[go: up one dir, main page]

JPS632054B2 - - Google Patents

Info

Publication number
JPS632054B2
JPS632054B2 JP16535279A JP16535279A JPS632054B2 JP S632054 B2 JPS632054 B2 JP S632054B2 JP 16535279 A JP16535279 A JP 16535279A JP 16535279 A JP16535279 A JP 16535279A JP S632054 B2 JPS632054 B2 JP S632054B2
Authority
JP
Japan
Prior art keywords
film
tin oxide
palladium
evaporation
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16535279A
Other languages
Japanese (ja)
Other versions
JPS5687851A (en
Inventor
Masahiro Nishikawa
Kuni Ogawa
Atsushi Abe
Satoshi Sekido
Shigeru Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16535279A priority Critical patent/JPS5687851A/en
Publication of JPS5687851A publication Critical patent/JPS5687851A/en
Publication of JPS632054B2 publication Critical patent/JPS632054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 本発明はガスセンサに関し、その目的とすると
ころは従来の酸化物超微粒子膜で形成されたガス
センサに比べて電導度およびエチルアルコールに
対する感度を向上させたガスセンサを提供するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas sensor, and an object thereof is to provide a gas sensor that has improved conductivity and sensitivity to ethyl alcohol compared to conventional gas sensors formed using ultrafine oxide particles. It is in.

先に本発明者は、平均粒径が十数Åから百数十
Å程度の酸化物超微粒子で構成され、かつガスや
水蒸気に対して抵抗値が敏感に変化する感応膜セ
ンサを提案した(特願昭53−100620号)。このよ
うな感応膜センサの感度は良好であるが、外的作
用因子の種類によつては、素子を動作させるのに
加熱する必要がある。したがつてできる限り低温
で動作することが消費電力の面から求められてい
る。またガス警報装置等の検出素子として用いよ
うとすると、一般に抵抗値が高いために回路構成
上の困難さや、電源部および外部からの雑音の影
響を受けやすい等の実用上の問題点がある。
Previously, the present inventor proposed a sensitive film sensor that is composed of ultrafine oxide particles with an average particle size of about 10-odd Å to a hundred-odd angstroms, and whose resistance value changes sensitively to gas and water vapor ( (Special Application No. 100620, Showa 53). Although such sensitive membrane sensors have good sensitivity, some types of external agents require heating to operate the element. Therefore, in terms of power consumption, it is required to operate at as low a temperature as possible. Furthermore, when attempting to use it as a detection element in a gas alarm device or the like, there are practical problems such as difficulty in circuit configuration due to the high resistance value and susceptibility to noise from the power supply section and the outside.

そこで本発明は素子の電導度を著しく向上し、
同時にエチルアルコールに対しては動作温度を低
下させたガスセンサを提供するものである。
Therefore, the present invention significantly improves the conductivity of the element,
At the same time, the present invention provides a gas sensor with a lower operating temperature for ethyl alcohol.

以下、本発明の一実施例を図に基づいて説明す
る。すなわち本実施例のガスセンサは第1図イ,
ロに示すごとく、ガラスやセラミツクスなどの絶
縁基板1上に対をなす電極2,3を形成し、その
上に錫酸化物半導体の超微粒子膜4を形成し、さ
らにその上にパラジウム蒸着膜5を形成してなる
ものである。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In other words, the gas sensor of this embodiment is shown in Fig. 1A,
As shown in FIG. 2, a pair of electrodes 2 and 3 are formed on an insulating substrate 1 made of glass or ceramics, an ultrafine particle film 4 of a tin oxide semiconductor is formed thereon, and a palladium vapor-deposited film 5 is further formed thereon. It is formed by forming.

次に上記ガスセンサの製造法について第2図に
基づき説明する。すなわち真空蒸着装置11内の
試料ホルダー12に、電極2,3を有する絶縁基
板1をその電極面が下を向くようにして取付け
る。また上記絶縁基板1の下方に位置する蒸発用
ボート13には、錫あるいは錫酸化物からなる蒸
発材料14をセツトする。また上記蒸発用ボート
13に近接して配置した蒸発用ボート15にはパ
ラジウム蒸発材料16をセツトする。しかる後、
排気口17に接続した真空ポンプ(図示せず)を
作動させて排気をおこない、装置11内の真空度
を10-6Torrのオーダにし、次に酸素ガス導入口
18のコツクを開いて装置11内に酸素ガスを導
入し、その圧力をたとえば0.5Torr程度に保つ。
次に蒸発用電源19によりボート13に通電して
発熱させ、酸素ガス圧0.5Torr雰囲気のもとで蒸
発材料14を十数秒から数分間蒸発させ、前記絶
縁基板1および電極2,3上に超微粒子膜4を蒸
着させる。たとえば蒸発材料14としてSnを選
び、120〜160Wの電力をボート13に印加する
と、平均粒径が約40Åの超微粒子からなる約20μ
厚さの錫酸化物超微粒子膜が形成される。次に再
び排気口17に接続された真空ポンプを作動させ
て、装置11内を真空度が10-6Torrのオーダま
で排気をおこなう。次に蒸発用電源20によりボ
ート15に通電して発熱させ、パラジウム蒸発材
料16を数秒から数十秒蒸発させ、前記超微粒子
膜4上にパラジウム蒸着膜5を蒸着させる。たと
えばポート15に120〜160Wの電力を1分間印加
すると、約1000Åの厚さのパラジウム蒸着膜5が
形成される。
Next, a method for manufacturing the above gas sensor will be explained based on FIG. 2. That is, the insulating substrate 1 having the electrodes 2 and 3 is attached to the sample holder 12 in the vacuum evaporation apparatus 11 with the electrode surface facing downward. Further, in the evaporation boat 13 located below the insulating substrate 1, an evaporation material 14 made of tin or tin oxide is set. Further, a palladium evaporation material 16 is set in an evaporation boat 15 disposed close to the evaporation boat 13. After that,
A vacuum pump (not shown) connected to the exhaust port 17 is operated to evacuate the device 11 to bring the degree of vacuum inside the device 11 to the order of 10 -6 Torr, and then the oxygen gas inlet 18 is opened and the device 11 is evacuated. Oxygen gas is introduced into the chamber and the pressure is maintained at, for example, about 0.5 Torr.
Next, the boat 13 is energized by the evaporation power source 19 to generate heat, and the evaporation material 14 is evaporated for several tens of seconds to several minutes in an atmosphere of oxygen gas pressure of 0.5 Torr. A particulate film 4 is deposited. For example, if Sn is selected as the evaporation material 14 and a power of 120 to 160 W is applied to the boat 13, approximately 20μ of ultrafine particles with an average particle size of approximately 40A
A thick film of ultrafine tin oxide particles is formed. Next, the vacuum pump connected to the exhaust port 17 is operated again to evacuate the inside of the device 11 to a degree of vacuum on the order of 10 -6 Torr. Next, the boat 15 is energized by the evaporation power source 20 to generate heat, and the palladium evaporation material 16 is evaporated for several seconds to several tens of seconds, thereby depositing the palladium evaporation film 5 on the ultrafine particle film 4. For example, when a power of 120 to 160 W is applied to the port 15 for 1 minute, a palladium deposited film 5 with a thickness of about 1000 Å is formed.

第3図はエチルアルコールに対する感度を相対
的に比較したグラフであり、グラフ中、Aは酸素
ガス圧0.5Torr中で作製した錫酸化物超微粒子の
みで構成された厚さ20μの超微粒子膜を示し、B
は上記Aの錫酸化物超微粒子膜の上に厚さ約1000
Åのパラジウム蒸着膜を積層して形成した膜を示
している。グラフからも明らかなようにAでは、
基板1の温度が約120℃前後から感度を呈し始め
るのに対し、Bでは、基板1の温度が室温付近か
ら感度を呈し始めている。
Figure 3 is a graph showing a relative comparison of sensitivity to ethyl alcohol. In the graph, A is a 20μ thick ultrafine particle film made only of tin oxide ultrafine particles prepared under an oxygen gas pressure of 0.5 Torr. Show, B
is about 1000 ml thick on top of the tin oxide ultrafine particle film of A above.
The figure shows a film formed by stacking palladium vapor-deposited films with a thickness of 1.5 Å. As is clear from the graph, in A,
While the temperature of the substrate 1 begins to exhibit sensitivity at around 120° C., in B, the temperature of the substrate 1 begins to exhibit sensitivity at around room temperature.

第4図は、上記Bの電導度をAのそれと相対的
に比較したグラフであり、Bの電導度はAに比べ
て約67倍に増大している。
FIG. 4 is a graph comparing the electrical conductivity of B with that of A, and the electrical conductivity of B is about 67 times higher than that of A.

本実施例のガスセンサにおいて、上層のパラジ
ウム蒸着膜5の膜厚は、還元性ガスが下層の超微
粒子膜4に十分到達できる厚さでなければならな
いと思われるが、前記具体例で示したごとくパラ
ジウム蒸着膜5の膜厚が数千Å程度以下の場合に
は素子の感度を損うことはない。
In the gas sensor of this example, the thickness of the palladium vapor deposited film 5 in the upper layer must be thick enough to allow the reducing gas to reach the ultrafine particle film 4 in the lower layer, but as shown in the specific example above, When the thickness of the palladium vapor-deposited film 5 is approximately several thousand angstroms or less, the sensitivity of the element is not impaired.

上記実施例では、蒸発材料14,16を蒸発さ
せる方法として、抵抗加熱法を用いたが、これ以
外に、たとえば誘導加熱法や赤外線加熱法などを
用いてもよいことはいうまでもない。
In the above embodiment, a resistance heating method was used as a method for evaporating the evaporation materials 14 and 16, but it goes without saying that other methods such as an induction heating method or an infrared heating method may also be used.

以上述べたごとく本発明のガスセンサによれ
ば、電極を形成した絶縁基板上に錫酸化物超微粒
子膜を形成し、該錫酸化物超微粒子膜上にパラジ
ウム蒸着膜を積層してあるから、上記錫酸化物超
微粒子膜の電導度を向上させることができ、また
エチルアルコールに対して従来より低温度で感度
を呈することができるものである。
As described above, according to the gas sensor of the present invention, a tin oxide ultrafine particle film is formed on an insulating substrate on which an electrode is formed, and a palladium vapor-deposited film is laminated on the tin oxide ultrafine particle film. The electrical conductivity of the tin oxide ultrafine particle film can be improved, and the film can exhibit sensitivity to ethyl alcohol at a lower temperature than before.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図イは平面
図、第1図ロは同図イのX―X矢視図、第2図は
ガスセンサの製造法を説明するための概略縦断面
図、第3図は錫酸化物超微粒子のみで構成した膜
AとこのAにパラジウム蒸着膜を積層した膜Bと
のエチルアルコールに対する感度を相対的に比較
したグラフ、第4図は上記Bの電導度をAのそれ
と相対的に比較したグラフである。 1……絶縁基板、2,3……電極、4……錫酸
化物超微粒子膜、5……パラジウム蒸着膜。
The figures show one embodiment of the present invention, in which Figure 1A is a plan view, Figure 1B is a view taken along the line X--X in Figure A, and Figure 2 is a schematic vertical cross-section for explaining the manufacturing method of the gas sensor. A top view, Figure 3 is a graph comparing the relative sensitivity to ethyl alcohol of membrane A composed only of ultrafine tin oxide particles and membrane B, in which a palladium vapor-deposited membrane is laminated on A, and Figure 4 is a graph of the sensitivity to ethyl alcohol of membrane A composed only of ultrafine tin oxide particles. It is a graph comparing the electrical conductivity of A with that of A. 1... Insulating substrate, 2, 3... Electrode, 4... Tin oxide ultrafine particle film, 5... Palladium vapor deposited film.

Claims (1)

【特許請求の範囲】[Claims] 1 電極を形成した絶縁基板上に錫酸化物超微粒
子膜を形成し、前記錫酸化物超微粒子膜上にパラ
ジウム蒸着膜を積層したことを特徴とするガスセ
ンサ。
1. A gas sensor characterized in that a tin oxide ultrafine particle film is formed on an insulating substrate on which an electrode is formed, and a palladium vapor-deposited film is laminated on the tin oxide ultrafine particle film.
JP16535279A 1979-12-18 1979-12-18 Sensor Granted JPS5687851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16535279A JPS5687851A (en) 1979-12-18 1979-12-18 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16535279A JPS5687851A (en) 1979-12-18 1979-12-18 Sensor

Publications (2)

Publication Number Publication Date
JPS5687851A JPS5687851A (en) 1981-07-16
JPS632054B2 true JPS632054B2 (en) 1988-01-16

Family

ID=15810721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16535279A Granted JPS5687851A (en) 1979-12-18 1979-12-18 Sensor

Country Status (1)

Country Link
JP (1) JPS5687851A (en)

Also Published As

Publication number Publication date
JPS5687851A (en) 1981-07-16

Similar Documents

Publication Publication Date Title
JPH0874028A (en) Thin film forming method and device therefor
York Properties of evaporated thin films of SiO
US4016524A (en) Sensor for a gas detector, in particular for smoke detection
JP2002328109A (en) Element for detecting hydrogen gas, and method of manufacturing the same
JPS6351501B2 (en)
US5382341A (en) Method of making smoke detector
US4356150A (en) Humidity sensor with electrical rejection of contaminants
Sberveglieri et al. Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate
JPS632054B2 (en)
Chen et al. Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics
JPS588743B2 (en) Gas/humidity sensor
Das et al. Electrical conductivity of air-exposed and unexposed lead selenide thin films: temperature and size effects
JPS6030893B2 (en) How to manufacture the sensor
JPS6151260B2 (en)
JP2002328108A (en) Hydrogen gas detecting element and method of manufacturing the same
JPS6222096B2 (en)
JP2535983B2 (en) Nitrogen oxide detector
JPH04273050A (en) Gas sensor
JPH06213853A (en) Manufacture of gas detecting element
JPS5840694B2 (en) Manufacturing method of gas/humidity sensor
JPS5952955B2 (en) Method for manufacturing ultrafine particle material film
JP2753654B2 (en) Moisture sensitive element
JPS6037423B2 (en) gas sensor
JPH04348267A (en) Gas sensor
JPS6152934B2 (en)