[go: up one dir, main page]

JPS6030894B2 - Manufacturing method of gas/humidity sensor - Google Patents

Manufacturing method of gas/humidity sensor

Info

Publication number
JPS6030894B2
JPS6030894B2 JP54066463A JP6646379A JPS6030894B2 JP S6030894 B2 JPS6030894 B2 JP S6030894B2 JP 54066463 A JP54066463 A JP 54066463A JP 6646379 A JP6646379 A JP 6646379A JP S6030894 B2 JPS6030894 B2 JP S6030894B2
Authority
JP
Japan
Prior art keywords
gas
ultrafine particle
particle film
metal oxide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54066463A
Other languages
Japanese (ja)
Other versions
JPS55158549A (en
Inventor
雅博 西川
芳裕 山崎
久仁 小川
惇 阿部
聰 関戸
茂 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54066463A priority Critical patent/JPS6030894B2/en
Publication of JPS55158549A publication Critical patent/JPS55158549A/en
Publication of JPS6030894B2 publication Critical patent/JPS6030894B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 本発明は金属酸化物超微粒子膜を用いたガス・湿度セン
サの製造方法にかかり、従来の金属酸化物超微粒子膜で
形成されたセンサに比べてガスに対する感度が高く、電
導度も大きい改良されたガス・湿度センサを製造する方
法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a gas/humidity sensor using a metal oxide ultrafine particle film, which has higher sensitivity to gas than a conventional sensor formed using a metal oxide ultrafine particle film. The present invention provides a method for manufacturing an improved gas and humidity sensor that also has high conductivity.

平均粒径が十数Aから百数十A程度の酸化物超微粒子で
構成された膜の抵抗値が、ガスや水蒸気に対して敏感に
変化することが見出され、これを用いたガス湿度センサ
が提案されている。
It has been discovered that the resistance value of a film composed of ultrafine oxide particles with an average particle size of about 10-10A to 100-100A changes sensitively to gas and water vapor. A sensor has been proposed.

本発明は、このような超微粒子感応膜センサの感度、電
導度をさらに向上させるための加熱処理方法に関するも
のである。
The present invention relates to a heat treatment method for further improving the sensitivity and conductivity of such an ultrafine particle sensitive film sensor.

以下、図面を参照しながら、本発明の一実施例について
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明によるガス湿度センサの平面図である。FIG. 1 is a plan view of a gas humidity sensor according to the present invention.

このセンサは、図に示すように、まずガラスやセラミッ
クスなどの絶縁基板1上に対をなす電極2,3を形成し
、その上にさらに錫、チタン、亜鉛あるいはニッケル等
の金属酸化物半導体の超微粒子膜4を形成し、さらに酸
素あるいは酸素を含む雰囲気中で加熱して作製したもの
である。本発明の方法の一実施例として、たとえば、金
属酸化物として錫酸化物を用いた超微粒子膜センサの作
製例について第2図を用いて説明する。
As shown in the figure, this sensor first forms a pair of electrodes 2 and 3 on an insulating substrate 1 made of glass or ceramics, and then a metal oxide semiconductor such as tin, titanium, zinc, or nickel is formed on top of the electrodes 2 and 3. It is produced by forming an ultrafine particle film 4 and then heating it in oxygen or an atmosphere containing oxygen. As an example of the method of the present invention, an example of fabricating an ultrafine particle film sensor using tin oxide as the metal oxide will be described with reference to FIG.

真空蒸着装置11内の試料ホルダー12に、第1図に図
したような電極2,3を有する縦系該基板1を、その電
極面が図面下方向を向くように取付ける。また、蒸着用
ボート13には、蒸発材料14として錫あるいはその酸
化物をセットする。しかるのち、排気口15に接続され
た真空ポンプ(図面では省略)を作動させて排気を行な
い、装置1 1内の真空度を1げびonのオーダにした
後、ガス導入ロー6のコックを開いて装置11内に酸素
ガスを導入し、その圧力をたとえば0.5Torr程度
に保つ。
The vertical substrate 1 having electrodes 2 and 3 as shown in FIG. 1 is attached to a sample holder 12 in a vacuum evaporation apparatus 11 so that the electrode surface faces downward in the drawing. Furthermore, tin or its oxide is set in the vapor deposition boat 13 as the evaporation material 14 . After that, the vacuum pump (not shown in the drawing) connected to the exhaust port 15 is operated to perform exhaustion, and after the degree of vacuum inside the device 11 is on the order of 1 volt, the cock of the gas introduction row 6 is opened. Oxygen gas is introduced into the apparatus 11, and its pressure is maintained at, for example, about 0.5 Torr.

次に、蒸発用電源1 7によりボート13に通電して発
熱させ、酸素ガスの0.5Ton雰囲気のもとで蒸発材
料1 4を十数秒から数分間蒸発させる。たとえば、蒸
発材料14として錫を選び、120〜160Wの電力を
ボート13に印加すると、平均粒蓬約40Aの超微粒子
からなる厚さ約20仏mの錫酸化物の超微粒子の膜4が
、第1図に示すように、基板1上に形成された。錫酸化
物超微粒子膜が形成された後、空気導入口18のコック
を開いて装置11内に空気を導入し、その圧力を大気圧
にする。しかるのち、試料ホルダー12に取付けられた
絶縁基板1を加熱するために、試料ホルダー12にセッ
トされたヒータ19に、ヒータ用電源2川こより通電し
、錫酸化物の超微粒子膜4をたとえば500q0で10
分間程度加熱する。対をなす電極2,3間で測定した超
微粒子膜4の抵抗値Rは、第3図に示すように変化し、
7分以上加熱すると、定常値になる。以上の説明は蒸発
材料を蒸発させるのに抵抗加熱法を例にあげて述べたが
、たとえば誘導加熱法や赤外線加熱法などの他の方法で
もよいことは言うまでもない。
Next, the boat 13 is energized by the evaporation power source 17 to generate heat, and the evaporation material 14 is evaporated for a few seconds to several minutes in an atmosphere of 0.5 tons of oxygen gas. For example, when tin is selected as the evaporation material 14 and a power of 120 to 160 W is applied to the boat 13, a film 4 of ultrafine particles of tin oxide with a thickness of about 20 French m and consisting of ultrafine particles with an average grain size of about 40 A is formed. As shown in FIG. 1, it was formed on a substrate 1. After the tin oxide ultrafine particle film is formed, the cock of the air inlet 18 is opened to introduce air into the device 11 and bring the pressure to atmospheric pressure. Thereafter, in order to heat the insulating substrate 1 attached to the sample holder 12, the heater 19 set on the sample holder 12 is energized from the heater power source 2, and the ultrafine particle film 4 of tin oxide is heated at, for example, 500q0 So 10
Heat for about a minute. The resistance value R of the ultrafine particle film 4 measured between the pair of electrodes 2 and 3 changes as shown in FIG.
When heated for 7 minutes or more, it reaches a steady value. Although the above explanation has been made using the resistance heating method as an example to evaporate the evaporation material, it goes without saying that other methods such as induction heating and infrared heating may also be used.

また形成された錫酸化物超微粒子膜4の加熱処理を、蒸
発装置11内で行なったが、たとえば装置11から取り
出した後に大気中で加熱しても同じことであり、加熱用
ヒータ19の種類や形状の差異は本発明の効果に全く関
係がない。金属酸化物超微粒子はガスや水蒸気などの外
的作用因子に対してきわめて敏感に感応するが、上述の
ように金属酸化物超微粒子を酸素あるいは酸素を含む雰
囲気中で高温度で加熱処理を行なうことにより、されに
高感度になり、電導度も向上するという本発明のポイン
トについて以下に具体的に説明する。
Although the formed tin oxide ultrafine particle film 4 was heat-treated in the evaporator 11, the same effect can be obtained even if it is heated in the atmosphere after being taken out from the evaporator 11. Differences in size and shape have no bearing on the effects of the present invention. Ultrafine metal oxide particles are extremely sensitive to external agents such as gas and water vapor, but as mentioned above, ultrafine metal oxide particles are heated at high temperatures in oxygen or an atmosphere containing oxygen. The key point of the present invention, which is that the sensitivity is thereby improved and the conductivity is also improved, will be specifically explained below.

金属酸化物として錫酸化物を用い、酸素ガス圧0.5T
on中で作製した厚さ20#mの錫酸化物超微粒子膜を
、空気中で500℃、10分間加熱処理を行なった本発
明によるガス湿度センサに対し、加熱処理を全く行なわ
ない錫酸化物超微粒子膜を比較例として比較試験を行な
った。
Using tin oxide as the metal oxide, oxygen gas pressure 0.5T
In contrast to the gas humidity sensor according to the present invention in which a tin oxide ultrafine particle film with a thickness of 20#m was heat-treated in air at 500°C for 10 minutes, a tin oxide film without any heat treatment A comparative test was conducted using an ultrafine particle membrane as a comparative example.

試験は、これらの試料について雰囲気温度25℃、湿度
60%で各試料の温度を250℃に保ち、エチルアルコ
ール(10の血濃度)に対する感度を測定した。
In the test, sensitivity to ethyl alcohol (blood concentration of 10) was measured for these samples by maintaining the temperature of each sample at 250° C. at an ambient temperature of 25° C. and humidity of 60%.

感度はR。/RG(ただし、R。は大気中にて測定した
錫酸化物超微粒子膜の抵抗値であり、RGはエチルアル
コール10功岬濃度中での膜の抵抗値)で表わしており
、感度および電導度ともに比較例を1.0としたときの
相対値を下表に示す。この表から明らかなように、本発
明によれば、感度、電導度とも従来に比べて非常に優れ
たガス温度セソサの得られることがわかる。
Sensitivity is R. /RG (where R is the resistance value of the tin oxide ultrafine particle film measured in the air, and RG is the resistance value of the film at a concentration of 10% of ethyl alcohol). The table below shows the relative values when the comparative example is set as 1.0. As is clear from this table, it can be seen that according to the present invention, a gas temperature separator with extremely superior sensitivity and conductivity can be obtained compared to the conventional ones.

また本実施例ではエチルアルコールに対する作用効果を
示したが、センサの動作温度をたとえば350℃にする
と、ィソブタンガスなどの還元性ガスに対して同様な作
用効果があり、動作温度によって種々のガス・湿度に対
して有効であった。このように、本発明の方法により、
センサの特性が大中に向上しているのは、酸素存在雰囲
気中での加熱処理であるため、錫酸化物超微粒子が十分
酸化されて、超微粒子膜中のSn02の存在比がきわめ
て大になることが原因の一つではないかと推測される。
In addition, although this example showed the effect on ethyl alcohol, if the operating temperature of the sensor is set to 350°C, the same effect will be obtained on reducing gases such as isobutane gas, and depending on the operating temperature, various gases and humidity It was effective against Thus, by the method of the present invention,
The reason why the characteristics of the sensor are greatly improved is because the heat treatment is performed in an atmosphere containing oxygen, so the tin oxide ultrafine particles are sufficiently oxidized and the abundance ratio of Sn02 in the ultrafine particle film becomes extremely large. It is speculated that this may be one of the causes.

このことは、錫酸化物超微粒子膜の色が加熱処理を行な
うこにより黄白色から白色へ変化することや、X線回折
による測定結果からもわかる。ただし、加熱処理温度は
超微粒子膜が競結現象を示す温度以上であってはならな
いは言うまでもないことである。加熱処理は金属酸化物
超微粒子が十分酸化されるまで行うことが望ましく、本
発明の実施例の場合は、350oo〜550ooの温度
で10分間熱処理することでもっとも良好な結果が得ら
れた。加熱処理温度および時間は金属酸化物超微粒子の
製造条件、主として酸素ガス圧によって異なってくるこ
とはいうまでもないが、少なくとも加熱処理温度は動作
温度よりも高いこと、あるいは加熱処理温度および時間
は、第3図に示すように、抵抗値Rが定常値になるよう
に条件を設定することが望ましい。
This can be seen from the fact that the color of the tin oxide ultrafine particle film changes from yellow-white to white upon heat treatment, and from the results of X-ray diffraction measurements. However, it goes without saying that the heat treatment temperature must not be higher than the temperature at which the ultrafine particle film exhibits a cohesion phenomenon. It is preferable to carry out the heat treatment until the metal oxide ultrafine particles are sufficiently oxidized, and in the case of the examples of the present invention, the best results were obtained by heat treatment at a temperature of 350 oo to 550 oo for 10 minutes. It goes without saying that the heat treatment temperature and time will vary depending on the manufacturing conditions of the ultrafine metal oxide particles, mainly oxygen gas pressure, but at least the heat treatment temperature must be higher than the operating temperature, or the heat treatment temperature and time must be higher than the operating temperature. As shown in FIG. 3, it is desirable to set the conditions so that the resistance value R becomes a steady value.

上表に示した本発明によるガス湿度センサの測定に用い
た試料は0.5Torrの酸素ガス中で錫酸化物超微粒
子を作製したのち、500℃の空気中で10分間加熱処
理を行ない、しかるのち250℃の動作温度においてガ
ス感度、電導度の測定を行なったものである。
The samples used for the measurements of the gas humidity sensor according to the present invention shown in the table above were prepared by producing ultrafine tin oxide particles in oxygen gas at 0.5 Torr, then heating them in air at 500°C for 10 minutes. Gas sensitivity and conductivity were then measured at an operating temperature of 250°C.

一方、表に示した比較例の測定に用いた試料は0.5T
onの酸素ガス中で同様に作製したのち、50000で
、10分間という加熱処理を施すことなしに、2500
0で熱処理を行ない、酸化物超微粒子膜の抵抗値Rが定
常値になったのちに、250つ○の動作温度においてガ
ス感度、電導度の測定を行なったものである。すなわち
、表の例は加熱処理温度を動作温度よりも高くすること
により、ガス感度および電導度がともに改善されること
を示している。このように、本発明の製造方法によれば
、金属酸化物超微粒子で構成した膜を加熱処理すること
により、電導度と外的作用因子に対する感度を大中に向
上させることができ、極めて実用的価値の大きいガス・
湿度センサを実現できる。
On the other hand, the sample used for the measurement of the comparative example shown in the table was 0.5T.
After making it in the same way in oxygen gas of ON, it was heated to 2500℃ without heat treatment for 10 minutes at 50000℃.
After heat treatment was performed at 0 and the resistance value R of the oxide ultrafine particle film reached a steady value, gas sensitivity and conductivity were measured at an operating temperature of 250 degrees. That is, the example in the table shows that both gas sensitivity and electrical conductivity are improved by increasing the heat treatment temperature higher than the operating temperature. As described above, according to the manufacturing method of the present invention, by heat-treating a film composed of ultrafine metal oxide particles, the conductivity and sensitivity to external factors can be greatly improved, making it extremely practical. Highly valuable gas
A humidity sensor can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によるセンサの一例を示す平面図
である。 第2図は酸化物超微粒子膜を作製するための装置の一例
を示す図である。第3図は金属酸化物超微粒子膜を室温
から500℃に加熱したときの膜の抵抗値の時間的変化
の一例を示すものである。1・・・・・・絶縁基板、2
,3・・・・・・電極、4・・…・超微粒子膜。 第1図 第2図 第3図
FIG. 1 is a plan view showing an example of a sensor according to the method of the present invention. FIG. 2 is a diagram showing an example of an apparatus for producing an oxide ultrafine particle film. FIG. 3 shows an example of the change over time in the resistance value of a metal oxide ultrafine particle film when the film is heated from room temperature to 500°C. 1...Insulating substrate, 2
, 3... Electrode, 4... Ultrafine particle film. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 対をなす電極を設置した絶縁性支持基体上に平均粒
径が十数Åから百数十Åの金属酸化物超微粒子膜を形成
した後、酸素あるいは酸素を含む雰囲気中において、3
50℃以上であつて、前記金属酸化物超微粒子膜が焼結
しない温度で加熱処理することを特徴とするガス・温度
センサの製造方法。 2 金属酸化物超微粒子膜の加熱処理温度がセンサの動
作温度よりも高いことを特徴とする特許請求の範囲第1
項記載のガス・湿度センサの製造方法。 3 加熱処理を金属酸化物超微粒子膜の抵抗値が定常状
態になるまで行なうことを特徴とする特許請求の範囲第
1項又は第2項に記載のガス・湿度センサの製造方法。 4 金属酸化物超微粒子膜が錫酸化物の超微粒子膜であ
ることを特徴とする特許請求の範囲第1項、第2項、第
3項記載のガス・湿度センサの製造方法。
[Claims] After forming a metal oxide ultrafine particle film with an average particle size of 10-odd Å to 100-odd angstroms on an insulating support substrate on which a pair of electrodes are installed, oxygen or an atmosphere containing oxygen is formed. Inside, 3
A method for manufacturing a gas/temperature sensor, characterized in that heat treatment is performed at a temperature of 50° C. or higher at which the metal oxide ultrafine particle film does not sinter. 2. Claim 1, characterized in that the heat treatment temperature of the metal oxide ultrafine particle film is higher than the operating temperature of the sensor.
Method for manufacturing the gas/humidity sensor described in Section 1. 3. The method for manufacturing a gas/humidity sensor according to claim 1 or 2, wherein the heat treatment is performed until the resistance value of the metal oxide ultrafine particle film reaches a steady state. 4. The method for manufacturing a gas/humidity sensor according to claims 1, 2, and 3, wherein the metal oxide ultrafine particle film is a tin oxide ultrafine particle film.
JP54066463A 1979-05-29 1979-05-29 Manufacturing method of gas/humidity sensor Expired JPS6030894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54066463A JPS6030894B2 (en) 1979-05-29 1979-05-29 Manufacturing method of gas/humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54066463A JPS6030894B2 (en) 1979-05-29 1979-05-29 Manufacturing method of gas/humidity sensor

Publications (2)

Publication Number Publication Date
JPS55158549A JPS55158549A (en) 1980-12-10
JPS6030894B2 true JPS6030894B2 (en) 1985-07-19

Family

ID=13316488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54066463A Expired JPS6030894B2 (en) 1979-05-29 1979-05-29 Manufacturing method of gas/humidity sensor

Country Status (1)

Country Link
JP (1) JPS6030894B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763443A (en) * 1980-10-03 1982-04-16 Matsushita Electric Ind Co Ltd Manufacture of sensor for superfine powder
JPS58105049A (en) * 1981-12-17 1983-06-22 Matsushita Electric Ind Co Ltd Detector of no2 gas and detecting method therefor
JPS5990040A (en) * 1982-11-15 1984-05-24 Matsushita Electric Ind Co Ltd Detector for gaseous carbon monoxide

Also Published As

Publication number Publication date
JPS55158549A (en) 1980-12-10

Similar Documents

Publication Publication Date Title
Ogawa et al. Electrical properties of tin oxide ultrafine particle films
Sinha et al. Thermal stability of thin PtSi films on silicon substrates
US20030217586A1 (en) Sensors including metal oxides selective for specific gases and methods for preparing same
Zhang et al. Finite-size effects in ferroelectric solid solution
CN106018490A (en) Palladium-silver nano-film hydrogen-sensitive element and manufacturing method
JPH04212048A (en) Gas sensor
JPS6030894B2 (en) Manufacturing method of gas/humidity sensor
JPS588743B2 (en) Gas/humidity sensor
US6059937A (en) Sensor having tin oxide thin film for detecting methane gas and propane gas, and process for manufacturing thereof
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
KR102208312B1 (en) Method for preparing reduced graphene oxide with controlled element composition ratio
JPH03123845A (en) Gas sensor
JPS63103959A (en) Gas sensor
JPS6133376B2 (en)
JPS6151260B2 (en)
JPS5883245A (en) Ultrafine particle gas-sensitive membrane
JPH07198648A (en) Gas detecting film and manufacture thereof
JPS632054B2 (en)
JPH02296140A (en) Humidity sensor
JPH06213853A (en) Manufacture of gas detecting element
US20030012881A1 (en) Process for reducing the resistivity of an electrically conductive layer
JPS6030893B2 (en) How to manufacture the sensor
JPH0532697B2 (en)
JPS5840694B2 (en) Manufacturing method of gas/humidity sensor
JPH04127047A (en) Gas sensor