JPH09295900A - Microwave plasma substrate processing equipment - Google Patents
Microwave plasma substrate processing equipmentInfo
- Publication number
- JPH09295900A JPH09295900A JP8030322A JP3032296A JPH09295900A JP H09295900 A JPH09295900 A JP H09295900A JP 8030322 A JP8030322 A JP 8030322A JP 3032296 A JP3032296 A JP 3032296A JP H09295900 A JPH09295900 A JP H09295900A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- discharge tube
- inner conductor
- coaxial waveguide
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims description 11
- 238000012545 processing Methods 0.000 title claims description 6
- 239000004020 conductor Substances 0.000 claims abstract description 53
- 150000002500 ions Chemical class 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims 2
- 239000000284 extract Substances 0.000 claims 1
- 239000000376 reactant Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 18
- 229910052751 metal Inorganic materials 0.000 abstract description 16
- 239000002184 metal Substances 0.000 abstract description 16
- 230000005684 electric field Effects 0.000 abstract description 8
- 210000002381 plasma Anatomy 0.000 description 56
- 238000010586 diagram Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 240000006413 Prunus persica var. persica Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Landscapes
- Plasma Technology (AREA)
- Electron Sources, Ion Sources (AREA)
- Electron Tubes For Measurement (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Drying Of Semiconductors (AREA)
Abstract
(57)【要約】 (修正有)
【構成】角形導波管40から円形同軸導波管50にモー
ドを変換し、前記円形同軸導波管50の円筒状外導体5
2を、前記円形同軸導波管50の内導体51より長く
し、前記内導体51に設けた円筒状空洞53の内径と同
程度の内径の開口72を有するメタルエンドプレート7
0を前記円筒状外導体52に前記内導体51の先端より
距離dの位置(ギャップ部)に取り付け、放電管80を
少なくとも前記内導体51の円筒状空洞53内部から前
記開口72を通して設置し、前記ギャップ部に発生する
マイクロ波電界(表面波)を用いて、前記放電管80内
にプラズマを生成する。
【効果】同軸ケーブルを用いることなく大電力で安定に
供給でき、低圧力10-6Torr程度)から高圧力(大気
圧)まで広範囲に、高温・高密度のプラズマを種々のガ
スについて目的に応じて生成できる。
(57) [Summary] (Correction) [Constitution] The cylindrical outer conductor 5 of the circular coaxial waveguide 50 is converted into a circular coaxial waveguide 50 by converting a mode.
2 is longer than the inner conductor 51 of the circular coaxial waveguide 50, and has a metal end plate 7 having an opening 72 having an inner diameter similar to the inner diameter of the cylindrical cavity 53 provided in the inner conductor 51.
0 is attached to the cylindrical outer conductor 52 at a position (gap portion) at a distance d from the tip of the inner conductor 51, and the discharge tube 80 is installed at least through the opening 72 from inside the cylindrical cavity 53 of the inner conductor 51, Plasma is generated in the discharge tube 80 by using the microwave electric field (surface wave) generated in the gap portion. [Effect] A stable supply of large electric power is possible without using a coaxial cable, and high-temperature and high-density plasma can be used for various gases in a wide range from low pressure of about 10 -6 Torr) to high pressure (atmospheric pressure). Can be generated.
Description
【0001】[0001]
【産業上の利用分野】本発明は、エッチングやデポジシ
ョン等のプラズマ反応装置や元素の定量法としてのプラ
ズマイオン源質量分析装置等の分析機器のプラズマ発生
装置に係り、特にこれら装置に好適なマイクロ波電力を
用いたプラズマ発生装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma reactor of an analytical instrument such as a plasma reactor for etching or deposition or a plasma ion source mass spectrometer for quantitative determination of elements, and is particularly suitable for these instruments. The present invention relates to a plasma generator using microwave power.
【0002】[0002]
【従来の技術】従来のマイクロ波電力を用いたプラズマ
発生装置については、(1)レビューサイエンティフィ
ック インスツルメント,36,3(1965年)第2
94頁から第298頁(Rev. Sci. Instrus.,36,3
(1965)294−298),(2)アイ・イ・イ・イ
・ トランザクション オブ プラズマ サイエンス,
PS−3,2(1975年)第55頁から第59頁(I
EEE Trans. Plasma Science, PS−3,2(19
75)55−59),(3)レビュー サイエンティフ
ィック インスツルメント,39,11(1968年)
第295頁から第297頁(Rev. Sci. Instrus., 3
9,11(1968)295−297),(4)レビュ
ー オブ サイエンティフィック インスツルメント,
41,10(1970年)第1431から第1433頁
(Rev. Sci. Instrus.,41,10(1970)143
1−1433)、および(5)ジャパニーズ ジャーナ
ルオブ アプライド フィズィックス,Vol.16,No.
11(1977年)第1993頁から第1998頁(Jp
n. J. Appl. Phys., 16,11(1977)1993
−1998)などにおいて論じられている。2. Description of the Related Art Regarding a conventional plasma generator using microwave power, (1) Review Scientific Instruments, 36, 3 (1965), No. 2
94 to 298 (Rev. Sci. Instrus., 36, 3
(1965) 294-298), (2) I-I-I-Transaction of Plasma Science,
PS-3, 2 (1975) pp. 55-59 (I
EEE Trans. Plasma Science, PS-3, 2 (19
75) 55-59), (3) Review Scientific Instruments, 39, 11 (1968)
295 to 297 (Rev. Sci. Instrus., 3
9, 11 (1968) 295-297), (4) Review of Scientific Instruments,
41, 10 (1970) 1431 to 1433 (Rev. Sci. Instrus., 41, 10 (1970) 143).
1-1433), and (5) Japanese Journal of Applied Physics, Vol.16, No.
11 (1977) pp. 1993 to 1998 (Jp
n. J. Appl. Phys., 16, 11 (1977) 1993.
-1998) and the like.
【0003】また、特開昭51−69391号、特開昭
61−263128号およびユナイトキングダム, ジ
ャーナル オブ アプライド フィズィックス,Vol.2
0,(1987年)第197頁から第203頁(UK. J.
Phys.D: Appl. Phys., 20,(1987)197−20
3)などに放電管にマイクロ波を供給することが開示さ
れているがプラズマを高圧下で高温高密度(大電力)で
安定に形成することについては何等論じられていない。Further, JP-A-51-69391, JP-A-61-263128 and Unite Kingdom, Journal of Applied Physics, Vol.
0, (1987) pp. 197-203 (UK. J.
Phys.D: Appl. Phys., 20, (1987) 197-20.
It is disclosed that microwave is supplied to the discharge tube in 3) and the like, but there is no discussion about stably forming plasma at high temperature and high density (high power) under high pressure.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術の文献
(1)〜(3)は、マイクロ波電力の伝送に同軸ケーブ
ルを用いているため、大電力化の点については配慮がさ
れておらず、大電力時の安定性をはじめプラズマの高密
度化や大口径化に問題があった。一方、上記従来技術の
文献(4)〜(5)は、マイクロ波利用率やプラズマの
径方向分布などの点については充分配慮されておらず、
プラズマの生成効率やその均一性などに問題があった。In the above-mentioned documents (1) to (3) of the prior art, since the coaxial cable is used for transmission of microwave power, no consideration is given to the point of increasing the power. However, there was a problem in increasing the density and increasing the diameter of plasma including stability at high power. On the other hand, the above-mentioned documents (4) to (5) of the prior art do not sufficiently consider the microwave utilization factor and the radial distribution of plasma,
There was a problem in plasma generation efficiency and its uniformity.
【0005】本発明の目的は、上記問題点を解決した、
高温高密度の安定な大口径プラズマを効率よく発生する
マイクロ波プラズマ発生装置を提供することにある。An object of the present invention is to solve the above problems,
An object of the present invention is to provide a microwave plasma generator that efficiently generates stable large-diameter plasma with high temperature and high density.
【0006】[0006]
【課題を解決するための手段】上記目的はマイクロ波伝
送回路を図1(イ)に示す如く、例えば角形導波管40
から円形同軸導波管50にモードを変換し、前記円形同
軸導波管50の円筒状外導体52を、前記円形同軸導波
管50の内導体51より長くし、前記内導体51に設け
た円筒状空洞53の内径と同程度の内径の開口72を有
するメタルエンドプレート70を前記円筒状外導体52
に前記内導体51の先端より距離dの位置(ギャップ
部)に取り付け、放電管80を少なくとも前記内導体5
1の円筒状空洞53内部から前記開口72を通して設置
し、前記ギャップ部に発生するマイクロ波電界(表面
波)を用いて、前記放電管80内にプラズマを生成する
ことにより達成される。The above-mentioned object is to provide a microwave transmission circuit such as a rectangular waveguide 40 as shown in FIG.
From the circular coaxial waveguide 50, the cylindrical outer conductor 52 of the circular coaxial waveguide 50 is made longer than the inner conductor 51 of the circular coaxial waveguide 50, and the cylindrical outer conductor 52 is provided on the inner conductor 51. The metal outer end plate 70 having an opening 72 having an inner diameter similar to the inner diameter of the cylindrical cavity 53 is attached to the cylindrical outer conductor 52.
Is attached to a position (gap portion) at a distance d from the tip of the inner conductor 51, and the discharge tube 80 is attached to at least the inner conductor 5.
It is achieved by installing the plasma from the inside of the cylindrical cavity 53 of No. 1 through the opening 72 and using the microwave electric field (surface wave) generated in the gap portion to generate plasma in the discharge tube 80.
【0007】[0007]
【作用】すなわち、マイクロ波発振器から例えば角形導
波管を経て円形同軸導波管へのマイクロ波電力の伝送に
は、同軸ケーブルを用いることなく、低損失で、大電力
を安定ににプラズマに供給できる。さらに、前記メタル
エンドプレート70を設けると、図1(ロ)に示すよう
なz軸方向成分Ezと半径方向成分Erとよりなる電界
が、すなわち、表面波が前記内導体51の先端と前記メ
タルエンドプレート70との間に形成される空間(ギャ
ップ部d)に形成されるので、前記内導体51の内部か
ら前記開口72を通して設置した放電管80の内部には
高温・高密度の安定した大口径のプラズマを低気圧から
大気圧まで、種々のガスに対して効率よく生成すること
ができる。In other words, for transmitting microwave power from the microwave oscillator to the circular coaxial waveguide through the rectangular waveguide, for example, a coaxial cable is not used, and low power loss and large power can be stably converted into plasma. Can be supplied. Further, when the metal end plate 70 is provided, an electric field composed of a z-axis direction component Ez and a radial direction component Er as shown in FIG. 1B, that is, a surface wave is generated at the tip of the inner conductor 51 and the metal. Since it is formed in a space (gap portion d) formed between the end plate 70 and the end plate 70, the discharge tube 80 installed from the inside of the inner conductor 51 through the opening 72 has a stable large temperature and high density. It is possible to efficiently generate a plasma having a diameter for various gases from low pressure to atmospheric pressure.
【0008】[0008]
【実施例】以下、本発明の実施例を図1〜図5を用いて
説明する。Embodiments of the present invention will be described below with reference to FIGS.
【0009】図1(イ)は本発明によるマイクロ波プラ
ズマ発生装置の立体回路の主要部構成を、同図(ロ)は
マイクロ波電界の強度分布を模式的に示す。マイクロ波
電力は角形導波管40から少なくとも内導体51と円筒
状外導体52とから成る円形同軸導波管変換器50へ伝
送され、前記内導体51の先端に設けたギャップdで前
記内導体51の円筒状空洞53部等に設けた石英等から
成る絶縁性放電管80を通じて表面波としてプラズマに
吸収される。ここで、前記ギャップdは、前記内導体5
1の先端と前記円筒状外導体52に設けたメタルエンド
プレート70との間の距離を示し、ネジあるいはスペー
サ等によって可変できるように構成されている。なお、
前記メタルエンドプレート70には、前記内導体51の
円筒状空洞53と同程度の内径を持つ開口72が設けて
あり、必要に応じてメタルチョーク71を図1(イ)の
ように取付け、マイクロ波の損失を低減するとよい。ま
た、前記内・外導体51,52の少なくとも一方を強制
空冷また水冷するとよい。ここで、前記内・外導体5
1,52や前記放電管80の径は使用目的に応じて任意
に設定できる。さらに、マイクロ波電力を効率よく前記
プラズマに吸収させるために、通常同軸回路の特性イン
ピーダンスは50Ωであるので、前記同軸導波管変換器
50の角形導波管内のE面の寸法を定形サイズより小さ
く(薄く)し、H面の寸法に対する比を小さくして導波
管の特性インピーダンスを小さくするとともに、1/4
波長変成器を導波管の入力側に設けて同軸部の特性イン
ピーダンスと一致させるとよい。さらに、前記内導体5
1の形状を図5に示すようにドアノブ形にしたり、矩絡
部を定形サイズにするとともにプランジャ60(可変
形)を設けてマッチングが取れるように構成するとよ
い。FIG. 1A shows the structure of the main part of the three-dimensional circuit of the microwave plasma generator according to the present invention, and FIG. 1B schematically shows the intensity distribution of the microwave electric field. The microwave power is transmitted from the rectangular waveguide 40 to the circular coaxial waveguide converter 50 including at least the inner conductor 51 and the cylindrical outer conductor 52, and the inner conductor 51 is provided at the gap d provided at the tip of the inner conductor 51. Plasma is absorbed as a surface wave through the insulating discharge tube 80 made of quartz or the like provided in the cylindrical cavity 53 of 51 and the like. Here, the gap d is equal to the inner conductor 5
It indicates the distance between the tip of No. 1 and the metal end plate 70 provided on the cylindrical outer conductor 52, and can be varied by a screw or a spacer. In addition,
The metal end plate 70 is provided with an opening 72 having an inner diameter similar to that of the cylindrical cavity 53 of the inner conductor 51. If necessary, a metal choke 71 is attached as shown in FIG. It is good to reduce wave loss. At least one of the inner and outer conductors 51 and 52 may be forced air-cooled or water-cooled. Here, the inner and outer conductors 5
1, 52 and the diameter of the discharge tube 80 can be arbitrarily set according to the purpose of use. Further, in order to efficiently absorb the microwave power into the plasma, the characteristic impedance of the coaxial circuit is usually 50Ω, so that the dimension of the E surface in the rectangular waveguide of the coaxial waveguide converter 50 is smaller than the standard size. The characteristic impedance of the waveguide is reduced by making it smaller (thinner) and the ratio to the dimension of the H plane is reduced,
A wavelength transformer may be provided on the input side of the waveguide to match the characteristic impedance of the coaxial portion. Further, the inner conductor 5
The shape of 1 may be a doorknob shape as shown in FIG. 5, or the rectangular portion may have a fixed size and a plunger 60 (variable shape) may be provided to achieve matching.
【0010】また、前記外導体52の外側に磁界発生器
90(コイルや永久磁石などから成る)を設け、発散型
(ピーチ型),マルチカスプ型またはミラー型などの磁
界を、電子サイクロトロン共鳴条件かその前後の条件で
重畳して、プラズマを発生させると、より容易に高温高
密度(カットオフ密度以上)のプラズマを低圧力でも得
ることができる(もちろん印加しなくても可)。Further, a magnetic field generator 90 (consisting of a coil and a permanent magnet) is provided outside the outer conductor 52, and a magnetic field of divergence type (peach type), multicusp type or mirror type is applied under the electron cyclotron resonance condition. When plasma is generated by superimposing under the conditions before and after that, it is possible to easily obtain high-temperature and high-density (cutoff density or higher) plasma even at low pressure (of course, no application is required).
【0011】一方、プラズマガスはH2,He,O2,N
2,Ar,XeやCH4,SiH4,NH2,CF4,Si
F4など目的に応じて選定し、10-6Torr〜760Tor
rの範囲で動作させる。なお、放電管80への試料ガス
の導入は例えば、図1(イ)に示すような管端から導入
するとよいが、特に限定するものではなく、目的に応じ
て決めるとよい。On the other hand, the plasma gas is H 2 , He, O 2 , N
2 , Ar, Xe, CH 4 , SiH 4 , NH 2 , CF 4 , Si
Select according to the purpose, such as F 4 , 10 -6 Torr to 760 Tor
Operates in the r range. The sample gas may be introduced into the discharge tube 80 from the tube end as shown in FIG. 1A, for example, but it is not particularly limited and may be determined according to the purpose.
【0012】図1(ロ)は前記ギャップd部の空間に於
ける電界強度分布の径方向成分Erとz軸(マイクロ波
進行方向)方向成分Ezとを示す。このプラズマ装置の
特徴は、電界がErと成分Ez成分とが共存するととも
に、z軸上の成分が両者とも弱く、一方、外側は強くな
る表面波となり、これらと試料ガス粒子の拡散現象との
相 作用により低圧力では径方向に均一なプラズマが得
られるよう作用する。また、高圧力では図4および図5
におけるように、ドーナツ状のプラズマが得られ、目的
に応じて圧力を選定する。FIG. 1B shows the radial component Er and the z-axis (microwave traveling direction) component Ez of the electric field intensity distribution in the space of the gap d. The characteristic of this plasma device is that the electric field has Er and the component Ez component coexisting, and the component on the z-axis is weak on both sides, while the outside becomes a strong surface wave, and these and the sample gas particle diffusion phenomenon. Due to the interaction, at low pressure, a uniform plasma is obtained in the radial direction. In addition, at high pressure, as shown in FIGS.
As in (1), a donut-shaped plasma is obtained, and the pressure is selected according to the purpose.
【0013】図2は図1(イ)に示したマイクロ波プラ
ズマ発生装置をエッチングやデポジション、さらには新
素材 製などのためのプラズマ反応装置に適用した。本
発明の別の第2実施例のブロック図を示す。ここで、1
0は高圧電源(直流またはパルス)、20はマイクロ発
振器(マグネトロンやジャイロトロン、1〜100GH
z、10〜5,000w)、30はアイソレータ(また
はユニライン)、40は立体回路(方向性結合器、電力
計、E−Hチューナなどで構成)、50は同軸導波管変
換器、51は内導体は、52は円筒状外導体、60はプ
ランジャ、70はメタエンドプレート、80は放電管、
90は磁界発生器(なくても可)、100は排気装置、
110はプラズマガス(Ar,He,O2など)導入
器、120は反応ガス(CH4,NH2,CF4,Si
F4,O2など)導入器、130は反応室、140は試料
(半導体ウエハなど)台、150は温度調節器(冷却ま
たは加熱器などから成る)、160は反応微粒子(たと
えば高温超電導薄膜の形成のときにはたとえばBaCO
2+Y2O2+CuOなどを電子ビームなどで蒸発させて
導入)導入装置、170は質量分析器、180は分光
器、190はデータの整理をはじめ各機器を自動制御
(最適化)するためのマイクロコンピュータを示す。こ
の実施例では、前述したギャップ部dが前記メタルエン
ドプレート70をネジあるいはスペーサ等によって調整
することにより可変できるように構成されている。ま
た、前記内導体51の径は前記同軸変換器50部で太く
なっている(ドアノブ形)。FIG. 2 shows the microwave plasma generator shown in FIG. 1 (a) applied to a plasma reactor for etching, deposition, and new materials. FIG. 6 shows a block diagram of another second embodiment of the present invention. Where 1
0 is a high voltage power supply (direct current or pulse), 20 is a micro oscillator (magnetron or gyrotron, 1 to 100 GH)
z, 10 to 5,000 w), 30 is an isolator (or uniline), 40 is a three-dimensional circuit (composed of a directional coupler, a power meter, an E-H tuner, etc.), 50 is a coaxial waveguide converter, and 51 is As the inner conductor, 52 is a cylindrical outer conductor, 60 is a plunger, 70 is a meta end plate, 80 is a discharge tube,
90 is a magnetic field generator (may be omitted), 100 is an exhaust device,
110 is a plasma gas (Ar, He, O 2 etc.) introducing device, and 120 is a reaction gas (CH 4 , NH 2 , CF 4 , Si).
F 4 and O 2 etc. introduction device, 130 a reaction chamber, 140 a sample (semiconductor wafer etc.) stage, 150 a temperature controller (comprising a cooling or heating device), 160 reaction fine particles (eg high temperature superconducting thin film) When forming, for example, BaCO
2 + Y 2 O 2 + CuO etc. is introduced by evaporating with electron beam etc.) Introducing device, 170 is a mass spectrometer, 180 is a spectroscope, 190 is for automatic control (optimization) of each device including data arrangement. Indicates a microcomputer. In this embodiment, the gap d described above is configured to be variable by adjusting the metal end plate 70 with a screw or a spacer. Further, the diameter of the inner conductor 51 is thicker in the coaxial converter 50 (doorknob shape).
【0014】このように構成すると、例えば酸化物高温
超伝導薄膜の作成の時、低圧力(10-4Torr以下)で
プラズマガスであ酸素(O2)をイオン化でき、この時
発生する低エネルギーの酸素のラジカルやイオンと反応
微粒子として導入した。例えば、Ba,Y,Cuの金属
原子とが物理的化学的に反応して試料台140上の基板
にマイクロコンピュータ190で最適化しながら、良質
の膜を低温かつ短時間で作製することができる。With this structure, for example, when an oxide high-temperature superconducting thin film is formed, oxygen (O 2 ) can be ionized in the plasma gas at a low pressure (10 -4 Torr or less), and the low energy generated at this time can be generated. Introduced as reactive fine particles with oxygen radicals and ions. For example, a good quality film can be formed at a low temperature in a short time while the metal atoms of Ba, Y, and Cu react physically and chemically to optimize the substrate on the sample stage 140 by the microcomputer 190.
【0015】図3は本発明の別の第3実施例を示す。こ
の実施例は、プラズマからイオンや中性粒子を引き出
し、材料の表面改質や処理を行う装置を示す。ここで、
50は円形同軸導波管、51は内導体、52は円筒状外
導体、60はプランジャ、70はメタルエンドプレート
(種々の変形が可能)、71はメタルチョーク、80は
放電管、90は磁界発生器(なくても可)、100は排
気装置、110は試料ガスやキャリアガスなどの導入
器、120は試料ガスや反応ガスなどの導入器、130
は反応室、140は試料台、150は温度制御装置、1
80は分光器、200はイオン引出し器を示す。なお、
イオン引出し器200は電子または中性粒子(原子やラ
ジカル)取り出し器として構成することもできる。FIG. 3 shows another third embodiment of the present invention. This embodiment shows an apparatus for extracting ions and neutral particles from plasma to perform surface modification and treatment of a material. here,
50 is a circular coaxial waveguide, 51 is an inner conductor, 52 is a cylindrical outer conductor, 60 is a plunger, 70 is a metal end plate (variable modifications are possible), 71 is a metal choke, 80 is a discharge tube, and 90 is a magnetic field. Generator (may be omitted), 100 is an exhaust device, 110 is an introducer for sample gas or carrier gas, 120 is an introducer for sample gas or reaction gas, 130
Is a reaction chamber, 140 is a sample stage, 150 is a temperature controller, 1
80 is a spectroscope and 200 is an ion extractor. In addition,
The ion extractor 200 can also be configured as an electron or neutral particle (atom or radical) extractor.
【0016】このように構成すると、大口径で均一な高
密度の試料ガスやキャリアガスのプラズマが生成でき
る。そして、例えば前記イオン引出し器200を用い
て、前記プラズマから大口径で均一な高密度のイオンビ
ームを取出し、前記試料台140にセットした基板の表
面処理や表面改質を短時間かつ低温で行うことができ
る。With this structure, it is possible to generate a uniform and high-density sample gas or carrier gas plasma having a large diameter. Then, for example, by using the ion extractor 200, an ion beam having a large diameter and a uniform high density is extracted from the plasma, and surface treatment or surface modification of the substrate set on the sample stage 140 is performed at a low temperature for a short time. be able to.
【0017】また、前記イオンビームでターゲットをス
パッタし、前記基板にターゲット材料をデポジットする
こともできる。さらに、前記中性粒子を用いても表面処
理などができる。It is also possible to deposit the target material on the substrate by sputtering the target with the ion beam. Furthermore, surface treatment or the like can be performed using the neutral particles.
【0018】図4は生体分野等の微量元素の分析等に応
用した本発明の第4の実施例の基本構成を示す。ここ
で、300はマイクロ波発生系で、マグネトロンなどの
マイクロ波発振器や高圧電源、マイクロ波電力計、E−
H(またはスタブ)チューナなどから成る。400はマ
イクロ波プラズマ発生系で、図1(イ)を基本として、
図5に示すような円形同軸導波管,内側導体,メタルエ
ンドプレート,放電管などから成る。500は試料ガス
等導入系で、試料,キャリアガス,ネブライザなどか構
成される。600は測定・分析系で、分光器や質量分析
器などから成る。700は制御系でマイクロコンプュー
タなどから成る。700は制御系でマイクロコンピュー
タなどから成り、データの管理や本装置の最適制御など
を行う。本実施での動作圧力は、大電力を安定に供給で
きることから、大気圧を基本とし、放電管等の直径も前
記第2および第3の実施例に比べて小さくてよい。FIG. 4 shows the basic construction of the fourth embodiment of the present invention applied to the analysis of trace elements in the field of living organisms. Here, 300 is a microwave generation system, which is a microwave oscillator such as a magnetron, a high-voltage power supply, a microwave power meter, an E-
It consists of an H (or stub) tuner. 400 is a microwave plasma generation system, which is based on FIG.
It consists of a circular coaxial waveguide, an inner conductor, a metal end plate, a discharge tube, etc. as shown in FIG. Reference numeral 500 denotes a sample gas introduction system, which comprises a sample, a carrier gas, a nebulizer, and the like. A measurement / analysis system 600 includes a spectroscope and a mass spectrometer. A control system 700 includes a micro computer or the like. A control system 700 includes a microcomputer and the like, and manages data and optimally controls the apparatus. The operating pressure in this embodiment is basically atmospheric pressure because a large amount of electric power can be stably supplied, and the diameter of the discharge tube or the like may be smaller than that in the second and third embodiments.
【0019】図5は本発明の図4に示した実施例におけ
るプラズマ発生系400の一実施例の詳細を示す。ここ
で、50は銅やアルミニウムなどから成る扁平型の導波
管(内寸:8.6mm×109.2mm×84mm)に形
成した同軸導波管変換器、51は銅などから成る内導体
(同軸変換部で形状は例えば同図のように円錐台(例え
ば底部直径400mm,上部直径15mm,高さ30m
mから成る)で、その軸上部には放電管80を通すため
の円筒状空洞53(直径例えば4〜12mm)が設けて
ある。52は銅などから成る円筒形外導体で、銅などか
ら成る円盤状のエンドプレート70が取付けてある。前
記エンドプレート70には、前記内導体51に設けた前
記円筒状空洞53の内径とほぼ等しい内径の開口72が
設けてあり、その周囲の厚さはその外周部より同心状に
薄くしてある(厚>0.1mm)。さらに、前記内導体
51の先端部と前記エンドプレート70とのギャップd
(0.5〜20mm)は調整できるように構成してあ
る。80は石英などから成る放電管(内径:例えば4〜
10mm)で、その一端は開放するとともに、その他端
は径方向からプラズマガス501(He,N2,Arな
ど)が供給できるように枝管81が設けてある。また、
前記放電管80の他端部からは同軸状に石英などから成
る内容82を設け、その一端からはネブライザ(図示せ
ず)などを経て試料とともにキャリアガス(前記プラズ
マ501と同種)など500を導入する。510は前記
放電管80や内導体51などを冷却するための冷却系
で、冷却剤入口511から冷却剤502(例えば、空
気、水でも可。このときは水の出口を設け、前記内導体
51と前記放電管80を冷却するように構成する。)を
供給する。このように構成すると、前記放電管80をは
じめ前記内導体51や前記メタルエンドプレート70を
効率よく冷却することができる。800は拡散ララズ
マ、801はドーナッ状高温プラズマを示す。なお、前
記放電管80や前記内導体51などの形状や大きさは限
定するものではない。FIG. 5 shows details of an embodiment of the plasma generating system 400 in the embodiment shown in FIG. 4 of the present invention. Here, 50 is a coaxial waveguide converter formed in a flat waveguide (internal size: 8.6 mm × 109.2 mm × 84 mm) made of copper or aluminum, and 51 is an inner conductor made of copper ( The shape of the coaxial converter is, for example, a truncated cone (for example, a bottom diameter of 400 mm, a top diameter of 15 mm, and a height of 30 m as shown in the figure).
and a cylindrical cavity 53 (diameter of, for example, 4 to 12 mm) for allowing the discharge tube 80 to pass therethrough. Reference numeral 52 is a cylindrical outer conductor made of copper or the like, to which a disk-shaped end plate 70 made of copper or the like is attached. The end plate 70 is provided with an opening 72 having an inner diameter substantially equal to the inner diameter of the cylindrical cavity 53 provided in the inner conductor 51, and the peripheral thickness thereof is concentrically thinner than the outer peripheral portion thereof. (Thickness> 0.1 mm). Further, a gap d between the end portion of the inner conductor 51 and the end plate 70.
(0.5 to 20 mm) is configured to be adjustable. 80 is a discharge tube made of quartz or the like (inner diameter: 4 to
10 mm), one end is open, and the other end is provided with a branch pipe 81 so that plasma gas 501 (He, N 2 , Ar, etc.) can be supplied from the radial direction. Also,
A content 82 made of quartz or the like is coaxially provided from the other end of the discharge tube 80, and a carrier gas (of the same kind as the plasma 501) or the like 500 is introduced from one end through a nebulizer (not shown) together with the sample. To do. Reference numeral 510 denotes a cooling system for cooling the discharge tube 80, the inner conductor 51, and the like, and a coolant 502 from the coolant inlet 511 (for example, air or water may be used. In this case, an outlet for water is provided to the inner conductor 51. And the discharge tube 80 are cooled. With this configuration, the discharge tube 80, the inner conductor 51, and the metal end plate 70 can be efficiently cooled. Reference numeral 800 indicates a diffused plasma, and reference numeral 801 indicates a donut-shaped high temperature plasma. The shape and size of the discharge tube 80 and the inner conductor 51 are not limited.
【0020】このように構成すると、前記同軸導波管変
換器50に供給したマイクロ波電力(例えば、2.45
GHz,<2KW)は、前記内導体51と前記メタルエ
ンドプレート70のギャップd部に集中し、図1(ロ)
に示すような電界分布が得られる。このため、前記枝管
81より導入したプラズマガス501はイオン化され、
ドーナツ状の高温のプラズマ801を前記放電管80の
内部に発生する。そして、分析すべき前記試料など50
0を前記内管82から前記ドーナツ状高温プラズマ80
1の中心部に導入すると、試料は周辺部に拡散すること
なく、効率よく原子化→励起化→イオン化を生ずる。こ
のとき発生する光を前記分光器600に、またイオンは
イオンサンプリングインタフェース系(図示せず)を経
て前記質量分析器600に導入すると、高周波(例えば
27MHz)誘導プラズマを用いる場合に比べても、高
感度で定量分析を行うことができる。なお、試料として
は溶液でも直接分析でき、さらに、有機物やハロゲンな
ど特に制限はない。また、プラズマガスもHe,N2,
Arなどを用いることができ、特に制限はない。With this structure, the microwave power supplied to the coaxial waveguide converter 50 (for example, 2.45).
GHz, <2 KW) is concentrated in the gap d portion between the inner conductor 51 and the metal end plate 70, as shown in FIG.
An electric field distribution as shown in is obtained. Therefore, the plasma gas 501 introduced from the branch pipe 81 is ionized,
A donut-shaped high temperature plasma 801 is generated inside the discharge tube 80. And 50 or the like to be analyzed
0 from the inner tube 82 to the donut-shaped high temperature plasma 80
When it is introduced into the central part of 1, the sample efficiently atomizes → excites → ionizes without diffusing to the peripheral part. When the light generated at this time is introduced into the spectroscope 600 and the ions are introduced into the mass analyzer 600 via an ion sampling interface system (not shown), even when compared with the case where a high frequency (for example, 27 MHz) induction plasma is used, Quantitative analysis can be performed with high sensitivity. In addition, a sample can be directly analyzed even in a solution, and there is no particular limitation such as an organic substance and a halogen. Also, the plasma gas is He, N 2 ,
Ar or the like can be used without any particular limitation.
【0021】その他、本発明のマイクロ波プラズマ発生
装置は、全てのプラズマを用いる装置を適用することが
できる。また、パルス的にプラズマを発生させることも
できる。In addition, as the microwave plasma generator of the present invention, a device using all plasmas can be applied. Also, plasma can be generated in a pulsed manner.
【0022】[0022]
【発明の効果】本発明によれば、マイクロ波電力を円形
同軸導波管に設けた前記ギャップdでプラズマと表面波
とを結合させるため、同軸ケーブルを用いることなく大
電力で安定に供給でき、しかも効率よくプラズマに吸収
させることができるので、低圧力10-6Torr程度)か
ら高圧力(大気圧)まで広範囲に、高温・高密度のプラ
ズマを種々のガスについて目的に応じて生成できる効果
がある。According to the present invention, since the microwave and the surface wave are coupled to each other by the gap d provided in the circular coaxial waveguide, it is possible to stably supply the large power without using the coaxial cable. Moreover, since the plasma can be efficiently absorbed, a high temperature and high density plasma can be generated for various gases in a wide range from a low pressure of about 10 -6 Torr) to a high pressure (atmospheric pressure) according to the purpose. There is.
【0023】さらに、外部磁界を重畳することにより、
カントオフ密度以上の高密度プラズマを種々のガスにつ
いて生成することができる。Furthermore, by superimposing an external magnetic field,
High density plasmas above the cantoff density can be generated for various gases.
【0024】したがって、本発明のプラズマはエッチン
グやデポジションをはじめ新しい材料の 製や表面加工
・改質などに応用でき、さらに元素分析などにおける発
光やイオン源等として幅広く用いることのできる利点が
ある。Therefore, the plasma of the present invention can be applied not only to etching and deposition, but also to the production of new materials, surface processing and modification, and has the advantage that it can be widely used as light emission or ion source in elemental analysis. .
【図1】(イ)は本発明によるマイクロ波プラズマ発生
装置の主要構成図、(ロ)はそのギッャップ部における
電界強度分布図。1A is a main configuration diagram of a microwave plasma generator according to the present invention, and FIG. 1B is an electric field intensity distribution diagram at a gap portion thereof.
【図2】本発明のプラズマ反応装置への応用を示す実施
例の構成図。FIG. 2 is a configuration diagram of an example showing an application of the present invention to a plasma reactor.
【図3】本発明のイオン源およびそのプロセスへの応用
を示す実施例の構成図。FIG. 3 is a configuration diagram of an embodiment showing an ion source of the present invention and its application to a process.
【図4】本発明の分析機器への応用を示す実施例のブロ
ック図。FIG. 4 is a block diagram of an embodiment showing an application of the present invention to an analytical instrument.
【図5】図4におけるマイクロ波プラズマ発生系400
の詳細を示す構成図。5 is a microwave plasma generation system 400 in FIG.
FIG.
10…高圧電源、20…マイクロ波発振器、50…円形
同軸導波管、51…円筒状内導体、52…円筒形外導
体、70…メタルエンドプレート、71…メタルチョー
ク、80…放電管、90…磁界発生器、100…排気装
置、110…ガス導入器、120…反応ガス導入器、1
30…反応室、140…試料台、190…マイクロコン
ピュータ、200…イオン引出器、300…マイクロ波
発生系、400…マイクロ波プラズマ発生系、500…
ガス導入系、600…測定分析系、801…ドーナツ状
プラズマ。10 ... High-voltage power supply, 20 ... Microwave oscillator, 50 ... Circular coaxial waveguide, 51 ... Cylindrical inner conductor, 52 ... Cylindrical outer conductor, 70 ... Metal end plate, 71 ... Metal choke, 80 ... Discharge tube, 90 ... magnetic field generator, 100 ... exhaust device, 110 ... gas introducer, 120 ... reaction gas introducer, 1
30 ... Reaction chamber, 140 ... Sample stage, 190 ... Microcomputer, 200 ... Ion extractor, 300 ... Microwave generation system, 400 ... Microwave plasma generation system, 500 ...
Gas introduction system, 600 ... Measurement and analysis system, 801 ... Donut-shaped plasma.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05H 1/46 H01L 39/24 ZAAB // H01L 39/24 ZAA 21/302 B D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H05H 1/46 H01L 39/24 ZAAB // H01L 39/24 ZAA 21/302 BD
Claims (4)
応室に接続された絶縁物から成る放電管と、 該放電管と同軸状に配設された内導体と外導体から成る
同軸状導波管と、 該同軸状導波管の一端にマイクロ波電力を該内導体に導
入するための変換器を設け、 該外導体の端部にエンドプレートを有し、該エンドプレ
ートと該内導体から成るギャップ部で表面波を発生して
放電管にプラズマを発生し、 該放電管に導入された反応物質が該プラズマで励起され
反応室で試料台の基板を処理することを特徴とするマイ
クロ波プラズマ基板処理装置。1. A discharge tube having an inlet for introducing a gas at one end and an insulator connected to the reaction chamber at the other end, and an inner conductor and an outer conductor arranged coaxially with the discharge tube. A coaxial waveguide, a converter for introducing microwave power to the inner conductor is provided at one end of the coaxial waveguide, and an end plate is provided at an end of the outer conductor. And generating a plasma in the discharge tube by generating a surface wave in the gap formed by the inner conductor, and the reactant introduced into the discharge tube is excited by the plasma to process the substrate of the sample stage in the reaction chamber. Characteristic microwave plasma substrate processing apparatus.
オン引出し器に接続された絶縁物から成る放電管と、 該放電管と同軸状に配設された内導体と外導体から成る
同軸状導波管と、 該同軸状導波管の一端にマイクロ波電力を該内導体に導
入するための変換器を設け、 該外導体の端部にエンドプレートを有し、該エンドプレ
ートと該内導体から成るギャップ部で表面波を発生して
放電管にプラズマを発生し、 発生したプラズマを該イオン引出し器で所定のイオンを
取りだし、 試料台上に基板が載置された反応室で所定のイオンをビ
ームにして該試料台上の基板を処理することを特徴とす
るマイクロ波プラズマ基板処理装置。2. A discharge tube having an inlet for introducing gas at one end and an insulator connected to the ion extractor at the other end, and an inner conductor and an outer conductor arranged coaxially with the discharge tube. A coaxial waveguide, a converter for introducing microwave power to the inner conductor is provided at one end of the coaxial waveguide, and an end plate is provided at an end of the outer conductor. A surface wave is generated in the gap formed by the plate and the inner conductor to generate plasma in the discharge tube, and the generated plasma extracts specific ions with the ion extractor, and the reaction is performed with the substrate placed on the sample table. A microwave plasma substrate processing apparatus, characterized in that a substrate on the sample stage is processed by beaming predetermined ions in a chamber.
ることを特徴とする請求項1または2記載のマイクロ波
プラズマ基板処理装置。3. The microwave plasma substrate processing apparatus according to claim 1, wherein the gap length of the cab portion can be varied.
加手段を備えたことを特徴とする請求項1または2いず
れか記載のマイクロ波プラズマ基板処理装置。4. The microwave plasma substrate processing apparatus according to claim 1, further comprising magnetic field applying means provided around the gap portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8030322A JP2970520B2 (en) | 1996-02-19 | 1996-02-19 | Plasma generator, analyzer using plasma generator, and mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8030322A JP2970520B2 (en) | 1996-02-19 | 1996-02-19 | Plasma generator, analyzer using plasma generator, and mass spectrometer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1038219A Division JP2781585B2 (en) | 1988-02-24 | 1989-02-20 | Microwave plasma generator and microwave plasma mass spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09295900A true JPH09295900A (en) | 1997-11-18 |
JP2970520B2 JP2970520B2 (en) | 1999-11-02 |
Family
ID=12300575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8030322A Expired - Lifetime JP2970520B2 (en) | 1996-02-19 | 1996-02-19 | Plasma generator, analyzer using plasma generator, and mass spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2970520B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134049A (en) * | 2000-07-25 | 2002-05-10 | Axcelis Technologies Inc | Mass spectrometer, ion implanter, and ion beam containment method |
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
JP2010225443A (en) * | 2009-03-24 | 2010-10-07 | Canon Inc | Ion source |
TWI484871B (en) * | 2011-07-22 | 2015-05-11 | Triple Cores Korea | Atmospheric plasma equipment and waveguide for the same |
WO2025074684A1 (en) * | 2023-10-03 | 2025-04-10 | 浜松ホトニクス株式会社 | Ion source and ion gun |
-
1996
- 1996-02-19 JP JP8030322A patent/JP2970520B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134049A (en) * | 2000-07-25 | 2002-05-10 | Axcelis Technologies Inc | Mass spectrometer, ion implanter, and ion beam containment method |
US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7214280B2 (en) | 2002-05-08 | 2007-05-08 | Btu International Inc. | Plasma-assisted decrystallization |
US7227097B2 (en) | 2002-05-08 | 2007-06-05 | Btu International, Inc. | Plasma generation and processing with multiple radiation sources |
US7309843B2 (en) | 2002-05-08 | 2007-12-18 | Btu International, Inc. | Plasma-assisted joining |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7592564B2 (en) | 2002-05-08 | 2009-09-22 | Btu International Inc. | Plasma generation and processing with multiple radiation sources |
US7608798B2 (en) | 2002-05-08 | 2009-10-27 | Btu International Inc. | Plasma catalyst |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
JP2010225443A (en) * | 2009-03-24 | 2010-10-07 | Canon Inc | Ion source |
TWI484871B (en) * | 2011-07-22 | 2015-05-11 | Triple Cores Korea | Atmospheric plasma equipment and waveguide for the same |
WO2025074684A1 (en) * | 2023-10-03 | 2025-04-10 | 浜松ホトニクス株式会社 | Ion source and ion gun |
Also Published As
Publication number | Publication date |
---|---|
JP2970520B2 (en) | 1999-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4933650A (en) | Microwave plasma production apparatus | |
JP2805009B2 (en) | Plasma generator and plasma element analyzer | |
JP2970520B2 (en) | Plasma generator, analyzer using plasma generator, and mass spectrometer | |
US5086255A (en) | Microwave induced plasma source | |
TW312815B (en) | ||
US4630566A (en) | Microwave or UHF plasma improved apparatus | |
JP3217274B2 (en) | Surface wave plasma processing equipment | |
JP2570090B2 (en) | Dry etching equipment | |
JPH01161651A (en) | Plasma small amount element analyzer | |
JP4149909B2 (en) | Inductively coupled high-density plasma source | |
JP2781585B2 (en) | Microwave plasma generator and microwave plasma mass spectrometer | |
JP2787006B2 (en) | Processing method and processing apparatus and plasma light source | |
KR100785960B1 (en) | Plasma processing apparatus | |
JPH01184922A (en) | Plasma processor useful for etching, ashing, film formation and the like | |
JP2001160553A (en) | Plasma apparatus | |
Kaneko et al. | Characteristics of a large-diameter surface-wave mode microwave-induced plasma | |
JPH0686663B2 (en) | Film forming equipment using microwave plasma | |
JPH0536640A (en) | Semiconductor manufacturing equipment | |
JPH05343194A (en) | Microwave plasma processing apparatus and processing method thereof | |
JPH0582289A (en) | Microwave plasma processing method and apparatus | |
Jin et al. | Production of O− and O2− beams with the negative ion source at Institute of Modern Physics | |
JPH0578849A (en) | High magnetic field microwave plasma treating device | |
JPS63274148A (en) | Microwave plasma processing device | |
JPS59121747A (en) | Ion milling method | |
JPS5836818B2 (en) | Sputter neutral particle mass spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 10 |