[go: up one dir, main page]

JPS58105049A - Detector of no2 gas and detecting method therefor - Google Patents

Detector of no2 gas and detecting method therefor

Info

Publication number
JPS58105049A
JPS58105049A JP20393581A JP20393581A JPS58105049A JP S58105049 A JPS58105049 A JP S58105049A JP 20393581 A JP20393581 A JP 20393581A JP 20393581 A JP20393581 A JP 20393581A JP S58105049 A JPS58105049 A JP S58105049A
Authority
JP
Japan
Prior art keywords
gas
tin oxide
sensitive body
oxide film
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20393581A
Other languages
Japanese (ja)
Inventor
Sei Tonomura
外「村」 生
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20393581A priority Critical patent/JPS58105049A/en
Publication of JPS58105049A publication Critical patent/JPS58105049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To detect NO2 gas with the highest sensitivity and at the highest response speed by a method wherein an NO2 gas detector provided with a sensitive body having a specified particle size is made to operate at a specific temperature, in an NO2 gas detector wherein a tin oxide film is used as a sensitive body. CONSTITUTION:Electroconductive paste formed of platinum in the main is applied on one surface of an alumina substrate 3 and baked so as to form a plane- shaped heater 4, while electroconductive paste formed of platinum in the main is printed and baked on the other surface of the alumina substrate 3 to form an electrode 2. A thermocouple 8 for measuring the temperature of a gas-sensitive body, which is formed of CA wires, is baked and fixed together with the electrode 2. A tin oxide film having a crystal particle size of 100Angstrom or less and constituting an NO2 gas-sensitive body 1 is obtained by baking, in air, a thin film of tin oxide which is obtained by sputtering metal tin having the purity of 99.99% and used as a target material. Suitable operation temperature is 200- 300 deg.C.

Description

【発明の詳細な説明】 本発明は、膜状酸化錫をNO2ガス感応体とするNo2
ガス検知器ならびに検知方法に関し、感度および応答速
度共に優れたNO2ガス検知が容易に行われるようにす
ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a NO2
The present invention relates to a gas detector and a detection method, and an object thereof is to easily detect NO2 gas with excellent sensitivity and response speed.

従来、NO2ガスの正確、簡便かつ連続的な測定法とし
て、酸化錫薄膜をガス感応体とする、いわゆる半導体式
ガス検知器が提案されている。金属酸化物半導体の性質
として、理化学分野において古くから知られている、電
子受容性の酸化性ガスである例えばNo2. No 、
 02等が、n型半導体である酸化錫感応体に吸着する
ことで、前記酸化錫感応体の、電気抵抗が、それらのガ
ス濃度に比例して増加する現象を利用したものである。
BACKGROUND ART Conventionally, a so-called semiconductor gas detector using a tin oxide thin film as a gas sensor has been proposed as an accurate, simple, and continuous method for measuring NO2 gas. The properties of metal oxide semiconductors include electron-accepting oxidizing gases, such as No. 2. No,
This method utilizes the phenomenon that when 02 and the like are adsorbed onto the tin oxide sensitive material, which is an n-type semiconductor, the electrical resistance of the tin oxide sensitive material increases in proportion to the concentration of these gases.

この半導体式ガス検知器は、ガス濃度に比例して電気抵
抗が増減する感応体と、この電気抵抗変化を外部信号と
して取り出すための一対の電極と、感応体を適切な温度
下で動作させるための加熱源とで成る、きわめて簡単な
構成になっている。
This semiconductor gas detector consists of a sensitive body whose electrical resistance increases or decreases in proportion to the gas concentration, a pair of electrodes for extracting this electrical resistance change as an external signal, and a sensor that operates at an appropriate temperature. It has an extremely simple configuration consisting of a heating source.

このようにきわめて構成が簡単である半導体装置ス検知
器の性能(感度、応答速度1選択性)を決定するのは、
ひとつには、感応体を構成する物質の材料物性であり、
もうひとつには、感応体と被検ガスとが作用し合う温度
(ガス検知器の動作温度)がある。すなわち、今仮に、
同一物質を感応体として用いたとしても、その形状ある
いは、内部結晶構造により規定される表面構造の違いよ
りもたらされる材料物性の違いは、ガス検知器の特性の
違いとなって顕著に現われる。また、同一の物質、同一
の材料物性の感応体を用いたとしても、ガス検知器の動
作温度により、ガス検知器としての特性は大きく異なっ
てくることがある。これを理解オるのは、一般に言われ
ているように、ガス検知の機構が、感応体と被検ガスと
の感応体表面における化学的な相互作用を伴っているこ
とを考えれば難しいことではない。
The performance (sensitivity, response speed 1 selectivity) of this extremely simple semiconductor device detector is determined by
One is the material properties of the substances that make up the sensitive body.
Another factor is the temperature at which the sensitive body and the gas to be detected interact (the operating temperature of the gas detector). In other words, if now,
Even if the same material is used as a sensitive material, differences in the physical properties of the material resulting from differences in its shape or surface structure defined by its internal crystal structure will manifest as noticeable differences in the characteristics of the gas detector. Furthermore, even if the same substance and the same material properties are used, the characteristics of the gas detector may vary greatly depending on the operating temperature of the gas detector. Understanding this is not difficult considering that the gas detection mechanism involves chemical interaction between the sensitive body and the gas to be detected on the sensitive body surface, as is generally said. do not have.

従来、酸化錫を感応体とするNO2ガス検知器として、
酸化状態を規定した酸化錫薄膜を感応体とするN0x(
NO2,およびNo )ガス検知器が提案され、また、
動作温度としては、150〜300℃が好適であると言
われているが、これらは、いずれも、ガス検知器として
の主要な特性である感度と応答速度を尺度として明確に
規定されたものではなく、最高感度、最高の応答速度を
与える酸化錫膜の材料物性の好適値を知り難いし、さら
には動作温度の好適値についても同様に知り難い。すな
わち、いかなる材料物性を有した酸化錫感応体を、いか
なる動作温度で働かせれば、良好な感度、応答速度を有
したN02ガス検知ができるのかについては、従来全く
知られていない。
Conventionally, as a NO2 gas detector using tin oxide as a sensitive material,
NOx (
NO2, and No) gas detectors have been proposed, and
It is said that a suitable operating temperature is 150 to 300°C, but these are not clearly defined based on sensitivity and response speed, which are the main characteristics of a gas detector. Furthermore, it is difficult to know the suitable values of the material properties of the tin oxide film that will give the highest sensitivity and the highest response speed, and it is also difficult to know the suitable values for the operating temperature. That is, it has not been known at all as to what kind of material properties a tin oxide sensitive material has and at what operating temperature it is possible to detect N02 gas with good sensitivity and response speed.

本発明は以上のような点に鑑み、酸化錫を感応体とする
NO2ガス検知器について、前記酸化錫感応体として好
適な材料を提供することで、感度、応答速度共に優れた
NO2ガス検知器ならびに検知方法を提供しようとする
ものである。好適な酸化錫感応体材料として、S n 
O2結晶のX線回折測定において2θ−26,6°(θ
は回折角)付近に現れる(110)而に帰属する回折ピ
ークの半値中より、デバイ・シエーラ一式(結晶粒径D
−KA/Bcosθ。
In view of the above points, the present invention provides a NO2 gas detector that has excellent sensitivity and response speed by providing a material suitable for the tin oxide sensitive material for a NO2 gas detector using tin oxide as a sensitive material. and a detection method. As a suitable tin oxide sensitizer material, S n
In X-ray diffraction measurement of O2 crystal, 2θ-26,6° (θ
The Debye-Sierra set (grain size D
-KA/Bcosθ.

にはIK近い係数、λは回折測定に用いたX線の波長、
β−B  b、Bは被検体の半値巾、bは回折装置に固
有の値であり十分結晶粒の発達した例えば粒径が10〜
50μのSiO2単結晶粉末の回折ピークの半値巾であ
る)で与えられる結晶粒径が、100Å以下である膜状
に形成された酸化錫膜が感応体に選ばれる。
is a coefficient close to IK, λ is the wavelength of the X-ray used for diffraction measurement,
β-B b, B is the half-width of the specimen, and b is a value specific to the diffraction device.
A tin oxide film formed in the form of a film having a crystal grain size of 100 Å or less given by the half width of the diffraction peak of a 50 μm SiO 2 single crystal powder is selected as the sensitive material.

以下に図面を用い本発明の説明を行う。The present invention will be explained below using the drawings.

第1図は本発明の実施例の1つである、結晶粒径が10
0Å以下である酸化錫感応体を備えたNO2ガス検知器
を示す。図において3は表面粗さが2.6μの厚さ0.
6mm1縦6 mm %横5mmの大きさの純度96%
のアルミナ基板である。4は、このアルミナ基板3の片
方の面に、白金を主体とする導電ペーストを塗布して焼
き付けることで得られる約609の抵抗体より成る面状
ヒーターであり、これにより検知器は定められた一定の
動作温度に保持される。6は面状ヒーター4に電力を供
給するための線径○。6mmの白金線、2は白金を主体
とする導電性ペーストを、アルミナ基板3のもう一方の
面に、アルミナ基板3の中央部が0.6mm巾の溝で露
出する形状に印刷焼き付けられた、ガス感応体の電気信
号を外部に取り出すための電極である。8は電極2とと
もに焼き付は固定されたCA(クロメル−アルメル)線
よりなるガス感応体の温度測定用の熱電対である。7は
電極2用の線径0゜5mmの白金線よりなるリード線で
ある。1が本発明、に従う結晶粒径が1oo八以下であ
る酸化錫膜より成るNO2ガス感応体である。前記酸化
錫膜は、例えば、純度99.99 %の金属錫より成る
直径150mmのターゲット材料として、電極間距離4
0mm、アルゴンガス圧1.25pa (パスカル)。
Figure 1 shows one of the embodiments of the present invention, with a crystal grain size of 10
Figure 2 shows a NO2 gas detector with a tin oxide sensor that is less than 0 Å. In the figure, 3 has a surface roughness of 2.6μ and a thickness of 0.
6mm 1 length 6mm % width 5mm size purity 96%
This is an alumina substrate. 4 is a planar heater made of about 609 resistors obtained by applying and baking a conductive paste mainly composed of platinum on one side of this alumina substrate 3, which makes the detector Maintained at constant operating temperature. 6 is a wire diameter ○ for supplying power to the planar heater 4. A 6 mm platinum wire, 2 is a platinum-based conductive paste printed and baked on the other side of the alumina substrate 3 in a shape that exposes the center of the alumina substrate 3 in a 0.6 mm wide groove. This is an electrode for extracting the electrical signal from the gas sensitive body to the outside. Reference numeral 8 designates a thermocouple for measuring the temperature of the gas sensitive body, which is made of a CA (chromel-alumel) wire with fixed seizure together with the electrode 2. 7 is a lead wire for the electrode 2 made of platinum wire with a wire diameter of 0.5 mm. Reference numeral 1 denotes an NO2 gas sensitive body made of a tin oxide film having a crystal grain size of 1.08 or less according to the present invention. The tin oxide film is, for example, made of metal tin with a purity of 99.99% as a target material with a diameter of 150 mm, and the distance between the electrodes is 4.
0mm, argon gas pressure 1.25pa (Pascal).

酸素ガス圧1.25pa、アルミナ基板温度〜210−
C1電力400W、電圧2,55KVで、3θ分間スパ
ッタリングを行うことで得た酸化錫薄膜を、空気中40
0℃で2時間焼成することで得られる。第2図は、この
ようにして得られた酸化錫膜を、管電流200 mA 
、管電圧60KVで銅を対陰極としてX線回折測定によ
り得られる2θ=20〜35゜の回折図である。Sn○
2特有の(110)結晶面に帰属される回折ピークが2
θ= 26.6°に得られる。なお、2θ−26,6°
付近の鋭い回折ピークは、基板のアルミナに帰属される
ピークである。前記酸化錫膜の結晶粒径りは、次のよう
に先述したデバイ・シェーラ一式を用いて求められる。
Oxygen gas pressure 1.25pa, alumina substrate temperature ~210-
C1 A tin oxide thin film obtained by sputtering for 3θ minutes at a power of 400W and a voltage of 2.55KV was heated in air for 40 minutes.
Obtained by firing at 0°C for 2 hours. Figure 2 shows the tin oxide film obtained in this way at a tube current of 200 mA.
, is a diffraction pattern of 2θ=20 to 35° obtained by X-ray diffraction measurement using copper as an anticathode at a tube voltage of 60 KV. Sn○
The diffraction peak attributed to the (110) crystal plane unique to 2 is
Obtained at θ=26.6°. In addition, 2θ-26,6°
The sharp diffraction peak in the vicinity is a peak attributed to alumina of the substrate. The crystal grain size of the tin oxide film is determined using the Debye-Scherer set described above as follows.

D−にλ/(B−b)cosθ ・・・・・・デバイ・
シェーラ一式ここにおいて、K”1.0.λ−1.54
05人、θ=26.6/2  B=1.20 (第2図
に示した2θ=26,60し の回折ピークの半値巾) 、 b=0.13 (第3図
示した、第2図を得た同一のX線回折装置で得られた粒
径〜43μの5IO2結晶粉末の20=31゜の回折ピ
ークの半値巾)に代入すると、となる。前記酸化錫膜の
結晶粒径が89人であることがわかる。
D- to λ/(B-b)cosθ...Debye
A set of schera where K"1.0.λ-1.54
05 people, θ=26.6/2 B=1.20 (half width of the diffraction peak at 2θ=26,60 shown in Figure 2), b=0.13 (shown in Figure 3, Figure 2) By substituting the half-width of the diffraction peak of 20=31° of 5IO2 crystal powder with a particle size of ~43μ obtained using the same X-ray diffraction apparatus, the following is obtained. It can be seen that the crystal grain size of the tin oxide film is 89 mm.

以上の方法により酸化錫膜の結晶粒径が決定されるが、
結晶粒径の異なる酸化錫膜を感応体とした、第1図に示
した構造を有したガス検知器について、本発明の効果を
見るために、第4図に示すガス応答特性装置を甲いて、
N○2ガス応答特性を評価した。
The crystal grain size of the tin oxide film is determined by the above method, but
In order to see the effects of the present invention, a gas detector having the structure shown in FIG. 1, which uses tin oxide films with different crystal grain sizes as a sensitive material, was equipped with the gas response characteristic device shown in FIG. 4. ,
The N○2 gas response characteristics were evaluated.

なお第4図において、11はサンプルガス供給タンク、
12はサンプルガス用流量計、13はサンプルガス溜め
、14はキャリアガス(N2あるいは乾燥空気)供給タ
ンク、16は第1キャリアガス溜め、16はキャリアガ
ス用ポンプ、17はキャリアガス用流量計、18は第2
キャリアガス溜め、19はガス分析計、20はガス切り
換え電磁弁、21はガス検知室、22はガス検知器、2
3はヒータ用電源、24はヒータ温度コントローラ、2
6はガス検知器抵抗測定装置、26は測定ガス用流量計
、27け測定ガス吸引用ポンプである。
In Fig. 4, 11 is a sample gas supply tank;
12 is a sample gas flow meter, 13 is a sample gas reservoir, 14 is a carrier gas (N2 or dry air) supply tank, 16 is a first carrier gas reservoir, 16 is a carrier gas pump, 17 is a carrier gas flow meter, 18 is the second
carrier gas reservoir, 19 a gas analyzer, 20 a gas switching solenoid valve, 21 a gas detection chamber, 22 a gas detector, 2
3 is a heater power supply, 24 is a heater temperature controller, 2
6 is a gas detector resistance measuring device, 26 is a flow meter for measuring gas, and 27 is a pump for suctioning gas to be measured.

さて第4図に示した装置を用いるに際しては、ポンプ1
6により22/分の流量で、窒素ガスあるいは気温約2
0℃、相対湿度60〜70%の大気をガス流路に招き入
れながら、あらかじめ面状ヒーター4(第1図)により
所定の動作温度にガス検知器が保持された後、あらかじ
め所定の濃度に希釈しておいたNO2サンプルガスが、
ガス切り換え電磁弁2oの操作によりサンプルガス溜め
13から2Q/分の流量でガス流路に招き入れられる。
Now, when using the device shown in Fig. 4, the pump 1
6 to 22/min flow rate, nitrogen gas or air temperature approx.
While the atmosphere at 0°C and relative humidity of 60 to 70% is introduced into the gas flow path, the gas detector is maintained at a predetermined operating temperature by the sheet heater 4 (Fig. 1), and then diluted to a predetermined concentration. The NO2 sample gas that had been
By operating the gas switching solenoid valve 2o, sample gas is introduced into the gas flow path from the sample gas reservoir 13 at a flow rate of 2 Q/min.

この除のガス検知器の電気抵抗の変化が立ち上り特性と
してガス検知器の電気抵抗測定装置26を介して記録さ
れる。
This change in the electrical resistance of the gas detector is recorded as a rise characteristic via the electrical resistance measuring device 26 of the gas detector.

ここでガス検知器の電気抵抗測定装置の回路構成を第5
図に示す。なお第6図において、28はガス検知器22
に抵抗(IMΩ)29を介し直流電圧(1■)を印加す
るだめの電源、30はインピーダンス変換器、31は記
録計である。
Here, the circuit configuration of the electrical resistance measuring device of the gas detector is explained in the fifth section.
As shown in the figure. In addition, in FIG. 6, 28 is the gas detector 22.
30 is an impedance converter, and 31 is a recorder.

さて次に、電気抵抗値が、一定値RGに達した後、再び
ガス切換電磁弁20を操作することで、キャリアガスを
同じくポンプ26で、22/分の流量で招き入れ、この
除のガス検知器22の電気抵抗の変化が立ち下り特性と
して記録される。
Next, after the electrical resistance value reaches a certain value RG, by operating the gas switching solenoid valve 20 again, carrier gas is introduced at a flow rate of 22/min using the same pump 26, and the gas other than this is detected. The change in electrical resistance of the device 22 is recorded as a falling characteristic.

次に、電気抵抗値が一定値R8に達した後、先程とは異
なった#度に変化させておいたサンプルガスを用いて同
様のことが行われる。
Next, after the electrical resistance value reaches a constant value R8, the same process is performed using a sample gas that has been changed to a different degree from the previous one.

次に具体的に本発明の詳細な説明する。Next, the present invention will be specifically explained in detail.

〈実施例1〉 第6図は、前述の測定装置を用い、キャリアガスとして
、気温20℃、相対湿度62%の大気を用い、NO2ガ
ス濃度20 p P ” y動作側190−6o○℃と
したときの、結晶粒径が、73,81゜89.104,
120,135,142,146゜159人である酸化
錫膜を感応体とする、第1図に示した構造を有したガス
検知器のRG/Roで与えられるガス感度Sと、サンプ
ルガス導入30秒後のガス感応膜の抵抗値RG (30
)を用いてで与えられる立ち上り率SA (30)の積
5XSA(30)の動作温度依存性を示す。
〈Example 1〉 Fig. 6 shows a measurement using the above-mentioned measuring device, using air at a temperature of 20°C and a relative humidity of 62% as a carrier gas, and a NO2 gas concentration of 20 pP”y on the operating side of 190-6o○°C. When this happens, the grain size is 73,81°89.104,
120, 135, 142, 146° 159 The gas sensitivity S given by RG/Ro of a gas detector having the structure shown in Fig. 1, which uses a tin oxide film as a sensitizer, and the sample gas introduction 30 Resistance value of the gas sensitive membrane after seconds RG (30
) to show the operating temperature dependence of the product 5XSA(30) of the rise rate SA(30).

なお、結晶粒径が、73,81.89,104.120
,135,142,146,159人である酸化錫膜は
、いずれも、先述した金楓錫をターゲットとするスパッ
タリング法で作製した。下表に示した、スパッタリング
時の基板温度および大気中2時間の加熱焼成温度以外は
、すべて先述した通りである。膜厚みは、すべて300
0〜3300人 である。
In addition, the crystal grain size is 73, 81.89, 104.120
, 135, 142, 146, and 159 were all fabricated by the sputtering method using the aforementioned gold maple tin as a target. All the settings are as described above except for the substrate temperature during sputtering and the heating and baking temperature for 2 hours in the atmosphere, which are shown in the table below. All film thicknesses are 300
0 to 3,300 people.

第6図から明らかなように、酸化錫膜を感応体とするN
O2ガス検知器においては、感度および応答速波は、感
応体として用いる酸化錫膜の結晶粒径に大きく依存して
いる。特に、本発明に従い、かつ、スパッタリング法に
より形成した100Å以下の粒径の感応体を備えたN0
2ガス検知器を動作温度200〜300 ”Cで動作さ
せることによへ酸化錫を感応体とし、NO2ガスを検知
する検知方式において、最高感度、最高応答速度のNO
2ガスなお、本発明に従う結晶粒径が100Å以下であ
る酸化錫膜として、先述した、いわゆるスパッタリング
法による膜厚みが数1000人の膜でも良いしくただし
、この場合は動作温度の連星が必要である。)、また、
金属錫を酸素ガスふん囲気中で加熱蒸発させる、いわゆ
るガス中蒸着法で得られる膜厚みが数μにおよd−酸化
錫膜でも艮いしくただし、この際の酸素ガス圧は、0.
1〜0,5Torrであること、また、膜形成後は大気
中で450’C以上の加熱をしないことが肝要である。
As is clear from Figure 6, N
In an O2 gas detector, the sensitivity and response speed largely depend on the crystal grain size of the tin oxide film used as the sensitive material. In particular, N0 according to the present invention and equipped with a susceptor having a particle size of 100 Å or less formed by a sputtering method
In a detection method that uses tin oxide as a sensitizer to detect NO2 gas by operating the 2-gas detector at an operating temperature of 200 to 300''C, NO2 has the highest sensitivity and highest response speed.
Note that the tin oxide film having a crystal grain size of 100 Å or less according to the present invention may be formed by the above-mentioned so-called sputtering method to a thickness of several thousand people, but in this case, a binary operating temperature is required. It is. ),Also,
A d-tin oxide film with a thickness of several μm obtained by heating and evaporating metallic tin in an atmosphere surrounded by oxygen gas, the so-called in-gas evaporation method, has a thickness of several μm, however, the oxygen gas pressure at this time is 0.
It is important that the temperature be 1 to 0.5 Torr, and that the temperature should not be heated above 450'C in the atmosphere after film formation.

)、さらにはS n Cfl 4をアンモニア水で加水
分解して得られるα−スズ酸あるいは、金属錫粉末を濃
硝酸中で酸化することで得られるβ−スズ酸の白色沈澱
物を低融アルカリガラス粉末と混合して得られるペース
トを印刷塗布し、a−スズ酸の場合は、45゜゛C以下
で加熱焼成、β−スズ酸の場合は、400℃以下で加熱
焼成することで得られるや膜厚み数μの酸化錫膜であっ
ても艮く、いづれの膜であっても艮い。
), and furthermore, the white precipitate of α-stannic acid obtained by hydrolyzing S n Cfl 4 with aqueous ammonia or β-stannic acid obtained by oxidizing metallic tin powder in concentrated nitric acid is treated with a low-melting alkali. The paste obtained by mixing with glass powder is applied by printing, and in the case of a-stannic acid, it is heated and baked at 45°C or less, and in the case of β-stannic acid, it is heated and baked at 400°C or less. Even if it is a tin oxide film with a thickness of several micrometers, it will not work, and it will work no matter what film it is.

〈実施例2〉 第7図CI!L)および(b)は、純度99.99 w
 tチの金属錫を蒸発源とする酸素ガス中蒸発法(酸素
ガス圧0.5Torr、基板加熱は不要である)で得た
酸化錫膜を第1図に示したガス感応体1としたNO2ガ
ス検知器のガス特性を示す。動作温度390°Cとし、
キャリアガスとして、第7図(a)の場合窒素を第7図
中)の場合20℃、温度62%の大気を各々用へNO2
濃度を6〜40ppmの間で変化させたときのR,/R
oで与えられる感度Sの対数jloqF3を縦軸に、N
O2ガス濃度CNo2の対数ROCICNO2を横軸に
プロットした際得られる直線の傾きΔQoqS/Δ加q
CNo2加酸CNo2結晶粒径との関係を示している。
<Example 2> Figure 7 CI! L) and (b) have a purity of 99.99 w
A tin oxide film obtained by an evaporation method in oxygen gas (oxygen gas pressure 0.5 Torr, no need to heat the substrate) using metallic tin as an evaporation source was used as the gas sensitive body 1 shown in FIG. Shows the gas characteristics of the gas detector. The operating temperature is 390°C,
As a carrier gas, nitrogen is used in the case of Fig. 7 (a), and air at 20°C and 62% temperature is used in the case of Fig. 7 (in Fig. 7).
R, /R when changing the concentration between 6 and 40 ppm
The vertical axis is the logarithm jloqF3 of the sensitivity S given by o, and N
The slope of the straight line obtained when the logarithm ROCICNO2 of the O2 gas concentration CNo2 is plotted on the horizontal axis ΔQoqS/ΔAddq
The relationship between CNo2 acidification and CNo2 crystal grain size is shown.

なお、結晶粒径の異なる酸化錫膜は、上述したガス中蒸
着法で形成した後大気中で異なる温度で2時間焼成する
ことで得られる。下表に焼成温度と結晶粒径の一例を示
す。
Incidentally, tin oxide films having different crystal grain sizes can be obtained by forming the film by the above-mentioned in-gas vapor deposition method and then firing it in the atmosphere at different temperatures for 2 hours. The table below shows an example of firing temperature and crystal grain size.

第7図(a) 、 (b)より明らかなように、結晶粒
径が100八を越えると、ΔIlage/Δ”0qCN
O2値は、極端に低下する。すなわち、ガス感度が極端
に低下することがわかる。
As is clear from Fig. 7(a) and (b), when the grain size exceeds 1008, ΔIlage/Δ”0qCN
O2 values drop extremely. That is, it can be seen that the gas sensitivity is extremely reduced.

〈実施例3〉 第8図は、酸化錫膜として、先述したスパッタリング法
で得た結晶粒径81への膜を感応体とするNO2ガス検
知器A、先述した酸素ガス中蒸着法で得た結晶粒径81
人の酸化錫膜を感応体とするN02ガス検知器B、a−
スズ酸を生成分とするベーストの印刷、焼き付で得た結
晶粒径86人の酸化錫膜を感応体とするNO2ガス検知
器Cを、動作温度390℃で、キャリアガスを窒素とし
たときの、感度SとN02ガス濃度CNo2の関係を示
す。
<Example 3> Fig. 8 shows a NO2 gas detector A in which a tin oxide film with a crystal grain size of 81 obtained by the above-mentioned sputtering method is used as a sensitizer, and a NO2 gas detector A using a tin oxide film obtained by the above-mentioned oxygen gas vapor deposition method. Crystal grain size 81
N02 gas detector B, a- using human tin oxide film as a sensitive body
When using NO2 gas detector C, which uses a tin oxide film as a sensitive material with a crystal grain size of 86 obtained by printing and baking a base plate containing stannic acid as a product, at an operating temperature of 390°C and using nitrogen as the carrier gas. The relationship between the sensitivity S and the N02 gas concentration CNo2 is shown.

検知器A、B、C共、各々の特性を示す直線の傾き(Δ
120qs/Δ”oqCNO2) は約0.98のほぼ
等しい値を示している。すなわち、結晶粒径が、はぼ等
しい酸化錫膜を感応体とするNO2ガス検知器は、感度
Sの絶対値は異なるけれども、N02ガス濃度特性は、
はぼ等しいことがわかる。
For detectors A, B, and C, the slope of the straight line (Δ
120qs/Δ”oqCNO2) shows an almost equal value of about 0.98.In other words, the absolute value of the sensitivity S of the NO2 gas detector using a tin oxide film as a sensor with almost the same crystal grain size is Although different, the N02 gas concentration characteristics are
It turns out that they are roughly equal.

なお、感度Sの絶対値の大小関係が、A′″>>BよC
になっているのは、酸化錫膜の外見的な形状によってお
り、ガス中蒸着法で得られた膜は、多孔性で比表面積が
大きいために、吸着サイト数が多く、このため、比較的
緻密な酸化錫膜を有した検知器B、Cに較べ、大きな感
度Sが得られたものと考えられる。
In addition, the magnitude relationship of the absolute value of sensitivity S is A'''>>B and C.
This is due to the external shape of the tin oxide film, and the film obtained by vapor deposition in gas has a large number of adsorption sites due to its porosity and large specific surface area. It is thought that a greater sensitivity S was obtained compared to detectors B and C, which had dense tin oxide films.

以上のように、本発明はNO2ガス検知を高感度かつ高
応答速度で行うことを可能とするものである。
As described above, the present invention enables NO2 gas detection to be performed with high sensitivity and high response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるNO2ガス検知器の断面図、第2
図は酸化錫膜のX線回折図、第3図は酸化シリコン結晶
粉末のX線回折図、第4図はガス応答特性測定装置の構
成を示すブロック図、第5図はガス検知器の電気抵抗測
定装置の回路構成を示す図、第6図、第7図(a) 、
 (b)、および第8図は本発明の詳細な説明するため
の図で、このうち、第6図は各種粒径の酸化錫膜の動作
温度とガス応答感度との関係を示し、第7図(a) 、
 (b)は結晶粒の太きさとガス感度との関係を示し、
第8図は各種酸化錫膜におけるガス感度のガス濃度依存
性を示す。 1・・・・・・ガス感応体、2・・・・・・電極、3・
・・・・・基板、4・・・・・・面状ヒータ、8・・・
・・・熱電対。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 2θ(贋2 第3図 201)
Fig. 1 is a sectional view of the NO2 gas detector according to the present invention, Fig. 2 is a sectional view of the NO2 gas detector according to the present invention;
The figure is an X-ray diffraction diagram of a tin oxide film, Figure 3 is an X-ray diffraction diagram of a silicon oxide crystal powder, Figure 4 is a block diagram showing the configuration of the gas response characteristic measuring device, and Figure 5 is an electrical diagram of a gas detector. Diagrams showing the circuit configuration of the resistance measuring device, FIG. 6, FIG. 7(a),
(b) and FIG. 8 are diagrams for explaining the present invention in detail. Of these, FIG. 6 shows the relationship between the operating temperature and gas response sensitivity of tin oxide films of various particle sizes, and FIG. Figure (a),
(b) shows the relationship between crystal grain thickness and gas sensitivity,
FIG. 8 shows the gas concentration dependence of the gas sensitivity in various tin oxide films. 1...Gas sensitive body, 2...Electrode, 3.
... Substrate, 4 ... Planar heater, 8 ...
···thermocouple. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 2θ (Fake 2 Figure 3 201)

Claims (3)

【特許請求の範囲】[Claims] (1)X線回折測定において現れる、S n O2結晶
の(110)面に帰属される回折ピークの半値巾からデ
バイ・シェーラ一式を用いて算出される結晶粒子の大き
さが100Å以下である膜状酸化錫からなる感応体を有
することを特徴とするNO2ガス検知器。
(1) A film in which the crystal grain size is calculated using the Debye-Scherer set from the half-width of the diffraction peak attributed to the (110) plane of the S n O2 crystal that appears in X-ray diffraction measurement, and is 100 Å or less A NO2 gas detector characterized by having a sensitive body made of tin oxide.
(2)X線回折測定において現れる、S n O2結晶
の(110)面に帰属される回折ピークの半値巾からデ
バイ・シェーラ一式を用いて算出される結晶粒子の大き
さが100八以下である膜状酸化錫を感応体として用い
るとともに前記感応体を200〜300℃で動作させる
ことを特徴とするN02ガス検知方法。
(2) The crystal grain size, calculated using the Debye-Scherer set from the half-width of the diffraction peak attributed to the (110) plane of the S n O2 crystal that appears in X-ray diffraction measurement, is 1008 or less. A method for detecting N02 gas, characterized in that film-like tin oxide is used as a sensitive material and the sensitive material is operated at 200 to 300°C.
(3)酸素ガス中蒸発法又はスパッタリング法で形成さ
れた膜状酸化錫を用いることを特徴とする特許請求の範
囲第2項記載のNO2ガス検知方法。
(3) The NO2 gas detection method according to claim 2, characterized in that a tin oxide film formed by evaporation in oxygen gas or sputtering is used.
JP20393581A 1981-12-17 1981-12-17 Detector of no2 gas and detecting method therefor Pending JPS58105049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20393581A JPS58105049A (en) 1981-12-17 1981-12-17 Detector of no2 gas and detecting method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20393581A JPS58105049A (en) 1981-12-17 1981-12-17 Detector of no2 gas and detecting method therefor

Publications (1)

Publication Number Publication Date
JPS58105049A true JPS58105049A (en) 1983-06-22

Family

ID=16482119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20393581A Pending JPS58105049A (en) 1981-12-17 1981-12-17 Detector of no2 gas and detecting method therefor

Country Status (1)

Country Link
JP (1) JPS58105049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244572A (en) * 2005-03-02 2006-09-14 Funai Electric Co Ltd Remote control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273089A (en) * 1975-12-15 1977-06-18 Nippon Soken Detector for gas composition
JPS5424095A (en) * 1977-07-26 1979-02-23 Fuji Electric Co Ltd Gas detector
JPS5529758A (en) * 1978-08-23 1980-03-03 Matsushita Electric Ind Co Ltd Detector employing extremely-fine corpuscule resist film
JPS5578235A (en) * 1978-12-08 1980-06-12 Matsushita Electric Ind Co Ltd Sensor and its manufacture
JPS55158549A (en) * 1979-05-29 1980-12-10 Matsushita Electric Ind Co Ltd Production of sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273089A (en) * 1975-12-15 1977-06-18 Nippon Soken Detector for gas composition
JPS5424095A (en) * 1977-07-26 1979-02-23 Fuji Electric Co Ltd Gas detector
JPS5529758A (en) * 1978-08-23 1980-03-03 Matsushita Electric Ind Co Ltd Detector employing extremely-fine corpuscule resist film
JPS5578235A (en) * 1978-12-08 1980-06-12 Matsushita Electric Ind Co Ltd Sensor and its manufacture
JPS55158549A (en) * 1979-05-29 1980-12-10 Matsushita Electric Ind Co Ltd Production of sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244572A (en) * 2005-03-02 2006-09-14 Funai Electric Co Ltd Remote control device

Similar Documents

Publication Publication Date Title
US4307373A (en) Solid state sensor element
US4595485A (en) Limiting electric current type oxygen sensor
US4387165A (en) H2 S Detector having semiconductor and noncontinuous inert film deposited thereon
US5400643A (en) Gas sensor based on semiconductor oxide, for gaseous hydrocarbon determination
GB2085166A (en) Semiconductor gas sensor
JPH08313470A (en) A method for detecting methane in gas mixtures.
US20050045477A1 (en) Gas sensor and manufacturing method thereof
JPH0517650Y2 (en)
JPS60228949A (en) Method and device for detecting reducing gas in mixed gas tobe detected
GB2142147A (en) Gas sensor
JPS58105049A (en) Detector of no2 gas and detecting method therefor
JPH0765977B2 (en) Method for producing an inert, catalytic or gas-sensitive ceramic layer for gas sensors
JP2844286B2 (en) Nitrogen oxide detecting element and method of manufacturing the same
Poghossian et al. Selective petrol vapour sensor based on an Fe2O3 thin film
JPS63736B2 (en)
JPH02662B2 (en)
JPH022534B2 (en)
JPH06288952A (en) Gas sensor
JPS5811846A (en) Preparation of gaseous no2 detector and its detecting method
JPH0531104B2 (en)
JPS6222096B2 (en)
JPH07198651A (en) Thin film type gas sensor
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
JPH04273050A (en) Gas sensor
JPH038507B2 (en)