JPS588743B2 - Gas/humidity sensor - Google Patents
Gas/humidity sensorInfo
- Publication number
- JPS588743B2 JPS588743B2 JP53152401A JP15240178A JPS588743B2 JP S588743 B2 JPS588743 B2 JP S588743B2 JP 53152401 A JP53152401 A JP 53152401A JP 15240178 A JP15240178 A JP 15240178A JP S588743 B2 JPS588743 B2 JP S588743B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrafine
- film
- particles
- gas
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Non-Adjustable Resistors (AREA)
Description
【発明の詳細な説明】
本発明はガスや水分を検出するガス・湿度センサにかか
わり、従来の金属酸化物超微粒子膜で形成されたセンサ
を活性化して、ガスに対してさらに敏感に感心する改良
されたガス・湿度センサを提供するものである。[Detailed Description of the Invention] The present invention relates to a gas/humidity sensor that detects gas and moisture, and activates a conventional sensor formed of a metal oxide ultrafine particle film to make it more sensitive to gas. An improved gas/humidity sensor is provided.
平均粒径が士数人から百数十人程度の金属酸化物超微粒
子で構成された膜がガスや水蒸気に対して抵抗値が敏感
に変化することが見出され、これを用いたセンサが提案
されている。It has been discovered that the resistance value of a film composed of ultrafine metal oxide particles with an average particle size of about 100 to 1000 particles changes sensitively to gases and water vapor, and a sensor using this film has been developed. Proposed.
本発明は、従来の超微粒子感応膜センサの感度をさらに
向上させることができるものである。The present invention can further improve the sensitivity of conventional ultrafine particle sensitive membrane sensors.
以下、図面を参照しながら、本発明の一実施例を説明す
る。An embodiment of the present invention will be described below with reference to the drawings.
第1図イ,口は本発明に係るセンサの平面図とx−x’
断面図である。Figure 1A shows a plan view of the sensor according to the present invention and x-x'
FIG.
本発明のセンサは、第1図に示すように、まずガラスや
セラミックスなどの絶縁基板1上に対をなす電極2,3
を形成し、その上にさらに錫,チタン,亜鉛あるいはニ
ッケル等の金属酸化物半導体の超微粒子膜4を形成する
。As shown in FIG. 1, the sensor of the present invention first includes a pair of electrodes 2 and 3 on an insulating substrate 1 made of glass or ceramics.
An ultrafine particle film 4 of a metal oxide semiconductor such as tin, titanium, zinc, or nickel is further formed thereon.
その上にさらにパラジウム超微粒子膜あるいはパラジウ
ム超微粒子と前記金属酸化物超微粒子との混成膜5を形
成して成るものである。A palladium ultrafine particle film or a hybrid film 5 of palladium ultrafine particles and the metal oxide ultrafine particles is further formed thereon.
本発明のセンサは、一般に次のようにして製造される。The sensor of the present invention is generally manufactured as follows.
例えば、金属酸化物として錫酸化物を用いた超微粒子膜
の作製例を第2図を用いて説明する。For example, an example of manufacturing an ultrafine particle film using tin oxide as the metal oxide will be described with reference to FIG.
真空蒸着装置11内の試料ホルダー12に、第1図で示
したような電極2,3を有する絶縁基板1を、その電極
面が図面下方向を向くように取付ける。An insulating substrate 1 having electrodes 2 and 3 as shown in FIG. 1 is attached to a sample holder 12 in a vacuum evaporation apparatus 11 so that the electrode surface faces downward in the drawing.
また蒸着用ボート13には、蒸発材料14としてSn,
SnO,SnO2のうちのいずれかをセットする。The evaporation boat 13 also includes Sn, evaporation material 14,
Set either SnO or SnO2.
また蒸発用ボート13と近接して配置した蒸着用ボート
15にはパラジウム蒸発材料16をセットする。Further, a palladium evaporation material 16 is set in the evaporation boat 15 disposed close to the evaporation boat 13.
しかるのち排気口17に接続された真空ポンプ(図面上
では省略)を作動させて排気を行ない、装置11内の真
空度を10−6Torrのオーダにした後、酸素ガス導
入口18のコックを開いて装置11内に酸素ガスを導入
し、その圧力をたとえば0.5Torr程度に保つ。After that, the vacuum pump (not shown in the drawing) connected to the exhaust port 17 is operated to perform exhaustion, and after the degree of vacuum in the device 11 is on the order of 10-6 Torr, the cock of the oxygen gas inlet 18 is opened. Oxygen gas is introduced into the apparatus 11, and its pressure is maintained at, for example, about 0.5 Torr.
次に蒸発用電源19によりボート13に通電して発熱さ
せ、02ガス0.5Torr雰囲気のもとて蒸発用材料
14を士数秒から数分間蒸発させる。Next, the boat 13 is energized by the evaporation power source 19 to generate heat, and the evaporation material 14 is evaporated for several seconds to several minutes in an atmosphere of 0.5 Torr gas.
たとえば蒸発材料14としてSnを選び120〜160
Wの電力をボート13に印加すると、平均粒径が約40
人の超微粒子からなる約20μm厚さの錫酸化物の超微
粒子の膜4が、第1図に示すように、基板1上に形成さ
れた。For example, select Sn as the evaporation material 14 and
When a power of W is applied to the boat 13, the average particle size is about 40
A film 4 of ultrafine tin oxide particles having a thickness of approximately 20 μm and consisting of ultrafine human particles was formed on a substrate 1, as shown in FIG.
錫酸化物超微粒子膜が形成された後、再び排気口17に
接続された真空ポンプ(図面上では省略)を作動させて
、装置11内を真空度が10−3Torrのオーダー才
で排気を行なった後、不活性ガス導入口20のコックを
開いて、たとえばアルゴンガス、またはヘリウムガスな
どの不活性ガスを装置11内に導入し、その圧力を、た
とえばアルゴンガスで1.OTorr程度に保つ。After the tin oxide ultrafine particle film is formed, the vacuum pump (not shown in the drawing) connected to the exhaust port 17 is operated again to evacuate the inside of the device 11 to a degree of vacuum on the order of 10-3 Torr. After that, the cock of the inert gas inlet 20 is opened to introduce an inert gas such as argon gas or helium gas into the apparatus 11, and the pressure is adjusted to 1. Keep it at about OTorr.
次に蒸発用電源21によりボート15に通電して発熱さ
せ、アルゴンガス雰囲気のもとて蒸発材料16を士数秒
から数分間蒸発させる。Next, the boat 15 is energized by the evaporation power source 21 to generate heat, and the evaporation material 16 is evaporated for several seconds to several minutes under an argon gas atmosphere.
たとえば、ボート15に120〜160Wの電力を1分
間印加すると、平均粒径が数十人で2〜5μmの厚さの
パラジウム超微粒子膜5が、前記工で形成された錫酸化
物超微粒子4の上に形成される。For example, when a power of 120 to 160 W is applied to the boat 15 for 1 minute, an ultrafine palladium particle film 5 with an average particle size of several tens of micrometers and a thickness of 2 to 5 μm is formed on the tin oxide ultrafine particles 4 formed in the above process. formed on top of.
ここでは、蒸発材料を蒸発させるのに抵抗加熱法を例に
あげて述べたが、たとえば誘導加熱法や赤外線加熱法な
どの他の方法でもよいことは言うまでもない。Here, the resistance heating method was used as an example to evaporate the evaporation material, but it goes without saying that other methods such as induction heating and infrared heating may also be used.
金属酸化物超微粒子はガスや水蒸気などの外的作用因子
に対してきわめて敏感に感心するが、上述のように金属
酸化物超微粒子にパラジウム超微粒子を密着させると一
層高感度になる。Ultrafine metal oxide particles are extremely sensitive to external agents such as gas and water vapor, but when ultrafine palladium particles are brought into close contact with ultrafine metal oxide particles as described above, the sensitivity becomes even higher.
第3図は、イソブタンガスに対する感度を相対的に比較
した図であり、Aは酸素ガス圧0.5Torr中で作製
した錫酸化物超微粒子のみで構成された厚さ20μmの
超微粒子膜であり、BはAの錫酸化物超微粒子膜の上に
さらにアルゴンガス圧10Torr中で厚さ1lnのパ
ラジウム超微粒子膜を密着して形成した膜である。Figure 3 shows a relative comparison of sensitivity to isobutane gas, where A is an ultrafine particle film with a thickness of 20 μm made only of ultrafine tin oxide particles produced under an oxygen gas pressure of 0.5 Torr. , B is a film in which a palladium ultrafine particle film having a thickness of 1 ln is further formed in close contact with the tin oxide ultrafine particle film of A under an argon gas pressure of 10 Torr.
このとき感応膜Bの感度は感応膜Aに比べ約1.9倍に
増大した。At this time, the sensitivity of sensitive film B increased by about 1.9 times compared to sensitive film A.
第4図は各感応膜の感度の基板温度を変えたときに、そ
れぞれの基板温度においてイソブタンガス500ppm
に対する感応膜の電気抵抗の変化率を感度として測定し
た結果を示したものであって、図中の破線で示す感応膜
Bの感度は、図中の実線で示す感応膜Aの感度より、基
板温度域のすべてについて大きな値を示した。Figure 4 shows that when changing the substrate temperature of the sensitivity of each sensitive film, isobutane gas is 500 ppm at each substrate temperature.
This shows the results of measuring the sensitivity of the rate of change in electrical resistance of the sensitive film against the substrate. It showed large values in all temperature ranges.
感度があらわれる温度も感応膜Bのほうが感応膜Aより
も低い。The temperature at which sensitivity appears is also lower for sensitive film B than for sensitive film A.
これは錫酸化物超微粒子膜上に密着して形成されたパラ
ジウム超微粒子膜中のパラジウムは、感応膜が還元性ガ
スにさらされると、錫酸化物超微粒子膜中の還元された
Sn02に再び酸素を与えて酸化し、反応を早めるとと
もに、パラジウム自身が酸化還元反応をくりかえして発
熱し、その結果還元性ガスの吸着を促進するからである
。This is because when the sensitive film is exposed to reducing gas, the palladium in the palladium ultrafine particle film formed in close contact with the tin oxide ultrafine particle film reconverts to the reduced Sn02 in the tin oxide ultrafine particle film. This is because palladium oxidizes by providing oxygen and accelerates the reaction, and palladium itself repeats redox reactions and generates heat, thereby promoting the adsorption of reducing gases.
したがって錫酸化物超微粒子膜上に形成するパラジウム
超微粒子膜としてt,還元性ガスが錫酸化物超微粒子膜
へ十分到達できるような膜厚で、かつ適当な粒径を有し
ていなければならない。Therefore, the palladium ultrafine particle film formed on the tin oxide ultrafine particle film must have a thickness such that reducing gas can sufficiently reach the tin oxide ultrafine particle film, and an appropriate particle size. .
本発明の場合パラジウム超微粒子膜の膜厚は数μm程度
で錫酸化物超微粒子と同じ位の大きさの数十人の平均粒
径を持つパラジウム超微粒子膜の場合に最も良好な結果
が得られた。In the case of the present invention, the thickness of the palladium ultrafine particle film is approximately several μm, and the best results are obtained when the palladium ultrafine particle film has an average particle size of several dozen particles, which is about the same size as the tin oxide ultrafine particles. It was done.
このように、本発明のガス・湿度センサによれば、金属
酸化物超微粒子で構成した膜に、さらにパラジウム超微
粒子膜を重ねることにより、その外的作用因子に対する
感度を大巾に向上させることができるとともに、センサ
動作時の温度も低下せしめることができる。As described above, according to the gas/humidity sensor of the present invention, by further superimposing a palladium ultrafine particle film on a film composed of metal oxide ultrafine particles, its sensitivity to external factors can be greatly improved. At the same time, the temperature during sensor operation can also be lowered.
第1図は本発明の一実施例におけるセンサを示し、イは
平面図、口はイをx−x’で切断した断面図である。
第2図は錫酸化物超微粒子膜およびパラジウム超微粒子
膜を製造するための装置の一例を示す図、第3図及び第
4図は本発明にがかるセンサの効果を説明するための図
である。
1・・・・・・絶縁基板、2,3・・・・・・電極、4
・・・・・・錫酸化物超微粒子膜、5・・・・・・パラ
ジウム超微粒子膜もしくはパラジウム超微粒子と錫酸化
物超微粒子の混成膜。FIG. 1 shows a sensor according to an embodiment of the present invention, in which A is a plan view and the opening is a sectional view taken along line xx' along line A. FIG. 2 is a diagram showing an example of an apparatus for manufacturing a tin oxide ultrafine particle film and a palladium ultrafine particle film, and FIGS. 3 and 4 are diagrams for explaining the effects of the sensor according to the present invention. . 1... Insulating substrate, 2, 3... Electrode, 4
... Ultrafine tin oxide particle film, 5... Ultrafine palladium particle film or a hybrid film of ultrafine palladium particles and ultrafine tin oxide particles.
Claims (1)
粒径が士数λ〜百数十人の金属酸化物超微粒子膜の上に
、平均粒径が士数人〜百数十人のパラジウム超微粒子膜
あるいは平均粒径がそれぞれ士数人〜百数十人のパラジ
ウム超微粒子と金属酸化物超微粒子との混成膜を密着し
てなるガス・湿度センサ。 2 金属酸化物超微粒子膜の平均粒径とパラジウム超微
粒子膜の平均粒径がほぼ同一であることを特徴とする特
許請求の範囲第1項記載のガス・湿度センサ。 3 金属酸化物超微粒子膜が錫酸化物の超微粒子膜であ
ることを特徴とする特許請求の範囲第1項記載のガン・
湿度センサ。[Scope of Claims] 1. On a metal oxide ultrafine particle film with an average particle size of λ to 100 or more, formed on an insulating support base on which an electrode is installed, A gas/humidity sensor formed by closely adhering a film of ultrafine palladium particles of ~100 or more particles or a hybrid film of ultrafine palladium particles and ultrafine metal oxide particles each having an average particle diameter of ~100 or more particles. 2. The gas/humidity sensor according to claim 1, wherein the average particle diameter of the metal oxide ultrafine particle membrane and the average particle diameter of the palladium ultrafine particle membrane are approximately the same. 3. The gun according to claim 1, wherein the metal oxide ultrafine particle film is a tin oxide ultrafine particle film.
Humidity sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53152401A JPS588743B2 (en) | 1978-12-08 | 1978-12-08 | Gas/humidity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53152401A JPS588743B2 (en) | 1978-12-08 | 1978-12-08 | Gas/humidity sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5578235A JPS5578235A (en) | 1980-06-12 |
JPS588743B2 true JPS588743B2 (en) | 1983-02-17 |
Family
ID=15539698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53152401A Expired JPS588743B2 (en) | 1978-12-08 | 1978-12-08 | Gas/humidity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS588743B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288361A (en) * | 1986-06-06 | 1987-12-15 | Nissan Motor Co Ltd | Fuel injection pump |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4441073A (en) * | 1980-12-22 | 1984-04-03 | Electric Power Research Institute, Inc. | Resistivity sensor system for detecting faults in sealed gas-insulated electrical apparatus |
US4423407A (en) * | 1981-02-27 | 1983-12-27 | Dart Industries Inc. | Apparatus and method for measuring the concentration of gases |
JPS58105049A (en) * | 1981-12-17 | 1983-06-22 | Matsushita Electric Ind Co Ltd | Detector of no2 gas and detecting method therefor |
JPS5990040A (en) * | 1982-11-15 | 1984-05-24 | Matsushita Electric Ind Co Ltd | Detector for gaseous carbon monoxide |
JPH0650293B2 (en) * | 1985-06-24 | 1994-06-29 | フイガロ技研株式会社 | Gas sensor |
-
1978
- 1978-12-08 JP JP53152401A patent/JPS588743B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288361A (en) * | 1986-06-06 | 1987-12-15 | Nissan Motor Co Ltd | Fuel injection pump |
Also Published As
Publication number | Publication date |
---|---|
JPS5578235A (en) | 1980-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4324761A (en) | Hydrogen detector | |
JPH0663992B2 (en) | Gas sensor device | |
US4016524A (en) | Sensor for a gas detector, in particular for smoke detection | |
JPS6351501B2 (en) | ||
JPS588743B2 (en) | Gas/humidity sensor | |
EP0374005B1 (en) | Method of producing a sensor for detecting gas, und sensor therefor | |
US6059937A (en) | Sensor having tin oxide thin film for detecting methane gas and propane gas, and process for manufacturing thereof | |
JPH03123845A (en) | Gas sensor | |
JPS5840694B2 (en) | Manufacturing method of gas/humidity sensor | |
JPS6151260B2 (en) | ||
JPS6030893B2 (en) | How to manufacture the sensor | |
JPH06213853A (en) | Manufacture of gas detecting element | |
JP2002328108A (en) | Hydrogen gas detecting element and method of manufacturing the same | |
JPS6030894B2 (en) | Manufacturing method of gas/humidity sensor | |
JP2926874B2 (en) | Combustible gas detection element | |
JPS632054B2 (en) | ||
CN113109402B (en) | Capacitive hydrogen sensor core, preparation method thereof and capacitive hydrogen sensor | |
JPH10170464A (en) | Gas sensor for detecting co | |
RU2065601C1 (en) | Method of manufacture of gas composition monitor | |
JPS5952955B2 (en) | Method for manufacturing ultrafine particle material film | |
JPS63238456A (en) | gas sensor | |
JP2521948B2 (en) | Manufacturing method of nitrogen oxide detection element | |
JPH04348267A (en) | Gas sensor | |
JPH07333183A (en) | Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device | |
JPH07198648A (en) | Gas detecting film and manufacture thereof |