in a continuous firing furnace provided with a firing chamber 13 partitioned by a partition wall 12.
【0022】・ 前記実施形態では空孔16に空気を導
入するようにしたが、空気に代えてその他のガスを導入
するようにしてもよい。また常温空気でなく冷却空気
(冷却ガス)を空孔16に導入するようにしてもよい。In the above-described embodiment, air is introduced into the holes 16, but other gas may be introduced instead of air. Alternatively, cooling air (cooling gas) may be introduced into the holes 16 instead of room temperature air.
【0023】・ 前記実施形態の空孔16を省略し、断
熱層12bの外側に空冷ジャケットを装着させてもよ
い。なお、この場合は空冷ジャケットと断熱層12bを
合わせたものが請求項1の「断熱層」に相当する。The holes 16 of the above embodiment may be omitted, and an air cooling jacket may be attached to the outside of the heat insulating layer 12b. In this case, the combination of the air cooling jacket and the heat insulating layer 12b corresponds to the "heat insulating layer" in claim 1.
【0024】・ 前記実施形態において発熱層12aを
省略してもよい。この場合は、空孔16に導入された空
気が空孔16内を流通するときに焼成室13内の空気と
の間で熱交換することによって、空孔16近傍の限られ
た領域で焼成室13内の温度が低下する。従って、前記
実施形態とほぼ同様の効果を奏することができる。The heat generating layer 12a may be omitted in the above embodiment. In this case, the air introduced into the holes 16 exchanges heat with the air inside the baking chamber 13 when flowing through the holes 16, so that the baking chamber is limited to a limited region near the holes 16. The temperature inside 13 drops. Therefore, it is possible to obtain substantially the same effect as that of the above embodiment.
【0025】次に、前記実施形態から把握できる技術的
思想について以下に記載する。
・ 前記隔壁が、マイクロ波によって自己発熱する発熱
層を含むことを特徴とする請求項1に記載の連続焼成
炉。このように構成すれば、焼成時の被焼成体の放射冷
却を抑えることができるので、放射冷却により被焼成体
に熱勾配が生じるのを抑えることができる。Next, the technical idea which can be understood from the above embodiment will be described below. The continuous firing furnace according to claim 1, wherein the partition wall includes a heating layer that generates heat by microwaves. According to this structure, radiative cooling of the body to be fired at the time of firing can be suppressed, so that a thermal gradient can be prevented from being generated in the body to be fired by the radiative cooling.
【0026】・ 前記流路を複数有し、各流路が炉長方
向に略直交して延びることを特徴とする請求項1に記載
の連続焼成炉。このように構成すれば、各流路に導入す
る冷却媒体の量(導入速度)を調節することで、焼成室
内の温度を炉長方向で異ならしめることができる。The continuous firing furnace according to claim 1, wherein a plurality of the flow paths are provided, and each flow path extends substantially orthogonal to the furnace length direction. According to this structure, the temperature in the firing chamber can be made different in the furnace length direction by adjusting the amount (introduction speed) of the cooling medium introduced into each flow path.
【0027】・ 前記断熱層の厚みを炉長方向で異なら
しめたことを特徴とする請求項1に記載の連続焼成炉。
このように構成すれば、焼成室内の温度プロファイルを
断熱層の厚みによって大まかに設定し、流路に導入する
冷却媒体の量(導入速度)によって微調整することがで
きる。The continuous firing furnace according to claim 1, wherein the thickness of the heat insulating layer is different in the furnace length direction.
According to this structure, the temperature profile in the firing chamber can be roughly set by the thickness of the heat insulating layer, and can be finely adjusted by the amount (introduction speed) of the cooling medium introduced into the flow path.
【0028】[0028]
【発明の効果】本発明は、以上のように構成されている
ため、次のような効果を奏する。請求項1に記載の発明
によれば、焼成室内の温度プロファイルを任意に設定す
ることができる。Since the present invention is constructed as described above, it has the following effects. According to the invention described in claim 1, the temperature profile in the firing chamber can be arbitrarily set.
【0029】請求項2に記載の発明によれば、連続焼成
炉の焼成室内の温度プロファイルを被焼成体の焼成に好
適なものに設定することで、品質の高い焼成体を得るこ
とができる。According to the second aspect of the present invention, by setting the temperature profile in the firing chamber of the continuous firing furnace to one suitable for firing the article to be fired, a fired article of high quality can be obtained.
【図1】 (a)は実施形態の連続焼成炉の一部を模式
的に示す平断面図、(b)はその焼成室内の温度と炉長
方向の位置との関係を示すグラフ。FIG. 1A is a plan sectional view schematically showing a part of a continuous firing furnace according to an embodiment, and FIG. 1B is a graph showing the relationship between the temperature in the firing chamber and the position in the furnace length direction.
【図2】 図1(a)の2−2線における断面を示す模
式図。FIG. 2 is a schematic diagram showing a cross section taken along line 2-2 of FIG.
【図3】 別の実施形態における連続焼成炉の一部を模
式的に示す平断面図。FIG. 3 is a plan sectional view schematically showing a part of a continuous firing furnace according to another embodiment.
【図4】 (a)は別の実施形態における連続焼成炉の
一部を模式的に示す平断面図、(b)は(a)の4b―
4b線における端面図。FIG. 4A is a plan sectional view schematically showing a part of a continuous firing furnace according to another embodiment, and FIG.
The end view in the 4b line.
【図5】 別の実施形態における連続焼成炉の一部を模
式的に示す平断面図。FIG. 5 is a plan sectional view schematically showing a part of a continuous firing furnace according to another embodiment.
【図6】 (a)は従来の連続焼成炉の一部を模式的に
示す平断面図、(b)はその焼成室内の温度と炉長方向
の位置との関係を示すグラフ。FIG. 6A is a plan sectional view schematically showing a part of a conventional continuous firing furnace, and FIG. 6B is a graph showing the relationship between the temperature in the firing chamber and the position in the furnace length direction.
12…隔壁、12b…断熱層、13…焼成室、15…被
焼成体、16…空孔。Reference numeral 12 ... Partition walls, 12b ... Thermal insulation layer, 13 ... Firing chamber, 15 ... Firing object, 16 ... Voids.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 11/12 F27D 11/12 H05B 6/64 H05B 6/64 D (72)発明者 佐藤 元泰 岐阜県土岐市下石町322の6 文部科学省 核融合科学研究所 内 (72)発明者 高山 定次 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 水野 正敏 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 平井 敏夫 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 加藤 布久 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 落合 透 岐阜県瑞浪市寺河戸町719番地 美濃窯業 株式会社内 (72)発明者 加藤 和美 岐阜県瑞浪市寺河戸町719番地 美濃窯業 株式会社内 Fターム(参考) 3K090 AA01 AB13 EB25 4K050 AA04 BA07 CA05 CB01 CD07 4K051 AA03 AB03 HA06 HA08 4K063 AA06 AA12 BA04 BA05 CA01 EA01 EA02 FA82 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F27D 11/12 F27D 11/12 H05B 6/64 H05B 6/64 D (72) Inventor Motoyasu Sato Shiki City, Gifu Prefecture 322-6 Ishimachi Ministry of Education, Culture, Sports, Science and Technology, Institute of Fusion Science (72) Inventor Sadaji Takayama 3-11 Hoshigadai, Tajimi City, Gifu Prefecture Masatoshi Mizuno, Inventor Masatoshi Mizuno Tajimi City, Gifu Prefecture 3-11 Hosigadai, Gifu Prefectural Ceramics Research Laboratory (72) Inventor Toshio Hirai 3-11 Hosigadai, Tajimi Gifu Prefectural Ceramics Research Laboratory (72) Inventor Futo Kato Tajimi Gifu 3-11, Hoshigadai, Ichi, Gifu Prefectural Ceramics Research Laboratory (72) Inventor Toru Ochiai 719, Terakawado, Mizunami-shi, Gifu Pref., Minami Kiln Co., Ltd. (72) Kazumi Kato Address 719 F term in Mino Ceramics Co., Ltd. (reference) 3K090 AA01 AB 13 EB25 4K050 AA04 BA07 CA05 CB01 CD07 4K051 AA03 AB03 HA06 HA08 4K063 AA06 AA12 BA04 BA05 CA01 EA01 EA02 FA82
Claims (2)
熱層を含む隔壁により区画された焼成室を有し、その焼
成室内を装入口から抽出口に向かって搬送される被焼成
体に対してマイクロ波を照射して当該被焼成体を加熱焼
成する連続焼成炉において、前記断熱層に冷却媒体の流
路を設けたことを特徴とする連続焼成炉。1. A body to be fired, which has a firing chamber partitioned by a partition wall including a heat insulating layer having heat insulating properties and microwave permeability, and which is conveyed from the charging port toward the extraction port in the baking chamber. A continuous firing furnace for irradiating microwaves to heat and fire the article to be fired, wherein a flow path for a cooling medium is provided in the heat insulating layer.
焼成体を焼成し焼成体を製造する焼成体の製造方法。2. A method for producing a fired body, which comprises firing a body to be fired by using the continuous firing furnace according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001268935A JP3687902B2 (en) | 2001-09-05 | 2001-09-05 | Continuous firing furnace and method for producing a fired body using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001268935A JP3687902B2 (en) | 2001-09-05 | 2001-09-05 | Continuous firing furnace and method for producing a fired body using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003075070A true JP2003075070A (en) | 2003-03-12 |
JP3687902B2 JP3687902B2 (en) | 2005-08-24 |
Family
ID=19094842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001268935A Expired - Lifetime JP3687902B2 (en) | 2001-09-05 | 2001-09-05 | Continuous firing furnace and method for producing a fired body using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3687902B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006156011A (en) * | 2004-11-26 | 2006-06-15 | Nissan Motor Co Ltd | Heat-insulated container |
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
JP2008045789A (en) * | 2006-08-11 | 2008-02-28 | Mino Ceramic Co Ltd | Continuous burning apparatus |
JP2008045783A (en) * | 2006-08-11 | 2008-02-28 | National Institutes Of Natural Sciences | Continuous firing furnace and continuous firing method |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
WO2010090016A1 (en) * | 2009-02-06 | 2010-08-12 | パナソニック株式会社 | Microwave firing method and microwave firing furnace |
KR20190035857A (en) * | 2016-08-05 | 2019-04-03 | 샌드빅 써멀 프로세스. 인크. | A thermal process device having a non-uniform insulation portion |
CN114719597A (en) * | 2022-03-24 | 2022-07-08 | 山东保蓝环保工程有限公司 | Honeycomb zeolite calcining furnace |
JP2022108990A (en) * | 2021-01-14 | 2022-07-27 | 中外炉工業株式会社 | Annealing zone structure and continuous heat treatment furnace with annealing zone structure |
-
2001
- 2001-09-05 JP JP2001268935A patent/JP3687902B2/en not_active Expired - Lifetime
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7608798B2 (en) | 2002-05-08 | 2009-10-27 | Btu International Inc. | Plasma catalyst |
US7214280B2 (en) | 2002-05-08 | 2007-05-08 | Btu International Inc. | Plasma-assisted decrystallization |
US7227097B2 (en) | 2002-05-08 | 2007-06-05 | Btu International, Inc. | Plasma generation and processing with multiple radiation sources |
US7309843B2 (en) | 2002-05-08 | 2007-12-18 | Btu International, Inc. | Plasma-assisted joining |
US7592564B2 (en) | 2002-05-08 | 2009-09-22 | Btu International Inc. | Plasma generation and processing with multiple radiation sources |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
JP2006156011A (en) * | 2004-11-26 | 2006-06-15 | Nissan Motor Co Ltd | Heat-insulated container |
US7938289B2 (en) | 2004-11-26 | 2011-05-10 | Nissan Motor Co., Ltd. | Thermal insulating container for a heat generating unit of a fuel cell system |
JP2008045783A (en) * | 2006-08-11 | 2008-02-28 | National Institutes Of Natural Sciences | Continuous firing furnace and continuous firing method |
JP2008045789A (en) * | 2006-08-11 | 2008-02-28 | Mino Ceramic Co Ltd | Continuous burning apparatus |
WO2010090016A1 (en) * | 2009-02-06 | 2010-08-12 | パナソニック株式会社 | Microwave firing method and microwave firing furnace |
CN101990624A (en) * | 2009-02-06 | 2011-03-23 | 松下电器产业株式会社 | Microwave heating method and microwave heating apparatus |
KR101203013B1 (en) | 2009-02-06 | 2012-11-20 | 파나소닉 주식회사 | Microwave heating method and microwave heating apparatus |
JP5220135B2 (en) * | 2009-02-06 | 2013-06-26 | パナソニック株式会社 | Microwave firing method and microwave firing furnace |
US8779339B2 (en) | 2009-02-06 | 2014-07-15 | Panasonic Corporation | Microwave heating method and microwave heating apparatus |
KR20190035857A (en) * | 2016-08-05 | 2019-04-03 | 샌드빅 써멀 프로세스. 인크. | A thermal process device having a non-uniform insulation portion |
JP2019531453A (en) * | 2016-08-05 | 2019-10-31 | サンドビック サーマル プロセス,インコーポレイティド | Heat treatment device with non-uniform insulation |
JP7058637B2 (en) | 2016-08-05 | 2022-04-22 | カンタール サーマル プロセス,インク. | Heat treatment device with non-uniform insulation |
KR102403525B1 (en) * | 2016-08-05 | 2022-05-27 | 샌드빅 써멀 프로세스. 인크. | Thermal process device with non-uniform insulation |
JP2022108990A (en) * | 2021-01-14 | 2022-07-27 | 中外炉工業株式会社 | Annealing zone structure and continuous heat treatment furnace with annealing zone structure |
JP7253578B2 (en) | 2021-01-14 | 2023-04-06 | 中外炉工業株式会社 | Slow cooling zone structure and continuous heat treatment furnace with slow cooling zone structure |
CN114719597A (en) * | 2022-03-24 | 2022-07-08 | 山东保蓝环保工程有限公司 | Honeycomb zeolite calcining furnace |
Also Published As
Publication number | Publication date |
---|---|
JP3687902B2 (en) | 2005-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003075070A (en) | Continuous calcination furnace, and manufacturing method for sintered product using the same | |
EP0242503B1 (en) | Continuous elongate ceramic article manufacturing system | |
CN102770359B (en) | Conveyor tray apparatus with air bearing and air curtain and methods of use | |
EP1710523A4 (en) | CONTINUOUS COOKING OVEN AND METHOD FOR MANUFACTURING POROUS CERAMIC ELEMENT USING THE SAME | |
WO2002032831A1 (en) | Burning furnace, burnt body producing method, and burnt body | |
FI84806C (en) | Bending or supporting form for glass sheets | |
EP1421040B1 (en) | Method for processing ceramics using electromagnetic energy | |
KR101449364B1 (en) | Manufacture device and method of the curvature shape glass plate | |
US4718847A (en) | Kiln system | |
US4444558A (en) | System for heating broadwise-end portions of metal material | |
JP2002130955A (en) | Continuous baking furance, burned product and method for manufacturing the same | |
JPH04124586A (en) | Cooling device for continuous furnace | |
EP2141132B1 (en) | Furnace | |
JP4271614B2 (en) | Baking apparatus and article baking method | |
JP2001247970A (en) | Method for producing porous composite material | |
JP2002350063A (en) | Device and method for heating | |
RU2346909C2 (en) | Method of baking and baking furnace for ceramic goods | |
JP4383093B2 (en) | Continuous firing method of fired body using electromagnetic wave and tunnel type continuous firing furnace | |
CN105408716A (en) | Radiant heating modules for continuous circulation firing kilns for ceramic products | |
JP3229295B2 (en) | Method and apparatus for producing aggregate from intumescent shaped articles for lightweight building | |
JPH04288478A (en) | Continuous baking furnace | |
JPH11281259A (en) | Continuous atmospheric furnace | |
JPH0324588Y2 (en) | ||
JPH0526580A (en) | Continuous baking furnace | |
KR100558445B1 (en) | Continuous firing furnace with intermittent air supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040315 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041124 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20041129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3687902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080617 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110617 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |