JPH07333183A - Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device - Google Patents
Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum deviceInfo
- Publication number
- JPH07333183A JPH07333183A JP15424294A JP15424294A JPH07333183A JP H07333183 A JPH07333183 A JP H07333183A JP 15424294 A JP15424294 A JP 15424294A JP 15424294 A JP15424294 A JP 15424294A JP H07333183 A JPH07333183 A JP H07333183A
- Authority
- JP
- Japan
- Prior art keywords
- partial pressure
- oxygen
- oxygen partial
- oxide semiconductor
- detecting element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸素分圧検出素子、酸
素分圧計および酸素分圧を計測する必要のある酸化物ア
ニール装置、製膜装置、真空ケース等の真空装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen partial pressure detecting element, an oxygen partial pressure meter, and a vacuum device such as an oxide annealing device, a film forming device, and a vacuum case that needs to measure the oxygen partial pressure.
【0002】[0002]
(1)酸化物薄膜は各種デバイスの絶縁膜、機能膜とし
て数多く用いられており、その製膜方法はスパッタ法、
蒸着法などの真空製膜法である。これらの製膜方法では
酸素分圧は膜質に大きく関与し、酸素分圧の安定性は膜
の安定性に直接かかわる。したがって、このような酸化
物薄膜の製膜法、あるいは製膜装置においては、酸素分
圧を正確に把握することは重要である。しかしながら多
くの場合、酸素分圧の把握は、酸素の供給量で代用して
いる場合が多いが、装置内で酸素濃度に分布がある場合
などは、膜成長の進行場所での酸素分圧が正確に計測で
きないというような問題がある。酸化物薄膜を酸化アニ
ールする場合についても同様である。 (2)酸素分圧の測定を行なうことのできる分圧計とし
ては、磁場偏向形分析計、マスフィルタなどが知られて
いる。一般的に言って、磁場偏向形分析計は定量分析に
は最も信頼度が高いが、形が大きく重く、漏れ磁場が問
題になることがある。磁場を用いないものは、小型で分
析速度も速く、漏れ磁場もないが、定量性にはやや劣る
ものが多い。また、マスフィルタは、小型で真空装置の
どこにでも取り付けることができ、蒸着中やスパッタ中
のガス分析も行えるが、動作圧力は1×10-2〔Pa〕
以下である(「薄膜作成の基礎」第2版、麻蒔 立男
著、日刊工業新聞社発行)。 (3)試料を保存する場合、大気中保存では水分による
吸湿や酸素による酸化により変質してしまう試料に関し
ては、真空ケースに保存する。酸化により変質してしま
う試料に関しては、温度、湿度、真空度よりも酸素濃度
が重要である。しかしながら試料保存用真空ケースにお
いて、温度、湿度、真空度を測定する計測器が具備され
ているものは公知であるが、さらに酸素分圧を計測する
計測器を備えたものはない。 (4)ガスセンサには、ガス感応物質として金属酸化物
半導体を用いて、ガス吸着により抵抗値の変化を利用し
たものが知られている。これらは酸素が十分に吸着して
いる場合、還元性ガスの共存で酸素が脱離するため抵抗
値が変化することを利用している。このようなセンサに
おいて、酸化スズ薄膜を用いたガスセンサについては本
出願人は既に出願している(特開昭61−20114
9、特開昭57−60887)。(1) Oxide thin films are widely used as insulating films and functional films for various devices.
It is a vacuum film forming method such as a vapor deposition method. In these film-forming methods, the oxygen partial pressure is greatly related to the film quality, and the stability of the oxygen partial pressure is directly related to the film stability. Therefore, in such a method for forming an oxide thin film or a film forming apparatus, it is important to accurately grasp the oxygen partial pressure. However, in many cases, the oxygen supply pressure is often used as a proxy for grasping the oxygen partial pressure. However, when there is a distribution of oxygen concentration in the device, the oxygen partial pressure at the place where the film growth progresses is There is a problem that it cannot be measured accurately. The same applies when the oxide thin film is annealed by oxidation. (2) As a partial pressure gauge capable of measuring the oxygen partial pressure, a magnetic field deflection type analyzer, a mass filter and the like are known. Generally speaking, magnetic field deflection analyzers are the most reliable for quantitative analysis, but they are large and heavy and can cause stray magnetic fields. Those that do not use a magnetic field are small in size, have a high analysis speed, and do not have a leakage magnetic field, but often have poor quantitativeness. In addition, the mass filter is small and can be attached anywhere in the vacuum device, and gas analysis during vapor deposition or sputtering can be performed, but the operating pressure is 1 × 10 -2 [Pa].
The following is ("Basics of thin film production", 2nd edition, written by Tatsuo Masaki, published by Nikkan Kogyo Shimbun). (3) When storing the sample, the sample which is deteriorated by moisture absorption by water or oxidation by oxygen when stored in the air is stored in a vacuum case. For samples that are altered by oxidation, the oxygen concentration is more important than the temperature, humidity, and vacuum level. However, it is well known that the sample storage vacuum case is equipped with a measuring device for measuring temperature, humidity and vacuum degree, but none is further equipped with a measuring device for measuring oxygen partial pressure. (4) It is known that a gas sensor uses a metal oxide semiconductor as a gas sensitive substance and utilizes a change in resistance value due to gas adsorption. These utilize the fact that when oxygen is sufficiently adsorbed, the resistance value changes because oxygen is desorbed in the coexistence of a reducing gas. Among such sensors, the applicant has already applied for a gas sensor using a tin oxide thin film (Japanese Patent Application Laid-Open No. 61-20114).
9, JP-A-57-60887).
【0003】[0003]
【目的】本発明は、選択的に酸素を吸着し酸素濃度を計
測することで、酸素の流入量ではなく、酸素分圧を実測
する酸素分圧検出素子および該素子を備えた酸素分圧計
ならびに真空装置の提供を目的とする。[Object] The present invention provides an oxygen partial pressure detecting element that measures oxygen partial pressure, not oxygen inflow amount by selectively adsorbing oxygen and measuring oxygen concentration, and an oxygen partial pressure meter including the element. The purpose is to provide a vacuum device.
【0004】[0004]
【構成】本発明は、酸素分圧を計測する検出素子および
該素子を備えた酸素分圧計において、前記検出素子とし
て金属酸化物半導体薄膜層を有するものを使用すること
により、前記の従来公知の酸素分圧検出素子と酸素分圧
計、および酸素分圧を計測する際の問題点を解決した。
本発明の酸素分圧検出素子は、金属酸化物半導体薄膜を
主材料として構成されるものであるが、本発明において
は、金属酸化物半導体は表面に酸素が吸着することによ
り膜の電気抵抗が変化し、還元性ガスが存在しない場
合、電気抵抗は酸素濃度を示すことを利用したものであ
る。例えばSnO2薄膜を用いた場合の窒素、酸素分圧
と検出部抵抗値の関係を示した図7から分かるように、
抵抗値は1×10-2〔Pa〕以上の低真空度において酸
素分圧に依存して変化するが、窒素分圧には依存しな
い。金属酸化物半導体層を形成する金属酸化物半導体と
しては、前記のSnO2のようなスズ酸化物が好ましい
が、それ以外に例えば亜鉛、インジウム等の酸化物があ
る。また、前記金属酸化物半導体層は薄膜でも厚膜でも
よいが、通常0.1〜10μmである。該金属酸化物半
導体層の作製方法としては、蒸着、スパッタリング、イ
オンプレーティング、CVD等の物理的手法、CVD等
の気相化学反応法、Sol−Gel法等の液相を利用し
た公知の薄膜形成法を挙げることができる。本発明の検
出素子としては、例えば以下のような構成のものがあ
る。すなわち、空中に張り出して設けられた電気絶縁性
材料からなる張り出し部、該張り出し部上に設けられた
ガス検出用の酸化物半導体層、該半導体層に接触する電
極リードおよび該電極リードにほぼ並設して設けられた
ヒータリードを有するガス検出装置は公知であるが(特
開昭61−191953号公報)、このような構造の装
置に酸素分圧検出用の金属酸化物半導体薄膜を設けたも
のである。前記検出素子の張り出し部の形状は、図1の
ような架橋構造でも、図3のような片持梁構造でも良
く、その形状については任意に設定することができる。
また、図2は図1に示す架橋構造の酸素分圧検出素子を
(A)−(A′)線で切断した断面構造を示すものであ
り、図4は図3に示す片持梁構造を(B)−(B′)線
で切断した断面構造を示すものである。The present invention provides a detection element for measuring an oxygen partial pressure and an oxygen partial pressure meter equipped with the element, which uses a metal oxide semiconductor thin film layer as the detection element, thereby making it The oxygen partial pressure detecting element, the oxygen partial pressure meter, and the problems when measuring the oxygen partial pressure were solved.
The oxygen partial pressure detection element of the present invention is composed mainly of a metal oxide semiconductor thin film. However, in the present invention, the metal oxide semiconductor has an electric resistance of the film due to the adsorption of oxygen on the surface. The electric resistance is based on the fact that the electric resistance shows the oxygen concentration when the reducing gas is changed and the reducing gas is not present. For example, as can be seen from FIG. 7, which shows the relationship between the partial pressures of nitrogen and oxygen and the resistance value of the detector when using the SnO 2 thin film,
The resistance value changes depending on the oxygen partial pressure at a low vacuum degree of 1 × 10 -2 [Pa] or more, but does not depend on the nitrogen partial pressure. As the metal oxide semiconductor forming the metal oxide semiconductor layer, tin oxide such as SnO 2 is preferable, but oxides such as zinc and indium are also available. The metal oxide semiconductor layer may be a thin film or a thick film, but is usually 0.1 to 10 μm. As a method for producing the metal oxide semiconductor layer, a known thin film utilizing a physical method such as vapor deposition, sputtering, ion plating, or CVD, a vapor phase chemical reaction method such as CVD, or a liquid phase such as Sol-Gel method. A forming method can be mentioned. The detection element of the present invention has, for example, the following configuration. That is, an overhanging portion made of an electrically insulating material provided overhanging in the air, an oxide semiconductor layer for gas detection provided on the overhanging portion, an electrode lead in contact with the semiconductor layer, and substantially the same as the electrode lead. Although a gas detection device having a heater lead provided therein is known (Japanese Patent Laid-Open No. 61-191953), a device having such a structure is provided with a metal oxide semiconductor thin film for oxygen partial pressure detection. It is a thing. The projecting portion of the detection element may have a bridge structure as shown in FIG. 1 or a cantilever structure as shown in FIG. 3, and the shape thereof can be arbitrarily set.
2 shows a cross-sectional structure taken along line (A)-(A ') of the oxygen partial pressure detecting element having the cross-link structure shown in FIG. 1, and FIG. 4 shows the cantilever structure shown in FIG. (B)-(B ') shows the cross-section structure cut along the line.
【0005】[0005]
【実施例】本発明に関して以下の実施例を用いて詳細に
説明する。The present invention will be described in detail with reference to the following examples.
【0006】実施例1 図5及び図6に本実施例に用いた素子の構成を示す。S
i基板上に形成した空中に張り出して設けられた電気絶
縁性材料からなる張り出し部上(構成図は図6に相当)
に、金属半導体層がSnO2薄膜〔膜厚0.3(μ
m)〕である酸素分圧検出素子を設けた。前記酸素分圧
検出素子に接触する電極リードおよび該電極リードにほ
ぼ並設してヒータリードを形成し、請求項3の発明に対
応する酸素分圧計を作製した。本実施例では、電極とし
ては白金薄膜〔Pt 膜厚0.1(μm)〕、基板には
酸化物基板ここではTa2O5、電極リードとしてはPt
を用いたが、用途により各種基板および各種酸化物を自
由に組み合わせることができる。電極材料としては白金
(Pt)に限定されず、それ以外に例えばPd、Au、
Rh、Ir、Mo、W、Ni、Co及びこれら合金等を
挙げることができ、用途により幅広く選択することがで
きる。空中に張出して設けられた電気絶縁性部材もTa
2O5に限定されず、それ以外に例えばSiO2、シリコ
ンナイトライド、オキシシリコンナイトライド、アルミ
ナ及びサイアロン等を挙げることができる。Example 1 FIGS. 5 and 6 show the structure of an element used in this example. S
On the overhanging portion formed on the i substrate and overhanging in the air and made of an electrically insulating material (the configuration diagram corresponds to FIG. 6)
In addition, the metal semiconductor layer is a SnO 2 thin film [film thickness 0.3 (μ
m)] is provided. An oxygen partial pressure gauge corresponding to the invention of claim 3 was manufactured by forming an electrode lead in contact with the oxygen partial pressure detecting element and a heater lead arranged substantially in parallel with the electrode lead. In this example, a platinum thin film [Pt film thickness 0.1 (μm)] was used as an electrode, an oxide substrate was used here as Ta 2 O 5 , and Pt was used as an electrode lead.
However, various substrates and various oxides can be freely combined depending on the application. The electrode material is not limited to platinum (Pt), but other materials such as Pd, Au,
Examples thereof include Rh, Ir, Mo, W, Ni, Co and alloys thereof, which can be widely selected depending on the application. The electrically insulating member overhanging in the air is also Ta.
The material is not limited to 2 O 5 , and other materials such as SiO 2 , silicon nitride, oxysilicon nitride, alumina, and sialon can be used.
【0007】実施例2 図8に実施例1で説明した酸素分圧検出素子を備えたプ
ラズマ蒸着装置の例を示す。図8の装置の使用法として
は、まずベルジャー102を開き、酸化物形成用の蒸発
物質を蒸発源104に保持させた後、ベルジャー102
を閉じ、真空排気系(図示せず)により排気して真空槽
102′内の圧力を予め10-4[Pa]のオーダーに
し、次に酸素ガスを真空槽102′内に導入し、その圧
力を0.1[Pa]程度に保つ。ここで、酸素分圧検出
素子118により酸素分圧を検出していれば、製膜され
る位置に近いところの酸素濃度が計測される。また、ア
ースシールド119を設けることによりノイズの低減が
可能となり、より精度良く測定できる。この雰囲気状態
で前述の蒸発源104を抵抗加熱により加熱し、対電極
110を零電位にし、グリッド108に100[V]の
電圧を印加しフィラメント106に400[W]の電力
を与える。前記抵抗加熱の投入電力を制御し、製膜速度
を制御する。図8では、プラズマ蒸着装置を例にした
が、スパッタ装置等ほかの製膜装置やアニール装置にお
いても同様に、基板近くに検出素子を配置することで、
膜の酸化に寄与している酸素濃度がより正確に測定でき
る。また、図には示さないが、素子出力から酸素供給側
にフィードバック回路を設けることで安定した酸素供給
を行うことも可能である。更には、複数個の酸素分圧検
出素子を備えることで真空槽102′内の酸素分圧分布
を見ることも可能である。Example 2 FIG. 8 shows an example of a plasma vapor deposition apparatus equipped with the oxygen partial pressure detecting element described in Example 1. As a method of using the apparatus of FIG. 8, first, the bell jar 102 is opened, and the evaporation material for oxide formation is held in the evaporation source 104, and then the bell jar 102 is used.
Is closed and the pressure in the vacuum chamber 102 'is set to the order of 10 -4 [Pa] in advance by evacuation by a vacuum exhaust system (not shown), and then oxygen gas is introduced into the vacuum chamber 102' and the pressure is reduced. Is maintained at about 0.1 [Pa]. Here, if the oxygen partial pressure detection element 118 detects the oxygen partial pressure, the oxygen concentration near the film formation position is measured. Further, by providing the earth shield 119, noise can be reduced and more accurate measurement can be performed. In this atmosphere, the evaporation source 104 is heated by resistance heating, the counter electrode 110 is set to zero potential, a voltage of 100 [V] is applied to the grid 108, and a power of 400 [W] is applied to the filament 106. The input electric power for the resistance heating is controlled to control the film forming speed. In FIG. 8, the plasma vapor deposition apparatus is taken as an example, but similarly in other film forming apparatuses such as a sputtering apparatus and an annealing apparatus, by disposing the detection element near the substrate,
The oxygen concentration contributing to the oxidation of the film can be measured more accurately. Further, although not shown in the figure, it is possible to perform stable oxygen supply by providing a feedback circuit from the element output to the oxygen supply side. Furthermore, by providing a plurality of oxygen partial pressure detecting elements, it is possible to see the oxygen partial pressure distribution in the vacuum chamber 102 '.
【0008】実施例3 図9に実施例1で説明した酸素分圧検出素子を備えたサ
ンプルケースの図を示す。サンプルケース30内に試料
を入れた後、真空ポンプを減圧用ポート31に接続し、
真空計32と酸素分圧計33で確認しながら所望の真空
度及び酸素分圧になるまで減圧する。Embodiment 3 FIG. 9 shows a diagram of a sample case equipped with the oxygen partial pressure detecting element described in Embodiment 1. After putting the sample in the sample case 30, connect the vacuum pump to the decompression port 31,
While checking with the vacuum gauge 32 and the oxygen partial pressure gauge 33, the pressure is reduced to a desired degree of vacuum and oxygen partial pressure.
【0009】[0009]
【発明の効果】本発明の酸素分圧検出素子は、酸素分圧
検出機構が簡単であり、またそのため前記検出素子およ
び該素子を用いた酸素分圧計を小型化することができる
ので、測定したい位置の近くで酸素分圧の測定が可能
で、使用も容易となる。特に請求項1および2の酸素分
圧検出素子は、選択的に酸素を吸着し、酸素の濃度(還
元性ガスが共存しない場合)に依存して電気抵抗値が変
化するので、簡便に酸素分圧が測定できる。請求項3の
酸素分圧検出素子は、周囲にアースシールドを備えてい
るので、ノイズが少なく感度よく測定できる。請求項4
の酸素分圧計は、片持梁構造なので熱伝達が速く、検知
スピードが速い。請求項5の製膜装置は、低真空度まで
基板近くでの酸素分圧が測定できるので、より安定した
製膜ができる。請求項6のアニール装置は、基板近くで
低真空度まで酸素分圧が測定できるので、安定した酸素
供給によるアニールができる。請求項7の真空ケース
は、酸素分圧が計測できるので、酸化による試料の変質
を防ぐことができる。また、低真空度で酸素分圧が測定
できるので、専用ポートを設けたり差動排気する必要が
ない。The oxygen partial pressure detecting element of the present invention has a simple oxygen partial pressure detecting mechanism, and therefore the detecting element and the oxygen partial pressure meter using the element can be miniaturized. Oxygen partial pressure can be measured near the position, making it easy to use. In particular, the oxygen partial pressure detection element according to claims 1 and 2 selectively adsorbs oxygen, and the electric resistance value changes depending on the oxygen concentration (when no reducing gas coexists). The pressure can be measured. Since the oxygen partial pressure detecting element according to the third aspect is provided with the earth shield in the surroundings, it is possible to perform measurement with little noise and with high sensitivity. Claim 4
Oxygen partial pressure gauge has a cantilever structure, so the heat transfer is fast and the detection speed is fast. In the film forming apparatus according to the fifth aspect, the oxygen partial pressure near the substrate can be measured up to a low vacuum degree, so that more stable film formation can be performed. In the annealing apparatus according to the sixth aspect, since the oxygen partial pressure can be measured near the substrate up to a low vacuum degree, annealing can be performed with stable oxygen supply. In the vacuum case of claim 7, since the oxygen partial pressure can be measured, the deterioration of the sample due to oxidation can be prevented. Moreover, since the oxygen partial pressure can be measured at a low degree of vacuum, it is not necessary to provide a dedicated port or perform differential exhaust.
【図1】本発明の架橋構造の酸素分圧計の一例を示す平
面図である。FIG. 1 is a plan view showing an example of a crosslinked oxygen partial pressure gauge of the present invention.
【図2】図1の酸素分圧計の(A)−(A′)線の断面
図である。2 is a cross-sectional view taken along line (A)-(A ') of the oxygen partial pressure gauge of FIG.
【図3】本発明の片持梁構造の酸素分圧計の一例を示す
平面図である。FIG. 3 is a plan view showing an example of an oxygen partial pressure gauge having a cantilever structure of the present invention.
【図4】図3の酸素分圧計の(B)−(B′)線の断面
図である。FIG. 4 is a sectional view taken along line (B)-(B ′) of the oxygen partial pressure gauge of FIG.
【図5】図3の酸素分圧計のデバイス構成と回路を示す
平面図である。5 is a plan view showing a device configuration and a circuit of the oxygen partial pressure meter of FIG. 3. FIG.
【図6】図5の酸素分圧計の片持梁先端の(A−A)線
の断面図であり、膜構成を示す図である。FIG. 6 is a cross-sectional view of the tip of the cantilever of the oxygen partial pressure meter of FIG. 5 taken along the line (AA), showing the film structure.
【図7】本発明の実施で得られたヒータ温度450℃に
おける、窒素、酸素分圧と素子抵抗特性を示す。FIG. 7 shows nitrogen and oxygen partial pressures and element resistance characteristics at a heater temperature of 450 ° C. obtained in the embodiment of the present invention.
【図8】本発明の実施例に用いたプラズマ蒸着装置を示
す。FIG. 8 shows a plasma deposition apparatus used in an example of the present invention.
【図9】本発明の実施例に用いたサンプルキーパーを示
す。FIG. 9 shows a sample keeper used in an embodiment of the present invention.
0 空洞 1 基板 2 張り出し部 3 張り出し部 4 ヒータリード 5 ヒータリード 6 金属酸化物半導体層 7 金属酸化物半導体層 8 電極リード(検出リード) 9 電極リード(検出リード) 10 電気絶縁性材料 20 センサ電極 21 センサ電極 22 空洞 23 基板 24 酸素分圧検出部 25 ヒータ電極 30 サンプルケース 31 減圧用ポート 32 真空計 33 酸素分圧計 101 ベースプレート 102 ベルジャー 102′ 真空槽 103 支持体兼用電極 104 蒸発物質用蒸発源 105 支持体兼用電極 106 フィラメント 107 支持体兼用電極 108 グリッド 109 支持体兼用電極 110 基板支持体兼用電極 111 基板 112 蒸発源用電源 113 フィラメント用電源 114 直流電圧電源 115 パッキン 116 バルブ 117 ガス導入用ポート 118 酸素分圧検出素子 119 アースシールド 0 Cavity 1 Substrate 2 Overhanging part 3 Overhanging part 4 Heater lead 5 Heater lead 5 Metal oxide semiconductor layer 7 Metal oxide semiconductor layer 8 Electrode lead (detection lead) 9 Electrode lead (detection lead) 10 Electrical insulating material 20 Sensor electrode 21 Sensor Electrode 22 Cavity 23 Substrate 24 Oxygen Partial Pressure Detection Section 25 Heater Electrode 30 Sample Case 31 Pressure Reduction Port 32 Vacuum Gauge 33 Oxygen Partial Pressure Meter 101 Base Plate 102 Belger 102 'Vacuum Tank 103 Supporting Electrode 104 Evaporation Source for Evaporation Material 105 Support-combined electrode 106 Filament 107 Support-combined electrode 108 Grid 109 Support-combined electrode 110 Substrate support-combined electrode 111 Substrate 112 Evaporation source power supply 113 Filament power supply 114 DC voltage power supply 115 Packing 116 Valve 11 7 Gas introduction port 118 Oxygen partial pressure detection element 119 Earth shield
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 力 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 秋山 善一 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Riki Ishida 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Zenichi Akiyama 1-3-6 Nakamagome, Ota-ku, Tokyo Stock company Ricoh
Claims (7)
して電気伝導度が変化する金属酸化物半導体薄膜を用い
た酵素分圧検出素子。1. An enzyme partial pressure detection element using a metal oxide semiconductor thin film whose electric conductivity changes with a change in oxygen partial pressure existing in an atmosphere.
て、金属酸化物半導体薄膜がn型の半導性を示す酸化ス
ズを主材料として構成されたものである酸素分圧検出素
子。2. The oxygen partial pressure detecting element according to claim 1, wherein the metal oxide semiconductor thin film is mainly composed of tin oxide having n-type semiconductivity.
子において、周囲にアースシールドを備えたことを特徴
とする酸素分圧検出素子。3. The oxygen partial pressure detecting element according to claim 1 or 2, further comprising a ground shield around the oxygen partial pressure detecting element.
材料からなる張り出し部、該張り出し部上に設けられた
請求項1または2記載の酸素分圧検出素子、該素子に接
触する電極リードおよび該電極リードに並設して設けら
れたヒータリードを有することを特徴とする酸素分圧
計。4. An overhanging portion made of an electrically insulating material, which is provided overhanging in the air, an oxygen partial pressure detecting element according to claim 1 or 2 provided on the overhanging portion, an electrode lead in contact with the element, and An oxygen partial pressure gauge having a heater lead provided in parallel with the electrode lead.
を特徴とする製膜装置。5. A film forming apparatus comprising the oxygen partial pressure gauge according to claim 4.
を特徴とする酸化物薄膜のアニール装置。6. An oxide thin film annealing apparatus comprising the oxygen partial pressure gauge according to claim 4.
を特徴とする真空ケース。7. A vacuum case comprising the oxygen partial pressure gauge according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15424294A JPH07333183A (en) | 1994-06-13 | 1994-06-13 | Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15424294A JPH07333183A (en) | 1994-06-13 | 1994-06-13 | Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07333183A true JPH07333183A (en) | 1995-12-22 |
Family
ID=15579949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15424294A Pending JPH07333183A (en) | 1994-06-13 | 1994-06-13 | Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07333183A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100429659B1 (en) * | 2002-03-25 | 2004-05-03 | 전자부품연구원 | Device and method for measuring partial pressure of gas |
CN112984163A (en) * | 2021-04-29 | 2021-06-18 | 成都康拓兴业科技有限责任公司 | Diaphragm type oxygen source distributor for airborne oxygen system |
-
1994
- 1994-06-13 JP JP15424294A patent/JPH07333183A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100429659B1 (en) * | 2002-03-25 | 2004-05-03 | 전자부품연구원 | Device and method for measuring partial pressure of gas |
CN112984163A (en) * | 2021-04-29 | 2021-06-18 | 成都康拓兴业科技有限责任公司 | Diaphragm type oxygen source distributor for airborne oxygen system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karunagaran et al. | TiO2 thin film gas sensor for monitoring ammonia | |
Wöllenstein et al. | Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures | |
Min et al. | Gas response of reactively sputtered ZnO films on Si-based micro-array | |
US4030340A (en) | Hydrogen gas detector | |
EP1693667B1 (en) | Gas sensor | |
Schierbaum et al. | Specific palladium and platinum doping for SnO2-based thin film sensor arrays | |
US4324760A (en) | Hydrogen detector | |
JPH09145655A (en) | Hydrogen sensor | |
JPS6351501B2 (en) | ||
Nicoletti et al. | Use of different sensing materials and deposition techniques for thin-film sensors to increase sensitivity and selectivity | |
US20190317036A1 (en) | Gas sensor | |
Niskanen et al. | Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors | |
Bearzotti et al. | Humidity sensitivity of sputtered TiO2 thin films | |
Gullino et al. | Employment of Nb 2 O 5 thin-films for ethanol sensing | |
JP3166290B2 (en) | Gas sensor | |
JPH07333183A (en) | Oxygen partial-pressure detecting element using metallic oxide semiconductor film and oxygen potentiometer equipped with the element and vacuum device | |
JP2005030907A (en) | Gas sensor | |
US20120151997A1 (en) | Method of making an electrically conductive structure, method of making a gas sensor, gas sensor obtained with the method and use of the gas sensor for sensing a gas | |
JPH08189887A (en) | Gas sensing method and device | |
Hahn | SnO2 thick film sensors at ultimate limits: Performance at low O2 and H2O concentrations; Size reduction by CMOS technology | |
JPH06148118A (en) | Carbon monoxide gas detecting device and carbon monoxide gas detecting method using its device | |
EP4102217A1 (en) | Hydrogen gas sensor assembly | |
US8024959B2 (en) | Gas sensor and gas detection method | |
WO2024066633A1 (en) | Gas sensor and electronic device | |
US7677082B2 (en) | Solid state gas sensors based on tunnel junction geometry |