[go: up one dir, main page]

JP2521948B2 - Manufacturing method of nitrogen oxide detection element - Google Patents

Manufacturing method of nitrogen oxide detection element

Info

Publication number
JP2521948B2
JP2521948B2 JP62078909A JP7890987A JP2521948B2 JP 2521948 B2 JP2521948 B2 JP 2521948B2 JP 62078909 A JP62078909 A JP 62078909A JP 7890987 A JP7890987 A JP 7890987A JP 2521948 B2 JP2521948 B2 JP 2521948B2
Authority
JP
Japan
Prior art keywords
detection element
nitrogen oxide
phthalocyanine
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62078909A
Other languages
Japanese (ja)
Other versions
JPS63243260A (en
Inventor
究 石村
和行 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP62078909A priority Critical patent/JP2521948B2/en
Publication of JPS63243260A publication Critical patent/JPS63243260A/en
Application granted granted Critical
Publication of JP2521948B2 publication Critical patent/JP2521948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒素酸化物検出素子の製造法に関する。更
に詳しくは、フタロシアニン−金属錯体系の薄膜を用い
た窒素酸化物検出素子に関する。
The present invention relates to a method for manufacturing a nitrogen oxide detection element. More specifically, it relates to a nitrogen oxide detection element using a phthalocyanine-metal complex thin film.

〔従来の技術〕[Conventional technology]

フタロシアニンまたはその金属錯体の薄膜についての
ガス感応性が検討されており、この場合の薄膜の形成
は、フタロシアニンまたはその金属錯体を溶解させる適
当な溶媒がないため、真空下に加熱する昇華法を利用す
る製膜法がとられている(J.Phys.Chem.Solids第44巻第
833〜838頁、1983)。
The gas sensitivity of thin films of phthalocyanine or its metal complex has been investigated. In this case, since there is no suitable solvent to dissolve phthalocyanine or its metal complex, the sublimation method of heating under vacuum is used. The film forming method has been adopted (J.Phys.Chem.Solids, Vol. 44, Vol.
833-838, 1983).

しかしながら、このような昇華法によって製膜された
フタロシアニン−金属錯体系の薄膜は、その膜強度が弱
く、検出素子などとして用いる場合に、その耐久性に問
題がみられた。
However, the phthalocyanine-metal complex-based thin film formed by such a sublimation method has a weak film strength and has a problem in durability when used as a detection element or the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そこで本発明者らは、フタロシアニン−金属錯体系の
薄膜の膜強度を向上せしめる方法を求めて検討を重ねた
結果、この薄膜をプラズマ状態にして蒸着させると、フ
タロシアニンの一部がポリマー化して膜強度を増加させ
ることを見出し、更にこの蒸着膜を加熱処理して結晶性
を増加させることにより、窒素酸化物ガスが膜中に吸着
されることなく、表面に接触するのみで抵抗を変化させ
るようになると考えられる結果として、応答速度の向上
が図られることも同時に見出した。
Therefore, as a result of repeated investigations by the present inventors for a method for improving the film strength of a phthalocyanine-metal complex-based thin film, when this thin film was deposited in a plasma state, a part of the phthalocyanine was polymerized to form a film. It was found that the strength was increased, and by further heat-treating this vapor-deposited film to increase the crystallinity, the nitrogen oxide gas was not adsorbed in the film and the resistance was changed only by contacting the surface. As a result, it was found that the response speed can be improved.

〔問題点を解決するための手段〕[Means for solving the problem]

従って、本発明は窒素酸化物検出素子の製造法に係
り、窒素酸化物検出素子の製造は、絶縁性基板上にフタ
ロシアニン−鉛錯体を高周波電力により空中でプラズマ
状態にして蒸着させた後、形成された蒸着膜を150〜350
℃で加熱処理することにより行われる。
Therefore, the present invention relates to a method for manufacturing a nitrogen oxide detecting element, which is manufactured by depositing a phthalocyanine-lead complex on an insulating substrate in the air in a plasma state by high frequency power and then depositing the same. Deposited film 150-350
It is carried out by heat treatment at ℃.

この蒸着膜の絶縁性板板上への形成は、絶縁性基板上
へ直接行なってその後くし形電極などの電極を蒸着膜上
に形成させる方法あるいは絶縁性基板上にくし形電極な
どの電極を形成させた後その上に蒸着膜を形成させる方
法のいずれでも行なうことができる。
This vapor-deposited film is formed on the insulating plate by a method of directly performing it on the insulating substrate and then forming electrodes such as comb-shaped electrodes on the vapor-deposited film, or by forming electrodes such as comb-shaped electrodes on the insulating substrate. It can be performed by any of the methods of forming a vapor-deposited film on it after forming it.

図面の第2図に示される態様は、上記前者の場合であ
り、ガラス板などの絶縁性基板11上に蒸着膜12を形成さ
せた後、くし形電極13,13′をその上に形成させてい
る。
The embodiment shown in FIG. 2 of the drawing is the former case, in which a vapor deposition film 12 is formed on an insulating substrate 11 such as a glass plate, and then comb-shaped electrodes 13, 13 'are formed thereon. ing.

フタロシアニン−鉛錯体の高周波電力による空中プラ
ズマ状態での蒸着は、第1図に示されるような装置を用
いて次のようにして行われる。
The vapor deposition of the phthalocyanine-lead complex in the air plasma state by the high frequency power is performed as follows using the apparatus as shown in FIG.

蒸着装置の本体容器1内には、高周波電源2に接続さ
れた基板台電極3および直流電源4に接続されたタング
ステン製またはモリブデン製の蒸着ボート5がそれぞれ
設置されており、基板台電極には必要なマスキングを施
した絶縁性基板6が取り付けられ、また蒸着ボート内に
はフタロシアニン−金属錯体7が収容されている。
In the main body container 1 of the vapor deposition apparatus, a substrate base electrode 3 connected to a high frequency power source 2 and a vapor deposition boat 5 made of tungsten or molybdenum connected to a direct current power source 4 are installed. An insulating substrate 6 with the necessary masking is attached, and a phthalocyanine-metal complex 7 is housed in the vapor deposition boat.

蒸着に際しては、まずディフュージョンポンプ8およ
びロータリーポンプ9を作動させることにより、本体容
器内を5×10-5Torrの圧力迄排気した後、アルゴンガス
をボンベ10より導入し、圧力を約5×10-4〜1×10-4To
rrの範囲内に調整し、高周波電源により基板台電極に高
周波を印加して放電させる。このときの出力は、約10〜
100Wである。その後、直流電源により蒸着ボートを加熱
し、フタロシアニン−鉛錯体を放電下で蒸発させ、絶縁
性基板上に薄膜として形成させる。
At the time of vapor deposition, first, the diffusion pump 8 and the rotary pump 9 are operated to evacuate the inside of the main body container to a pressure of 5 × 10 −5 Torr, and then argon gas is introduced from the cylinder 10 to bring the pressure to about 5 × 10 5. -4 to 1 x 10 -4 To
Adjust to within the range of rr, and apply high frequency to the substrate base electrode with a high frequency power source to discharge. The output at this time is about 10 ~
It is 100W. After that, the vapor deposition boat is heated by a DC power source, and the phthalocyanine-lead complex is evaporated under discharge to form a thin film on the insulating substrate.

このようにして形成された蒸着膜は不安定で、検出に
適すると思われる120〜200℃の温度条件下では結晶化が
進み、素子抵抗が減少する方向に遷移する。そこで、予
め適当な条件下での熱処理により、膜を安定化しておく
ことが必要となる。その処理温度については、400℃付
近でフタロシアニン−鉛錯体が昇華するのでその上限は
約350℃程度であり、また下限温度は時間を長くするこ
とによって約150℃程度迄下げることができる。
The vapor-deposited film thus formed is unstable, and crystallization progresses under the temperature condition of 120 to 200 ° C. which is considered suitable for detection, and the device resistance decreases. Therefore, it is necessary to preliminarily stabilize the film by heat treatment under appropriate conditions. Regarding the treatment temperature, the upper limit is about 350 ° C because the phthalocyanine-lead complex sublimes at around 400 ° C, and the lower limit temperature can be lowered to about 150 ° C by prolonging the time.

その後、蒸着膜上にくし形電極が形成される。 Then, a comb-shaped electrode is formed on the deposited film.

〔作用〕および〔発明の効果〕 本発明にかかる窒素酸化物検出素子は、素子表面に吸
着する窒素酸化物ガスおよび脱離するこのガスが平衡に
達したときの抵抗値と検量線より濃度を知ることがで
き、サンプリングすることなく、実時間で計測が可能で
ある。
[Operation] and [Effect of the invention] The nitrogen oxide detection element according to the present invention, the concentration of nitrogen oxide gas adsorbed on the element surface and desorbing this gas from the resistance value and the calibration curve when reaching equilibrium It is possible to know and to measure in real time without sampling.

また、その検出は薄膜によって行われるため、応答時
間の短縮化が図れるが、このように作用する薄膜が本発
明方法で製造されると、普通の蒸着膜はセロハンテープ
剥離試験に耐えないが、それに耐え得るようになるなど
その膜強度の点での問題はなく、検出素子などとして用
いた場合耐久性の点ですぐれている。
Further, since the detection is performed by a thin film, the response time can be shortened, but when a thin film that acts in this way is manufactured by the method of the present invention, a normal evaporated film cannot withstand the cellophane tape peeling test, There is no problem in terms of film strength such as the ability to withstand it, and it is excellent in durability when used as a detection element or the like.

この窒素酸化物検出素子は、数mm角程度の大きさで作
製することができ、また表示部も小型化できるので、ポ
ータブルな計測器として構成することができ、他のセン
サとの複合化も容易である。
Since this nitrogen oxide detection element can be manufactured in a size of several mm square and the display unit can be miniaturized, it can be configured as a portable measuring instrument and can be combined with other sensors. It's easy.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.

実施例 ガラス基板(20×20×0.8mm)上に、フタロシアニン
−鉛錯体の蒸着膜を、第1図に図示された蒸着装置を用
いて形成させた。蒸着条件は、アルゴンガス圧力5×10
-4Torr、有効電力50Wである。その後、蒸着膜形成ガラ
ス基板を、200℃の加熱雰囲気に10時間放置して加熱処
理し、更にその上に蒸着法によりくし形金電極を形成さ
せた。
Example A vapor-deposited film of a phthalocyanine-lead complex was formed on a glass substrate (20 × 20 × 0.8 mm) using the vapor deposition apparatus shown in FIG. Vapor deposition conditions are argon gas pressure 5 × 10
-4 Torr, active power 50W. Then, the vapor-deposited film-formed glass substrate was left in a heating atmosphere at 200 ° C. for 10 hours for heat treatment, and a comb-shaped gold electrode was further formed thereon by a vapor deposition method.

このようにして形成された素子を、空気希釈二酸化窒
素について、流通系雰囲気温度120℃で、二酸化窒素濃
度と抵抗値との関係を測定した。得られた結果は、第3
図のグラフに示される。
The device thus formed was measured for air-diluted nitrogen dioxide at a flow system atmosphere temperature of 120 ° C., and the relationship between the nitrogen dioxide concentration and the resistance value was measured. The result obtained is the third
This is shown in the graph in the figure.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法で用いられる蒸着装置の一態様の
概略図である。第2図は、本発明に係る窒素酸化物検出
素子の一態様の平面図である。また、第3図は、この検
出素子を用いて測定した二酸化窒素濃度と抵抗値との関
係を示すグラフである。 (符号の説明) 2……高周波電源 3……基板台電極 4……直流電源 5……蒸着ボート 6……絶縁性基板 7……フタロシアニン−鉛錯体 11……絶縁性基板 12……蒸着膜 13……くし形電極
FIG. 1 is a schematic view of an embodiment of a vapor deposition apparatus used in the method of the present invention. FIG. 2 is a plan view of one embodiment of the nitrogen oxide detection element according to the present invention. Further, FIG. 3 is a graph showing the relationship between the nitrogen dioxide concentration measured using this detection element and the resistance value. (Description of symbols) 2 ... High frequency power source 3 ... Substrate base electrode 4 ... DC power source 5 ... Deposition boat 6 ... Insulating substrate 7 ... Phthalocyanine-lead complex 11 ... Insulating substrate 12 ... Deposition film 13 ... comb-shaped electrodes

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に、フタロシアニン−鉛錯体
を高周波電力により空中でプラズマ状態にして蒸着させ
た後、形成された蒸着膜を150〜350℃で加熱処理するこ
とを特徴とする窒素酸化物検出素子の製造法。
1. Nitrogen characterized in that a phthalocyanine-lead complex is vapor-deposited in the plasma state in the air by high-frequency power on an insulating substrate, and the formed vapor deposition film is heat-treated at 150 to 350 ° C. Manufacturing method of oxide detection element.
JP62078909A 1987-03-31 1987-03-31 Manufacturing method of nitrogen oxide detection element Expired - Lifetime JP2521948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078909A JP2521948B2 (en) 1987-03-31 1987-03-31 Manufacturing method of nitrogen oxide detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078909A JP2521948B2 (en) 1987-03-31 1987-03-31 Manufacturing method of nitrogen oxide detection element

Publications (2)

Publication Number Publication Date
JPS63243260A JPS63243260A (en) 1988-10-11
JP2521948B2 true JP2521948B2 (en) 1996-08-07

Family

ID=13674967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078909A Expired - Lifetime JP2521948B2 (en) 1987-03-31 1987-03-31 Manufacturing method of nitrogen oxide detection element

Country Status (1)

Country Link
JP (1) JP2521948B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH595629A5 (en) * 1976-10-12 1978-02-15 Cerberus Ag
JPS59123766A (en) * 1982-12-16 1984-07-17 Fujitsu Ltd Formation of metallic film
JPS61183471A (en) * 1985-02-07 1986-08-16 Fujitsu Ltd Thin film forming method and thin film forming apparatus

Also Published As

Publication number Publication date
JPS63243260A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
US4399424A (en) Gas sensor
JPH01118760A (en) Sensor
JPS6351501B2 (en)
JP2521948B2 (en) Manufacturing method of nitrogen oxide detection element
JPH0677216A (en) Plasma annealing method for enhancement of barrier characteristic of vapor-deposited thin film
JP2002042582A (en) Manufacturing method of substrate with transparent conductive film, and the substrate manufactured by the method, and touch panel using the substrate
Yoo et al. Surface morphology and gas-sensing characteristics of SnO2− x thin films oxidized from Sn films
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
GB2085168A (en) Semiconductor gas sensor
JP3459174B2 (en) Temperature sensor element and temperature sensor provided with the same
JPS5647569A (en) Plasma etching method
JPH045559A (en) Combustible gas detecting element
JP3170909B2 (en) Manufacturing method of gas detection element
JPS6054724B2 (en) Temperature sensor and its manufacturing method
JPS6384116A (en) Method and apparatus for etching
JPH02114166A (en) Moisture sensor
JPH07333183A (en) Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device
RU2080590C1 (en) Process of manufacture of thin-film pickup for analysis of ammonia in gas atmosphere
JPH06275409A (en) Method of manufacturing thin film resistance element
JP2747493B2 (en) Method for manufacturing semiconductor device
JPH0514863B2 (en)
JPH07198648A (en) Gas detecting film and manufacture thereof
RU2231052C1 (en) Method of manufacture of thin-film sensor for determination of concentration of methane in gas mixture
JPH06213853A (en) Manufacture of gas detecting element
JPH09196879A (en) Tin oxide thin film sensor for sensing hydrogen and its manufacture