JP6228712B1 - 非水系リチウム型蓄電素子 - Google Patents
非水系リチウム型蓄電素子 Download PDFInfo
- Publication number
- JP6228712B1 JP6228712B1 JP2017509054A JP2017509054A JP6228712B1 JP 6228712 B1 JP6228712 B1 JP 6228712B1 JP 2017509054 A JP2017509054 A JP 2017509054A JP 2017509054 A JP2017509054 A JP 2017509054A JP 6228712 B1 JP6228712 B1 JP 6228712B1
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium
- storage element
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/64—Liquid electrolytes characterised by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
正極にリチウム化合物を含む非水系リチウム型蓄電素子であって、高温高電圧下での電圧低下によるエネルギーロスが低減され、高負荷充放電サイクル特性に優れる非水系リチウム型蓄電素子を提供すること。正極活物質以外のリチウム化合物を含む正極と、負極と、セパレータと、リチウムイオンを含む非水系電解液とを有する非水系リチウム型蓄電素子であって、上記正極は、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記負極は、負極集電体と、上記負極集電体の片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、上記正極活物質層中に含まれるNa及び/又はK元素の濃度をC[ppm]とするとき、2≦C≦300であり、上記正極の片面当たりの上記正極活物質層中に含まれる上記正極活物質以外の上記リチウム化合物の目付をD[g/m2]、上記正極の片面当たりの上記正極活物質層中に含まれる上記正極活物質の目付をE[g/m2]とするとき、1.0≦D≦15、10≦E≦100、0.2≦C/D≦38、かつ0.1≦C/E≦7.2である、非水系リチウム型蓄電素子。
Description
本発明は非水系リチウム型蓄電素子に関する。
近年、地球環境の保全及び省資源を目指すエネルギーの有効利用の観点から、風力発電の電力平滑化システム又は深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システム等が注目を集めている。
これらの蓄電システムに用いられる電池の第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時に高い出力放電特性を発揮する蓄電システムが要求されている。
現在、高出力蓄電デバイスとしては、電気二重層キャパシタ、ニッケル水素電池等が開発されている。
電気二重層キャパシタのうち、電極に活性炭を用いたものは、0.5〜1kW/L程度の出力特性を有する。この電気二重層キャパシタは、出力特性が高いだけでなく、耐久性(サイクル特性及び高温保存特性)もまた高く、上記の高出力が要求される分野で最適のデバイスであると考えられてきた。しかし、そのエネルギー密度は1〜5Wh/L程度に過ぎない。そのため、更なるエネルギー密度の向上が必要である。
一方、現在ハイブリッド電気自動車で一般に採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を有し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度及び出力特性をより一層高めるとともに、耐久性(特に、高温における安定性)を高めるための研究が精力的に進められている。
また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(すなわち、蓄電素子の放電容量に対する放電量の割合(%))50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されている。しかし、そのエネルギー密度は100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計である。また、その耐久性(サイクル特性及び高温保存特性)は、電気二重層キャパシタに比べ劣る。そのため、そのようなリチウムイオン電池は、実用的な耐久性を持たせるために、放電深度が0〜100%の範囲よりも狭い範囲で使用される。実際に使用できる容量は更に小さくなるから、耐久性をより一層向上させるための研究が精力的に進められている。
上記のように、高エネルギー密度、高出力特性、及び高耐久性を兼ね備えた蓄電素子の実用化が強く求められている。しかし、上述した既存の蓄電素子には、それぞれ一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められている。その有力な候補として、リチウムイオンキャパシタと呼ばれる蓄電素子が注目され、開発が盛んに行われている。
リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(以下、「非水系リチウム型蓄電素子」ともいう。)の一種であって、正極においては約3V以上で電気二重層キャパシタと同様の陰イオンの吸着及び脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵及び放出によるファラデー反応によって、充放電を行う蓄電素子である。
上述の蓄電素子に一般的に用いられる電極材料とその特徴をまとめると、一般的に、電極に活性炭等の材料を用い、活性炭表面のイオンの吸着及び脱離(非ファラデー反応)により充放電を行う場合は、高出力かつ高耐久性が得られるが、エネルギー密度が低くなる(例えば1倍とする。)。一方、電極に酸化物や炭素材料を用い、ファラデー反応により充放電を行う場合は、エネルギー密度が高くなる(例えば、活性炭を用いた非ファラデー反応の10倍とする。)が、耐久性及び出力特性に課題がある。
これらの電極材料の組合せとして、電気二重層キャパシタは、正極及び負極に活性炭(エネルギー密度1倍)を用い、正負極共に非ファラデー反応により充放電を行うことを特徴とし、したがって高出力かつ高耐久性を有するが、しかしながらエネルギー密度が低い(正極1倍×負極1倍=1)という特徴がある。
リチウムイオン二次電池は、正極にリチウム遷移金属酸化物(エネルギー密度10倍)、負極に炭素材料(エネルギー密度10倍)を用い、正負極共にファラデー反応により充放電を行うことを特徴とし、したがって高エネルギー密度(正極10倍×負極10倍=100)を有するが、しかしながら出力特性及び耐久性に課題がある。更に、ハイブリッド電気自動車等で要求される高耐久性を満足させるためには放電深度を制限しなければならず、リチウムイオン二次電池では、そのエネルギーの10〜50%しか使用できない。
リチウムイオンキャパシタは、正極に活性炭(エネルギー密度1倍)、負極に炭素材料(エネルギー密度10倍)を用い、正極では非ファラデー反応、負極ではファラデー反応により充放電を行うことを特徴とし、したがって、電気二重層キャパシタ及びリチウムイオン二次電池の特徴を兼ね備えた非対称キャパシタである。そして、リチウムイオンキャパシタは高出力かつ高耐久性でありながら、高エネルギー密度(正極1倍×負極10倍=10)を有し、リチウムイオン二次電池の様に放電深度を制限する必要がないことが特徴である。
特許文献1には、正極中に炭酸リチウムを含有させた正極を用い、電池内圧の上昇に応じて作動する電流遮断機構を有するリチウムイオン二次電池が提案されている。特許文献2には、リチウムマンガン酸等のリチウム複合酸化物を正極に用い、正極に炭酸リチウムを含有させることでマンガンの溶出を抑制したリチウムイオン二次電池が提案されている。特許文献3には、正極で被酸化物としての各種リチウム化合物を酸化し、劣化した蓄電素子の容量を回復させる方法が提案されている。特許文献4には、には、正極のリチウム及びニッケルを含む複合酸化物に炭酸リチウムを添加することにより、充放電サイクルに伴う容量劣化を抑制し、初期容量を増加させる方法が提案されている。
しかしながら、これらの従来の方法においては、正極中にリチウム化合物が残存することによる高温環境下での蓄電素子の電圧低下によるエネルギーロスや正極中のリチウム化合物の分解による抵抗上昇については考慮されておらず、高負荷充放電サイクル特性、高温耐久性について更なる改善の余地があった。
本発明は、以上の現状に鑑みてなされたものである。従って、一実施形態において、本発明が解決しようとする課題の一つは、正極にリチウム化合物を含む非水系リチウム型蓄電素子であって、高温高電圧下での電圧低下によるエネルギーロスが低減され、高負荷充放電サイクル特性に優れる非水系リチウム型蓄電素子を提供することである。一実施形態において、本発明が解決しようとする課題の一つは、高い入出力特性と優れた高負荷充放電サイクル特性、高温保存耐久性を示す、非水系リチウム型蓄電素子を提供することである。
本発明は、この知見に基づいてなされたものである。すなわち、本発明は、以下のとおりである。
[1]
正極活物質以外のリチウム化合物を含む正極と、負極と、セパレータと、リチウムイオンを含む非水系電解液とを有する非水系リチウム型蓄電素子であって、
上記正極は、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、
上記負極は、負極集電体と、上記負極集電体の片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、
上記正極活物質層中に含まれるNa及び/又はK元素の濃度をC(ppm)とするとき、2≦C≦300であり、
上記正極の片面当たりの上記正極活物質層中に含まれる上記正極活物質以外の上記リチウム化合物の目付をD(g/m2)、上記正極の片面当たりの上記正極活物質層中に含まれる上記正極活物質の目付をE(g/m2)とするとき、1.0≦D≦15、10≦E≦100、0.2≦C/D≦38、かつ0.1≦C/E≦7.2である、非水系リチウム型蓄電素子。
[2]
上記リチウム化合物が炭酸リチウムである、項目1に記載の非水系リチウム型蓄電素子。
[3]
上記濃度Cが2.5≦C≦300である、項目1又は2に記載の非水系リチウム型蓄電素子。
[4]
0.01≦D/E≦0.52である、項目1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。
[5]
正極表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率A1が40%以上99%以下である、項目1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。
[6]
BIB加工した正極断面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率A2が10%以上60%以下である、項目1〜5のいずれか一項に記載の非水系リチウム型蓄電素子。
[7]
上記非水系リチウム型蓄電素子に対して、環境温度25℃、セル電圧2.2Vから3.8V、電流値200Cのレートで充放電サイクルを60,000回行い、続いて4.5Vの定電圧充電を1時間行った後の静電容量をFe(F)とし、上記充放電サイクル前の静電容量をF(F)としたとき、以下の(h):
(h)Fe/Fが1.01以上である、
を満たす、項目1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。
[8]
活性炭を含む正極活物質と、上記正極活物質以外のリチウム化合物とを含む正極活物質層を有する正極前駆体であって、上記正極前駆体の上記正極活物質層中に含まれるNa及び/又はK元素の濃度C0(ppm)が、20≦C0≦1300ppmであり、上記正極前駆体の片面当たりの上記正極活物質層中に含まれる上記正極活物質以外のリチウム化合物の目付D0(g/m2)が、8.0≦D0≦50.0であり、上記正極前駆体の片面あたりの上記正極活物質層中に含まれる上記正極活物質の目付E0(g/m2)が、10≦E0≦100であり、0.2≦C0/D0≦38であり、0.1≦C0/E0≦7.2である正極前駆体を用いた、項目1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。
[9]
上記負極活物質層中に含まれるNa及び/又はK元素の濃度をC1(ppm)とし、
上記電解液中に含まれるNa及び/又はK元素の濃度をC2(ppm)とするとき、
1.00≦C1/C2≦15.00であり、
上記リチウム化合物が、炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上であって、
上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、上記正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、上記正極中に含まれるリチウム化合物の量が、上記正極活物質層の全質量を基準として1質量%以上50質量%以下である、
項目1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。
[10]
上記正極活物質層の固体7Li−NMRスペクトルにおいて、−40ppm〜40ppmにおけるピークの面積より計算されるリチウム量が、10.0×10−4mol/g以上300×10−4mol/g以下である、項目9に記載の非水系リチウム型蓄電素子。
[11]
上記非水系電解液が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートおよびフルオロエチレンカーボネートから選択される少なくとも1種の有機溶媒を含有する、項目9又は10に記載の非水系リチウム型蓄電素子。
[12]
上記非水系電解液が、LiPF6及びLiBF4のうち少なくとも1種を含有する、項目9〜11のいずれか一項に記載の非水系リチウム型蓄電素子。
[13]
上記非水系電解液におけるLiN(SO2F)2の濃度が、上記非水系電解液の総量を基準として0.3mol/L以上1.5mol/L以下である、項目9〜12のいずれか一項に記載の非水系リチウム型蓄電素子。
[14]
上記正極集電体及び上記負極集電体が貫通孔を持たない金属箔である、項目9〜13のいずれか一項に記載の非水系リチウム型蓄電素子。
[15]
項目1〜13のいずれか一項に記載の非水系リチウム型蓄電素子において、セル電圧4Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、電極積層体を収納している外装体の体積をV(L)、としたとき、以下の(a)及び(b):
(a)RaとFの積Ra・Fが0.3以上3.0以下であり、
(b)E/Vが15以上50以下である、
を満たす、項目9〜14のいずれか一項に記載の非水系リチウム型蓄電素子。
[16]
項目9〜15のいずれか一項に記載の非水系リチウム型蓄電素子において、セル電圧4Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、セル電圧4V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRd(Ω)、環境温度25℃にてセル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の内部抵抗をRe(Ω)としたとき、以下の(e)及び(g):
(e)Rd/Raが0.9以上3.0以下であり、
(g)Re/Raが0.9以上2.0以下である、
を満たす、項目9〜15のいずれか一項に記載の非水系リチウム型蓄電素子。
[17]
上記負極活物質はリチウムイオンを吸蔵及び放出できる炭素材料を含み、
上記正極活物質は活性炭を含み、
上記正極は、上記正極活物質層の全質量を基準として、上記正極活物質以外のリチウム化合物を1質量%以上50質量%以下含有し、
上記非水系電解液のAl濃度が、1ppm以上300ppm以下である、項目1〜16のいずれか一項に記載の非水系リチウム型蓄電素子。
[18]
上記非水系電解液が、
(A)LiPF6、及びLiBF4のうちの少なくとも1種;並びに
(B)LiN(SO2F)2、LiN(SO2CF3)2、及びLiN(SO2C2F5)2のうちの少なくとも1種;
のリチウム塩をさらに含有する、項目17に記載の非水系リチウム型蓄電素子。
[19]
上記非水系電解液の総量を基準として、上記(A)の合計モル濃度をMA(mol/L)、上記(B)の合計モル濃度をMB(mol/L)とするとき、モル濃度比MA/(MA+MB)が1/10以上9/10以下の範囲である、項目18に記載の非水系リチウム型蓄電素子。
[20]
上記リチウム塩のモル濃度比MA/MBが2/10以上6/10以下の範囲である、項目19に記載の非水系リチウム型蓄電素子。
[21]
上記(B)の合計モル濃度MB(mol/L)が、0.1mol/L以上1.5mol/L以下である、項目18〜20のいずれか1項に記載の非水系リチウム型蓄電素子。
[22]
上記(A)がLiPF6であり、上記(B)がLiN(SO2F)2である、項目18〜21のいずれか1項に記載の非水系リチウム型蓄電素子。
[23]
上記正極が含む、上記正極活物質以外のリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmである、項目17〜22のいずれか1項に記載の非水系リチウム型蓄電素子。
[24]
上記正極が含む、上記正極活物質以外のリチウム化合物が炭酸リチウムである、項目17〜23のいずれか1項に記載の非水系リチウム型蓄電素子。
[25]
上記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、静電容量をF(F)としたとき:
(a)RaとFとの積Ra・Fが0.3以上3.0以下である、
を満たす、項目17〜24のいずれか一項に記載の非水系リチウム型蓄電素子。
[26]
上記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、セル電圧4V及び環境温度60℃において2か月間保存した後の、常温放電内部抵抗をRd(Ω)とするとき、以下:
(e)Rd/Raが0.9以上3.0以下であり、
(f)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を満たす、項目17〜25のいずれか一項に記載の非水系リチウム型蓄電素子。
[27]
上記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、環境温度25℃にて、セル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の常温放電内部抵抗をRe(Ω)としたとき:
(g)Re/Raが0.9以上2.0以下である、
を満たす、項目17〜26のいずれか一項に記載の上記非水系リチウム型蓄電素子。
[28]
上記正極活物質層に含まれる上記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、項目1〜27のいずれか一項に記載の非水系リチウム型蓄電素子。
[29]
上記正極活物質層に含まれる上記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、項目1〜27のいずれか一項に記載の非水系リチウム型蓄電素子。
[30]
上記負極活物質のリチウムイオンのドープ量が、上記負極活物質の単位質量当たり530mAh/g以上2,500mAh/g以下である、項目1〜29のいずれか一項に記載の非水系リチウム型蓄電素子。
[31]
上記負極活物質のBET比表面積が100m2/g以上1,500m2/g以下である、項目1〜30のいずれか一項に記載の非水系リチウム型蓄電素子。
[32]
上記負極活物質のリチウムイオンのドープ量が、上記負極活物質の単位質量当たり50mAh/g以上700mAh/g以下である、項目1〜29のいずれか一項に記載の非水系リチウム型蓄電素子。
[33]
上記負極活物質のBET比表面積が1m2/g以上50m2/g以下である、項目1〜29、及び32のいずれか一項に記載の非水系リチウム型蓄電素子。
[34]
上記負極活物質の平均粒子径が1μm以上10μm以下である、項目1〜29、32、及び33のいずれか一項に記載の非水系リチウム型蓄電素子。
[35]
項目1〜34のいずれか一項に記載の非水系リチウム型蓄電素子を用いた蓄電モジュール。
[36]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた電力回生システム。
[37]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた電力負荷平準化システム。
[38]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた無停電電源システム。
[39]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた非接触給電システム。
[40]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いたエナジーハーベストシステム。
[41]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた蓄電システム。
[1]
正極活物質以外のリチウム化合物を含む正極と、負極と、セパレータと、リチウムイオンを含む非水系電解液とを有する非水系リチウム型蓄電素子であって、
上記正極は、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、
上記負極は、負極集電体と、上記負極集電体の片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、
上記正極活物質層中に含まれるNa及び/又はK元素の濃度をC(ppm)とするとき、2≦C≦300であり、
上記正極の片面当たりの上記正極活物質層中に含まれる上記正極活物質以外の上記リチウム化合物の目付をD(g/m2)、上記正極の片面当たりの上記正極活物質層中に含まれる上記正極活物質の目付をE(g/m2)とするとき、1.0≦D≦15、10≦E≦100、0.2≦C/D≦38、かつ0.1≦C/E≦7.2である、非水系リチウム型蓄電素子。
[2]
上記リチウム化合物が炭酸リチウムである、項目1に記載の非水系リチウム型蓄電素子。
[3]
上記濃度Cが2.5≦C≦300である、項目1又は2に記載の非水系リチウム型蓄電素子。
[4]
0.01≦D/E≦0.52である、項目1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。
[5]
正極表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率A1が40%以上99%以下である、項目1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。
[6]
BIB加工した正極断面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率A2が10%以上60%以下である、項目1〜5のいずれか一項に記載の非水系リチウム型蓄電素子。
[7]
上記非水系リチウム型蓄電素子に対して、環境温度25℃、セル電圧2.2Vから3.8V、電流値200Cのレートで充放電サイクルを60,000回行い、続いて4.5Vの定電圧充電を1時間行った後の静電容量をFe(F)とし、上記充放電サイクル前の静電容量をF(F)としたとき、以下の(h):
(h)Fe/Fが1.01以上である、
を満たす、項目1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。
[8]
活性炭を含む正極活物質と、上記正極活物質以外のリチウム化合物とを含む正極活物質層を有する正極前駆体であって、上記正極前駆体の上記正極活物質層中に含まれるNa及び/又はK元素の濃度C0(ppm)が、20≦C0≦1300ppmであり、上記正極前駆体の片面当たりの上記正極活物質層中に含まれる上記正極活物質以外のリチウム化合物の目付D0(g/m2)が、8.0≦D0≦50.0であり、上記正極前駆体の片面あたりの上記正極活物質層中に含まれる上記正極活物質の目付E0(g/m2)が、10≦E0≦100であり、0.2≦C0/D0≦38であり、0.1≦C0/E0≦7.2である正極前駆体を用いた、項目1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。
[9]
上記負極活物質層中に含まれるNa及び/又はK元素の濃度をC1(ppm)とし、
上記電解液中に含まれるNa及び/又はK元素の濃度をC2(ppm)とするとき、
1.00≦C1/C2≦15.00であり、
上記リチウム化合物が、炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上であって、
上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、上記正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、上記正極中に含まれるリチウム化合物の量が、上記正極活物質層の全質量を基準として1質量%以上50質量%以下である、
項目1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。
[10]
上記正極活物質層の固体7Li−NMRスペクトルにおいて、−40ppm〜40ppmにおけるピークの面積より計算されるリチウム量が、10.0×10−4mol/g以上300×10−4mol/g以下である、項目9に記載の非水系リチウム型蓄電素子。
[11]
上記非水系電解液が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートおよびフルオロエチレンカーボネートから選択される少なくとも1種の有機溶媒を含有する、項目9又は10に記載の非水系リチウム型蓄電素子。
[12]
上記非水系電解液が、LiPF6及びLiBF4のうち少なくとも1種を含有する、項目9〜11のいずれか一項に記載の非水系リチウム型蓄電素子。
[13]
上記非水系電解液におけるLiN(SO2F)2の濃度が、上記非水系電解液の総量を基準として0.3mol/L以上1.5mol/L以下である、項目9〜12のいずれか一項に記載の非水系リチウム型蓄電素子。
[14]
上記正極集電体及び上記負極集電体が貫通孔を持たない金属箔である、項目9〜13のいずれか一項に記載の非水系リチウム型蓄電素子。
[15]
項目1〜13のいずれか一項に記載の非水系リチウム型蓄電素子において、セル電圧4Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、電極積層体を収納している外装体の体積をV(L)、としたとき、以下の(a)及び(b):
(a)RaとFの積Ra・Fが0.3以上3.0以下であり、
(b)E/Vが15以上50以下である、
を満たす、項目9〜14のいずれか一項に記載の非水系リチウム型蓄電素子。
[16]
項目9〜15のいずれか一項に記載の非水系リチウム型蓄電素子において、セル電圧4Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、セル電圧4V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRd(Ω)、環境温度25℃にてセル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の内部抵抗をRe(Ω)としたとき、以下の(e)及び(g):
(e)Rd/Raが0.9以上3.0以下であり、
(g)Re/Raが0.9以上2.0以下である、
を満たす、項目9〜15のいずれか一項に記載の非水系リチウム型蓄電素子。
[17]
上記負極活物質はリチウムイオンを吸蔵及び放出できる炭素材料を含み、
上記正極活物質は活性炭を含み、
上記正極は、上記正極活物質層の全質量を基準として、上記正極活物質以外のリチウム化合物を1質量%以上50質量%以下含有し、
上記非水系電解液のAl濃度が、1ppm以上300ppm以下である、項目1〜16のいずれか一項に記載の非水系リチウム型蓄電素子。
[18]
上記非水系電解液が、
(A)LiPF6、及びLiBF4のうちの少なくとも1種;並びに
(B)LiN(SO2F)2、LiN(SO2CF3)2、及びLiN(SO2C2F5)2のうちの少なくとも1種;
のリチウム塩をさらに含有する、項目17に記載の非水系リチウム型蓄電素子。
[19]
上記非水系電解液の総量を基準として、上記(A)の合計モル濃度をMA(mol/L)、上記(B)の合計モル濃度をMB(mol/L)とするとき、モル濃度比MA/(MA+MB)が1/10以上9/10以下の範囲である、項目18に記載の非水系リチウム型蓄電素子。
[20]
上記リチウム塩のモル濃度比MA/MBが2/10以上6/10以下の範囲である、項目19に記載の非水系リチウム型蓄電素子。
[21]
上記(B)の合計モル濃度MB(mol/L)が、0.1mol/L以上1.5mol/L以下である、項目18〜20のいずれか1項に記載の非水系リチウム型蓄電素子。
[22]
上記(A)がLiPF6であり、上記(B)がLiN(SO2F)2である、項目18〜21のいずれか1項に記載の非水系リチウム型蓄電素子。
[23]
上記正極が含む、上記正極活物質以外のリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmである、項目17〜22のいずれか1項に記載の非水系リチウム型蓄電素子。
[24]
上記正極が含む、上記正極活物質以外のリチウム化合物が炭酸リチウムである、項目17〜23のいずれか1項に記載の非水系リチウム型蓄電素子。
[25]
上記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、静電容量をF(F)としたとき:
(a)RaとFとの積Ra・Fが0.3以上3.0以下である、
を満たす、項目17〜24のいずれか一項に記載の非水系リチウム型蓄電素子。
[26]
上記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、セル電圧4V及び環境温度60℃において2か月間保存した後の、常温放電内部抵抗をRd(Ω)とするとき、以下:
(e)Rd/Raが0.9以上3.0以下であり、
(f)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を満たす、項目17〜25のいずれか一項に記載の非水系リチウム型蓄電素子。
[27]
上記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、環境温度25℃にて、セル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の常温放電内部抵抗をRe(Ω)としたとき:
(g)Re/Raが0.9以上2.0以下である、
を満たす、項目17〜26のいずれか一項に記載の上記非水系リチウム型蓄電素子。
[28]
上記正極活物質層に含まれる上記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、項目1〜27のいずれか一項に記載の非水系リチウム型蓄電素子。
[29]
上記正極活物質層に含まれる上記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、項目1〜27のいずれか一項に記載の非水系リチウム型蓄電素子。
[30]
上記負極活物質のリチウムイオンのドープ量が、上記負極活物質の単位質量当たり530mAh/g以上2,500mAh/g以下である、項目1〜29のいずれか一項に記載の非水系リチウム型蓄電素子。
[31]
上記負極活物質のBET比表面積が100m2/g以上1,500m2/g以下である、項目1〜30のいずれか一項に記載の非水系リチウム型蓄電素子。
[32]
上記負極活物質のリチウムイオンのドープ量が、上記負極活物質の単位質量当たり50mAh/g以上700mAh/g以下である、項目1〜29のいずれか一項に記載の非水系リチウム型蓄電素子。
[33]
上記負極活物質のBET比表面積が1m2/g以上50m2/g以下である、項目1〜29、及び32のいずれか一項に記載の非水系リチウム型蓄電素子。
[34]
上記負極活物質の平均粒子径が1μm以上10μm以下である、項目1〜29、32、及び33のいずれか一項に記載の非水系リチウム型蓄電素子。
[35]
項目1〜34のいずれか一項に記載の非水系リチウム型蓄電素子を用いた蓄電モジュール。
[36]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた電力回生システム。
[37]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた電力負荷平準化システム。
[38]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた無停電電源システム。
[39]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた非接触給電システム。
[40]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いたエナジーハーベストシステム。
[41]
項目1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた蓄電システム。
本発明によれば、一実施形態において、正極にリチウム化合物を含む非水系リチウム型蓄電素子であって、高温高電圧下での電圧低下によるエネルギーロスが低減され、高負荷充放電サイクル特性に優れる非水系リチウム型蓄電素子を提供することができる。一実施形態において、高い入出力特性と優れた高負荷充放電サイクル特性、高温保存耐久性を示す、非水系リチウム型蓄電素子を提供することができる。
以下、本発明の実施形態(以下、「本実施形態」という。)を詳細に説明するが、本発明は本実施形態に限定されるものではない。本実施形態の各数値範囲における上限値及び下限値は任意に組み合わせて任意の数値範囲を構成することができる。
非水系リチウム型蓄電素子は一般に、正極と、負極と、セパレータと、電解液とを主な構成要素とする。電解液としては、リチウムイオンを含む有機溶媒(以下、「非水系電解液」ともいう。)を用いる。
<正極>
本実施形態における正極は、正極集電体と、その片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有する。
本実施形態における正極は、正極集電体と、その片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有する。
本実施形態における正極は、蓄電素子を組み立てる前の正極前駆体として、リチウム化合物を含むことが好ましい。後述のように、本実施形態では蓄電素子の組み立てにおいて、負極にリチウムイオンをプレドープすることが好ましい。本実施形態におけるプレドープ方法としては、リチウム化合物を含む正極前駆体と、負極と、セパレータと、非水系電解液とを用いて蓄電素子を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。リチウム化合物は、正極前駆体の正極集電体上に形成された正極活物質層内に含有されていることが好ましい。
本願明細書では、リチウムドープ前における正極を「正極前駆体」、リチウムドープ後における正極を「正極」と定義する。
[正極活物質層]
正極活物質層は正極活物質を含み、これ以外に、必要に応じて、導電性フィラー、結着剤、及び分散安定剤等の任意成分を含んでいてもよい。正極活物質は、炭素材料を含むことが好ましい。
正極活物質層は正極活物質を含み、これ以外に、必要に応じて、導電性フィラー、結着剤、及び分散安定剤等の任意成分を含んでいてもよい。正極活物質は、炭素材料を含むことが好ましい。
正極前駆体の正極活物質層は、リチウム化合物を含むことが好ましい。
[正極活物質]
正極活物質は、炭素材料を含むことが好ましい。炭素材料としては、好ましくはカーボンナノチューブ、導電性高分子、及び多孔性の炭素材料が挙げられ、さらに好ましくは活性炭である。正極活物質は、2種類以上の材料を混合して含んでもよく、炭素材料以外の材料、例えばリチウムと遷移金属との複合酸化物等を含んでもよい。
正極活物質は、炭素材料を含むことが好ましい。炭素材料としては、好ましくはカーボンナノチューブ、導電性高分子、及び多孔性の炭素材料が挙げられ、さらに好ましくは活性炭である。正極活物質は、2種類以上の材料を混合して含んでもよく、炭素材料以外の材料、例えばリチウムと遷移金属との複合酸化物等を含んでもよい。
正極活物質の合計質量に対する炭素材料の含有率は、好ましくは50質量%以上であり、より好ましくは70質量%以上である。炭素材料の含有率は100質量%であってもよいが、しかしながら、他の材料との併用による効果を良好に得る観点から、例えば、好ましくは90質量%以下であり、80質量%以下であってもよい。
活性炭を正極活物質として用いる場合、活性炭の種類及びその原料は特に制限されない。しかし、高い入出力特性と、高いエネルギー密度とを両立させるために、活性炭の細孔を最適に制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、
(1)高い入出力特性を得るためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、「活性炭1」ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、「活性炭2」ともいう。)が好ましい。
(1)高い入出力特性を得るためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、「活性炭1」ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、「活性炭2」ともいう。)が好ましい。
以下、(1)活性炭1及び(2)活性炭2について、個別に順次説明していく。
(活性炭1)
活性炭1のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。正極の嵩密度の低下を抑える点から、活性炭1のV1は0.8cc/g以下であることが好ましい。活性炭1のV1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
活性炭1のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。正極の嵩密度の低下を抑える点から、活性炭1のV1は0.8cc/g以下であることが好ましい。活性炭1のV1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
活性炭1のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましい。活性炭の嵩を抑え、電極としての密度を増加させ、単位体積当たりの容量を増加させる点から、活性炭1のV2は1.0cc/g以下であることが好ましい。活性炭1のV2は、より好ましくは0.6cc/g以上1.0cc/g以下、更に好ましくは0.8cc/g以上1.0cc/g以下である。
活性炭1のマイクロ孔量V2に対するメソ孔量V1の比(V1/V2)は、0.3≦V1/V2≦0.9の範囲であることが好ましい。すなわち、高容量を維持しながら出力特性の低下を抑えることができる程度に、マイクロ孔量に対するメソ孔量の割合を大きくするという点から、活性炭1のV1/V2が0.3以上であることが好ましい。高出力特性を維持しながら容量の低下を抑えることができる程度に、メソ孔量に対するマイクロ孔量の割合を大きくするという点から、活性炭1のV1/V2は0.9以下であることが好ましい。活性炭1のV1/V2の範囲は、より好ましくは0.4≦V1/V2≦0.7、更に好ましくは0.55≦V1/V2≦0.7である。
活性炭1の平均細孔径は、得られる蓄電素子の出力を増大させる点から、17Å以上であることが好ましく、18Å以上であることがより好ましく、20Å以上であることが更に好ましい。また容量を増大させる点から、活性炭1の平均細孔径は25Å以下であることが好ましい。
活性炭1のBET比表面積は、1,500m2/g以上3,000m2/g以下であることが好ましく、1,500m2/g以上2,500m2/g以下であることがより好ましい。活性炭1のBET比表面積が1,500m2/g以上の場合には、良好なエネルギー密度が得られ易く、他方、活性炭1のBET比表面積が3,000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。
上記のような特徴を有する活性炭1は、例えば、以下に説明する原料及び処理方法を用いて得ることができる。
本実施形態では、活性炭1の原料として用いられる炭素源は、特に限定されるものではない。活性炭1の炭素源としては、例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜等の植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタール等の化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等の各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレン等の合成ゴム;その他の合成木材、合成パルプ等、及びこれらの炭化物が挙げられる。これらの原料の中でも、量産対応及びコストの観点から、ヤシ殻、木粉等の植物系原料、及びそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
これらの原料から活性炭1を作製するための炭化及び賦活の方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400〜700℃、好ましくは450〜600℃程度において、30分〜10時間程度に亘って焼成する方法が挙げられる。
上記炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法が好ましく用いられる。賦活ガスとして水蒸気又は二酸化炭素を使用する方法がより好ましい。
この賦活方法では、賦活ガスを0.5〜3.0kg/h、好ましくは0.7〜2.0kg/hの割合で供給しながら、炭化物を3〜12時間、好ましくは5〜11時間、更に好ましくは6〜10時間かけて800〜1,000℃まで昇温して賦活することが好ましい。
更に、炭化物の賦活処理に先立ち、予め炭化物を1次賦活してもよい。この1次賦活では、通常、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で炭素材料を焼成してガス賦活することが好ましい。
炭化方法における焼成温度及び焼成時間と、賦活方法における賦活ガス供給量、昇温速度及び最高賦活温度とを適宜組み合わせることにより、本実施形態において好ましい、上記の特徴を有する活性炭1を製造することができる。
活性炭1の平均粒子径は、2〜20μmであることが好ましい。活性炭1の平均粒子径が2μm以上であると、活物質層の密度が高いために電極体積当たりの容量が高くなる傾向がある。活性炭1の平均粒子径が小さいと耐久性が低くなる場合があるが、平均粒子径が2μm以上であれば耐久性が低くなりにくい。活性炭1の平均粒子径が20μm以下であると、高速充放電に適合し易くなる傾向がある。活性炭1の平均粒子径は、より好ましくは2〜15μmであり、更に好ましくは3〜10μmである。
(活性炭2)
活性炭2のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい一方、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。活性炭2のV1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは1.2cc/g以上1.8cc/g以下である。
活性炭2のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい一方、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。活性炭2のV1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは1.2cc/g以上1.8cc/g以下である。
活性炭2のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.8cc/gより大きい値であることが好ましい。活性炭の電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、活性炭2のV2は3.0cc/g以下であることが好ましい。活性炭2のV2は、より好ましくは1.0cc/gより大きく2.5cc/g以下、更に好ましくは1.5cc/g以上2.5cc/g以下である。
上述したメソ孔量及びマイクロ孔量を有する活性炭2は、従来の電気二重層キャパシタ又はリチウムイオンキャパシタ用として使用されていた活性炭よりもBET比表面積が高いものである。活性炭2のBET比表面積の具体的な値としては、3,000m2/g以上4,000m2/g以下であることが好ましく、3,200m2/g以上3,800m2/g以下であることがより好ましい。活性炭2のBET比表面積が3,000m2/g以上の場合には、良好なエネルギー密度が得られ易く、活性炭2のBET比表面積が4,000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。
上記のような特徴を有する活性炭2は、例えば以下に説明するような原料及び処理方法を用いて得ることができる。
活性炭2の原料として用いられる炭素質材料としては、活性炭原料として通常用いられる炭素源であれば特に限定されるものではなく、例えば、木材、木粉、ヤシ殻等の植物系原料;石油ピッチ、コークス等の化石系原料;フェノール樹脂、フラン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂等の各種合成樹脂等が挙げられる。これらの原料の中でも、フェノール樹脂、及びフラン樹脂は、高比表面積の活性炭2を作製するのに適しており特に好ましい。
これらの原料を炭化する方式、或いは賦活処理時の加熱方法としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の公知の方式が挙げられる。加熱時の雰囲気は窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガス、又はこれらの不活性ガスを主成分として他のガスとの混合したガスが用いられる。炭化温度は400〜700℃程度、炭化時間は0.5〜10時間程度で焼成する方法が一般的である。
炭化処理後の炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法、及びアルカリ金属化合物と混合した後に加熱処理を行うアルカリ金属賦活方挙げられる。高比表面積の活性炭を作製するには、アルカリ金属賦活法が好ましい。
この賦活方法では、炭化物と、KOH、NaOH等のアルカリ金属化合物との質量比が1:1以上(アルカリ金属化合物の量が、炭化物の量と同じかこれよりも多い量)となるように混合した後に、不活性ガス雰囲気下で600〜900℃の範囲において、0.5〜5時間加熱を行い、その後アルカリ金属化合物を酸及び水により洗浄除去し、更に乾燥を行うことが好ましい。
炭化物とアルカリ金属化合物の質量比(=炭化物:アルカリ金属化合物)は1:1以上が好ましい。アルカリ金属化合物の量が増えるほど、メソ孔量が増え、質量比1:3.5付近を境に急激に孔量が増える傾向があるので、質量比は1:3よりアルカリ金属化合物が多いことが好ましく、1:5.5以下であることが好ましい。質量比はアルカリ金属化合物が増えるほど孔量が大きくなるが、その後の洗浄等の処理効率を考慮すると1:5.5以下であることが好ましい。
マイクロ孔量を大きくし、メソ孔量を大きくしないためには、賦活する際に炭化物の量を多めにしてKOHと混合するとよい。マイクロ孔量及びメソ孔量の双方を大きくするためには、KOHの量を多めに使用するとよい。主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行うことが好ましい。
活性炭2の平均粒子径は、好ましくは2μm以上20μm以下、より好ましくは3μm以上10μm以下である。
(活性炭の使用態様)
活性炭1及び2は、それぞれ、単一の活性炭であってもよいし、2種以上の活性炭の混合物であって、混合物全体として上記の特徴を示すものであってもよい。
活性炭1及び2は、それぞれ、単一の活性炭であってもよいし、2種以上の活性炭の混合物であって、混合物全体として上記の特徴を示すものであってもよい。
活性炭1及び2は、これらのうちのいずれか一方を選択して使用してもよいし、両者を混合して使用してもよい。
正極活物質は、活性炭1及び2以外の材料、例えば、上記特定のV1及び/若しくはV2を有さない活性炭、又は活性炭以外の材料、例えば、リチウムと遷移金属との複合酸化物等を含んでもよい。例示の態様において、活性炭1の含有量、又は活性炭2の含有量、又は活性炭1及び2の合計含有量が、それぞれ、全正極活物質の50質量%より多いことが好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、100質量%であることがより更に好ましい。
正極活物質層における正極活物質の含有割合は、正極前駆体における正極活物質層の全質量を基準として、35質量%以上95質量%以下であることが好ましい。正極活物質の含有割合の下限としては、45質量%以上であることがより好ましく、55質量%以上であることがさらに好ましい。正極活物質の含有割合の上限としては、90質量%以下であることがより好ましく、85質量%以下であることが更に好ましい。正極活物質の含有割合をこの範囲にすることにより、好適な充放電特性を発揮する。
(リチウム化合物)
本願明細書において、「リチウム化合物」とは、正極活物質ではなく、かつ充放電により正極活物質層に堆積することがあるリチウム含有堆積物でもないリチウム化合物を意味する。
本願明細書において、「リチウム化合物」とは、正極活物質ではなく、かつ充放電により正極活物質層に堆積することがあるリチウム含有堆積物でもないリチウム化合物を意味する。
上記リチウム化合物としては、後述のリチウムドープの際に正極で分解し、リチウムイオンを放出することが可能リチウム化合物、例えば:炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上が挙げられる。中でも、電解液中のフッ素イオンを吸着することが可能なリチウム化合物、例えば:炭酸リチウム、酸化リチウム、及び水酸化リチウムがより好ましい。空気中での取り扱いが可能であり、かつ吸湿性が低いという観点から、炭酸リチウムがさらに好ましい。このようなリチウム化合物は、電圧の印加によって分解し、負極へのリチウムドープのドーパント源として機能するとともに、正極活物質層において空孔を形成するから、電解液の保持性に優れ、イオン伝導性に優れる正極を形成することができる。
[正極前駆体のリチウム化合物]
リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は、0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることが最も好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は、0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることが最も好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
リチウム化合物の微粒子化には、様々な方法を用いることができる。例えば、ボールミル、ビーズミル、リングミル、ジェットミル、ロッドミル等の粉砕機を使用することができる。
正極前駆体の正極活物質層におけるリチウム化合物の含有割合は、正極前駆体における正極活物質層の全質量を基準として、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましい。この範囲の含有割合とすることにより、負極へのドーパント源として好適な機能を発揮するとともに、正極に適当な程度の多孔性を付与することができ、両者相俟って高負荷充放電効率に優れる蓄電素子を与えることができ、好ましい。この含有割合の範囲の上限と下限は、任意に組み合わせることができる。
[正極のリチウム化合物及び正極活物質の平均粒子径]
正極に含まれるリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であることが好ましい。更に好ましくは、0.5μm≦X1≦5μmであり、3μm≦Y1≦10μmである。X1が0.1μm以上の場合、リチウム化合物が高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。X1が10μm以下の場合、リチウム化合物と高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。Y1が2μm以上の場合、正極活物質間の電子伝導性を確保できる。Y1が20μm以下の場合、電解質イオンとの反応面積が増加するために高い出力特性を発現できる。X1<Y1である場合、正極活物質間に生じる隙間に炭酸リチウムが充填されるため、正極活物質間の電子伝導性を確保しつつ、エネルギー密度を高めることができる。
X1及びY1の測定方法は特に限定されないが、正極断面のSEM画像、及びSEM−EDX画像から算出することができる。正極断面の形成方法については、正極上部からArビームを照射し、試料直上に設置した遮蔽板の端部に沿って平滑な断面を作製するBIB加工を用いることができる。正極に炭酸リチウムを含有させる場合、正極断面のラマンイメージングを測定することで炭酸イオンの分布を求めることもできる。
尚、上記のV1の上限値と下限値、及びV2の上限値と下限値については、それぞれ任意に組み合わせることができる。本明細書中、そのほかの構成要件同士の上限値と下限値の組み合わせについても同様である。
正極に含まれるリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であることが好ましい。更に好ましくは、0.5μm≦X1≦5μmであり、3μm≦Y1≦10μmである。X1が0.1μm以上の場合、リチウム化合物が高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。X1が10μm以下の場合、リチウム化合物と高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。Y1が2μm以上の場合、正極活物質間の電子伝導性を確保できる。Y1が20μm以下の場合、電解質イオンとの反応面積が増加するために高い出力特性を発現できる。X1<Y1である場合、正極活物質間に生じる隙間に炭酸リチウムが充填されるため、正極活物質間の電子伝導性を確保しつつ、エネルギー密度を高めることができる。
X1及びY1の測定方法は特に限定されないが、正極断面のSEM画像、及びSEM−EDX画像から算出することができる。正極断面の形成方法については、正極上部からArビームを照射し、試料直上に設置した遮蔽板の端部に沿って平滑な断面を作製するBIB加工を用いることができる。正極に炭酸リチウムを含有させる場合、正極断面のラマンイメージングを測定することで炭酸イオンの分布を求めることもできる。
尚、上記のV1の上限値と下限値、及びV2の上限値と下限値については、それぞれ任意に組み合わせることができる。本明細書中、そのほかの構成要件同士の上限値と下限値の組み合わせについても同様である。
(リチウム化合物と正極活物質の判別方法)
リチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極断面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
リチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極断面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
(X1及びY1の算出方法)
X1及びY1は、上記正極断面SEMと同視野にて測定した正極断面SEM−EDXから得られた画像を、画像解析することで求めることができる。上記正極断面のSEM画像にて判別されたリチウム化合物の粒子X、及びそれ以外の粒子を正極活物質の粒子Yとし、断面SEM画像中に観察されるX及びYそれぞれの粒子全てについて、断面積Sを求め、下記式(7)にて算出される粒子径dを求める。(円周率をπとする。)
d=2×(S/π)1/2 ...式(7)
得られた粒子径dを用いて、下記式(8)で体積平均粒子径X0及びY0を求める。
X0=Σ[4/3π×(d/2)3×d]/Σ[4/3π×(d/2)3] ...式(8)
正極断面の視野を変えて5ヶ所以上測定し、それぞれのX0及びY0の平均値を平均粒子径X1及びY1とする。
X1及びY1は、上記正極断面SEMと同視野にて測定した正極断面SEM−EDXから得られた画像を、画像解析することで求めることができる。上記正極断面のSEM画像にて判別されたリチウム化合物の粒子X、及びそれ以外の粒子を正極活物質の粒子Yとし、断面SEM画像中に観察されるX及びYそれぞれの粒子全てについて、断面積Sを求め、下記式(7)にて算出される粒子径dを求める。(円周率をπとする。)
d=2×(S/π)1/2 ...式(7)
得られた粒子径dを用いて、下記式(8)で体積平均粒子径X0及びY0を求める。
X0=Σ[4/3π×(d/2)3×d]/Σ[4/3π×(d/2)3] ...式(8)
正極断面の視野を変えて5ヶ所以上測定し、それぞれのX0及びY0の平均値を平均粒子径X1及びY1とする。
(正極のリチウム化合物量)
正極が含有する、正極活物質以外のリチウム化合物は、正極における正極活物質層の全質量を基準として、1質量%以上50質量%以下であることを特徴とし、2.5質量%以上25質量%以下であることがより好ましい。リチウム化合物量が1質量%以上であると、高温環境下における正極上での電解液溶媒の分解反応を炭酸リチウムが抑制するため、高温耐久性が向上し、2.5質量%以上でその効果が顕著になる。リチウム化合物量が50質量%以下であると、正極活物質間の電子伝導性がリチウム化合物により阻害されることが比較的小さいため、高い入出力特性を示し、25質量%以下であると、特に入出力特性の観点から特に好ましい。尚、下限と上限の組み合わせは任意のものであることができる。
正極が含有する、正極活物質以外のリチウム化合物は、正極における正極活物質層の全質量を基準として、1質量%以上50質量%以下であることを特徴とし、2.5質量%以上25質量%以下であることがより好ましい。リチウム化合物量が1質量%以上であると、高温環境下における正極上での電解液溶媒の分解反応を炭酸リチウムが抑制するため、高温耐久性が向上し、2.5質量%以上でその効果が顕著になる。リチウム化合物量が50質量%以下であると、正極活物質間の電子伝導性がリチウム化合物により阻害されることが比較的小さいため、高い入出力特性を示し、25質量%以下であると、特に入出力特性の観点から特に好ましい。尚、下限と上限の組み合わせは任意のものであることができる。
正極の片面当たりの正極活物質中に含まれる正極活物質以外のリチウム化合物の目付D(g/m2)は、0.1以上15以下である。目付Dは、好ましくは0.5以上10以下である。リチウム化合物の目付Dが0.1g/m2以上であれば、高負荷充放電サイクルで生成するフッ素イオンを吸着する十分な量の炭酸リチウムが存在するため高負荷充放電サイクル特性が向上する。リチウム化合物の目付Dが15g/m2以下であれば、非水系リチウム型蓄電素子のエネルギー密度を高めることができる。
正極活物質は、リチウム化合物と共に、ナトリウム(Na)及び/又はカリウム(K)元素を含む。Na及び/又はK元素の濃度Cは、2ppm以上300ppm以下である。濃度Cは、好ましくは2.5ppm以上250ppm以下であり、より好ましくは3ppm以上200ppm以下である。濃度Cが2ppm以上であれば、高温高電圧下での電圧低下によるエネルギーロスを抑制することができる。濃度Cが300ppm以下であれば、高負荷充放電サイクル後の容量低下を抑制することができる。正極活物質は、これらNa及びKの元素のいずれか一方を含めばよく、両方含んでいてもよい。正極活物質がNa及びKを両方含む場合には、Na及びKの合計の濃度Cが、2ppm以上300ppm以下であればよい。
正極の片面当たりの正極活物質中に含まれる正極活物質の目付E(g/m2)は、10以上100以下である。目付Eは、好ましくは15以上80以下である。正極活物質の目付Eが10g/m2以上であればエネルギー密度を高めることができる。正極活物質の目付Eが10g/m2以下であれば低抵抗化することができる。
濃度C(ppm)と目付D(g/m2)との比(C/D)は、0.2以上38以下である。C/Dが0.2以上であればリチウム化合物からのLiイオンの溶出を抑制することで高温高電圧下での電圧低下を抑制することができる。C/Dが30以下であれば、高負荷充放電サイクルで生じるフッ素イオンをリチウム化合物が捕捉できるために容量低下を抑制することができる。
濃度C(ppm)と目付E(g/m2)との比(C/E)は、0.1以上3以下であることが好ましい。C/Eが0.1以上であれば、高負荷充放電サイクルで生じるフッ素イオンをリチウム化合物が捕捉できるために容量低下を抑制することができる。C/Eが3以下であれば、正極中の活物質比率が高まるためにエネルギー密度を高めることができる。
非水系リチウム型蓄電素子を、例えば4.0Vの高電圧に充電し、60℃の高温下に保管すると徐々に電圧低下が起こり、充電したエネルギーをロスしてしまう。特に、正極にリチウム化合物を含有する非水系リチウム型蓄電素子では、正極中のリチウム化合物からリチウムがイオン化して電解液中に放出されることで反応活性種が生成し、電解液や電解質と反応することで正極に充電したエネルギーが消費され、電圧低下してしまう。
発明者らは、正極にリチウム化合物を含有する非水系リチウム型蓄電素子において、Na及びKから選ばれる少なくとも1種の元素を含む化合物を正極中に添加することで上記電圧低下を抑制できることを見出した。理由は定かではなく、理論に限定されないが、リチウム(Li)イオンよりイオン半径が大きいNa及び/又はK等の陽イオンを含む化合物は、Liイオンより陽イオン上の正電荷を非局在化できるためにイオン化しやすいと考えられる。その結果、リチウム化合物からのLiイオンの放出を抑制することで反応活性種の生成を抑え、高温高電圧状態での電圧低下を抑制することができると考えられる。
Na及び/又はKを添加する方法としては特に制限されないが、Na及び/又はKを含む化合物をリチウム化合部と混合粉砕して正極前駆体に担持させる方法;スパッタリングや真空蒸着によりNa及び/又はKを含む化合物を正極前駆体にコーティングする方法;正極活物質をNa及び/又はKを含む溶液で処理した後に正極前駆体を作製する方法;電解液中にNa及び/又はKを含む塩を溶解して正極上で酸化分解することにより正極に担持させる方法等が挙げられる。
Na及び/又はKの定量は、ICP−AES、原子吸光分析法、蛍光X線分析法、中性子放射化分析法、及び後述するICP−MS等により算出できる。
正極における正極活物質層中に含まれるリチウム化合物は、約4.0V以上の高い電位に曝されると徐々に分解してガス化してしまい、発生したガスが電解液中のイオンの拡散を阻害するために抵抗上昇の原因になってしまう。そのため、リチウム化合物の表面にフッ素含有化合物から構成される被膜を形成し、リチウム化合物の反応を抑制することが好ましい。
リチウム化合物の表面にフッ素含有化合物から構成される被膜を形成する方法は特に限定されないが、高電位で分解するフッ素含有化合物を電解液中に含有させ、非水系リチウム型蓄電素子にフッ素含有化合物の分解電位以上の高電圧を印加する方法や、分解温度以上の温度をかける方法等が挙げられる。
リチウム化合物の表面に被覆されたフッ素化合物の被覆率は、正極表面のSEM−EDX画像における酸素マッピングに対するフッ素マッピングの面積重複率A1と、正極断面のSEM−EDX画像における酸素マッピングに対するフッ素マッピングの面積重複率A2とにより表すことができる。
重複率A1は、40%以上99%以下であることが好ましい。重複率A1が40%以上であれば、リチウム化合物の分解を抑制することができる。重複率A1が99%以下であれば正極近傍を塩基性に保つことができるため、高負荷サイクル特性に優れる。
重複率A1は、正極表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対してフッ素マッピングの面積重複率を算出することで求められる。
SEM−EDXの元素マッピングの測定条件は特に限定されないが、画素数は128×128ピクセル〜512×512ピクセルの範囲であることが好ましく、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。
面積重複率A2は、ブロードイオンビーム(BIB)加工した正極断面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率を算出することで測定される。BIB加工とは、正極上部からArビームを照射し、試料直上に設置した遮蔽板の端部に沿って平滑な断面を作製する加工である。
重複率A2は10%以上60%以下であることが好ましい。重複率A2が10%以上であれば、リチウム化合物の分解を抑制することができる。重複率A2が60%以下であれば、リチウム化合物の内部までフッ素化されていない状態であるため、正極近傍を塩基性に保つことができ、高負荷サイクル特性に優れる。
(正極活物質層のその他の成分)
本実施形態における正極活物質層は、必要に応じて、正極活物質及びリチウム化合物の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
本実施形態における正極活物質層は、必要に応じて、正極活物質及びリチウム化合物の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーとしては、正極活物質よりも導電性の高い導電性炭素質材料を挙げることができる。導電性フィラーとしては、例えば、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、黒鉛、カーボンナノチューブ、これらの混合物等が好ましい。
正極活物質層における導電性フィラーの混合量は、正極活物質100質量部に対して、0超〜20質量部が好ましく、1〜15質量部の範囲が更に好ましい。高入力の観点から、正極活物質層は導電性フィラーを含むことが好ましい。正極活物質層における導電性フィラーの混合量が20質量部以下であれば、正極活物質層における正極活物質の含有割合が多くなり、正極活物質層の体積当たりのエネルギー密度を確保できる。
結着剤としては、特に制限されるものではないが、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着材の使用量は、正極活物質100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは3質量部以上27質量部以下、さらに好ましくは5質量部以上25質量部以下である。結着材の量が1質量%以上であれば、十分な電極強度が発現される。一方で結着材の量が30質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。結着材の使用量は、正極活物質100質量部に対して、好ましくは0質量部超10質量部以下である。分散安定剤の量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
[正極集電体]
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料であれば特に制限はないが、金属箔が好ましい。本実施の形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔が特に好ましい。
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料であれば特に制限はないが、金属箔が好ましい。本実施の形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔が特に好ましい。
金属箔は凹凸や貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
正極集電体の厚みは、正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
[正極前駆体の製造]
本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を、水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体の片面又は両面上に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体にプレスを施して、正極活物質層の膜厚や嵩密度を調整してもよい。或いは、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を、水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体の片面又は両面上に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体にプレスを施して、正極活物質層の膜厚や嵩密度を調整してもよい。或いは、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
正極前駆体の塗工液の調整は、正極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着材や分散安定剤が溶解若しくは分散した液状若しくはスラリー状の物質を追加して調整してもよい。水又は有機溶媒に結着材や分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、正極活物質を含む各種材料粉末を追加して調整してもよい。ドライブレンドする方法として、例えばボールミル等を使用して正極活物質及びリチウム化合物、並びに必要に応じて導電性フィラーを予備混合して、導電性の低いリチウム化合物に導電材をコーティングさせる予備混合をしてもよい。これにより、後述のリチウムドープの際に正極前駆体でリチウム化合物が分解し易くなる。塗工液の溶媒に水を使用する場合には、リチウム化合物を加えることで塗工液がアルカリ性になることもあるため、必要に応じてpH調整剤を添加してもよい。
溶解又は分散方法は、特に制限されるものではないが、好適にはホモディスパーや多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速が1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。周速が50m/s以下であれば、分散による熱やせん断力により各種材料が破壊されにくく、再凝集が低減されるため好ましい。
塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm以上であることは、正極活物質を含む各種材料粉末が塗工液作製時に過度に破砕されていないことを意味する。粒度が100μm以下であれば、塗工液吐出時の詰まりや塗膜のスジを発生することが少なく安定に塗工ができる。
正極前駆体の塗工液の粘度(ηb)は、好ましくは1,000mPa・s以上20,000mPa・s以下、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。正極前駆体の塗工液の粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び厚みが良好に制御できる。正極前駆体の塗工液の粘度(ηb)が20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
正極前駆体の塗工液のTI値(チクソトロピーインデックス値)は、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.5以上である。正極前駆体の塗工液のTI値が1.1以上であれば、塗膜幅及び厚みが良好に制御できる。
正極前駆体の塗膜の形成方法は特に制限されるものではないが、好適にはダイコーターやコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。多層塗工の場合には、塗膜各層内のリチウム化合物の含有量が異なるように、塗工液の組成を調整してもよい。塗工速度は、好ましくは0.1m/分以上100m/分以下、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工することができ、100m/分以下であれば、塗工精度を十分に確保できる。
正極前駆体の塗膜の乾燥方法は特に制限されるものではないが、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、好ましくは25℃以上200℃以下、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。乾燥温度が200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着材の偏在、正極集電体や正極活物質層の酸化を抑制できる。
正極前駆体のプレス方法は特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。正極活物質層の膜厚、嵩密度及び電極強度は、後述するプレス圧力、隙間、プレス部の表面温度により調整できる。プレス圧力は、好ましくは0.5kN/cm以上20kN/cm以下、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。プレス圧力が20kN/cm以下であれば、正極前駆体に撓みやシワが生じにくく、正極活物質層膜の所望の膜厚や嵩密度に調整し易い。プレスロール同士の隙間は、正極活物質層の所望の膜厚や嵩密度となるように乾燥後の正極前駆体膜厚に応じて任意の値を設定できる。プレス速度は、正極前駆体の撓みやシワを低減するよう任意の速度に設定できる。プレス部の表面温度は、室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、好ましくは使用する結着材の融点マイナス60℃以上、より好ましくは結着材の融点マイナス45℃以上、さらに好ましくは結着材の融点マイナス30℃以上である。加熱する場合のプレス部の表面温度の上限は、好ましくは使用する結着材の融点プラス50℃以下、より好ましくは結着材の融点プラス30℃以下、さらに好ましくは結着材の融点プラス20℃以下である。例えば、結着材にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、好ましくは90℃以上200℃以下、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱する。結着材にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、好ましくは40℃以上150℃以下、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温する。
結着材の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
正極活物質層の厚さは、正極集電体の片面当たり20μm以上200μm以下であることが好ましい。正極活物質層の厚さは、より好ましくは片面当たり25μm以上100μm以下であり、更に好ましくは30μm以上80μm以下である。正極活物質層の厚さが20μm以上であれば、十分な充放電容量を発現することができる。正極活物質層の厚さが200μm以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、正極集電体層の厚さが20μm以上200μm以下であれば、十分な出力特性が得られるとともに、セル体積を縮小することができ、従ってエネルギー密度を高めることができる。正極集電体が貫通孔や凹凸を有する場合における正極活物質層の厚さとは、正極集電体の貫通孔や凹凸を有していない部分における片面当たりの正極活物質層の厚さの平均値をいう。
正極前駆体の正極活物質層中に含まれるNa及び/又はK元素の濃度をC0(ppm)とするとき、20≦C0≦1300ppmであり、正極前駆体の片面当たりの正極活物質層中に含まれる正極活物質以外のリチウム化合物の目付をD0(g/m2)とするとき、8.0≦D0≦50.0gであり、正極前駆体の片面あたりの正極活物質層中に含まれる正極活物質の目付をE0(g/m2)とするとき、10≦E0≦100であり、0.2≦C0/D0≦38であり、0.1≦C0/E0≦7.2であることが好ましい。この範囲に正極前駆体を作製することで、後述するリチウムドープ後に、より性能の高い非水系リチウム型蓄電素子を作製することができる。
後述のリチウムドープ後の正極における正極活物質層の嵩密度は、好ましくは0.50g/cm3以上、より好ましくは0.55g/cm3以上1.3g/cm3以下の範囲である。正極活物質層の嵩密度が0.50g/cm3以上であれば、高いエネルギー密度を発現でき、蓄電素子の小型化を達成できる。正極活物質層の嵩密度が1.3g/cm3以下であれば、正極活物質層内の空孔における電解液の拡散が十分となり、高い出力特性が得られる。
[正極活物質層中のリチウム量]
本実施形態において、上記正極活物質層のリチウム量は、固体7Li−NMRスペクトルの−40ppm〜40ppmに観測されるピークの面積より計算され、リチウム量が10.0×10−4mol/g以上300×10−4mol/g以下であることが好ましい。上記リチウム量は、好ましくは12.0×10−4mol/g以上280×10−4mol/g以下、より好ましくは15.0×10−4mol/g以上260×10−4mol/g以下、さらに好ましくは17.0×10−4mol/g以上240×10−4mol/g以下、特に好ましくは20.0×10−4mol/g以上220×10−4mol/g以下である。
本実施形態において、上記正極活物質層のリチウム量は、固体7Li−NMRスペクトルの−40ppm〜40ppmに観測されるピークの面積より計算され、リチウム量が10.0×10−4mol/g以上300×10−4mol/g以下であることが好ましい。上記リチウム量は、好ましくは12.0×10−4mol/g以上280×10−4mol/g以下、より好ましくは15.0×10−4mol/g以上260×10−4mol/g以下、さらに好ましくは17.0×10−4mol/g以上240×10−4mol/g以下、特に好ましくは20.0×10−4mol/g以上220×10−4mol/g以下である。
上記リチウム量を特定の範囲に調整することで高い入出力特性を維持しながら、高負荷充放電サイクル耐久性を向上できる原理は明らかではなく、理論に限定されないが、次のように推察される。リチウム量は主に正極活物質層におけるリチウム含有被膜に由来するものであると考えられる。このリチウム含有被膜は、内部分極しているためイオン伝導性が高い。このリチウム含有被膜により非水系電解液の酸化分解を抑制できる。リチウムイオンを含有しない有機及び無機被膜成分に比べ、リチウム含有被膜は充放電過程において安定に存在するため、極めて多数回の充放電サイクルを繰り返しても被膜が破壊されることが少なく、新たに非水系電解液の酸化分解が発生することがない。このため、高い高負荷充放電サイクル特性を示すことができる。
上記リチウム量が10×10−4mol/g以上であれば、正極活物質層に形成されるリチウム含有被膜の量が十分であるため、充放電サイクル中の非水系電解液の酸化分解が抑制され、高い高負荷充放電サイクル特性を示すことができる。このリチウム量が300×10−4mol/g以下であれば、リチウム含有被膜による抵抗増加抑えられる為、高い入出力特性を示すことができる。
上記リチウム量が10×10−4mol/g以上であれば、正極活物質層に形成されるリチウム含有被膜の量が十分であるため、充放電サイクル中の非水系電解液の酸化分解が抑制され、高い高負荷充放電サイクル特性を示すことができる。このリチウム量が300×10−4mol/g以下であれば、リチウム含有被膜による抵抗増加抑えられる為、高い入出力特性を示すことができる。
本明細書において、正極活物質層に含まれるリチウム量は、固体7Li−NMRスペクトルにより以下の方法により算出できる。
固体7Li−NMRの測定装置としては、市販の装置を用いることができる。室温環境下において、マジックアングルスピニングの回転数を14.5kHzとし、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。測定に際しては測定の間の繰り返し待ち時間を十分にとるように設定する。
シフト基準として1mol/L塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとする。塩化リチウム水溶液測定時には試料を回転させず、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。
上記の条件によって得られた正極活物質層の固体7Li−NMRスペクトルから、−40ppm〜40ppmの範囲に観測される成分のピーク面積を求める。これらのピーク面積を、測定用ローター中における試料高さを正極活物質層測定時と同じにして測定した1mol/L塩化リチウム水溶液のピーク面積で除し、さらに測定に用いる正極活物質層の質量で除すことで、上記リチウム量を算出できる。
尚、このリチウム量は、リチウム化合物、及びその他のリチウム含有化合物を含むトータルのリチウム量である。
固体7Li−NMRの測定装置としては、市販の装置を用いることができる。室温環境下において、マジックアングルスピニングの回転数を14.5kHzとし、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。測定に際しては測定の間の繰り返し待ち時間を十分にとるように設定する。
シフト基準として1mol/L塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとする。塩化リチウム水溶液測定時には試料を回転させず、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。
上記の条件によって得られた正極活物質層の固体7Li−NMRスペクトルから、−40ppm〜40ppmの範囲に観測される成分のピーク面積を求める。これらのピーク面積を、測定用ローター中における試料高さを正極活物質層測定時と同じにして測定した1mol/L塩化リチウム水溶液のピーク面積で除し、さらに測定に用いる正極活物質層の質量で除すことで、上記リチウム量を算出できる。
尚、このリチウム量は、リチウム化合物、及びその他のリチウム含有化合物を含むトータルのリチウム量である。
<負極>
本実施形態における負極は、負極集電体と、その片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有する。
本実施形態における負極は、負極集電体と、その片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有する。
[負極活物質層]
負極活物質層は、負極活物質を含み、必要に応じて、導電性フィラー、結着剤、分散材安定剤等の任意成分を含んでいてもよい。
負極活物質層は、負極活物質を含み、必要に応じて、導電性フィラー、結着剤、分散材安定剤等の任意成分を含んでいてもよい。
[負極活物質]
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質を用いることができる。負極活物質としては、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫、及び錫化合物等が挙げられる。炭素材料の含有率は、負極活物質の合計質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上である。炭素材料の含有率は100質量%であってもよいが、しかしながら、他の材料との併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質を用いることができる。負極活物質としては、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫、及び錫化合物等が挙げられる。炭素材料の含有率は、負極活物質の合計質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上である。炭素材料の含有率は100質量%であってもよいが、しかしながら、他の材料との併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。
負極活物質には、リチウムイオンをドープすることが好ましい。本明細書において、負極活物質にドープされたリチウムイオンとしては、主に3つの形態が包含される。
第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
これらの中でも負極の抵抗を下げる観点から、上記炭素材料1種以上(以下、基材ともいう。)と上記炭素質材料前駆体とを共存させた状態で熱処理を行い、基材と炭素質材料前駆体由来の炭素質材料とを複合させた複合炭素材料が好ましい。炭素質材料前駆体としては、熱処理により炭素質材料となるものであれば特に制限はないが、石油系のピッチ又は石炭系のピッチが特に好ましい。熱処理を行う前に、炭素質材料前駆体の融点より高い温度において、基材と炭素質材料前駆体とを混合してもよい。熱処理温度は、使用する炭素質材料前駆体が揮発又は熱分解して発生する成分が炭素質材料となる温度であればよいが、好ましくは400℃以上2500℃以下、より好ましくは500℃以上2000℃以下、さらに好ましくは550℃以上1500℃以下である。熱処理を行う雰囲気は特に制限はないが、非酸化性雰囲気が好ましい。
(複合炭素材料1)
複合炭素材料1は、BET比表面積が100m2/g以上3000m2/g以下の炭素材料1種以上を基材として用いた複合炭素材料である。基材は、特に制限されるものではないが、活性炭やカーボンブラック、鋳型多孔質炭素、高比表面積黒鉛、カーボンナノ粒子等を好適に用いることができる。
複合炭素材料1は、BET比表面積が100m2/g以上3000m2/g以下の炭素材料1種以上を基材として用いた複合炭素材料である。基材は、特に制限されるものではないが、活性炭やカーボンブラック、鋳型多孔質炭素、高比表面積黒鉛、カーボンナノ粒子等を好適に用いることができる。
複合炭素材料1のBET比表面積は、100m2/g以上1,500m2/g以下が好ましく、より好ましくは150m2/g以上1,100m2/g以下、さらに好ましくは180m2/g以上550m2/g以下である。このBET比表面積が100m2/g以上であれば、細孔を適度に保持することができリチウムイオンの拡散が良好となるため、高い入出力特性を示すことができる。1,500m2/g以下であることにより、リチウムイオンの充放電効率が向上するため、サイクル耐久性が損なわれにくい。
複合炭素材料1における炭素質材料の基材に対する質量比率は10質量%以上200質量%以下が好ましい。この質量比率は、好ましくは12質量%以上180質量%以下、より好ましくは15質量%以上160質量%以下、特に好ましくは18質量%以上150質量%以下である。炭素質材料の質量比率が10質量%以上であれば、基材が有していたマイクロ孔を炭素質材料で適度に埋めることができ、リチウムイオンの充放電効率が向上するため、良好なサイクル耐久性を示すことができる。炭素質材料の質量比率が200質量%以下であれば、細孔を適度に保持することができリチウムイオンの拡散が良好となるため、高い入出力特性を示すことができる。
複合炭素材料1の単位質量当たりのリチウムイオンのドープ量は、530mAh/g以上2,500mAh/g以下であることが好ましい。より好ましくは620mAh/g以上2,100mAh/g以下、さらに好ましくは760mAh/g以上1,700mAh/g以下、特に好ましくは840mAh/g以上1,500mAh/g以下である。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料1を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
ドープ量が530mAh/g以上であれば、複合炭素材料1におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされ、更に所望のリチウム量に対する複合炭素材料1の量を低減することができる。そのため、負極膜厚を薄くすることが可能となり、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が2,500mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれ少ない。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料1を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
ドープ量が530mAh/g以上であれば、複合炭素材料1におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされ、更に所望のリチウム量に対する複合炭素材料1の量を低減することができる。そのため、負極膜厚を薄くすることが可能となり、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が2,500mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれ少ない。
以下、複合炭素材料1の好ましい例として、基材として活性炭を用いた複合炭素材料1aについて説明する。
複合炭素材料1aは、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、0.010≦Vm1≦0.300、0.001≦Vm2≦0.650であることが好ましい。
メソ孔量Vm1は、より好ましくは0.010≦Vm1≦0.225、さらに好ましくは0.010≦Vm1≦0.200である。マイクロ孔量Vm2は、より好ましくは0.001≦Vm2≦0.200、更に好ましくは0.001≦Vm2≦0.150、特に好ましくは0.001≦Vm2≦0.100である。
複合炭素材料1aは、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、0.010≦Vm1≦0.300、0.001≦Vm2≦0.650であることが好ましい。
メソ孔量Vm1は、より好ましくは0.010≦Vm1≦0.225、さらに好ましくは0.010≦Vm1≦0.200である。マイクロ孔量Vm2は、より好ましくは0.001≦Vm2≦0.200、更に好ましくは0.001≦Vm2≦0.150、特に好ましくは0.001≦Vm2≦0.100である。
メソ孔量Vm1が0.300cc/g以下であれば、BET比表面積を大きくすることができ、リチウムイオンのドープ量を高めることができることに加え、負極の嵩密度を高めることができる。その結果、負極を薄膜化することができる。マイクロ孔量Vm2が0.650cc/g以下であれば、リチウムイオンに対する高い充放電効率が維持できる。メソ孔量Vm1及びマイクロ孔量Vm2が下限以上(0.010≦Vm1、0.001≦Vm2)であれば、高い入出力特性が得られる。
複合炭素材料1aのBET比表面積は、100m2/g以上1,500m2/g以下が好ましい。より好ましくは150m2/g以上1,100m2/g以下、さらに好ましくは180m2/g以上550m2/g以下である。このBET比表面積が100m2/g以上であれば、細孔を適度に保持することができるため、リチウムイオンの拡散が良好となるため、高い入出力特性を示すことができるまた、リチウムイオンのドープ量を高めることができるため、負極を薄膜化することができる。1,500m2/g以下であることにより、リチウムイオンの充放電効率が向上するので、サイクル耐久性が損なわれにくい。
複合炭素材料1aの平均細孔径は、高い入出力特性にする点から、20Å以上であることが好ましく、25Å以上であることがより好ましく、30Å以上であることがさらに好ましい。高エネルギー密度にする点から、平均細孔径は、65Å以下であることが好ましく、60Å以下であることがより好ましい。
複合炭素材料1aの平均粒子径は1μm以上10μm以下であることが好ましい。下限については、より好ましくは2μm以上であり、更に好ましくは2.5μm以上である。上限については、より好ましくは6μm以下であり、更に好ましくは4μm以下である。平均粒子径が1μm以上10μm以下であれば良好な耐久性が保たれる。
複合炭素材料1aの水素原子/炭素原子の原子数比(H/C)は、0.05以上0.35以下であることが好ましく、0.05以上0.15以下であることが、より好ましい。H/Cが0.35以下である場合には、活性炭表面に被着している炭素質材料の構造(典型的には、多環芳香族系共役構造)が良好に発達して容量(エネルギー密度)及び充放電効率が高くなる。H/Cが0.05以上である場合には、過度な炭素化を抑制できるため良好なエネルギー密度が得られる。H/Cは元素分析装置により測定される。
複合炭素材料1aは、基材の活性炭に由来するアモルファス構造を有するが、同時に、主に被着した炭素質材料に由来する結晶構造を有する。X線広角回折法によると、複合炭素材料1aは、(002)面の面間隔d002が3.60Å以上4.00Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが8.0Å以上20.0Å以下であるものが好ましく、d002が3.60Å以上3.75Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが11.0Å以上16.0Å以下であるものがより好ましい。
複合炭素材料1aの基材として用いる活性炭としては、得られる複合炭素材料1aが所望の特性を発揮する限り、特に制限はない。例えば石油系、石炭系、植物系、高分子系等の各種の原材料から得られた市販品を使用することができる。特に、平均粒子径が1μm以上15μm以下の活性炭粉末を用いることが好ましい。平均粒子径は、より好ましくは2μm以上10μm以下である。
本実施形態において規定する細孔分布範囲を有する複合炭素材料1aを得るためには、基材に用いる活性炭の細孔分布が重要である。
活性炭においては、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.050≦V1≦0.500、0.005≦V2≦1.000、かつ、0.2≦V1/V2≦20.0であることが好ましい。
活性炭においては、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.050≦V1≦0.500、0.005≦V2≦1.000、かつ、0.2≦V1/V2≦20.0であることが好ましい。
メソ孔量V1については、0.050≦V1≦0.350がより好ましく、0.100≦V1≦0.300が更に好ましい。マイクロ孔量V2については、0.005≦V2≦0.850がより好ましく、0.100≦V2≦0.800が更に好ましい。メソ孔量/マイクロ孔量の比率については、0.22≦V1/V2≦15.0がより好ましく、0.25≦V1/V2≦10.0が更に好ましい。活性炭のメソ孔量V1が0.500以下である場合及びマイクロ孔量V2が1.000以下である場合、本実施形態における複合炭素材料1aの細孔構造を得るためには適量の炭素質材料を被着させれば足りるので、細孔構造を制御し易くなる。活性炭のメソ孔量V1が0.050以上である場合及びマイクロ孔量V2が0.005以上である場合、V1/V2が0.2以上である場合、及びV1/V2が20.0以下である場合にも構造が容易に得られる。
複合炭素材料1aの原料として用いる炭素質材料前駆体とは、熱処理することにより、活性炭に炭素質材料を被着させることができる、固体、液体、又は溶剤に溶解可能な有機材料である。この炭素質材料前駆体としては、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。
ピッチを用いる場合、ピッチを活性炭との共存下で熱処理し、活性炭の表面においてピッチの揮発成分又は熱分解成分を熱反応させて活性炭に炭素質材料を被着させることにより、複合炭素材料1aが得られる。この場合、200〜500℃程度の温度において、ピッチの揮発成分又は熱分解成分の活性炭細孔内への被着が進行し、400℃以上で被着成分が炭素質材料となる反応が進行する。熱処理時のピーク温度(最高到達温度)は、得られる複合炭素材料1aの特性、熱反応パターン、熱反応雰囲気等により適宜決定されるものであるが、400℃以上であることが好ましく、より好ましくは450℃〜1,000℃であり、さらに好ましくは500〜800℃程度である。熱処理時のピーク温度を維持する時間は、30分間〜10時間であることが好ましく、より好ましくは1時間〜7時間、更に好ましくは2時間〜5時間である。例えば、500〜800℃程度のピーク温度で2時間〜5時間に亘って熱処理する場合、活性炭表面に被着している炭素質材料は多環芳香族系炭化水素になっているものと考えられる。
また、用いるピッチの軟化点は、30℃以上250℃以下が好ましく、60℃以上130℃以下が更に好ましい。軟化点が30℃以上であるピッチはハンドリング性に支障がなく、精度よく仕込むことが可能である。軟化点が250℃以下であるピッチには比較的低分子の化合物を多く含有し、従ってピッチを用いると、活性炭内の細かい細孔まで被着することが可能となる。
複合炭素材料1aを製造するための具体的方法としては、例えば、炭素質材料前駆体から揮発した炭化水素ガスを含む不活性雰囲気中で活性炭を熱処理し、気相で炭素質材料を被着させる方法が挙げられる。活性炭と炭素質材料前駆体とを予め混合し熱処理する方法、又は溶媒に溶解させた炭素質材料前駆体を活性炭に塗布して乾燥させた後に熱処理する方法も可能である。
複合炭素材料1aを製造するための具体的方法としては、例えば、炭素質材料前駆体から揮発した炭化水素ガスを含む不活性雰囲気中で活性炭を熱処理し、気相で炭素質材料を被着させる方法が挙げられる。活性炭と炭素質材料前駆体とを予め混合し熱処理する方法、又は溶媒に溶解させた炭素質材料前駆体を活性炭に塗布して乾燥させた後に熱処理する方法も可能である。
複合炭素材料1aにおける炭素質材料の活性炭に対する質量比率が10質量%以上100質量%以下であるものが好ましい。この質量比率は、好ましくは15質量%以上80質量%以下でありである。炭素質材料の質量比率が10質量%以上であれば、活性炭が有していたマイクロ孔を炭素質材料で適度に埋めることができ、リチウムイオンの充放電効率が向上するから、サイクル耐久性が損なわれにくい。炭素質材料の質量比率が100質量%以下であれば、複合炭素材料1aの細孔が適度に保持されて比表面積が大きいまま維持される。そのため、リチウムイオンのドープ量を高めることができる結果から、負極を薄膜化しても高出力密度かつ高耐久性を維持することができる。
(複合炭素材料2)
複合炭素材料2は、BET比表面積が0.5m2/g以上80m2/g以下の炭素材料1種以上を上記基材として用いた上記複合炭素材料である。基材は、特に制限されるものではないが、天然黒鉛、人造黒鉛、低結晶黒鉛、ハードカーボン、ソフトカーボン、カーボンブラック等を好適に用いることができる。
複合炭素材料2は、BET比表面積が0.5m2/g以上80m2/g以下の炭素材料1種以上を上記基材として用いた上記複合炭素材料である。基材は、特に制限されるものではないが、天然黒鉛、人造黒鉛、低結晶黒鉛、ハードカーボン、ソフトカーボン、カーボンブラック等を好適に用いることができる。
複合炭素材料2のBET比表面積は、1m2/g以上50m2/g以下が好ましく、より好ましくは1.5m2/g以上40m2/g以下、さらに好ましくは2m2/g以上25m2/g以下である。このBET比表面積が1m2/g以上であれば、リチウムイオンとの反応場を十分に確保できるため、高い入出力特性を示すことができる。50m2/g以下であれば、リチウムイオンの充放電効率が向上し、かつ充放電中の非水系電解液の分解反応が抑制されるため、高いサイクル耐久性を示すことができる。
複合炭素材料2の平均粒子径は1μm以上10μm以下であることが好ましい。この平均粒子径は、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。10μm以下であれば、複合炭素材料2と非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
複合炭素材料2における炭素質材料の基材に対する質量比率は1質量%以上30質量%以下が好ましい。この質量比率は、より好ましくは1.2質量%以上25質量%以下、さらに好ましくは1.5質量%以上20質量%以下である。炭素質材料の質量比率が質量1%以上であれば、炭素質材料によりリチウムイオンとの反応サイトを十分に増加でき、かつリチウムイオンの脱溶媒和も容易となるため、高い入出力特性を示すことができる。炭素質材料の質量比率が20質量%以下であれば、炭素質材料と基材との間のリチウムイオンの固体内拡散を良好に保持できるため、高い入出力特性を示すことができる。リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。
複合炭素材料2の単位質量当たりのリチウムイオンのドープ量は、50mAh/g以上700mAh/g以下であることが好ましい。より好ましくは70mAh/g以上650mAh/g以下、さらに好ましくは90mAh/g以上600mAh/g以下、特に好ましくは100mAh/g以上550mAh/g以下である。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料2を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
ドープ量が50mAh/g以上であれば、複合炭素材料2におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされるため、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が700mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれが少ない。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料2を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
ドープ量が50mAh/g以上であれば、複合炭素材料2におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされるため、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が700mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれが少ない。
以下、複合炭素材料2の好ましい例として、基材として黒鉛材料を用いた複合炭素材料2aについて説明する。
複合炭素材料2aの平均粒子径は1μm以上10μm以下であることが好ましい。この平均粒子径は、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。10μm以下であれば、複合炭素材料2aと非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
複合炭素材料2aのBET比表面積は、1m2/g以上20m2/g以下であることが好ましい。より好ましくは1m2/g以上15m2/g以下である。このBET比表面積が1m2/g以上であれば、リチウムイオンとの反応場を十分に確保できるため、高い入出力特性を示すことができる。20m2/g以下であれば、リチウムイオンの充放電効率が向上し、かつ充放電中の非水系電解液の分解反応が抑制されるため、高いサイクル耐久性を示すことができる。
基材として用いる上記黒鉛材料としては、得られる複合炭素材料2aが所望の特性を発揮する限り、特に制限はない。例えば人造黒鉛、天然黒鉛、黒鉛化メソフェーズカーボン小球体、黒鉛ウイスカ等を使用することができる。黒鉛材料の平均粒子径は、好ましくは1μm以上10μm以下、より好ましくは2μm以上8μm以下である。
複合炭素材料2aの原料として用いる炭素質材料前駆体とは、熱処理することにより、黒鉛材料に炭素質材料を複合させることができる、固体、液体、又は溶剤に溶解可能な有機材料である。この炭素質材料前駆体としては、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。
複合炭素材料2aにおける炭素質材料の黒鉛材料に対する質量比率は1質量%以上10質量%以下が好ましい。この質量比率は、より好ましくは1.2質量%以上8質量%以下、さらに好ましくは1.5質量%以上6質量%以下、特に好ましくは2質量%以上5質量%以下である。炭素質材料の質量比率が1質量%以上であれば、炭素質材料によりリチウムイオンとの反応サイトを十分に増加でき、かつリチウムイオンの脱溶媒和も容易となるため、高い入出力特性を示すことができる。炭素質材料の質量比率が20質量%以下であれば、炭素質材料と黒鉛材料との間のリチウムイオンの固体内拡散を良好に保持できるため、高い入出力特性を示すことができる。リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。
本実施形態における出荷時及び使用後の非水系リチウム型蓄電素子における負極活物質のリチウムイオンのドープ量(mAh/g)は、例えば、以下のようにして知ることができる。
先ず、本実施形態における負極活物質層をエチルメチルカーボネート又はジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層とを得る。この抽出は、典型的にはArボックス内にて、環境温度23℃で行われる。
先ず、本実施形態における負極活物質層をエチルメチルカーボネート又はジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層とを得る。この抽出は、典型的にはArボックス内にて、環境温度23℃で行われる。
上記のようにして得られた抽出液と、抽出後の負極活物質層とに含まれるリチウム量を、それぞれ、例えばICP−MS(誘導結合プラズマ質量分析計)等を用いて定量し、その合計を求めることによって、負極活物質におけるリチウムイオンのドープ量を知ることができる。得られた値を抽出に供した負極活物質量で割り付けて、リチウムイオンのドープ量(mAh/g)を算出すればよい。
炭素材料としては、特に制限されるものではないが、活性炭、カーボンブラック、鋳型多孔質炭素、高比表面積黒鉛、カーボンナノ粒子等を好適に用いることができる。
(負極活物質層のその他の成分)
本実施形態における負極活物質層は、負極活物質の他に、必要に応じて、導電性フィラー、結着剤、分散材安定剤等の任意成分を含んでいてもよい。
本実施形態における負極活物質層は、負極活物質の他に、必要に応じて、導電性フィラー、結着剤、分散材安定剤等の任意成分を含んでいてもよい。
導電性フィラーの種類は特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維等が例示される。導電性フィラーの使用量は、負極活物質100質量部に対して、好ましくは0質量部超30質量部以下、より好ましくは0質量部超20質量部以下、さらに好ましくは0質量部超15質量部以下である。
結着剤としては、特に制限されるものではないが、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着材の使用量は、負極活物質100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上27質量部以下、さらに好ましくは3質量部以上25質量部以下である。結着材の量が1質量%以上であれば、十分な電極強度が発現される。結着材の量が30質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。結着材の使用量は、負極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
[負極集電体]
本実施形態における負極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化がおこりにくい金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
本実施形態における負極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化がおこりにくい金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
金属箔は凹凸や貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
負極集電体の厚みは、負極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
[負極の製造]
負極は、負極集電体の片面又は両面上に負極活物質層を有する。典型的には、負極活物質層は負極集電体の片面又は両面上に固着している。
負極は、負極集電体の片面又は両面上に負極活物質層を有する。典型的には、負極活物質層は負極集電体の片面又は両面上に固着している。
負極は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を、水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることができる。得られた負極にプレスを施して、負極活物質層の膜厚や嵩密度を調整してもよい。或いは、溶剤を使用せずに、負極活物質を含む各種材料を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて負極集電体に貼り付ける方法も可能である。
塗工液の調整は、負極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着材や分散安定剤が溶解若しくは分散した液状若しくはスラリー状の物質を追加して調整してもよい。水又は有機溶媒に結着材や分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、負極活物質を含む各種材料粉末を追加して調整してもよい。
溶解又は分散方法は特に制限されるものではないが、好適にはホモディスパーや多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速が1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。周速が50m/s以下であれば、分散による熱やせん断力により各種材料が破壊されにくく、再凝集が低減されるため好ましい。
負極の塗工液の粘度(ηb)は、好ましくは1,000mPa・s以上20,000mPa・s以下、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。負極の塗工液の粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び厚みが良好に制御できる。負極の塗工液の粘度(ηb)が20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
負極の塗工液のTI値(チクソトロピーインデックス値)は、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.5以上である。負極の塗工液のTI値が1.1以上であれば、塗膜幅及び厚みが良好に制御できる。
負極の塗膜の形成方法は特に制限されるものではないが、好適にはダイコーターやコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。塗工速度は、好ましくは0.1m/分以上100m/分以下、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工することができ、100m/分以下であれば、塗工精度を十分に確保できる。
負極の塗膜の乾燥方法は特に制限されるものではないが、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、好ましくは25℃以上200℃以下、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。乾燥温度が200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着材の偏在、負極集電体や負極活物質層の酸化を抑制できる。
負極のプレス方法は特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。負極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、隙間、プレス部の表面温度により調整できる。プレス圧力は、好ましくは0.5kN/cm以上20kN/cm以下、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。プレス圧力が20kN/cm以下であれば、負極に撓みやシワが生じにくく、負極活物質層膜の所望の膜厚や嵩密度に調整し易い。プレスロール同士の隙間は、負極活物質層の所望の膜厚や嵩密度となるように乾燥後の負極膜厚に応じて任意の値を設定できる。プレス速度は、負極の撓みやシワを低減するよう任意の速度に設定できる。プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、好ましくは使用する結着材の融点マイナス60℃以上、より好ましくは結着材の融点マイナス45℃以上、さらに好ましくは結着材の融点マイナス30℃以上である。加熱する場合のプレス部の表面温度の上限は、好ましくは使用する結着材の融点プラス50℃以下、より好ましくは結着材の融点プラス30℃以下、さらに好ましくは結着材の融点プラス20℃以下である。例えば、結着材にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、好ましくは90℃以上200℃以下、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱する。結着材にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、好ましくは40℃以上150℃以下、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温する。
結着材の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
負極活物質層の厚さは、負極集電体の片面当たり5μm以上100μm以下が好ましい。負極活物質層の厚みの下限は、より好ましくは7μm以上であり、さらに好ましくは10μm以上である。負極活物質層の厚みの上限は、より好ましくは80μm以下であり、さらに好ましくは60μm以下である。負極活物質層の厚さが5μm以上であれば、負極活物質層を塗工した際にスジ等が発生しにくく塗工性に優れる。負極活物質層の厚さが100μm以下であれば、セル体積を縮小することによって高いエネルギー密度を発現できる。負極集電体が貫通孔や凹凸を有する場合における負極活物質層の厚さとは、負極集電体の貫通孔や凹凸を有していない部分における片面当たりの負極活物質層の厚さの平均値をいう。
負極活物質層の嵩密度は、好ましくは0.30g/cm3以上1.8g/cm3以下、より好ましくは0.40g/cm3以上1.5g/cm3以下、さらに好ましくは0.45g/cm3以上1.3g/cm3以下である。負極活物質層の嵩密度が0.30g/cm3以上であれば、十分な強度を保つことができるとともに、負極活物質間の十分な導電性を発現することができる。負極活物質層の嵩密度が1.8g/cm3以下であれば、負極活物質層内でイオンが十分に拡散できる空孔が確保できる。
本実施形態におけるBET比表面積、メソ孔量、及びマイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
BJH法とは、メソ孔の解析に一般的に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Am. Chem. Soc., 73, 373(1951))。
MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。
本願明細書における平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
本願明細書における1次粒子径は、粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて2,000〜3,000個程度計測し、これらを算術平均した値を1次粒子径とする方法により得ることができる。
本明細書中、分散度は、JIS K5600に規定された粒ゲージによる分散度評価
試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
本願明細書における粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s−1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。ずり速度を20s−1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いてTI値はTI値=ηa/ηbの式により算出される。ずり速度を2s−1から20s−1へ上昇させる際は、1段階で上昇させてもよいし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
[負極活物質層中のNa、K]
負極活物質層は、ナトリウム(Na)及び/又はカリウム(K)元素を含む。Na及び/又はK元素の濃度C1は、2ppm以上300ppm以下であることが好ましい。濃度C1は、より好ましくは2.5ppm以上250ppm以下であり、さらに好ましくは3ppm以上200ppm以下である。濃度C1が2ppm以上であれば、高温高電圧下での電圧低下によるエネルギーロスを抑制することができる。濃度C1が300ppm以下であれば、高負荷充放電サイクル後の容量低下を抑制することができる。負極活物質は、これらNa及びKの元素のいずれか一方を含めばよく、両方含んでいてもよい。負極活物質がNa及びKを両方含む場合には、Na及びKの合計の濃度C1が、2ppm以上300ppm以下であればよい。
負極活物質層は、ナトリウム(Na)及び/又はカリウム(K)元素を含む。Na及び/又はK元素の濃度C1は、2ppm以上300ppm以下であることが好ましい。濃度C1は、より好ましくは2.5ppm以上250ppm以下であり、さらに好ましくは3ppm以上200ppm以下である。濃度C1が2ppm以上であれば、高温高電圧下での電圧低下によるエネルギーロスを抑制することができる。濃度C1が300ppm以下であれば、高負荷充放電サイクル後の容量低下を抑制することができる。負極活物質は、これらNa及びKの元素のいずれか一方を含めばよく、両方含んでいてもよい。負極活物質がNa及びKを両方含む場合には、Na及びKの合計の濃度C1が、2ppm以上300ppm以下であればよい。
Na及び/又はKを負極活物質層に添加する方法としては特に制限されないが、Na及び/又はKを含む化合物をリチウム化合物と混合粉砕して正極前駆体に担持させ、電圧を印加させて分解し、電気化学的に負極活物質層に析出させる方法;スパッタリングや真空蒸着によりNa及び/又はKを含む化合物を負極活物質にコーティングする方法;負極活物質をNa及び/又はKを含む溶液で処理した後に負極を作製する方法;電解液中にNa及び/又はKを含む塩を溶解して負極上で還元分解することにより負極に析出させる方法等が挙げられる。なかでも、Na及び/又はKを含む化合物をリチウム化合物と混合粉砕して正極前駆体に担持させ、電圧を印加させて分解し、電気化学的に負極活物質層に析出させる方法が好ましい。
<セパレータ>
正極前駆体及び負極は、セパレータを介して積層又は捲回され、正極前駆体、負極及びセパレータを有する電極積層体または電極捲回体が形成される。
正極前駆体及び負極は、セパレータを介して積層又は捲回され、正極前駆体、負極及びセパレータを有する電極積層体または電極捲回体が形成される。
セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜、又は電気二重層キャパシタで用いられるセルロース製の不織紙等を用いることができる。これらのセパレータの片面又は両面上に、有機又は無機の微粒子から構成される膜が積層されていてもよい。セパレータの内部に有機又は無機の微粒子が含まれていてもよい。
セパレータの厚さは5μm以上35μm以下が好ましい。セパレータの厚さが5μm以上であることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。セパレータの厚さが35μm以下であることにより、蓄電素子の出力特性が高くなる傾向があるため好ましい。
有機又は無機の微粒子から構成される膜の厚さは、1μm以上10μm以下であることが好ましい。有機又は無機の微粒子から構成される膜の厚さが1μm以上であることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。有機又は無機の微粒子から構成される膜の厚さが10μm以下であることにより、蓄電素子の出力特性が高くなる傾向があるため好ましい。
<外装体>
外装体としては、金属缶、ラミネートフィルム等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネートフィルムとしては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、例えば、外層樹脂フィルム/金属箔/内装樹脂フィルムの3層から構成されるラミネートフィルムが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内装樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
外装体としては、金属缶、ラミネートフィルム等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネートフィルムとしては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、例えば、外層樹脂フィルム/金属箔/内装樹脂フィルムの3層から構成されるラミネートフィルムが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内装樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
<非水系電解液>
本実施形態における電解液は、リチウムイオンを含む非水系電解液である。非水系電解液は、後述する非水溶媒を含む。非水系電解液は、非水系電解液の合計体積を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。
本実施形態における電解液は、リチウムイオンを含む非水系電解液である。非水系電解液は、後述する非水溶媒を含む。非水系電解液は、非水系電解液の合計体積を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。
リチウム塩としては、例えば、(LiN(SO2F)2)、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C2F5)、LiN(SO2CF3)(SO2C2F4H)、LiC(SO2F)3、LiC(SO2CF3)3、LiC(SO2C2F5)3、LiCF3SO3、LiC4F9SO3、LiPF6、及びLiBF4等が挙げられ、これらは単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、リチウム塩はLiPF6及び/又はLiN(SO2F)2を含むことが好ましい。
非水系電解液中のリチウム塩濃度は、0.5mol/L以上であることが好ましく、0.5〜2.0mol/Lの範囲がより好ましい。リチウム塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。リチウム塩濃度が2.0mol/L以下である場合、未溶解のリチウム塩が非水系電解液中に析出すること、及び電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下しにくく、出力特性も低下しにくいため好ましい。
本実施形態の非水系電解液は、高い伝導度とアルミニウム腐食抑制を両立できることから、リチウム塩としては、以下の:
(A)LiPF6、及びLiBF4のうちの少なくとも1種;並びに
(B)LiN(SO2F)2、LiN(SO2CF3)2、及びLiN(SO2C2F5)2のうちの少なくとも1種;
を含有することが好ましく、LiPF6とLiN(SO2F)2を含有することが特に好ましい。
非水系電解液の体積を基準として、上記(A)の合計モル濃度をMA(mol/L)、上記(B)の合計モル濃度をMB(mol/L)とするとき、モル濃度比MA/(MA+MB)は1/10以上9/10以下の範囲であることが好ましく、2/10以上6/10以下の範囲であることがより好ましい。MA/(MA+MB)が1/10以上であれば、(B)の化合物による正極集電体のアルミニウム箔が腐食を、(A)の化合物により抑制することが可能であるため、使用中に非水電解液中のアルミニウム濃度が好ましい範囲よりも上昇してしまうことを防ぐことが可能で、サイクル耐久性が向上する。MA/(MA+MB)が9/10以下であれば、非水系リチウム型蓄電素子が、高い入出力特性、高温耐久性を発現することができる。
(A)LiPF6、及びLiBF4のうちの少なくとも1種;並びに
(B)LiN(SO2F)2、LiN(SO2CF3)2、及びLiN(SO2C2F5)2のうちの少なくとも1種;
を含有することが好ましく、LiPF6とLiN(SO2F)2を含有することが特に好ましい。
非水系電解液の体積を基準として、上記(A)の合計モル濃度をMA(mol/L)、上記(B)の合計モル濃度をMB(mol/L)とするとき、モル濃度比MA/(MA+MB)は1/10以上9/10以下の範囲であることが好ましく、2/10以上6/10以下の範囲であることがより好ましい。MA/(MA+MB)が1/10以上であれば、(B)の化合物による正極集電体のアルミニウム箔が腐食を、(A)の化合物により抑制することが可能であるため、使用中に非水電解液中のアルミニウム濃度が好ましい範囲よりも上昇してしまうことを防ぐことが可能で、サイクル耐久性が向上する。MA/(MA+MB)が9/10以下であれば、非水系リチウム型蓄電素子が、高い入出力特性、高温耐久性を発現することができる。
MB(mol/L)は、0.1mol/L以上1.5mol/L以下であることが好ましく、0.2mol/L以上1.0mol/L以下であることがより好ましく、0.3mol/L以上0.8mol/L以下であることが更に好ましい。MB(mol/L)が、0.1mol/L以上であれば、電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより電解液が分解することによるガスを低減することができる。MB(mol/L)が1.5mol/L以下であれば、未溶解のリチウム塩が非水系電解液中に析出すること、及び電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下しにくく、出力特性が低下しにくい。充放電の時に電解質塩の析出が起きず、かつ、長期間経過後であっても電解液の粘度が増加を引き起こすことがない。
本実施形態の非水系電解液は、非水系電解液の総量を基準として、0.1mol/L以上1.5mol/L以下の濃度のLiN(SO2F)2を含むことが好ましく、より好ましくは0.3mol/L以上1.2mol/L以下である。LiN(SO2F)2が0.1mol/L以上であれば、電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより電解液が分解することによるガスを低減することができる。この値が1.5mol/L以下であれば、充放電の時に電解質塩の析出が起きず、かつ長期間経過後であっても電解液の粘度が増加しにくい。
本実施形態における非水系電解液は、非水溶媒として、好ましくは、環状カーボネート及び鎖状カーボネートを含有する。非水系電解液が環状カーボネート及び鎖状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び高いリチウムイオン伝導度を発現する点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等に代表されるアルキレンカーボネート化合物が挙げられる。アルキレンカーボネート化合物は、典型的には非置換である。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び正極活物質層にリチウム化合物を適量堆積させる点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。
環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。上記合計含有量が15質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能となり、高いリチウムイオン伝導度を発現することができる。さらに正極活物質層にリチウム化合物を適量堆積させることが可能となり、電解液の酸化分解を抑制することができる。
環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。上記合計含有量が15質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能となり、高いリチウムイオン伝導度を発現することができる。さらに正極活物質層にリチウム化合物を適量堆積させることが可能となり、電解液の酸化分解を抑制することができる。
非水系電解液は、非水溶媒として、好ましくは、鎖状カーボネートを含有する。非水系電解液が鎖状カーボネートを含有することは、高いリチウムイオン伝導度を発現する点で有利である。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。上記鎖状カーボネートの含有量が30質量%以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。上記合計濃度が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。上記鎖状カーボネートの含有量が30質量%以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。上記合計濃度が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
環状カーボネート及び鎖状カーボネートの合計含有量は、非水系電解液の合計質量を基準として、好ましくは50質量%以上、より好ましくは65質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。環状カーボネート及び鎖状カーボネートの合計含有量が50質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能であり、高いリチウムイオン伝導度を発現することができる。環状カーボネート及び鎖状カーボネートの合計濃度が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
本実施形態における非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、特に制限されないが、例えば、スルトン化合物、環状ホスファゼン、非環状含フッ素エーテル、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物等が挙げられ、これらは単独で用いることができ、また2種以上を混合して用いてもよい。
[スルトン化合物]
上記スルトン化合物としては、例えば、下記一般式(1)〜(3)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、単独で用いてもよく、又は2種以上を混合して用いてもよい。
{式(1)中、R11〜R16は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよく;そしてnは0〜3の整数である。}
{式(2)中、R11〜R14は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよく;そしてnは0〜3の整数である。}
{式(3)中、R11〜R16は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよい。}
上記スルトン化合物としては、例えば、下記一般式(1)〜(3)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、単独で用いてもよく、又は2種以上を混合して用いてもよい。
本実施形態では、抵抗への悪影響が少なく、非水系電解液の高温における分解を抑制してガス発生を抑えるという観点から、飽和環状スルトン化合物としては、好ましくは1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン、及び2,4−ペンタンスルトンが挙げられ;不飽和環状スルトン化合物としては、好ましくは1,3−プロペンスルトン、及び1,4−ブテンスルトンが挙げられ;その他のスルトン化合物としては、例えばメチレンビス(ベンゼンスルホン酸)、メチレンビス(フェニルメタンスルホン酸)、メチレンビス(エタンスルホン酸)、メチレンビス(2,4,6,トリメチルベンゼンスルホン酸)、及びメチレンビス(2−トリフルオロメチルベンゼンスルホン酸)を挙げることができ、これらの群から選択される少なくとも1種が好ましい。
本実施形態における非水系リチウム型蓄電素子の非水系電解液中に含まれるスルトン化合物の合計含有量は、非水系電解液の合計質量を基準として、0.1質量%〜15質量%であることが好ましい。スルトン化合物の合計含有量が0.1質量%以上であれば、高温における電解液の分解を抑制してガス発生を抑えることが可能となる。スルトン化合物の合計含有量が15質量%以下であれば、電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。スルトン化合物の合計含有量は、高い入出力特性と耐久性を両立する観点から、下限値は好ましくは0.5質量%以上より好ましくは1質量%以上、更に好ましくは3質量%以上であり、上限値は好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、及びフェノキシペンタフルオロシクロトリホスファゼン等を挙げることができ、これらの群から選択される少なくとも1種が好ましい。
非水系電解液における環状ホスファゼンの含有率は、非水系電解液の合計質量を基準として、0.5質量%〜20質量%であることが好ましい。環状ホスファゼンの含有率が0.5質量%以上であれば、高温における電解液の分解を抑制してガス発生を抑えることが可能となる。環状ホスファゼンの含有率が20質量%以下であれば、電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。以上の理由により、環状ホスファゼンの含有率は、好ましくは2質量%以上15質量%以下であり、更に好ましくは4質量%以上12質量%以下である。
尚、これらの環状ホスファゼンは、単独で用いてもよく、又は2種以上を混合して用いてもよい。
非環状含フッ素エーテルとしては、例えばHCF2CF2OCH2CF2CF2H、CF3CFHCF2OCH2CF2CF2H、HCF2CF2CH2OCH2CF2CF2H、及びCF3CFHCF2OCH2CF2CFHCF3等が挙げられ、これらの中でも、電気化学的安定性の観点から、HCF2CF2OCH2CF2CF2Hが好ましい。
非環状含フッ素エーテルの含有量は、非水系電解液の合計質量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることが更に好ましい。非環状含フッ素エーテルの含有量が0.5質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時耐久性が高い蓄電素子が得られる。非環状含フッ素エーテルの含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。
尚、非環状含フッ素エーテルは、単独で使用しても、2種以上を混合して使用してもよい。
含フッ素環状カーボネートとしては、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)からなる群から選択される少なくとも一種を使用することが好ましい。
含フッ素環状カーボネートの含有量は、非水系電解液の合計質量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。含フッ素環状カーボネートの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することによって、高温における耐久性が高い蓄電素子が得られる。含フッ素環状カーボネートの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。
尚、含フッ素環状カーボネートは、単独で使用しても、2種以上を混合して使用してもよい。
環状炭酸エステルとしては、ビニレンカーボネートが好ましい。環状炭酸エステルの含有量は、非水系電解液の合計質量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状炭酸エステルの含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温における耐久性が高い蓄電素子が得られる。環状炭酸エステルの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。
環状カルボン酸エステルとしては、例えばガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、及びイプシロンカプロラクトン等を挙げることができ、これらの群から選択される少なくとも1種を使用することが好ましい。中でも、ガンマブチロラクトンは、リチウムイオン解離度の向上に由来する電池特性を向上させる観点から、特に好ましい。
環状カルボン酸エステルの含有量は、非水系電解液の合計質量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状カルボン酸エステルの含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。環状カルボン酸エステルの含有量が5質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。
尚、環状カルボン酸エステルは、単独で使用しても、2種以上を混合して使用してもよい。
環状酸無水物としては、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸からなる群から選択される少なくとも1種が好ましい。中でも工業的な入手のし易さによって電解液の製造コストが抑えられる点、非水系電解液中に溶解し易い点等から、無水コハク酸及び無水マレイン酸から選択することが好ましい。
環状酸無水物の含有量は、非水系電解液の合計質量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることが更に好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。環状酸無水物の含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。
尚、環状酸無水物は、単独で使用しても、2種以上を混合して使用してもよい。
[電解液中のNa、K]
本実施形態における非水系電解液は、ナトリウム(Na)及び/又はカリウム(K)元素を含む。Na及び/又はK元素の濃度C2は、0.5ppm以上100ppm以下であることが好ましい。濃度C2は、より好ましくは1.5ppm以上90ppm以下であり、さらに好ましくは3ppm以上80ppm以下である。濃度C2が0.5ppm以上であれば、高温高電圧下での電圧低下によるエネルギーロスを抑制することができる。濃度C2が100ppm以下であれば、高負荷充放電サイクル後の容量低下を抑制することができる。電解液は、これらNa及びKの元素のいずれか一方を含めばよく、両方含んでいてもよい。電解液がNa及びKを両方含む場合には、Na及びKの合計の濃度C2が、0.5ppm以上100ppm以下であればよい。
本実施形態における非水系電解液は、ナトリウム(Na)及び/又はカリウム(K)元素を含む。Na及び/又はK元素の濃度C2は、0.5ppm以上100ppm以下であることが好ましい。濃度C2は、より好ましくは1.5ppm以上90ppm以下であり、さらに好ましくは3ppm以上80ppm以下である。濃度C2が0.5ppm以上であれば、高温高電圧下での電圧低下によるエネルギーロスを抑制することができる。濃度C2が100ppm以下であれば、高負荷充放電サイクル後の容量低下を抑制することができる。電解液は、これらNa及びKの元素のいずれか一方を含めばよく、両方含んでいてもよい。電解液がNa及びKを両方含む場合には、Na及びKの合計の濃度C2が、0.5ppm以上100ppm以下であればよい。
非水系リチウム型蓄電素子を、例えば4.0Vの高電圧に充電し、60℃の高温下に保管すると徐々に電圧低下が起こり、充電したエネルギーをロスしてしまう。特に、正極にリチウム化合物を含有する非水系リチウム型蓄電素子では、正極中のリチウム化合物からリチウムがイオン化して電解液中に放出されることで反応活性種が生成し、電解液や電解質と反応することで負極に充電したエネルギーが消費され、電圧低下してしまう。
発明者らは、正極にリチウム化合物を含有する非水系リチウム型蓄電素子において、Na及びKから選ばれる少なくとも1種の元素を含む化合物を負極活物質層及び電解液中に添加し、その比率をある一定の範囲内にすることで上記電圧低下を抑制できることを見出した。理由は定かではなく、理論に限定されないが、リチウム(Li)イオンよりイオン半径が大きいNa及び/又はK等の陽イオンを含む化合物は、Liイオンより陽イオン上の正電荷を非局在化できるためにイオン化しやすいと考えられる。そのため、負極活物質層及び電解液中にNa及び/又はK等の陽イオンを含み、その比率をある一定範囲に保つことで蓄電素子の系全体のイオンバランスが保たれ、正極中のリチウム化合物からのLiイオンの放出を抑制できる。その結果、反応活性種の生成を抑え、高温高電圧状態での電圧低下を抑制することができると考えられる。
Na及び/又はKを電解液中に添加する方法としては特に制限されないが、Na及び/又はKを含む化合物をリチウム化合物と混合粉砕して正極前駆体に担持させ、電圧を印加させて分解し、溶出させる方法;電解液中にNa及び/又はKを含む塩を溶解させる方法等が挙げられる。なかでも、Na及び/又はKを含む化合物をリチウム化合物と混合粉砕して正極前駆体に担持させ、電圧を印加させて分解し、溶出させる方法が好ましい。
本実施形態に係る上記負極活物質層中に含まれるNa及び/又はK元素の濃度をC1(ppm)と上記電解液中に含まれるNa及び/又はK元素の濃度をC2(ppm)の比C1/C2は、好ましくは1.00以上15.00以下、より好ましくは1.50以上12.00以下、更に好ましくは2.00以上9.00以下である。C1/C2が1.00以上15.00以下であることで、蓄電素子が高温高電圧状態にさらされた場合に、負極中のNa及び/又はKがイオン化するため、正極中のリチウム化合物からのLiイオンの放出を抑制できる。その結果、反応活性種の生成を抑え、高温高電圧状態での電圧低下を抑制することができる。電解液中のNa及び/又はKイオンが相対的に少ないことで、負極からNa及び/又はKイオンが過剰に溶出して電解液のイオン伝導度を低下させることを抑制できるため、蓄電素子の優れた高負荷充放電サイクル特性を保持することができる。
[アルミニウム]
非水系電解液は、非水系電解液の質量を基準として、好ましくは1ppm以上300ppm以下、より好ましくは5ppm以上200ppm以下、更に好ましくは10ppm以上150ppm以下のアルミニウムを含有する。アルミニウム濃度が1ppm以上であると、優れた高温耐久性を示す。詳細なメカニズムは明らかではなく、理論に限定されないが、正極中のリチウム化合物が正極で酸化分解され電解液中に溶出したリチウム化合物の反応物と、電解液中に存在するアルミニウムとが、負極上で還元され、強固で安定な被膜を生成するために、高温環境下における負極上での非水溶媒の還元分解反応を抑制し、高温耐久性が向上すると推測している。アルミニウム濃度が300ppm以下であれば、アルミニウムの負極上での還元析出を抑制できるため、高負荷充放電サイクル耐久性を良好に保つことが可能であり、好ましい。尚、下限と上限の組み合わせは任意のものであることができる。
非水系電解液は、非水系電解液の質量を基準として、好ましくは1ppm以上300ppm以下、より好ましくは5ppm以上200ppm以下、更に好ましくは10ppm以上150ppm以下のアルミニウムを含有する。アルミニウム濃度が1ppm以上であると、優れた高温耐久性を示す。詳細なメカニズムは明らかではなく、理論に限定されないが、正極中のリチウム化合物が正極で酸化分解され電解液中に溶出したリチウム化合物の反応物と、電解液中に存在するアルミニウムとが、負極上で還元され、強固で安定な被膜を生成するために、高温環境下における負極上での非水溶媒の還元分解反応を抑制し、高温耐久性が向上すると推測している。アルミニウム濃度が300ppm以下であれば、アルミニウムの負極上での還元析出を抑制できるため、高負荷充放電サイクル耐久性を良好に保つことが可能であり、好ましい。尚、下限と上限の組み合わせは任意のものであることができる。
[アルミニウムの添加方法]
本実施形態の非水系電解液にアルミニウムを添加する方法としては特に制限されないが、例えば、アルミニウムを含有する化合物を注液前の非水系電解液に含有させ、溶解させる方法;非水系リチウム型蓄電素子に高電圧を印可することにより、正極集電体のアルミニウムを酸化分解することにより、非水系電解液に溶出させる方法等が挙げられる。
本実施形態の非水系電解液にアルミニウムを添加する方法としては特に制限されないが、例えば、アルミニウムを含有する化合物を注液前の非水系電解液に含有させ、溶解させる方法;非水系リチウム型蓄電素子に高電圧を印可することにより、正極集電体のアルミニウムを酸化分解することにより、非水系電解液に溶出させる方法等が挙げられる。
[アルミニウムの定量方法]
本実施形態の非水系電解液中のアルミニウムの定量する方法としては特に制限されないが、例えば、蓄電素子の完成後に、蓄電素子から非水系電解液を取り出し、ICP−AES、原子吸光分析法、蛍光X線分析法、中性子放射化分析法、ICP−MS等を用いて算出する方法等が挙げられる。
本実施形態の非水系電解液中のアルミニウムの定量する方法としては特に制限されないが、例えば、蓄電素子の完成後に、蓄電素子から非水系電解液を取り出し、ICP−AES、原子吸光分析法、蛍光X線分析法、中性子放射化分析法、ICP−MS等を用いて算出する方法等が挙げられる。
[非水系リチウム型蓄電素子]
本実施形態の非水系リチウム型蓄電素子は、後述する電極積層体又は電極捲回体が、上記非水系電解液とともに上記外装体内に収納されて構成されることが好ましい。
本実施形態の非水系リチウム型蓄電素子は、後述する電極積層体又は電極捲回体が、上記非水系電解液とともに上記外装体内に収納されて構成されることが好ましい。
<非水系リチウム型蓄電素子の製造方法>
[組立]
セルの組み立てでは、枚葉の形状にカットした正極前駆体と負極とを、セパレータを介して積層して積層体を得て、得られた積層対に正極端子と負極端子を接続することにより、電極積層体を得ることができる。また、正極前駆体と負極とを、セパレータを介して捲回して捲回体を得て、得られた捲回体に正極端子及び負極端子を接続することにより、電極捲回体を得ることができる。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
セルの組み立てでは、枚葉の形状にカットした正極前駆体と負極とを、セパレータを介して積層して積層体を得て、得られた積層対に正極端子と負極端子を接続することにより、電極積層体を得ることができる。また、正極前駆体と負極とを、セパレータを介して捲回して捲回体を得て、得られた捲回体に正極端子及び負極端子を接続することにより、電極捲回体を得ることができる。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
正極端子及び負極端子の接続の方法は特に限定されないが、抵抗溶接や超音波溶接などの方法を用いることができる。
端子を接続した電極積層体または電極捲回体を乾燥することで残存溶媒を除去することが好ましい。乾燥方法は限定されないが、真空乾燥などにより乾燥することができる。残存溶媒は、正極活物質層または負極活物質層の合計質量あたり、1.5質量%以下であることが好ましい。残存溶媒が1.5質量%以下であれば、系内に残存する溶媒が少なく、自己放電特性が改善されるため好ましい。
乾燥した電極積層体または電極捲回体は、好ましくは露点−40℃以下のドライ環境下にて、金属缶やラミネートフィルムに代表される外装体の中に収納し、非水系電解液を注液するための開口部を1方だけ残して封止することが好ましい。露点が−40℃以下であれば、電極積層体または電極捲回体に水分が付着しにくく、系内に残存する水が少なく、自己放電特性が改善されるため好ましい。外装体の封止方法は特に限定されないが、ヒートシールやインパルスシールなどの方法を用いることができる。
[注液、含浸、封止]
組立後に、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液することが好ましい。注液後に、更に、含浸を行い、正極、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープ操作において、ドープが不均一に進むため、得られる非水系リチウム型蓄電素子の抵抗が上昇したり、耐久性が低下したりする。含浸の方法としては、特に制限されないが、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸後には、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉することができる。
組立後に、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液することが好ましい。注液後に、更に、含浸を行い、正極、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープ操作において、ドープが不均一に進むため、得られる非水系リチウム型蓄電素子の抵抗が上昇したり、耐久性が低下したりする。含浸の方法としては、特に制限されないが、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸後には、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉することができる。
[リチウムドープ]
リチウムドープでは、正極前駆体と負極との間に電圧を印加して、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極活物質層にリオチウムイオンをプレドープすることが好ましい。
リチウムドープでは、正極前駆体と負極との間に電圧を印加して、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極活物質層にリオチウムイオンをプレドープすることが好ましい。
リチウムドープにおいて、正極前駆体中のリチウム化合物の酸化分解に伴い、CO2等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
[エージング]
リチウムドープ後に、電極積層体又は電極捲回体にエージングを行うことが好ましい。エージングにおいて非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
リチウムドープ後に、電極積層体又は電極捲回体にエージングを行うことが好ましい。エージングにおいて非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
エージングの方法としては、特に制限されないが、例えば高温環境下で電解液中の溶媒を反応させる方法等を用いることができる。
[ガス抜き]
エージング後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム型蓄電素子の抵抗が上昇してしまう。
上記ガス抜きの方法としては、特に制限されないが、例えば、上記外装体を開口した状態で電極積層体又は電極捲回体を減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。ガス抜き後、外装体をシールすることにより外装体を密閉し、非水系リチウム型蓄電素子を作製することができる。
エージング後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム型蓄電素子の抵抗が上昇してしまう。
上記ガス抜きの方法としては、特に制限されないが、例えば、上記外装体を開口した状態で電極積層体又は電極捲回体を減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。ガス抜き後、外装体をシールすることにより外装体を密閉し、非水系リチウム型蓄電素子を作製することができる。
<非水系リチウム型蓄電素子の特性評価>
[静電容量]
本明細書では、静電容量Fa(F)とは、以下の方法によって得られる値である。
[静電容量]
本明細書では、静電容量Fa(F)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、2Cの電流値で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行う。2.2Vまで2Cの電流値で定電流放電を施した際の容量をQ(C)とする。ここで得られたQ及び電圧変化ΔVx(V)を用いて、静電容量Fa=Q/ΔVx=Q/(3.8−2.2)により算出される値を、静電容量Fa(F)という。
ここで電流の放電レート(「Cレート」とも呼ばれる)とは、放電容量に対する放電時の電流の相対的な比率であり、一般に、上限電圧から下限電圧まで定電流放電を行う際、1時間で放電が完了する電流値のことを1Cという。本明細書では、上限電圧3.8Vから下限電圧2.2Vまで定電流放電を行う際に1時間で放電が完了する電流値のことを1Cとする。
[電力量]
本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である:
先に述べた方法で算出された静電容量F(F)を用いて、F×(3.82−2.22)/2/3600により算出される値をいう。
本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である:
先に述べた方法で算出された静電容量F(F)を用いて、F×(3.82−2.22)/2/3600により算出される値をいう。
[体積]
非水系リチウム型蓄電素子の体積は、特に指定はないが、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
例えば、ラミネートフィルムによって収納された電極積層体又は電極捲回体の場合は、電極積層体又は電極捲回体のうち、正極活物質層および負極活物質層が存在する領域が、カップ成形されたラミネートフィルムの中に収納される。この非水系リチウム型蓄電素子の体積(V1)は、このカップ成形部分の外寸長さ(l1)、外寸幅(w1)、及びラミネートフィルムを含めた非水系リチウム型蓄電素子の厚み(t1)により、V1=l1×w1×t1で計算される。
角型の金属缶に収納された電極積層体又は電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、単にその金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V2)は、角型の金属缶の外寸長さ(l2)と外寸幅(w2)、外寸厚み(t2)により、V2=l2×w2×t2で計算される。
円筒型の金属缶に収納された電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、その金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V3)は、円筒型の金属缶の底面または上面の外寸半径(r)、外寸長さ(l3)により、V3=3.14×r×r×l3で計算される。
非水系リチウム型蓄電素子の体積は、特に指定はないが、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
例えば、ラミネートフィルムによって収納された電極積層体又は電極捲回体の場合は、電極積層体又は電極捲回体のうち、正極活物質層および負極活物質層が存在する領域が、カップ成形されたラミネートフィルムの中に収納される。この非水系リチウム型蓄電素子の体積(V1)は、このカップ成形部分の外寸長さ(l1)、外寸幅(w1)、及びラミネートフィルムを含めた非水系リチウム型蓄電素子の厚み(t1)により、V1=l1×w1×t1で計算される。
角型の金属缶に収納された電極積層体又は電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、単にその金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V2)は、角型の金属缶の外寸長さ(l2)と外寸幅(w2)、外寸厚み(t2)により、V2=l2×w2×t2で計算される。
円筒型の金属缶に収納された電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、その金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V3)は、円筒型の金属缶の底面または上面の外寸半径(r)、外寸長さ(l3)により、V3=3.14×r×r×l3で計算される。
[エネルギー密度]
本明細書中、エネルギー密度とは、電気量Eと体積Vi(i=1、2、3)を用いてE/Vi(Wh/L)の式により得られる値である。
本明細書中、エネルギー密度とは、電気量Eと体積Vi(i=1、2、3)を用いてE/Vi(Wh/L)の式により得られる値である。
[常温内部抵抗]
本明細書では、常温内部抵抗Ra(Ω)とは、以下の方法によって得られる値である:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=3.8−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
本明細書では、常温内部抵抗Ra(Ω)とは、以下の方法によって得られる値である:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=3.8−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
[高温高電圧保存試験]
本明細書では、高温保存試験時のガス発生量、及び高温保存試験後の常温内部抵抗上昇率は、以下の方法によって測定する:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を10分間行う。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、前述の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存する。この操作を繰り返し行い、2か月間高温保存試験を継続する。上記高温保存試験後のセルに対して、上記常温内部抵抗と同様の測定方法を用いて得られる抵抗値を高温保存試験後の常温内部抵抗Rdとしたとき、高温保存試験開始前の常温内部抵抗Raに対する高温保存試験後の常温内部抵抗上昇率はRd/Raにより算出される。
本明細書では、高温保存試験時のガス発生量、及び高温保存試験後の常温内部抵抗上昇率は、以下の方法によって測定する:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を10分間行う。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、前述の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存する。この操作を繰り返し行い、2か月間高温保存試験を継続する。上記高温保存試験後のセルに対して、上記常温内部抵抗と同様の測定方法を用いて得られる抵抗値を高温保存試験後の常温内部抵抗Rdとしたとき、高温保存試験開始前の常温内部抵抗Raに対する高温保存試験後の常温内部抵抗上昇率はRd/Raにより算出される。
[高負荷充放電サイクル試験後の常温放電内部抵抗上昇率]
本明細書では、高負荷充放電サイクル試験後の抵抗上昇率は、以下の方法によって測定する:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。上記充放電操作を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の常温放電内部抵抗をRa(Ω)、試験終了後の常温放電内部抵抗をRe(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の常温放電内部抵抗上昇率はRe/Raにより算出される。
本明細書では、高負荷充放電サイクル試験後の抵抗上昇率は、以下の方法によって測定する:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。上記充放電操作を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の常温放電内部抵抗をRa(Ω)、試験終了後の常温放電内部抵抗をRe(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の常温放電内部抵抗上昇率はRe/Raにより算出される。
[高負荷充放電サイクル試験後の容量維持率]
本明細書では、高負荷充放電サイクル試験後の容量維持率は、以下の方法によって測定する。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、200Cの電流値で3.8Vに到達するまで定電流充電し、続いて200Cの電流値で2.2Vに到達するまで定電流放電を行う。この高負荷充放電サイクルを60000回繰り返し、その後20Cの電流値で電圧4.5Vに到達後、定電圧で1時間充電する。上述の方法にて静電容量測定を行うことで静電容量Fe(F)を求め、これと試験開始前の静電容量F(F)とを比較することで、試験開始前に対する試験後の静電容量維持率(Fe/F)が求められる。
本明細書では、高負荷充放電サイクル試験後の容量維持率は、以下の方法によって測定する。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、200Cの電流値で3.8Vに到達するまで定電流充電し、続いて200Cの電流値で2.2Vに到達するまで定電流放電を行う。この高負荷充放電サイクルを60000回繰り返し、その後20Cの電流値で電圧4.5Vに到達後、定電圧で1時間充電する。上述の方法にて静電容量測定を行うことで静電容量Fe(F)を求め、これと試験開始前の静電容量F(F)とを比較することで、試験開始前に対する試験後の静電容量維持率(Fe/F)が求められる。
本実施形態の非水系リチウム型蓄電素子は、初期の常温内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、蓄電素子の体積をV(L)としたとき、以下の(a)又は/及び(b):
(a)RaとFとの積Ra・Fが0.3以上3.0以下であり、
(b)E/Vが15以上50以下である、
を満たすものであることが好ましい。
(a)RaとFとの積Ra・Fが0.3以上3.0以下であり、
(b)E/Vが15以上50以下である、
を満たすものであることが好ましい。
(a)について、Ra・Fは、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.6以下であり、更に好ましくは2.4以下である。Ra・Fが上記の上限値以下であれば、優れた入出力特性を有する非水系リチウム型蓄電素子を得ることができる。そのため、非水系リチウム型蓄電素子を用いた蓄電システムと、例えば高効率エンジンと、を組み合わせること等によって非水系リチウム型蓄電素子に印加される高負荷にも十分に耐え得ることとなり、好ましい。
(b)について、E/Vは十分な充電容量と放電容量とを発現させる観点から、15以上であることが好ましく、より好ましくは18以上であり、更に好ましくは20以上である。E/Vが上記の下限値以上であれば、優れた体積エネルギー密度を有する蓄電素子を得ることができる。そのため、蓄電素子を用いた蓄電システムを、例えば、自動車のエンジンと組み合わせて使用する場合に、自動車内の限られた狭いスペースに蓄電システムを設置することが可能となり、好ましい。
本実施形態の非水系リチウム型蓄電素子は、初期の常温放電内部抵抗をRa(Ω)、静電容量をF(F)、セル電圧4V及び環境温度60℃において2か月間保存した後の、常温放電内部抵抗をRd(Ω)としたとき、以下の(e)又は/及び(f):
(e)Rd/Raが0.3以上3.0以下、好ましくは0.9以上3.0以下であり、
(f)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を満たすことが好ましい。
(e)Rd/Raが0.3以上3.0以下、好ましくは0.9以上3.0以下であり、
(f)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を満たすことが好ましい。
条件(e)について、Rd/Raは、高温環境下に長時間曝された場合に、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.0以下であり、更に好ましくは1.5以下である。Rd/Raが上記の上限値以下であれば、長期間安定して優れた出力特性を得ることができるため、デバイスの長寿命化につながる。
条件(f)について、セル電圧4.0V及び環境温度60℃において2か月間保存した際に発生するガス量は、発生したガスにより素子の特性低下を抑制するとの観点から、発生ガス量を25℃において測定した値として、30×10−3cc/F以下であることが好ましく、より好ましくは20×10−3cc/F以下であり、更に好ましくは15×10−3cc/F以下である。上記の条件下で発生するガス量が上記の上限値以下であれば、デバイスが長期間高温に曝された場合であっても、ガス発生によってセルが膨張するおそれが少ない。そのため、十分な安全性及び耐久性を有する蓄電素子を得ることができる。
本実施形態の非水系リチウム型蓄電素子は、非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、静電容量をF(F)、環境温度25℃にて、セル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の常温放電内部抵抗をRe(Ω)、サイクル試験後の蓄電素子を4.5Vの定電圧充電を1時間行った後の静電容量をFe(F)としたとき、以下の(g)又は/及び(h):
(g)Re/Raが0.9以上2.0以下である
(h)Fe/Fが1.01以上である;
を満たすことが好ましい。
(g)Re/Raが0.9以上2.0以下である
(h)Fe/Fが1.01以上である;
を満たすことが好ましい。
条件(g)について、高負荷充放電サイクル試験後の常温放電内部抵抗上昇率Re/Raは、2.0以下であることが好ましく、より好ましくは1.5以下であり、更に好ましくは1.2以下である。高負荷充放電サイクル試験後の抵抗上昇率が上記の上限値以下であれば、充放電を繰り返してもデバイスの特性が維持される。そのため、長期間安定して優れた出力特性を得ることができ、デバイスの長寿命化につながる。
条件(h)について、Fe/Fが1.01以上であれば、長期間充放電を行った蓄電素子でも十分な容量のエネルギーを取り出すことができるため、蓄電素子の交換サイクルを延ばすことができるため好ましい。
<正極活物質中のリチウム化合物の同定方法>
正極活物質中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
正極活物質中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
以下に記載するSEM−EDX、ラマン分光法、及びXPSを測定する際には、アルゴンボックス中で非水系リチウム型蓄電素子を解体して正極を取り出し、正極表面に付着した電解質を洗浄した後に測定を行うことが好ましい。正極を洗浄する溶媒としては、正極表面に付着した電解質を洗い流せればよく、例えばジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート溶媒が好適に利用できる。洗浄方法としては、例えば、正極重量の50〜100倍のジエチルカーボネート溶媒に正極を10分間以上浸漬させ、その後溶媒を取り替えて再度正極を浸漬させる。その後正極をジエチルカーボネートから取り出し、真空乾燥させた後に、SEM−EDX、ラマン分光法、及びXPSの解析を実施する。真空乾燥の条件は、温度:0〜200℃、圧力:0〜20kPa、時間:1〜40時間の範囲で正極中のジエチルカーボネートの残存が1質量%以下になる条件とする。ジエチルカーボネートの残存量については、後述する蒸留水洗浄、液量調整後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。
後述するイオンクロマトグラフィーでは、正極を蒸留水で洗浄した後の水を解析することにより陰イオンを同定することができる。
解析手法にてリチウム化合物を同定できなかった場合、その他の解析手法として、7Li−固体NMR、XRD(X線回折)、TOF−SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることにより、リチウム化合物を同定することもできる。
[エネルギー分散型X線分析(SEM−EDX)]
酸素を含有するリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例としては、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着やスパッタリング等の方法により表面処理することもできる。SEM−EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化したとき、明部を面積で50%以上含む粒子をリチウム化合物とする。
酸素を含有するリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例としては、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着やスパッタリング等の方法により表面処理することもできる。SEM−EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化したとき、明部を面積で50%以上含む粒子をリチウム化合物とする。
[ラマン分光法]
炭酸イオンを含むリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071〜1104cm−1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算する。このとき、ノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を炭酸イオンの頻度分布から差し引く。
炭酸イオンを含むリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071〜1104cm−1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算する。このとき、ノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を炭酸イオンの頻度分布から差し引く。
[X線光電分光法(XPS)]
リチウムの電子状態をXPSにより解析することによりリチウムの結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(リチウム)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングにてクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。得られたXPSスペクトルについて、Li1sの結合エネルギー50〜54eVのピークをLiO2またはLi−C結合、55〜60eVのピークをLiF、Li2CO3、LixPOyFz(x、y、zは1〜6の整数);C1sの結合エネルギー285eVのピークをC−C結合、286eVのピークをC−O結合、288eVのピークをCOO、290〜292eVのピークをCO3 2−、C−F結合;O1sの結合エネルギー527〜530eVのピークをO2−(Li2O)、531〜532eVのピークをCO、CO3、OH、POx(xは1〜4の整数)、SiOx(xは1〜4の整数)、533eVのピークをC−O、SiOx(xは1〜4の整数);F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC−F結合、LixPOyFz(x、y、zは1〜6の整数)、PF6 −;P2pの結合エネルギーについて、133eVのピークをPOx(xは1〜4の整数)、134〜136eVのピークをPFx(xは1〜6の整数);Si2pの結合エネルギー99eVのピークをSi、シリサイド、101〜107eVのピークをSixOy(x、yは任意の整数)として帰属することができる。得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。得られた電子状態の測定結果及び存在元素比の結果から、存在するリチウム化合物を同定することができる。
リチウムの電子状態をXPSにより解析することによりリチウムの結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(リチウム)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングにてクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。得られたXPSスペクトルについて、Li1sの結合エネルギー50〜54eVのピークをLiO2またはLi−C結合、55〜60eVのピークをLiF、Li2CO3、LixPOyFz(x、y、zは1〜6の整数);C1sの結合エネルギー285eVのピークをC−C結合、286eVのピークをC−O結合、288eVのピークをCOO、290〜292eVのピークをCO3 2−、C−F結合;O1sの結合エネルギー527〜530eVのピークをO2−(Li2O)、531〜532eVのピークをCO、CO3、OH、POx(xは1〜4の整数)、SiOx(xは1〜4の整数)、533eVのピークをC−O、SiOx(xは1〜4の整数);F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC−F結合、LixPOyFz(x、y、zは1〜6の整数)、PF6 −;P2pの結合エネルギーについて、133eVのピークをPOx(xは1〜4の整数)、134〜136eVのピークをPFx(xは1〜6の整数);Si2pの結合エネルギー99eVのピークをSi、シリサイド、101〜107eVのピークをSixOy(x、yは任意の整数)として帰属することができる。得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。得られた電子状態の測定結果及び存在元素比の結果から、存在するリチウム化合物を同定することができる。
[イオンクロマトグラフィー]
正極を蒸留水で洗浄し、洗浄した後の水をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。質量分析計や荷電化粒子検出器を検出器と組み合わせて測定することもできるため、SEM−EDX、ラマン分光法、XPSの解析結果から同定されたリチウム化合物に基づいて、適切なカラム及び検出器を組み合わせることが好ましい。
正極を蒸留水で洗浄し、洗浄した後の水をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。質量分析計や荷電化粒子検出器を検出器と組み合わせて測定することもできるため、SEM−EDX、ラマン分光法、XPSの解析結果から同定されたリチウム化合物に基づいて、適切なカラム及び検出器を組み合わせることが好ましい。
サンプルの保持時間は、使用するカラムや溶離液等の条件が決まれば、イオン種成分毎に一定であり、またピークのレスポンスの大きさはイオン種毎に異なるが、イオン種の濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
<リチウム化合物の定量方法>
正極における正極活物質層中に含まれるリチウム化合物の定量方法を以下に記載する。正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水で洗浄する前後の正極の重量変化からリチウム化合物を定量することができる。測定する正極の面積S(cm2)は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。有機溶媒としては、正極表面に堆積した電解液分解物を除去できればよく、特に限定されないが、リチウム化合物の溶解度が2%以下である有機溶媒を用いることで、リチウム化合物の溶出が抑制されるため好ましい。そのような有機溶媒としては、例えばメタノール、メタノール、アセトン、及び酢酸エチル等の極性溶媒が好適に用いられる。
正極における正極活物質層中に含まれるリチウム化合物の定量方法を以下に記載する。正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水で洗浄する前後の正極の重量変化からリチウム化合物を定量することができる。測定する正極の面積S(cm2)は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。有機溶媒としては、正極表面に堆積した電解液分解物を除去できればよく、特に限定されないが、リチウム化合物の溶解度が2%以下である有機溶媒を用いることで、リチウム化合物の溶出が抑制されるため好ましい。そのような有機溶媒としては、例えばメタノール、メタノール、アセトン、及び酢酸エチル等の極性溶媒が好適に用いられる。
正極の洗浄方法は、正極の重量に対し50〜100倍のメタノール溶液に正極を3日間以上十分に浸漬させる。浸漬の間、メタノールが揮発しないよう、例えば容器に蓋をすることが好ましい。3日間以上浸漬させた後、正極をメタノールから取り出し、真空乾燥し、真空乾燥後の正極の重量をM0(g)とする。真空乾燥の条件は、温度:100〜200℃、圧力:0〜10kPa、時間:5〜20時間の範囲で正極中のメタノールの残存が1質量%以下になる条件とする。メタノールの残存量については、後述する蒸留水洗浄後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。続いて、正極の重量の100倍(100M0(g))の蒸留水に正極を3日間以上十分に浸漬させる。イオンクロマトグラフィーを測定する場合は、蒸留水の量が100M0(g)になるように液量を調整する。浸漬の間、蒸留水が揮発しないよう、例えば容器に蓋をすることが好ましい。3日間以上浸漬させた後、蒸留水から正極を取り出し、上記のメタノール洗浄と同様に真空乾燥する。真空乾燥後の正極の重量をM1(g)とし、続いて、得られた正極の集電体の重量を測定するため、スパチュラ、ブラシ、刷毛等を用いて集電体上の正極活物質層を取り除く。得られた正極集電体の重量をM2(g)とすると、正極の片面あたりの正極活物質層中に含まれるリチウム化合物の目付D(g/m2)及び正極の片面あたりの正極活物質層中に含まれる正極活物質の目付E(g/m2)及び正極中に含まれるリチウム化合物の質量%Zは、(4)式及び(5)式及び(6)式にて算出できる。
D=0.5×10000×(M0−M1)/S 式(4)
E=0.5×10000×(M1−M2)/S 式(5)
Z=100×[1−(M1−M2)/(M0−M2)] 式(6)
D=0.5×10000×(M0−M1)/S 式(4)
E=0.5×10000×(M1−M2)/S 式(5)
Z=100×[1−(M1−M2)/(M0−M2)] 式(6)
<Na、及びK元素の定量方法 誘導結合プラズマ質量分析(ICP−MS)>
メタノール洗浄後の正極を、濃硝酸、濃塩酸、王水等の強酸を用いて酸分解し、得られた溶液を2%〜3%の酸濃度になるように純水で希釈する。酸分解においては、適宜加熱及び/又は加圧して分解することもできる。得られた希釈液をICP−MSにより解析する。解析の際に内部標準として既知量の元素を加えておくことが好ましい。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量することができる。
メタノール洗浄後の正極を、濃硝酸、濃塩酸、王水等の強酸を用いて酸分解し、得られた溶液を2%〜3%の酸濃度になるように純水で希釈する。酸分解においては、適宜加熱及び/又は加圧して分解することもできる。得られた希釈液をICP−MSにより解析する。解析の際に内部標準として既知量の元素を加えておくことが好ましい。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量することができる。
以下、実施例及び比較例を示して本発明の実施形態を具体的に説明するが、しかしながら、本発明は、以下の実施例及び比較例により何ら限定されるものではない。
<実施例1−1>
<正極活物質の調製>
[活性炭1の調製]
破砕されたヤシ殻炭化物を小型炭化炉内へ入れ、窒素雰囲気下、500℃で3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、予熱炉で加温した水蒸気を1kg/hで賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた賦活された活性炭を10時間通水洗浄した後に水切りし、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
<正極活物質の調製>
[活性炭1の調製]
破砕されたヤシ殻炭化物を小型炭化炉内へ入れ、窒素雰囲気下、500℃で3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、予熱炉で加温した水蒸気を1kg/hで賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた賦活された活性炭を10時間通水洗浄した後に水切りし、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて、活性炭1の平均粒子径を測定した結果、4.2μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて、活性炭1の細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭2の調製]
フェノール樹脂を、焼成炉内へ入れ、窒素雰囲気下、600℃で2時間炭化処理を行った後、ボールミルで粉砕し、分級して平均粒子径7μmの炭化物を得た。得られた炭化物とKOHとを、質量比1:5で混合し、焼成炉内へ入れ、窒素雰囲下、800℃で1時間加熱して賦活した。賦活後の炭化物を取り出し、濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄し、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥することにより、活性炭2を得た。
フェノール樹脂を、焼成炉内へ入れ、窒素雰囲気下、600℃で2時間炭化処理を行った後、ボールミルで粉砕し、分級して平均粒子径7μmの炭化物を得た。得られた炭化物とKOHとを、質量比1:5で混合し、焼成炉内へ入れ、窒素雰囲下、800℃で1時間加熱して賦活した。賦活後の炭化物を取り出し、濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄し、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥することにより、活性炭2を得た。
島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて、活性炭2の平均粒子径を測定した結果、7.0μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて、活性炭2の細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
<炭酸リチウム1の調整>
平均粒子径53μmの炭酸リチウム200gと酸化ナトリウム0.010gとを25℃でドライブレンドして、混合物を得た。アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、得られた混合物を液体窒素で−196℃に冷却した後、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕して、炭酸リチウム1を得た。−196℃に冷却することで、炭酸リチウムの熱変性を防止しつつ、脆性破壊することができる。得られた炭酸リチウム1の平均粒子径を測定したところ2.5μmであった。
平均粒子径53μmの炭酸リチウム200gと酸化ナトリウム0.010gとを25℃でドライブレンドして、混合物を得た。アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、得られた混合物を液体窒素で−196℃に冷却した後、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕して、炭酸リチウム1を得た。−196℃に冷却することで、炭酸リチウムの熱変性を防止しつつ、脆性破壊することができる。得られた炭酸リチウム1の平均粒子径を測定したところ2.5μmであった。
<正極前駆体の製造>
活性炭2を正極活物質として用い、炭酸リチウム1をリチウム化合物として用いて、正極前駆体を製造した。
活性炭2を正極活物質として用い、炭酸リチウム1をリチウム化合物として用いて、正極前駆体を製造した。
活性炭2を55.5質量部、炭酸リチウム1を32.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,730mPa・s、TI値は4.3であった。得られた塗工液の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は32μmであった。塗工液を東レエンジニアリング社製のダイコーターを用いて、厚さ15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度120℃で乾燥して正極前駆体1(片面)及び正極前駆体1(両面)を得た。得られた正極前駆体1(片面)及び正極前駆体1(両面)を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。プレスされた正極前駆体1(片面)及び正極前駆体1(両面)の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体1(片面)及び正極前駆体1(両面)の任意の10か所で測定した。測定された全厚の平均値からアルミニウム箔の厚さを引いて、正極前駆体1(片面)及び正極前駆体1(両面)の正極活物質層の膜厚を求めた。その結果、正極活物質層の膜厚は、片面あたり52μmであった。
<負極活物質の調製>
市販の人造黒鉛のBET比表面積及び細孔分布を、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて、上述した方法によって測定した。その結果、BET比表面積は3.1m2/g、平均粒子径は4.8μmであった。
市販の人造黒鉛のBET比表面積及び細孔分布を、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて、上述した方法によって測定した。その結果、BET比表面積は3.1m2/g、平均粒子径は4.8μmであった。
この人造黒鉛300gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)30gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。これを窒素雰囲気下、1000℃まで12時間で昇温し、同温度で5時間保持することにより熱反応させ、複合多孔質炭素材料1aを得た。得られた複合多孔質炭素材料1aを自然冷却により60℃まで冷却し、電気炉から取り出した。
得られた複合多孔質炭素材料1aについて、上記と同様の方法でBET比表面積及び細孔分布を測定した。その結果、BET比表面積は6.1m2/g、平均粒子径は4.9μmであった。複合多孔質炭素材料1aにおける、石炭系ピッチ由来の炭素質材料の活性炭に対する質量比率は2.0%であった。
<負極の製造>
複合多孔質炭素材料1aを負極活物質として用いて負極を製造した。
複合多孔質炭素材料1aを負極活物質として用いて負極を製造した。
複合多孔質炭素材料1aを84質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を6質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,326mPa・s、TI値は2.7であった。塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの電解銅箔の両面に塗工速度2m/sの条件で塗工し、乾燥温度120℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いて圧力5kN/cm、プレス部の表面温度25℃の条件でプレスした。プレスされた負極1の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した。測定された全厚の平均値から銅箔の厚さを引いて、負極1の負極活物質層の膜厚を求めた。その結果、負極活物質層の膜厚は、片面あたり30μmであった。
[負極単位重量当たり容量の測定]
得られた負極1を1.4cm×2.0cm(2.8cm2)の大きさに1枚切り出し、銅箔の両面に塗工された負極活物質層の片方の層をスパチュラ、ブラシ、刷毛を用いて除去して作用極とした。対極及び参照極としてそれぞれ金属リチウムを用い、電解液としてエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比1:1混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させた非水系溶液を用いて、アルゴンボックス中で電気化学セルを作製した。
得られた負極1を1.4cm×2.0cm(2.8cm2)の大きさに1枚切り出し、銅箔の両面に塗工された負極活物質層の片方の層をスパチュラ、ブラシ、刷毛を用いて除去して作用極とした。対極及び参照極としてそれぞれ金属リチウムを用い、電解液としてエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比1:1混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させた非水系溶液を用いて、アルゴンボックス中で電気化学セルを作製した。
得られた電気化学セルについて、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、以下の手順で初期充電容量を測定した。
電気化学セルに対して、温度25℃において、電流値0.5mA/cm2で電圧値が0.01Vになるまで定電流充電を行った後、更に電流値が0.01mA/cm2になるまで定電圧充電を行った。この定電流充電及び定電圧充電の時の充電容量を初回充電容量として評価したところ、0.74mAhであり、負極1の単位質量当たりの容量(リチウムイオンのドープ量)は545mAh/gであった。
<電解液の調製>
有機溶媒として、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して非水系電解液1を得た。非水系電解液1におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
有機溶媒として、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して非水系電解液1を得た。非水系電解液1におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
<非水系リチウム型蓄電素子の作製>
得られた正極前駆体1を、正極活物質層が10.0cm×10.0cm(100cm2)の大きさになるよう、正極前駆体1(片面)を2枚、正極前駆体1(両面)を19枚切り出した。続いて負極1を、負極活物質層が10.1cm×10.1cm(102cm2)の大きさになるよう20枚切り出した。10.3cm×10.3cm(106cm2)のポリエチレン製のセパレータ(旭化成製、厚み10μm)を40枚用意した。これらを、最外層が正極前駆体1(片面)になるように、正極前駆体1、セパレータ、負極1の順にセパレータを挟んで正極活物質層と負極活物質層とが対向するよう積層し、電極積層体を得た。得られた電極積層体に正極端子及び負極端子を超音波溶接し、アルミラミネート包材で形成された容器に入れ、電極端子部を含む3辺をヒートシールによりシールした。
得られた正極前駆体1を、正極活物質層が10.0cm×10.0cm(100cm2)の大きさになるよう、正極前駆体1(片面)を2枚、正極前駆体1(両面)を19枚切り出した。続いて負極1を、負極活物質層が10.1cm×10.1cm(102cm2)の大きさになるよう20枚切り出した。10.3cm×10.3cm(106cm2)のポリエチレン製のセパレータ(旭化成製、厚み10μm)を40枚用意した。これらを、最外層が正極前駆体1(片面)になるように、正極前駆体1、セパレータ、負極1の順にセパレータを挟んで正極活物質層と負極活物質層とが対向するよう積層し、電極積層体を得た。得られた電極積層体に正極端子及び負極端子を超音波溶接し、アルミラミネート包材で形成された容器に入れ、電極端子部を含む3辺をヒートシールによりシールした。
アルミラミネート包材の中に収納された電極積層体に、大気圧下、温度25℃、露点−40℃以下のドライエアー環境下にて、非水系電解液1を約80g注入した。続いて、これを減圧チャンバーの中に入れ、大気圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、大気圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、大気圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した(大気圧から、それぞれ−95,−96,−97,−81,−97,−97,−97kPaまで減圧した)。以上の手順により、非水系電解液1を電極積層体に含浸させた。
その後、非水系電解液1を含浸させた電極積層体を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[リチウムドープ]
得られた電極積層体を、温度25℃、露点−60℃、酸素濃度1ppmのアルゴンボックス内に入れた。アルミラミネート包材の余剰部を切断して開封し、松定プレシジョン社製の電源(P4LT18−0.2)を用いて、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。リチウムドープ終了後、富士インパルス社製のヒートシール機(FA−300)を用いてアルミラミネートを封止した。
得られた電極積層体を、温度25℃、露点−60℃、酸素濃度1ppmのアルゴンボックス内に入れた。アルミラミネート包材の余剰部を切断して開封し、松定プレシジョン社製の電源(P4LT18−0.2)を用いて、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。リチウムドープ終了後、富士インパルス社製のヒートシール機(FA−300)を用いてアルミラミネートを封止した。
[エージング]
リチウムドープ後の電極積層体をアルゴンボックスから取り出し、25℃環境下、100mAで電圧3.8Vに到達するまで定電流放電を行った後、3.8V定電流放電を1時間行うことにより、電圧を3.8Vに調整した。続いて、電極積層体を60℃の恒温槽に48時間保管した。
リチウムドープ後の電極積層体をアルゴンボックスから取り出し、25℃環境下、100mAで電圧3.8Vに到達するまで定電流放電を行った後、3.8V定電流放電を1時間行うことにより、電圧を3.8Vに調整した。続いて、電極積層体を60℃の恒温槽に48時間保管した。
[ガス抜き]
エージング後の電極積層体を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に電極積層体を入れ、ダイヤフラムポンプ(KNF社製、N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機に電極積層体を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止し、非水系リチウム型蓄電素子を作製した。以上の手順により、非水系リチウム型蓄電素子を3個作製した。
エージング後の電極積層体を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に電極積層体を入れ、ダイヤフラムポンプ(KNF社製、N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機に電極積層体を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止し、非水系リチウム型蓄電素子を作製した。以上の手順により、非水系リチウム型蓄電素子を3個作製した。
<非水系リチウム型蓄電素子の評価>
[静電容量Faの測定]
得られた非水系リチウム型蓄電素子の内の1個について、25℃に設定した恒温槽内で、富士通テレコムネットワークス福島株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値(1.6A)で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行った。その後、2.2Vまで2Cの電流値(1.6A)で定電流放電を施した際の容量をQ(C)とし、F=Q/(3.8−2.2)により算出した静電容量Faは、1797Fであった。
[静電容量Faの測定]
得られた非水系リチウム型蓄電素子の内の1個について、25℃に設定した恒温槽内で、富士通テレコムネットワークス福島株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値(1.6A)で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行った。その後、2.2Vまで2Cの電流値(1.6A)で定電流放電を施した際の容量をQ(C)とし、F=Q/(3.8−2.2)により算出した静電容量Faは、1797Fであった。
[高負荷充放電サイクル試験]
同じ非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス福島株式会社製の充放電装置(5V,360A)を用いて、200Cの電流値(160A)で3.8Vに到達するまで定電流充電し、続いて200Cの電流値で2.2Vに到達するまで定電流放電を行う充放電手順を、休止なしの条件で60000回繰り返した。サイクル終了後に25℃環境下、20Cの電流値(16A)で4.5Vまで非水系リチウム型蓄電素子を充電し、その後定電圧充電を1時間継続した。その後静電容量Fbを測定したところ1921Fであり、Fb/Fa=1.07であった。
同じ非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス福島株式会社製の充放電装置(5V,360A)を用いて、200Cの電流値(160A)で3.8Vに到達するまで定電流充電し、続いて200Cの電流値で2.2Vに到達するまで定電流放電を行う充放電手順を、休止なしの条件で60000回繰り返した。サイクル終了後に25℃環境下、20Cの電流値(16A)で4.5Vまで非水系リチウム型蓄電素子を充電し、その後定電圧充電を1時間継続した。その後静電容量Fbを測定したところ1921Fであり、Fb/Fa=1.07であった。
[高温高電圧保存試験]
得られた残りの非水系リチウム型蓄電素子の内の1個について、アスカ電子株式会社製の充放電装置(5V,10A)を用いて、2Cの電流値(1.6A)で電圧3.800Vに到達するまで定電流充電を行い、続いて3.800Vの定電圧を印加する定電圧充電を合計で30分行った。その後、70℃に設定した恒温槽の中に非水系リチウム型蓄電素子を30日間保管した。30日保管後の非水系リチウム型蓄電素子の電圧は3.714Vに低下しており、電圧変化量ΔVは0.086Vであった。
得られた残りの非水系リチウム型蓄電素子の内の1個について、アスカ電子株式会社製の充放電装置(5V,10A)を用いて、2Cの電流値(1.6A)で電圧3.800Vに到達するまで定電流充電を行い、続いて3.800Vの定電圧を印加する定電圧充電を合計で30分行った。その後、70℃に設定した恒温槽の中に非水系リチウム型蓄電素子を30日間保管した。30日保管後の非水系リチウム型蓄電素子の電圧は3.714Vに低下しており、電圧変化量ΔVは0.086Vであった。
<リチウム化合物の分析、定量>
[正極試料の調製]
得られた残りの非水系リチウム型蓄電素子を露点温度−72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料1を得た。
[正極試料の調製]
得られた残りの非水系リチウム型蓄電素子を露点温度−72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料1を得た。
<リチウム化合物、Naの定量>
得られた正極試料1を、5cm×5cmの大きさ(正極試料1−1、重量0.265g)及び5cm×4cmの大きさ(正極試料1−2、重量0.212g)に切り出し、それぞれを20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極試料1−1及び正極試料1−2を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。真空乾燥後の正極試料1−1の重量M0は0.252gであり、正極試料1−2の重量は0.202gであった。洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.20gの蒸留水に正極試料1−1を含浸させ、容器に蓋をして45℃環境下、3日間静置した。その後正極試料1−1を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。真空乾燥後の重量M1は0.239gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。その後、スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量M2を測定したところ0.099gであった。式(4)及び式(5)に従いD=2.6g/m2、E=28.0であった。
得られた正極試料1を、5cm×5cmの大きさ(正極試料1−1、重量0.265g)及び5cm×4cmの大きさ(正極試料1−2、重量0.212g)に切り出し、それぞれを20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極試料1−1及び正極試料1−2を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。真空乾燥後の正極試料1−1の重量M0は0.252gであり、正極試料1−2の重量は0.202gであった。洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.20gの蒸留水に正極試料1−1を含浸させ、容器に蓋をして45℃環境下、3日間静置した。その後正極試料1−1を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。真空乾燥後の重量M1は0.239gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。その後、スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量M2を測定したところ0.099gであった。式(4)及び式(5)に従いD=2.6g/m2、E=28.0であった。
正極試料1−2について、テフロン(登録商標)製のスパチュラを用いて正極集電体上の正極活物質層を全て取り除き、得られた正極活物質層について、濃硝酸を用いて酸分解した。得られた溶液を2%の酸濃度になるように純水で希釈した後、ICP−MSによりNaの解析を行ったところ、C=3.1ppmであった。
以上より、C/Dが1.2、C/Eが0.1、D/Eが0.09であった。
<A1、A2の算出>
[正極表面SEM及びEDX測定]
残りの正極試料1から1cm×1cmの小片を切り出し、10Paの真空中にてスパッタリングにより表面に金をコーティングした。続いて以下に示す条件にて、大気暴露下で正極表面のSEM、及びEDXを測定した。
[正極表面SEM及びEDX測定]
残りの正極試料1から1cm×1cmの小片を切り出し、10Paの真空中にてスパッタリングにより表面に金をコーティングした。続いて以下に示す条件にて、大気暴露下で正極表面のSEM、及びEDXを測定した。
(SEM−EDX測定条件)
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
(SEM−EDXの解析)
得られた酸素マッピング及びフッ素マッピングに対し、画像解析ソフト(ImageJ)を用いて明るさの平均値を基準に二値化した。この時の酸素マッピングの面積は全画像に対して15.4%であり、フッ素マッピングの面積は32.2%であった。二値化して得た酸素マッピングとフッ素マッピングの重複する面積は全画像に対して13.9%であり、酸素マッピングに対するフッ素マッピングの面積重複率をA1(%)とすると、A1=100×13.8/15.2より90.3%であった。
得られた酸素マッピング及びフッ素マッピングに対し、画像解析ソフト(ImageJ)を用いて明るさの平均値を基準に二値化した。この時の酸素マッピングの面積は全画像に対して15.4%であり、フッ素マッピングの面積は32.2%であった。二値化して得た酸素マッピングとフッ素マッピングの重複する面積は全画像に対して13.9%であり、酸素マッピングに対するフッ素マッピングの面積重複率をA1(%)とすると、A1=100×13.8/15.2より90.3%であった。
[正極断面SEM及びEDX測定]
正極試料1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料1の面方向に垂直な断面を作製した。その後、上述の方法により正極断面SEM及びEDXを測定した。
正極試料1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料1の面方向に垂直な断面を作製した。その後、上述の方法により正極断面SEM及びEDXを測定した。
得られた正極断面のSEM−EDXについて、上記と同様に酸素マッピング及びフッ素マッピングを二値化し、酸素マッピングに対するフッ素マッピングの面積重複率A2を算出したところ40.1%であった。
<実施例1−2>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−3>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−4>
炭酸リチウム200gと酸化ナトリウム0.02gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム0.02gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−5>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−6>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−7>
炭酸リチウム200gと酸化ナトリウム0.20gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム0.20gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−8>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−9>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電を、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電を、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−10>
炭酸リチウム200gと酸化ナトリウム0.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム0.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−11>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−12>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−13>
炭酸リチウム200gと酸化カリウム0.20gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化カリウム0.20gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−14>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−15>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−16>
炭酸リチウム200gと、酸化ナトリウム0.10gと、酸化カリウム0.10gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと、酸化ナトリウム0.10gと、酸化カリウム0.10gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−17>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−16と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−16と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−18>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−16と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−16と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−1>
炭酸リチウム200gと酸化ナトリウム1.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム1.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−2>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−3>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−4>
炭酸リチウム200gと酸化ナトリウム1.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム1.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−5>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−6>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−4と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−7>
炭酸リチウム200gと酸化ナトリウム2.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム2.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−8>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−9>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−7と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−10>
炭酸リチウム200gと酸化カリウム1.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化カリウム1.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−11>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−12>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−10と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−13>
炭酸リチウム200gと、酸化ナトリウム0.50gと、酸化カリウム0.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと、酸化ナトリウム0.50gと、酸化カリウム0.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−14>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−15>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−13と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−16>
炭酸リチウム200gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−1と同様の方法で非水系リチウム型蓄電素子を作製した。
実施例1−1〜1−18、比較例1−1〜1−16の非水系リチウム型蓄電素子の評価結果を表1に示す。
<実施例1−19>
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり26μmの正極前駆体2(片面)及び正極前駆体2(両面)を作製した。正極前駆体2(片面)及び正極前駆体2(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり26μmの正極前駆体2(片面)及び正極前駆体2(両面)を作製した。正極前駆体2(片面)及び正極前駆体2(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
<実施例1−20>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−21>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−22>
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり77μmの正極前駆体3(片面)及び正極前駆体3(両面)を作製した。正極前駆体3(片面)及び正極前駆体3(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり77μmの正極前駆体3(片面)及び正極前駆体3(両面)を作製した。正極前駆体3(片面)及び正極前駆体3(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
<実施例1−23>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−22と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−22と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−24>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−22と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−22と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−25>
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり105μmの正極前駆体4(片面)及び正極前駆体4(両面)を作製した。正極前駆体4(片面)及び正極前駆体4(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり105μmの正極前駆体4(片面)及び正極前駆体4(両面)を作製した。正極前駆体4(片面)及び正極前駆体4(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
<実施例1−26>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−25と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−25と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−27>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−25と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−25と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−28>
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり158μmの正極前駆体5(片面)及び正極前駆体5(両面)を作製した。正極前駆体5(片面)及び正極前駆体5(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
塗工液を塗工する際、ダイのクリアランスを調整することにより、乾燥後の正極活物質層の膜厚が片面あたり158μmの正極前駆体5(片面)及び正極前駆体5(両面)を作製した。正極前駆体5(片面)及び正極前駆体5(両面)を用いたこと以外は、実施例1−1と同様の方法にて非水系リチウム型蓄電素子を作製した。
<実施例1−29>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−28と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−28と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−30>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−28と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−28と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−31>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−32>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.2Vに到達するまで定電流充電を行った後、続けて4.2V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.2Vに到達するまで定電流充電を行った後、続けて4.2V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
<実施例1−33>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.1Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.1Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−17>
炭酸リチウム200gと酸化ナトリウム1.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム1.00gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−19と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−18>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−17と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−17と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−19>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−17と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−17と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−20>
炭酸リチウム200gと酸化ナトリウム1.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−28と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム1.50gをドライブレンドした後に、液体窒素で−196℃に冷却化し、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて20分間粉砕したこと以外は実施例1−28と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−21>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−20と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−20と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−22>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−20と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−20と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−23>
炭酸リチウム200gと酸化ナトリウム1.00gをドライブレンドした後に、25℃環境下、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて5分間粉砕し、リチウム化合物として用いたこと以外は比較例1−17と同様の方法で非水系リチウム型蓄電素子を作製した。
炭酸リチウム200gと酸化ナトリウム1.00gをドライブレンドした後に、25℃環境下、φ1.0mmのジルコニアビーズを用い、周速10.0m/sにて5分間粉砕し、リチウム化合物として用いたこと以外は比較例1−17と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−24>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−23と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を36時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−23と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−25>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−23と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を12時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−23と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−26>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−23と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−23と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−27>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.2Vに到達するまで定電流充電を行った後、続けて4.2V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−24と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.2Vに到達するまで定電流充電を行った後、続けて4.2V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−24と同様の方法で非水系リチウム型蓄電素子を作製した。
<比較例1−28>
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.1Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−24と同様の方法で非水系リチウム型蓄電素子を作製した。
リチウムドープ操作の非水系リチウム型蓄電素子の初期充電において、電流値100mAで電圧4.1Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を24時間継続することにより、負極にリチウムドープを行ったこと以外は比較例1−24と同様の方法で非水系リチウム型蓄電素子を作製した。
実施例1−19〜1−33、比較例1−17〜1−28の非水系リチウム型蓄電素子の評価結果を表2に示す。
表1及び表2より、2≦C≦300、0.2≦C/D≦38、0.1≦C/E≦7.2を全て満たす場合に、高負荷充放電サイクル特性が良好になり、高温高電圧下での電圧低下を抑制できることが分かる。Cが300ppm以上の場合にも高温高電圧下での電圧低下を抑制できるが、高負荷充放電サイクル特性が悪化してしまう。
理論に限定されないが、炭酸リチウムを−196℃という極低温の条件で粉砕したことにより、粉砕時の温度上昇の影響を受けず、炭酸リチウム粒子表面の欠陥生成を抑制することができたと考えられる。その結果、炭酸リチウム粒子の再凝集を抑制でき、炭酸リチウム粒子の表面で電解質であるLiPF6が効率よく分解することができ、その結果、生成するフッ素化合物が万遍なく堆積し、高負荷充放電サイクル特性が改善したと考えられる。
<実施例2−1>
<炭酸リチウム2の調整>
平均粒子径50μmの炭酸リチウム200gとシュウ酸ナトリウム0.010gとを25℃でドライブレンドして、混合物を得た。アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、得られた混合物を液体窒素で−196℃に冷却した後、φ1.0mmのジルコニアビーズを用い、周速15.0m/sにて20分間粉砕して、炭酸リチウム2を得た。−196℃に冷却することで、炭酸リチウムの熱変性を防止しつつ、脆性破壊することができる。得られた炭酸リチウム2の平均粒子径を測定したところ1.5μmであった。
<炭酸リチウム2の調整>
平均粒子径50μmの炭酸リチウム200gとシュウ酸ナトリウム0.010gとを25℃でドライブレンドして、混合物を得た。アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、得られた混合物を液体窒素で−196℃に冷却した後、φ1.0mmのジルコニアビーズを用い、周速15.0m/sにて20分間粉砕して、炭酸リチウム2を得た。−196℃に冷却することで、炭酸リチウムの熱変性を防止しつつ、脆性破壊することができる。得られた炭酸リチウム2の平均粒子径を測定したところ1.5μmであった。
<正極活物質の調製>
[活性炭1の調製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭1の調製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭2の調製]
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.0μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.0μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
[正極塗工液の調製]
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウム1を用いて下記方法で正極塗工液を製造した。
活性炭1又は2を57.5質量部、炭酸リチウムを30.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,700mPa・s、TI値は3.5であった。得られた塗工液の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は35μmであった。
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウム1を用いて下記方法で正極塗工液を製造した。
活性炭1又は2を57.5質量部、炭酸リチウムを30.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,700mPa・s、TI値は3.5であった。得られた塗工液の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は35μmであった。
[正極前駆体の調製]
上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた正極前駆体の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。その結果、正極活物質層の膜厚は片面あたり60μmであった。
上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた正極前駆体の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。その結果、正極活物質層の膜厚は片面あたり60μmであった。
<負極活物質の調製>
[複合炭素材料Aの調製]
平均粒子径3.0μm、BET比表面積が1,780m2/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行うことにより、複合炭素材料Aを得た。この熱処理は窒素雰囲気下で行い、600℃まで8時間で昇温し、同温度で4時間保持する方法によった。続いて自然冷却により60℃まで冷却した後、複合炭素材料Aを炉から取り出した。
得られた複合炭素材料Aについて、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は3.2μm、BET比表面積は262m2/gであった。石炭系ピッチ由来の炭素質材料の活性炭に対する質量比率は78%であった。
[複合炭素材料Aの調製]
平均粒子径3.0μm、BET比表面積が1,780m2/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行うことにより、複合炭素材料Aを得た。この熱処理は窒素雰囲気下で行い、600℃まで8時間で昇温し、同温度で4時間保持する方法によった。続いて自然冷却により60℃まで冷却した後、複合炭素材料Aを炉から取り出した。
得られた複合炭素材料Aについて、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は3.2μm、BET比表面積は262m2/gであった。石炭系ピッチ由来の炭素質材料の活性炭に対する質量比率は78%であった。
<負極Aの製造>
次いで複合炭素材料Aを負極活物質として用いて負極を製造した。
複合炭素材料Aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極Aを得た。得られた負極Aを、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極Aの負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極Aの任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極Aの負極活物質層の片面あたりの厚さは40μmであった。
次いで複合炭素材料Aを負極活物質として用いて負極を製造した。
複合炭素材料Aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極Aを得た。得られた負極Aを、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極Aの負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極Aの任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極Aの負極活物質層の片面あたりの厚さは40μmであった。
[複合炭素材料Bの調製]
複合炭素材料Aの代わりに平均粒子径4.9μmの人造黒鉛を基材として用い、石炭系ピッチの使用量を50gとし、さらに熱処理温度を1000℃とした他は複合炭素材料Aの調製と同様にして複合炭素材料Bを製造し、評価を行った。その結果、複合炭素材料BのBET比表面積は6.1m2/gであった。石炭系ピッチ由来の炭素質材料の人造黒鉛に対する質量比率は2%であった。
複合炭素材料Aの代わりに平均粒子径4.9μmの人造黒鉛を基材として用い、石炭系ピッチの使用量を50gとし、さらに熱処理温度を1000℃とした他は複合炭素材料Aの調製と同様にして複合炭素材料Bを製造し、評価を行った。その結果、複合炭素材料BのBET比表面積は6.1m2/gであった。石炭系ピッチ由来の炭素質材料の人造黒鉛に対する質量比率は2%であった。
<負極Bの製造>
上記で得た複合炭素材料Bを負極活物質として用いて負極を製造した。
複合炭素材料Bを80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,798mPa・s、TI値は2.7であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た。得られた負極を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極活物質層の片面あたりの厚さは25μmであった。
上記で得た複合炭素材料Bを負極活物質として用いて負極を製造した。
複合炭素材料Bを80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,798mPa・s、TI値は2.7であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た。得られた負極を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極活物質層の片面あたりの厚さは25μmであった。
<電解液の調製>
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が50:50(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.6mol/L及び0.6mol/Lであった。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が50:50(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.6mol/L及び0.6mol/Lであった。
<蓄電素子の組立>
得られた両面負極Aおよび両面正極前駆体Aを10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を80℃、50Paで、60hr真空乾燥した。この電極積層体を、露点−45℃のドライ環境下にて、ラミネート包材からなる外装体内に挿入し、電極端子部およびボトム部の外装体3方を180℃、20sec、1.0MPaでヒートシールした。非水系電解液を注入して外装体を密閉することにより、非水系リチウム型蓄電素子を組立てた。
得られた両面負極Aおよび両面正極前駆体Aを10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を80℃、50Paで、60hr真空乾燥した。この電極積層体を、露点−45℃のドライ環境下にて、ラミネート包材からなる外装体内に挿入し、電極端子部およびボトム部の外装体3方を180℃、20sec、1.0MPaでヒートシールした。非水系電解液を注入して外装体を密閉することにより、非水系リチウム型蓄電素子を組立てた。
<蓄電素子の注液、含浸、封止>
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(大気圧から、それぞれ−95、−96、−97、−81、−97、−97、−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(大気圧から、それぞれ−95、−96、−97、−81、−97、−97、−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、35℃環境下、電流値0.6Aで電圧4.7Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を8時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、35℃環境下、電流値0.6Aで電圧4.7Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を8時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を40℃の恒温槽に30時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を40℃の恒温槽に30時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
<ガス抜き>
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
<非水系リチウム型蓄電素子の評価>
[エネルギー密度の算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行った。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出された静電容量F(F)を用いて、
E/V=F×(3.82−2.22)/2/3600/Vによりエネルギー密度を算出したところ23.4Wh/Lであった。
[エネルギー密度の算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行った。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出された静電容量F(F)を用いて、
E/V=F×(3.82−2.22)/2/3600/Vによりエネルギー密度を算出したところ23.4Wh/Lであった。
[Ra・Fの算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温内部抵抗Raを算出した。
静電容量Fと25℃における内部抵抗Raとの積Ra・Fは1.10ΩFであった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温内部抵抗Raを算出した。
静電容量Fと25℃における内部抵抗Raとの積Ra・Fは1.10ΩFであった。
[自己放電特性評価]
得られた蓄電素子について、アスカ電子株式会社製の充放電装置(5V,10A)を用いて、2Cの電流値(1.6A)で電圧3.800Vに到達するまで定電流充電を行い、続いて3.800Vの定電圧を印加する定電圧充電を合計で30分行った。その後、70℃に設定した恒温槽の中に非水系リチウム型蓄電素子を30日間保管した。30日保管後の非水系リチウム型蓄電素子の電圧は3.708Vに低下しており、電圧変化量ΔVは0.092Vであった。
得られた蓄電素子について、アスカ電子株式会社製の充放電装置(5V,10A)を用いて、2Cの電流値(1.6A)で電圧3.800Vに到達するまで定電流充電を行い、続いて3.800Vの定電圧を印加する定電圧充電を合計で30分行った。その後、70℃に設定した恒温槽の中に非水系リチウム型蓄電素子を30日間保管した。30日保管後の非水系リチウム型蓄電素子の電圧は3.708Vに低下しており、電圧変化量ΔVは0.092Vであった。
[高負荷充放電サイクル試験]
得られた蓄電素子について、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。上記充放電操作を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の常温放電内部抵抗をRa(Ω)、試験終了後の常温放電内部抵抗をRe(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の抵抗上昇率はRe/Raは1.68であった。
得られた蓄電素子について、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。上記充放電操作を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の常温放電内部抵抗をRa(Ω)、試験終了後の常温放電内部抵抗をRe(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の抵抗上昇率はRe/Raは1.68であった。
[高温高電圧保存試験]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温内部抵抗Rdを算出した。
このRd(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の内部抵抗Ra(Ω)で除して算出した比Rd/Raは1.65であった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温内部抵抗Rdを算出した。
このRd(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の内部抵抗Ra(Ω)で除して算出した比Rd/Raは1.65であった。
<正極中のリチウム化合物の定量>
[試料の調製]
非水系リチウム型蓄電素子を露点温度−72℃のアルゴンボックス中で解体し、電解液、負極、正極をそれぞれ取り出した。両面に正極活物質層が塗工された正極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料を得た。
[試料の調製]
非水系リチウム型蓄電素子を露点温度−72℃のアルゴンボックス中で解体し、電解液、負極、正極をそれぞれ取り出した。両面に正極活物質層が塗工された正極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料を得た。
得られた正極試料を、5cm×5cmの大きさに切り出し、20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極試料を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.20gの蒸留水に正極試料を含浸させ、容器に蓋をして45℃環境下、3日間静置した。その後正極試料を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。真空乾燥後の重量M1は0.239gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。前述した式(4)及び式(5)に従い正極目付D(g/m2)及び正極の片面あたりの正極活物質層中に含まれるリチウム化合物の目付E(g/m2)を求め、正極中に含まれるリチウム化合物の量を算出したところ15質量%であった。
<負極活物質層中のNaの定量>
[負極試料の調製]
上記蓄電素子の解体で得られた、両面に負極活物質層が塗工された負極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで負極を動かし、10分間洗浄した。続いて負極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に負極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された負極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、負極試料を得た。
[負極試料の調製]
上記蓄電素子の解体で得られた、両面に負極活物質層が塗工された負極を10cm×10cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで負極を動かし、10分間洗浄した。続いて負極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に負極を浸し、上記と同様の方法にて10分間洗浄した。洗浄された負極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、負極試料を得た。
得られた負極試料1を、5cm×5cmの大きさに切り出し、それぞれを20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後負極試料を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。
得られた負極試料について、テフロン(登録商標)製のスパチュラを用いて負極集電体上の負極活物質層を全て取り除き、得られた負極活物質層について、濃硝酸を用いて酸分解した。得られた溶液を2%の酸濃度になるように純水で希釈した後、ICP−MSサーモフィッシャーサイエンティフィック社、Xシリーズ2)によりNaの存在量(ppm)を求めたところ、C1=4.6ppmであった。
<電解液中のNaの定量>
上記蓄電素子の解体で得られた電解液のうち0.2gを、テフロン(登録商標)容器に入れ、60%硝酸4ccを添加した。得られた試料をマイクロウェーブ分解装置(マイルストーンゼネラル社、ETHOS PLUS)を用いて分解し、これを純水で50mlにメスアップした。この非水系電解液の測定をICP/MS(サーモフィッシャーサイエンティフィック社、Xシリーズ2)にて行い、非水系電解液単位質量当たりのNaの存在量(ppm)を求めたところ、C2=1.6ppmであった。
上記蓄電素子の解体で得られた電解液のうち0.2gを、テフロン(登録商標)容器に入れ、60%硝酸4ccを添加した。得られた試料をマイクロウェーブ分解装置(マイルストーンゼネラル社、ETHOS PLUS)を用いて分解し、これを純水で50mlにメスアップした。この非水系電解液の測定をICP/MS(サーモフィッシャーサイエンティフィック社、Xシリーズ2)にて行い、非水系電解液単位質量当たりのNaの存在量(ppm)を求めたところ、C2=1.6ppmであった。
[固体7Li−NMR測定]
上記で得た非水系リチウム型蓄電素子の正極につき、正極活物質層の固体7Li−NMR測定を行った。
先ず、上記で作製した非水系リチウム型蓄電素子に対して、アスカ電子製の充放電装置(ACD−01)を用いて、環境温度25℃の下で、2Cの電流で2.9Vまで定電流充電した後、2.9Vの定電圧を印加する定電流定電圧充電を2時間行った。
次いで、正極活物質層の採取をアルゴン雰囲気下で行った。非水系リチウム型蓄電素子をアルゴン雰囲気下で解体し、正極を取り出した。続いて、得られた正極をジエチルカーボネートに2分以上浸漬してリチウム塩等を除去した。同様の条件でジエチルカーボネートへの浸漬をもう1度行った後、風乾した。その後、正極から正極活物質層を採取し、秤量した。
得られた正極活物質層を試料として、固体7Li−NMR測定を行った。測定装置としてJEOL RESONANCE社製ECA700(7Li−NMRの共鳴周波数は272.1MHzである)を用い、室温環境下において、マジックアングルスピニングの回転数を14.5kHz、照射パルス幅を45°パルスとして、シングルパルス法により測定した。シフト基準として1mol/L塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとした。塩化リチウム水溶液測定時には試料を回転させず、照射パルス幅を45°パルスとして、シングルパルス法により測定した。測定に際しては測定の間の繰り返し待ち時間を十分にとるようにし、繰り返し待ち時間を3000秒に設定して測定した。
上記の方法によって得られた正極活物質層の固体7Li−NMRスペクトルについて上述した方法により、上記の正極活物質層のリチウム量を算出したところ、181.7×10−4mol/gであった。
上記で得た非水系リチウム型蓄電素子の正極につき、正極活物質層の固体7Li−NMR測定を行った。
先ず、上記で作製した非水系リチウム型蓄電素子に対して、アスカ電子製の充放電装置(ACD−01)を用いて、環境温度25℃の下で、2Cの電流で2.9Vまで定電流充電した後、2.9Vの定電圧を印加する定電流定電圧充電を2時間行った。
次いで、正極活物質層の採取をアルゴン雰囲気下で行った。非水系リチウム型蓄電素子をアルゴン雰囲気下で解体し、正極を取り出した。続いて、得られた正極をジエチルカーボネートに2分以上浸漬してリチウム塩等を除去した。同様の条件でジエチルカーボネートへの浸漬をもう1度行った後、風乾した。その後、正極から正極活物質層を採取し、秤量した。
得られた正極活物質層を試料として、固体7Li−NMR測定を行った。測定装置としてJEOL RESONANCE社製ECA700(7Li−NMRの共鳴周波数は272.1MHzである)を用い、室温環境下において、マジックアングルスピニングの回転数を14.5kHz、照射パルス幅を45°パルスとして、シングルパルス法により測定した。シフト基準として1mol/L塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとした。塩化リチウム水溶液測定時には試料を回転させず、照射パルス幅を45°パルスとして、シングルパルス法により測定した。測定に際しては測定の間の繰り返し待ち時間を十分にとるようにし、繰り返し待ち時間を3000秒に設定して測定した。
上記の方法によって得られた正極活物質層の固体7Li−NMRスペクトルについて上述した方法により、上記の正極活物質層のリチウム量を算出したところ、181.7×10−4mol/gであった。
<実施例2−2〜2−33、及び比較例2−1〜2−11>
上記実施例2−1において、負極、正極前駆体活物質、正極前駆体活物質の平均粒径、リチウム化合物、リチウム化合物の平均粒径、Na/K化合物、及び正極前駆体の構成比、をそれぞれ表3に記載のとおりとした他は、実施例2−1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表4に示す。
上記実施例2−1において、負極、正極前駆体活物質、正極前駆体活物質の平均粒径、リチウム化合物、リチウム化合物の平均粒径、Na/K化合物、及び正極前駆体の構成比、をそれぞれ表3に記載のとおりとした他は、実施例2−1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表4に示す。
<実施例2−34>
<蓄電素子の組立>
得られた両面負極Aおよび両面正極前駆体Aを10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を80℃、50Paで、60hr真空乾燥した。この電極積層体を、露点−45℃のドライ環境下にて、ラミネート包材からなる外装体内に挿入し、電極端子部およびボトム部の外装体3方を180℃、20sec、1.0MPaでヒートシールした。非水系電解液を注入して外装体を密閉することにより、非水系リチウム型蓄電素子を組立てた。
<蓄電素子の組立>
得られた両面負極Aおよび両面正極前駆体Aを10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を80℃、50Paで、60hr真空乾燥した。この電極積層体を、露点−45℃のドライ環境下にて、ラミネート包材からなる外装体内に挿入し、電極端子部およびボトム部の外装体3方を180℃、20sec、1.0MPaでヒートシールした。非水系電解液を注入して外装体を密閉することにより、非水系リチウム型蓄電素子を組立てた。
<蓄電素子の注液、含浸、封止>
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作手順を合計7回繰り返した。(大気圧から、それぞれ−95,−96,−97,−81,−97,−97,−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作手順を合計7回繰り返した。(大気圧から、それぞれ−95,−96,−97,−81,−97,−97,−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.6Vに到達するまで定電流充電を行った後、続けて4.4V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.6Vに到達するまで定電流充電を行った後、続けて4.4V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
蓄電素子組立、リチウムドープ、エージングを上記に記載する方法にした以外は実施例2−1と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表6に示す。
評価結果を表6に示す。
<実施例2−35>
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.3V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に20時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に20時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ、エージングを上記に記載する方法にした以外は実施例34と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表6に示す。
評価結果を表6に示す。
<実施例2−36>
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.4Vに到達するまで定電流充電を行った後、続けて4.2V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.4Vに到達するまで定電流充電を行った後、続けて4.2V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に30時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に30時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ、エージングを上記に記載する方法にした以外は実施例2−34と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表6に示す。
評価結果を表6に示す。
<実施例2−37>
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、45℃環境下、電流値0.6Aで電圧4.3Vに到達するまで定電流充電を行った後、続けて4.1V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に40時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を60℃の恒温槽に40時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ、エージングを上記に記載する方法にした以外は実施例2−34と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表6に示す。
評価結果を表6に示す。
<比較例2−12>
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値0.6Aで電圧5.0Vに到達するまで定電流充電を行った後、続けて4.8V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値0.6Aで電圧5.0Vに到達するまで定電流充電を行った後、続けて4.8V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を25℃の恒温槽に3時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を25℃の恒温槽に3時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ、エージングを上記に記載する方法にした以外は実施例2−34と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表6に示す。
評価結果を表6に示す。
<比較例2−13>
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値0.6Aで電圧3.0Vに到達するまで定電流充電を行った後、続けて3.8V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<リチウムドープ>
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値0.6Aで電圧3.0Vに到達するまで定電流充電を行った後、続けて3.8V定電圧充電を30時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
<エージング>
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を85℃の恒温槽に100時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、0.7Aで電圧2.0Vに到達するまで定電流放電を行った後、4.0V定電流充電を1時間行うことにより電圧を4.0Vに調整した。続いて、非水系リチウム型蓄電素子を85℃の恒温槽に100時間保管した。続いて、充電電流1A、放電電流1Aとし、下限電圧2.0V、上限電圧4.0Vの間で定電流充電、定電流放電による充放電サイクルを2回繰り返した。
リチウムドープ、エージングを上記に記載する方法にした以外は実施例2−34と同様にして非水系リチウム型蓄電素子を作製し、各種の評価を行った。
評価結果を表6に示す。
評価結果を表6に示す。
<実施例3−1>
<炭酸リチウム3の調整>
平均粒子径53μmの炭酸リチウム200gを、アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、液体窒素で−196℃に冷却化した後、ドライアイスビーズを用い、周速10.0m/sにて9分間粉砕した。−196℃で熱変性を防止し、脆性破壊することにより得られた炭酸リチウム3について平均粒子径を測定することで仕込みの炭酸リチウム3の粒子径を求めたところ、2.0μmであった。
<炭酸リチウム3の調整>
平均粒子径53μmの炭酸リチウム200gを、アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、液体窒素で−196℃に冷却化した後、ドライアイスビーズを用い、周速10.0m/sにて9分間粉砕した。−196℃で熱変性を防止し、脆性破壊することにより得られた炭酸リチウム3について平均粒子径を測定することで仕込みの炭酸リチウム3の粒子径を求めたところ、2.0μmであった。
<正極活物質の調製>
[活性炭1の調製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭1の調製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭2の調製]
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.1μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.1μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
[正極塗工液(組成a)の調製]
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウム3を用いて下記方法で正極塗工液(組成a)を製造した。
活性炭1又は2を59.5質量部、炭酸リチウム3を28.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して正極塗工液(組成a)を得た。
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウム3を用いて下記方法で正極塗工液(組成a)を製造した。
活性炭1又は2を59.5質量部、炭酸リチウム3を28.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して正極塗工液(組成a)を得た。
[正極塗工液(組成b)の調製]
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウム3を用いて下記方法で正極塗工液(組成b)を製造した。
活性炭1又は2を34.5質量部、炭酸リチウム3を56.0質量部、ケッチェンブラックを2.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を6.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して正極塗工液(組成b)を得た。
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウム3を用いて下記方法で正極塗工液(組成b)を製造した。
活性炭1又は2を34.5質量部、炭酸リチウム3を56.0質量部、ケッチェンブラックを2.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を6.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して正極塗工液(組成b)を得た。
[正極塗工液(組成c)の調製]
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物を用いずに、下記方法で正極塗工液(組成c)を製造した。
活性炭1又は2を78.4質量部、ケッチェンブラックを4.6質量部、PVP(ポリビニルピロリドン)を3.4質量部、及びPVdF(ポリフッ化ビニリデン)を13.6質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して正極塗工液(組成c)を得た。
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物を用いずに、下記方法で正極塗工液(組成c)を製造した。
活性炭1又は2を78.4質量部、ケッチェンブラックを4.6質量部、PVP(ポリビニルピロリドン)を3.4質量部、及びPVdF(ポリフッ化ビニリデン)を13.6質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して正極塗工液(組成c)を得た。
[正極前駆体の製造]
上記正極塗工液(組成a)を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。
上記正極塗工液(組成a)を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。
<負極の製造>
[負極1の製造]
平均粒子径3.0μm、BET比表面積が1,780m2/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行うことにより、複合炭素材料1aを得た。この熱処理は窒素雰囲気下で行い、600℃まで8時間で昇温し、同温度で4時間保持する方法によった。続いて自然冷却により60℃まで冷却した後、複合炭素材料1を炉から取り出した。
得られた複合炭素材料1について、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は3.2μm、BET比表面積は262m2/gであった。石炭系ピッチ由来の炭素質材料の活性炭に対する質量比率は78%であった。
[負極1の製造]
平均粒子径3.0μm、BET比表面積が1,780m2/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行うことにより、複合炭素材料1aを得た。この熱処理は窒素雰囲気下で行い、600℃まで8時間で昇温し、同温度で4時間保持する方法によった。続いて自然冷却により60℃まで冷却した後、複合炭素材料1を炉から取り出した。
得られた複合炭素材料1について、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は3.2μm、BET比表面積は262m2/gであった。石炭系ピッチ由来の炭素質材料の活性炭に対する質量比率は78%であった。
次いで複合炭素材料1aを負極活物質として用いて負極を製造した。
複合炭素材料1aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極1の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。負極1の負極活物質層の膜厚は片面あたり40μmであった。
複合炭素材料1aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極1の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。負極1の負極活物質層の膜厚は片面あたり40μmであった。
[負極2及び3の製造]
以下の表1に示す基材及びその量、石炭系ピッチの量、熱処理温度となるように調整した他は、負極1の調製と同様にして、負極活物質の製造及び評価を行った。上記で得た負極活物質を用いて、表1に記載の塗工液となるように調整をした他は、負極1の調製と同様にして、負極の製造及び評価を行った。結果を以下の表7に示す。
以下の表1に示す基材及びその量、石炭系ピッチの量、熱処理温度となるように調整した他は、負極1の調製と同様にして、負極活物質の製造及び評価を行った。上記で得た負極活物質を用いて、表1に記載の塗工液となるように調整をした他は、負極1の調製と同様にして、負極の製造及び評価を行った。結果を以下の表7に示す。
表1における原料はそれぞれ、以下のとおりである。
ヤシ殻活性炭:平均粒子径3.0μm、BET比表面積1,780m2/g
カーボンナノ粒子:平均粒子径5.2μm、BET比表面積859m2/g、1次粒子径20nm
人造黒鉛:平均粒子径4.8μm、BET比表面積3.1m2/g
ピッチ:軟化点50℃の石炭系ピッチ
ヤシ殻活性炭:平均粒子径3.0μm、BET比表面積1,780m2/g
カーボンナノ粒子:平均粒子径5.2μm、BET比表面積859m2/g、1次粒子径20nm
人造黒鉛:平均粒子径4.8μm、BET比表面積3.1m2/g
ピッチ:軟化点50℃の石炭系ピッチ
<非水系電解液の調製>
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.3mol/L及び0.9mol/Lであったため、MA=0.9mol/L、MB=0.3mol/Lであり、MA/(MA+MB)=0.75であった。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.3mol/L及び0.9mol/Lであったため、MA=0.9mol/L、MB=0.3mol/Lであり、MA/(MA+MB)=0.75であった。
[アルミニウムの浸漬]
得られた非水系電解液100gに水酸化アルミニウム(和光純薬工業(株)、014−01925)の粉体を1g入れ、45℃環境、露点−40℃以下で、5時間静置することにより、非水系電解液にアルミニウムを含有させた。その後、ろ過により水酸化アルミニウムの不溶成分を除去した。
得られた非水系電解液100gに水酸化アルミニウム(和光純薬工業(株)、014−01925)の粉体を1g入れ、45℃環境、露点−40℃以下で、5時間静置することにより、非水系電解液にアルミニウムを含有させた。その後、ろ過により水酸化アルミニウムの不溶成分を除去した。
<非水系リチウム型蓄電素子の製造>
[組立]
得られた両面負極2と両面正極前駆体1を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体1を用い、更に両面負極2を21枚と両面正極前駆体1を20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ、負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。乾燥した電極積層体を露点−45℃のドライ環境下にて、アルミラミネート包材からなる外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。
[組立]
得られた両面負極2と両面正極前駆体1を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体1を用い、更に両面負極2を21枚と両面正極前駆体1を20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ、負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。乾燥した電極積層体を露点−45℃のドライ環境下にて、アルミラミネート包材からなる外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。
[注液、含浸、封止]
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返した後、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した(大気圧から、それぞれ、−95,−96,−97,−81,−97,−97,−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返した後、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した(大気圧から、それぞれ、−95,−96,−97,−81,−97,−97,−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[リチウムドープ]
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値50mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値50mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
[エージング]
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、1.0Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。その後、非水系リチウム型蓄電素子を60℃の恒温槽に60時間保管した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、1.0Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。その後、非水系リチウム型蓄電素子を60℃の恒温槽に60時間保管した。
[ガス抜き]
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の手順により、非水系リチウム型蓄電素子が完成した。
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の手順により、非水系リチウム型蓄電素子が完成した。
<非水系リチウム型蓄電素子の評価>
[静電容量の測定]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行った。2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出した静電容量Fは、1000Fであった。
[静電容量の測定]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行った。2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出した静電容量Fは、1000Fであった。
[Ra・Fの算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Raを算出した。
静電容量Fと常温放電内部抵抗Raとの積Ra・Fは1.41ΩFであった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Raを算出した。
静電容量Fと常温放電内部抵抗Raとの積Ra・Fは1.41ΩFであった。
[高温保存試験後のRd/Raの算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施した。高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温放電内部抵抗Rdを算出した。このRd(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の常温放電内部抵抗Ra(Ω)で除して算出した比Rd/Raは2.56であった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施した。高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温放電内部抵抗Rdを算出した。このRd(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の常温放電内部抵抗Ra(Ω)で除して算出した比Rd/Raは2.56であった。
[高温保存試験後のガス発生量]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。静電容量Fを用いて、(Vb−Va)/Fにより求めたガス発生量は16.0×10−3cc/Fであった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。静電容量Fを用いて、(Vb−Va)/Fにより求めたガス発生量は16.0×10−3cc/Fであった。
[高負荷充放電サイクル試験後の常温放電内部抵抗上昇率]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う充放電操作を60000回繰り返した。高負荷充放電サイクル試験後に上記[Ra・Fの算出]と同様にして高負荷充放電サイクル試験後の常温放電内部抵抗Reを算出した。このRe(Ω)を、上記[Ra・Fの算出]で求めた高負荷充放電サイクル試験前の内部抵抗Ra(Ω)で除して算出した比Re/Raは1.77であった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う充放電操作を60000回繰り返した。高負荷充放電サイクル試験後に上記[Ra・Fの算出]と同様にして高負荷充放電サイクル試験後の常温放電内部抵抗Reを算出した。このRe(Ω)を、上記[Ra・Fの算出]で求めた高負荷充放電サイクル試験前の内部抵抗Ra(Ω)で除して算出した比Re/Raは1.77であった。
[アルミニウムの定量]
得られた蓄電素子について、23℃の部屋に設置された露点−90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体し、0.2gの非水系電解液を取り出した。テフロン(登録商標)容器に0.2gの上記非水系電解液を入れ、60%硝酸4ccを添加した。マイクロウェーブ分解装置(マイルストーンゼネラル社、ETHOS PLUS)を用いてこれを分解した後、純水で50mlにメスアップした。この非水系電解液中のアルミニウムの定量測定をICP/MS(サーモフィッシャーサイエンティフィック社、Xシリーズ2)にて行い、非水系電解液単位質量当たりのアルミニウム濃度(ppm)を求めたところ、51ppmであった。
得られた蓄電素子について、23℃の部屋に設置された露点−90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体し、0.2gの非水系電解液を取り出した。テフロン(登録商標)容器に0.2gの上記非水系電解液を入れ、60%硝酸4ccを添加した。マイクロウェーブ分解装置(マイルストーンゼネラル社、ETHOS PLUS)を用いてこれを分解した後、純水で50mlにメスアップした。この非水系電解液中のアルミニウムの定量測定をICP/MS(サーモフィッシャーサイエンティフィック社、Xシリーズ2)にて行い、非水系電解液単位質量当たりのアルミニウム濃度(ppm)を求めたところ、51ppmであった。
[正極試料の調製]
得られた残りの非水系リチウム型蓄電素子を露点温度−72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料を得た。
得られた残りの非水系リチウム型蓄電素子を露点温度−72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料を得た。
[リチウム化合物の定量]
正極試料を5cm×5cmの大きさ(重量0.256g)に切り出し、20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。この時の正極重量M0は0.249gであり、洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.00gの蒸留水に正極を含浸させ、容器に蓋をして45℃環境下、3日間静置した。3日間静置後の蒸留水の重量は24.65gであったため、蒸留水を0.35g追加した。その後正極を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の正極重量M1は0.234gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量M2を測定したところ0.099gであった。上記した式(4)により正極中の炭酸リチウムを定量したところ10.0質量%であった。
正極試料を5cm×5cmの大きさ(重量0.256g)に切り出し、20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。この時の正極重量M0は0.249gであり、洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.00gの蒸留水に正極を含浸させ、容器に蓋をして45℃環境下、3日間静置した。3日間静置後の蒸留水の重量は24.65gであったため、蒸留水を0.35g追加した。その後正極を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の正極重量M1は0.234gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量M2を測定したところ0.099gであった。上記した式(4)により正極中の炭酸リチウムを定量したところ10.0質量%であった。
[正極断面SEM及びEDX測定]
正極試料1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料1の面方向に垂直な断面を作製した。その後、以下に示す条件にて、大気暴露下で正極断面SEM及びEDXを測定した。
正極試料1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料1の面方向に垂直な断面を作製した。その後、以下に示す条件にて、大気暴露下で正極断面SEM及びEDXを測定した。
[SEM−EDX測定条件]
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
[X1の算出]
上記したように測定した正極断面SEM及びEDXから得られた画像を、画像解析ソフト(ImageJ)を用いて画像解析することでX1を算出した。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物の粒子Xとし、断面SEM画像中に観察されるXの粒子全てについて、断面積Sを求め、下記式(7):
d=2×(S/π)1/2 ...式(7)
により算出される粒子径dを求めた(円周率をπとする)。
得られた粒子径dを用いて、下記式(8):
X0=Σ[4/3π×(d/2)3×d]/Σ[4/3π×(d/2)3] ...式(8)
により体積平均粒子径X0を求めた。
正極断面の視野を変えて合計5ヶ所測定し、X0の平均値である平均粒子径X1は3.5μmであった。
上記したように測定した正極断面SEM及びEDXから得られた画像を、画像解析ソフト(ImageJ)を用いて画像解析することでX1を算出した。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物の粒子Xとし、断面SEM画像中に観察されるXの粒子全てについて、断面積Sを求め、下記式(7):
d=2×(S/π)1/2 ...式(7)
により算出される粒子径dを求めた(円周率をπとする)。
得られた粒子径dを用いて、下記式(8):
X0=Σ[4/3π×(d/2)3×d]/Σ[4/3π×(d/2)3] ...式(8)
により体積平均粒子径X0を求めた。
正極断面の視野を変えて合計5ヶ所測定し、X0の平均値である平均粒子径X1は3.5μmであった。
<実施例3−2〜3−42並びに比較例3−1〜3−10>
非水系リチウム型蓄電素子の作製条件を、それぞれ、以下の表8に示すとおりとした他は、実施例3−1と同様にして、実施例3−2〜3−42と比較例3−1〜3−10の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。得られた非水系リチウム型蓄電素子の評価結果を以下の表9に示す。
非水系リチウム型蓄電素子の作製条件を、それぞれ、以下の表8に示すとおりとした他は、実施例3−1と同様にして、実施例3−2〜3−42と比較例3−1〜3−10の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。得られた非水系リチウム型蓄電素子の評価結果を以下の表9に示す。
表8における略称等は、それぞれ以下の意味である。
[リチウム塩]
塩A1:LiPF6
塩A2:LiBF4
塩B1:LiN(SO2F)2
塩B2:LiN(SO2CF3)2
塩B3:LiN(SO2C2F5)2
[リチウム塩]
塩A1:LiPF6
塩A2:LiBF4
塩B1:LiN(SO2F)2
塩B2:LiN(SO2CF3)2
塩B3:LiN(SO2C2F5)2
以上の実施例により、本実施形態の蓄電素子は、初期入出力特性に優れ、高負荷充放電サイクル特性、高温保存耐久性に優れた、非水系リチウム型蓄電素子であることが検証された。
本発明の非水系リチウム蓄電素子は、例えば、複数個の非水系リチウム蓄電素子を直列、又は並列に接続して蓄電モジュールを作ることができる。本発明の非水系リチウム蓄電素子及び上記蓄電モジュールは、さまざまな蓄電システム、例えば:高負荷充放電サイクル特性が求められる自動車のハイブリット駆動システムの電力回生システム;太陽光発電や風力発電等の自然発電やマイクログリッド等における電力負荷平準化システム;工場の生産設備等における無停電電源システム;マイクロ波送電や電解共鳴等の電圧変動の平準化及びエネルギーの蓄電を目的とした非接触給電システム;及び振動発電等で発電した電力の利用を目的としたエナジーハーベストシステム等に好適に利用できる。
本発明の非水系リチウム蓄電素子は、例えば、リチウムイオンキャパシタ又はリチウムイオン二次電池として適用したときに、本発明の効果が最大限に発揮されるため好ましい。
本発明の非水系リチウム蓄電素子は、例えば、リチウムイオンキャパシタ又はリチウムイオン二次電池として適用したときに、本発明の効果が最大限に発揮されるため好ましい。
Claims (41)
- 正極活物質以外のリチウム化合物を含む正極と、負極と、セパレータと、リチウムイオンを含む非水系電解液とを有する非水系リチウム型蓄電素子であって、
前記正極は、正極集電体と、前記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、
前記負極は、負極集電体と、前記負極集電体の片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、
前記正極活物質層中に含まれるNa及び/又はK元素の濃度をC(ppm)とするとき、2≦C≦300であり、
前記正極の片面当たりの前記正極活物質層中に含まれる前記正極活物質以外の前記リチウム化合物の目付をD(g/m2)、前記正極の片面当たりの前記正極活物質層中に含まれる前記正極活物質の目付をE(g/m2)とするとき、1.0≦D≦15、10≦E≦100、0.2≦C/D≦38、かつ0.1≦C/E≦7.2である、非水系リチウム型蓄電素子。 - 前記リチウム化合物が炭酸リチウムである、請求項1に記載の非水系リチウム型蓄電素子。
- 前記濃度Cが2.5≦C≦300である、請求項1又は2に記載の非水系リチウム型蓄電素子。
- 0.01≦D/E≦0.52である、請求項1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。
- 正極表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率A1が40%以上99%以下である、請求項1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。
- BIB加工した正極断面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率A2が10%以上60%以下である、請求項1〜5のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記非水系リチウム型蓄電素子に対して、環境温度25℃、セル電圧2.2Vから3.8V、電流値200Cのレートで充放電サイクルを60,000回行い、続いて4.5Vの定電圧充電を1時間行った後の静電容量をFe(F)とし、前記充放電サイクル前の静電容量をF(F)としたとき、以下の(h):
(h)Fe/Fが1.01以上である、
を満たす、請求項1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。 - 活性炭を含む正極活物質と、前記正極活物質以外のリチウム化合物とを含む正極活物質層を有する正極前駆体であって、前記正極前駆体の前記正極活物質層中に含まれるNa及び/又はK元素の濃度C0(ppm)が、20≦C0≦1300ppmであり、前記正極前駆体の片面当たりの前記正極活物質層中に含まれる前記正極活物質以外のリチウム化合物の目付D0(g/m2)が、8.0≦D0≦50.0であり、前記正極前駆体の片面あたりの前記正極活物質層中に含まれる前記正極活物質の目付E0(g/m2)が、10≦E0≦100であり、0.2≦C0/D0≦38であり、0.1≦C0/E0≦7.2である正極前駆体を用いた、請求項1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質層中に含まれるNa及び/又はK元素の濃度をC1(ppm)とし、
前記電解液中に含まれるNa及び/又はK元素の濃度をC2(ppm)とするとき、
1.00≦C1/C2≦15.00であり、
前記リチウム化合物が、炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上であって、
前記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、前記正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、前記正極中に含まれるリチウム化合物の量が、前記正極活物質層の全質量を基準として1質量%以上50質量%以下である、
請求項1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。 - 前記正極活物質層の固体7Li−NMRスペクトルにおいて、−40ppm〜40ppmにおけるピークの面積より計算されるリチウム量が、10.0×10−4mol/g以上300×10−4mol/g以下である、請求項9に記載の非水系リチウム型蓄電素子。
- 前記非水系電解液が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートおよびフルオロエチレンカーボネートから選択される少なくとも1種の有機溶媒を含有する、請求項9又は10に記載の非水系リチウム型蓄電素子。
- 前記非水系電解液が、LiPF6及びLiBF4のうち少なくとも1種を含有する、請求項9〜11のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記非水系電解液におけるLiN(SO2F)2の濃度が、前記非水系電解液の総量を基準として0.3mol/L以上1.5mol/L以下である、請求項9〜12のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記正極集電体及び前記負極集電体が貫通孔を持たない金属箔である、請求項9〜13のいずれか一項に記載の非水系リチウム型蓄電素子。
- 請求項1〜13のいずれか一項に記載の非水系リチウム型蓄電素子において、セル電圧4Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、電極積層体を収納している外装体の体積をV(L)、としたとき、以下の(a)及び(b):
(a)RaとFの積Ra・Fが0.3以上3.0以下であり、
(b)E/Vが15以上50以下である、
を満たす、請求項9〜14のいずれか一項に記載の非水系リチウム型蓄電素子。 - 請求項9〜15のいずれか一項に記載の非水系リチウム型蓄電素子において、セル電圧4Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、セル電圧4V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRd(Ω)、環境温度25℃にてセル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の内部抵抗をRe(Ω)としたとき、以下の(e)及び(g):
(e)Rd/Raが0.9以上3.0以下であり、
(g)Re/Raが0.9以上2.0以下である、
を満たす、請求項9〜15のいずれか一項に記載の非水系リチウム型蓄電素子。 - 前記負極活物質はリチウムイオンを吸蔵及び放出できる炭素材料を含み、
前記正極活物質は活性炭を含み、
前記正極は、前記正極活物質層の全質量を基準として、前記正極活物質以外のリチウム化合物を1質量%以上50質量%以下含有し、
前記非水系電解液のAl濃度が、1ppm以上300ppm以下である、請求項1〜16のいずれか一項に記載の非水系リチウム型蓄電素子。 - 前記非水系電解液が、
(A)LiPF6、及びLiBF4のうちの少なくとも1種;並びに
(B)LiN(SO2F)2、LiN(SO2CF3)2、及びLiN(SO2C2F5)2のうちの少なくとも1種;
のリチウム塩をさらに含有する、請求項17に記載の非水系リチウム型蓄電素子。 - 前記非水系電解液の総量を基準として、前記(A)の合計モル濃度をMA(mol/L)、前記(B)の合計モル濃度をMB(mol/L)とするとき、モル濃度比MA/(MA+MB)が1/10以上9/10以下の範囲である、請求項18に記載の非水系リチウム型蓄電素子。
- 前記リチウム塩のモル濃度比MA/MBが2/10以上6/10以下の範囲である、請求項19に記載の非水系リチウム型蓄電素子。
- 前記(B)の合計モル濃度MB(mol/L)が、0.1mol/L以上1.5mol/L以下である、請求項18〜20のいずれか1項に記載の非水系リチウム型蓄電素子。
- 前記(A)がLiPF6であり、前記(B)がLiN(SO2F)2である、請求項18〜21のいずれか1項に記載の非水系リチウム型蓄電素子。
- 前記正極が含む、前記正極活物質以外のリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmである、請求項17〜22のいずれか1項に記載の非水系リチウム型蓄電素子。
- 前記正極が含む、前記正極活物質以外のリチウム化合物が炭酸リチウムである、請求項17〜23のいずれか1項に記載の非水系リチウム型蓄電素子。
- 前記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、静電容量をF(F)としたとき:
(a)RaとFとの積Ra・Fが0.3以上3.0以下である、
を満たす、請求項17〜24のいずれか一項に記載の非水系リチウム型蓄電素子。 - 前記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、セル電圧4V及び環境温度60℃において2か月間保存した後の、常温放電内部抵抗をRd(Ω)とするとき、以下:
(e)Rd/Raが0.9以上3.0以下であり、
(f)セル電圧4V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を満たす、請求項17〜25のいずれか一項に記載の非水系リチウム型蓄電素子。 - 前記非水系リチウム型蓄電素子の初期の常温放電内部抵抗をRa(Ω)、環境温度25℃にて、セル電圧を2.2Vから3.8Vまで、300Cのレートでの充放電サイクルを60,000回行った後の常温放電内部抵抗をRe(Ω)としたとき:
(g)Re/Raが0.9以上2.0以下である、
を満たす、請求項17〜26のいずれか一項に記載の前記非水系リチウム型蓄電素子。 - 前記正極活物質層に含まれる前記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、請求項1〜27のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記正極活物質層に含まれる前記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、請求項1〜27のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のリチウムイオンのドープ量が、前記負極活物質の単位質量当たり530mAh/g以上2,500mAh/g以下である、請求項1〜29のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のBET比表面積が100m2/g以上1,500m2/g以下である、請求項1〜30のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のリチウムイオンのドープ量が、前記負極活物質の単位質量当たり50mAh/g以上700mAh/g以下である、請求項1〜29のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のBET比表面積が1m2/g以上50m2/g以下である、請求項1〜29、及び32のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質の平均粒子径が1μm以上10μm以下である、請求項1〜29、32、及び33のいずれか一項に記載の非水系リチウム型蓄電素子。
- 請求項1〜34のいずれか一項に記載の非水系リチウム型蓄電素子を用いた蓄電モジュール。
- 請求項1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた電力回生システム。
- 請求項1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた電力負荷平準化システム。
- 請求項1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた無停電電源システム。
- 請求項1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた非接触給電システム。
- 請求項1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いたエナジーハーベストシステム。
- 請求項1〜35のいずれか一項に記載の非水系リチウム型蓄電素子を用いた蓄電システム。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016010895 | 2016-01-22 | ||
JP2016010895 | 2016-01-22 | ||
JP2016155394 | 2016-08-08 | ||
JP2016155394 | 2016-08-08 | ||
JP2016192546 | 2016-09-30 | ||
JP2016192504 | 2016-09-30 | ||
JP2016192504 | 2016-09-30 | ||
JP2016192546 | 2016-09-30 | ||
PCT/JP2017/002010 WO2017126690A1 (ja) | 2016-01-22 | 2017-01-20 | 非水系リチウム型蓄電素子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017199443A Division JP6714566B2 (ja) | 2016-01-22 | 2017-10-13 | 非水系リチウム型蓄電素子の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6228712B1 true JP6228712B1 (ja) | 2017-11-08 |
JPWO2017126690A1 JPWO2017126690A1 (ja) | 2018-01-25 |
Family
ID=59362152
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017509054A Active JP6228712B1 (ja) | 2016-01-22 | 2017-01-20 | 非水系リチウム型蓄電素子 |
JP2017199443A Active JP6714566B2 (ja) | 2016-01-22 | 2017-10-13 | 非水系リチウム型蓄電素子の製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017199443A Active JP6714566B2 (ja) | 2016-01-22 | 2017-10-13 | 非水系リチウム型蓄電素子の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10340526B2 (ja) |
EP (2) | EP3352188B1 (ja) |
JP (2) | JP6228712B1 (ja) |
KR (1) | KR101935214B1 (ja) |
CN (2) | CN110391094B (ja) |
TW (1) | TWI624980B (ja) |
WO (1) | WO2017126690A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111415821B (zh) * | 2016-01-22 | 2022-06-07 | 旭化成株式会社 | 非水系锂蓄电元件的制造方法 |
TWI688149B (zh) * | 2017-11-14 | 2020-03-11 | 日商旭化成股份有限公司 | 非水系鋰型蓄電元件 |
CN111971826B (zh) * | 2018-04-06 | 2023-10-24 | 松下知识产权经营株式会社 | 非水电解质二次电池的正极活性物质、非水电解质二次电池用正极及非水电解质二次电池 |
KR102366885B1 (ko) | 2018-07-18 | 2022-02-24 | 아사히 가세이 가부시키가이샤 | 리튬 이온 2 차 전지 |
GB2585621B (en) * | 2018-09-24 | 2022-11-16 | Plasma App Ltd | Carbon materials |
JP7489577B2 (ja) * | 2018-12-10 | 2024-05-24 | パナソニックIpマネジメント株式会社 | 電気化学デバイス用電極および電気化学デバイス |
CN110323409B (zh) * | 2019-05-05 | 2020-11-27 | 珠海冠宇电池股份有限公司 | 一种改善高电压循环性能的锂离子电池负极及其制备方法 |
KR102628735B1 (ko) * | 2020-03-20 | 2024-01-23 | 쥐알에스티 인터내셔널 리미티드 | 2차 전지용 캐소드의 제조 방법 |
WO2021184392A1 (en) * | 2020-03-20 | 2021-09-23 | Guangdong Haozhi Technology Co. Limited | Method of preparing cathode for secondary battery |
WO2022209928A1 (ja) * | 2021-03-29 | 2022-10-06 | パナソニックIpマネジメント株式会社 | リチウムイオンキャパシタ |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126718A (ja) * | 1999-10-22 | 2001-05-11 | Gs-Melcotec Co Ltd | 非水電解質電池用電極の製造方法及び非水電解質電池 |
JP2004014300A (ja) * | 2002-06-06 | 2004-01-15 | Sony Corp | 非水電解質電池及びその製造方法 |
JP2008177263A (ja) * | 2007-01-17 | 2008-07-31 | Sanyo Electric Co Ltd | 活性炭電極及びその製造方法並びに電気二重層キャパシタ及びハイブリッドキャパシタ |
WO2011058748A1 (ja) * | 2009-11-13 | 2011-05-19 | パナソニック株式会社 | 電気化学キャパシタおよびそれに用いられる電極 |
JP2012212629A (ja) * | 2011-03-31 | 2012-11-01 | Fuji Heavy Ind Ltd | リチウムイオン蓄電デバイスの製造方法 |
JP2014199723A (ja) * | 2013-03-29 | 2014-10-23 | 富士重工業株式会社 | プレドープ剤、これを用いた蓄電デバイス及びその製造方法 |
JP2015011943A (ja) * | 2013-07-02 | 2015-01-19 | 日本電気硝子株式会社 | 蓄電デバイス用正極材料およびその製造方法 |
WO2016006632A1 (ja) * | 2014-07-09 | 2016-01-14 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JP2016012620A (ja) * | 2014-06-27 | 2016-01-21 | 株式会社豊田自動織機 | プリドープ剤、リチウムイオンキャパシタ用正極、並びにリチウムイオンキャパシタ及びその製造方法 |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3038676B2 (ja) * | 1988-03-24 | 2000-05-08 | 旭硝子株式会社 | 電気二重層コンデンサ |
US5427875A (en) | 1991-04-26 | 1995-06-27 | Sony Corporation | Non-aqueous electrolyte secondary cell |
JP3010781B2 (ja) | 1991-04-26 | 2000-02-21 | ソニー株式会社 | 非水電解質二次電池 |
JPH05343066A (ja) * | 1992-06-09 | 1993-12-24 | Mitsui Mining & Smelting Co Ltd | リチウム二次電池用正極活物質 |
US5702843A (en) | 1995-05-24 | 1997-12-30 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery |
DE69635450T2 (de) * | 1995-06-28 | 2006-08-03 | Ube Industries, Ltd., Ube | Nichtwässrige sekundärbatterie |
JP3624578B2 (ja) * | 1995-11-25 | 2005-03-02 | ソニー株式会社 | 非水電解液二次電池用負極材料、その製造方法及び非水電解液二次電池 |
CA2207801C (en) * | 1996-06-19 | 2004-03-30 | Hideki Kaido | Nonaqueous electrolyte battery |
US5928812A (en) | 1996-11-18 | 1999-07-27 | Ultralife Batteries, Inc. | High performance lithium ion polymer cells and batteries |
EP0973180A3 (en) | 1998-07-14 | 2003-11-19 | Asahi Glass Company Ltd. | Secondary power source |
WO2001013444A1 (fr) * | 1999-08-12 | 2001-02-22 | Nisshinbo Industries, Inc. | Structure d'electrode, composant electrique et procedes de production |
JP2001084998A (ja) | 1999-09-16 | 2001-03-30 | Sony Corp | 非水電解質二次電池 |
JP2001167767A (ja) | 1999-12-07 | 2001-06-22 | Sony Corp | 非水電解液2次電池 |
JP3960167B2 (ja) | 2002-08-29 | 2007-08-15 | 株式会社ジーエス・ユアサコーポレーション | リチウム二次電池用電極の製造方法及びリチウム二次電池の製造方法、並びに、これらを用いたリチウム二次電池用電極及びリチウム二次電池 |
AU2003266021A1 (en) | 2002-09-10 | 2004-04-30 | California Institute Of Technology | High-capacity nanostructured silicon and lithium alloys thereof |
KR100732896B1 (ko) | 2003-08-21 | 2007-06-27 | 에이지씨 세이미 케미칼 가부시키가이샤 | 리튬 이차 전지용 양극 활성 물질 분말 |
JP4087343B2 (ja) | 2004-02-25 | 2008-05-21 | Tdk株式会社 | リチウムイオン二次電池、及び、リチウムイオン二次電池の充電方法 |
DE102004016766A1 (de) | 2004-04-01 | 2005-10-20 | Degussa | Nanoskalige Siliziumpartikel in negativen Elektrodenmaterialien für Lithium-Ionen-Batterien |
US7635540B2 (en) | 2004-11-15 | 2009-12-22 | Panasonic Corporation | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same |
JP4839633B2 (ja) | 2005-02-28 | 2011-12-21 | パナソニック株式会社 | 非水電解質二次電池および非水電解質二次電池用正極活物質の製造方法 |
JP4731967B2 (ja) * | 2005-03-31 | 2011-07-27 | 富士重工業株式会社 | リチウムイオンキャパシタ |
JP4581888B2 (ja) * | 2005-07-25 | 2010-11-17 | Tdk株式会社 | 電気化学素子用電極の製造方法および電気化学素子の製造方法 |
JP4813152B2 (ja) * | 2005-11-14 | 2011-11-09 | 富士重工業株式会社 | リチウムイオンキャパシタ |
JP2008171593A (ja) | 2007-01-09 | 2008-07-24 | Shoei Electronics Kk | 有機電解質電池およびその製造方法 |
JP5230108B2 (ja) | 2007-01-26 | 2013-07-10 | 三洋電機株式会社 | 非水電解質二次電池 |
JP4920475B2 (ja) * | 2007-03-30 | 2012-04-18 | ソニー株式会社 | 正極活物質、正極および非水電解質電池 |
CN102290573B (zh) | 2007-03-30 | 2015-07-08 | 索尼株式会社 | 正极活性物质、正极、非水电解质电池 |
WO2008126823A1 (ja) | 2007-04-09 | 2008-10-23 | Kao Corporation | 電池用正極活物質の製造方法 |
CN101861634B (zh) * | 2007-11-16 | 2013-08-07 | 大阪瓦斯株式会社 | 非水锂基电存储装置的正极材料 |
US8248757B2 (en) | 2007-11-16 | 2012-08-21 | Asahi Kasei Kabushiki Kaisha | Nonaqueous lithium-type storage element |
JP4636341B2 (ja) * | 2008-04-17 | 2011-02-23 | トヨタ自動車株式会社 | リチウム二次電池およびその製造方法 |
KR101094937B1 (ko) | 2009-02-16 | 2011-12-15 | 삼성에스디아이 주식회사 | 원통형 이차전지 |
JP5554932B2 (ja) * | 2009-03-02 | 2014-07-23 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JP2010225291A (ja) * | 2009-03-19 | 2010-10-07 | Toyota Motor Corp | リチウムイオン二次電池及びその製造方法 |
US20110159382A1 (en) | 2009-05-08 | 2011-06-30 | Toru Matsui | Nonaqueous solvent, and nonaqueous electrolyte solution and nonaqueous secondary battery using the same |
JP2011070994A (ja) | 2009-09-28 | 2011-04-07 | Sumitomo Chemical Co Ltd | 正極合剤、正極および非水電解質二次電池 |
CN102687315B (zh) * | 2009-12-24 | 2016-02-10 | 松下电器产业株式会社 | 电极和蓄电装置 |
US20110189548A1 (en) * | 2010-02-03 | 2011-08-04 | Us Government As Represented By Secretary Of Army | Ionic additives for electrochemical devices using intercalation electrodes |
CN101847516A (zh) * | 2010-02-26 | 2010-09-29 | 上海奥威科技开发有限公司 | 一种高比能量有机体系的电容电池 |
WO2011121691A1 (ja) | 2010-03-31 | 2011-10-06 | パナソニック株式会社 | リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池 |
US8451584B2 (en) * | 2010-03-31 | 2013-05-28 | University Of Miami | Solid state energy storage device and method |
JP2011249507A (ja) * | 2010-05-26 | 2011-12-08 | Aisin Seiki Co Ltd | 高性能キャパシタおよび高性能キャパシタ用負極材料のドープ方法 |
JP5654820B2 (ja) | 2010-09-28 | 2015-01-14 | 旭化成株式会社 | 正極材料及びその製造方法並びに蓄電素子 |
US8654507B2 (en) * | 2010-09-30 | 2014-02-18 | Energ2 Technologies, Inc. | Enhanced packing of energy storage particles |
US20130224608A1 (en) | 2010-12-13 | 2013-08-29 | Nec Corporation | Positive electrode active material for secondary battery |
CN103370756B (zh) * | 2010-12-28 | 2018-05-11 | 巴斯福股份公司 | 包含增强的电化学特性的碳材料 |
JP5278467B2 (ja) | 2011-02-21 | 2013-09-04 | 株式会社デンソー | リチウム二次電池の充電装置及び充電方法 |
WO2013122115A1 (ja) * | 2012-02-14 | 2013-08-22 | 三菱化学株式会社 | 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池 |
KR20150020185A (ko) * | 2012-05-09 | 2015-02-25 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 리튬의 프리도핑 방법, 리튬 프리도핑 전극 및 축전 디바이스 |
CN102683700A (zh) * | 2012-05-22 | 2012-09-19 | 因迪能源(苏州)有限公司 | 一种锂离子电池复合正极材料及其制备方法 |
CN104620343B (zh) * | 2012-09-20 | 2017-09-29 | 旭化成株式会社 | 锂离子电容器 |
US9979010B2 (en) | 2012-10-01 | 2018-05-22 | Asahi Kasei Kabushiki Kaisha | Electrode for electrical storage element, and nonaqueous lithium electrical storage element |
WO2014088074A1 (ja) * | 2012-12-06 | 2014-06-12 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JP6262432B2 (ja) * | 2013-01-25 | 2018-01-17 | 旭化成株式会社 | リチウムイオンキャパシタの製造方法 |
KR101724011B1 (ko) * | 2013-03-28 | 2017-04-06 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 리튬 이차 전지 |
JP6256855B2 (ja) * | 2014-07-15 | 2018-01-10 | 川上 総一郎 | 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法 |
KR101905246B1 (ko) * | 2014-09-30 | 2018-10-05 | 주식회사 엘지화학 | 리튬 이차전지의 제조방법 |
US20170237127A1 (en) * | 2014-10-24 | 2017-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Electrode, manufacturing method thereof, negative electrode, manufacturing method thereof, power storage device, and electronic device |
WO2017126686A1 (ja) | 2016-01-22 | 2017-07-27 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
KR101968886B1 (ko) | 2016-01-22 | 2019-04-12 | 아사히 가세이 가부시키가이샤 | 비수계 리튬형 축전 소자 |
KR101959701B1 (ko) * | 2016-01-22 | 2019-03-18 | 아사히 가세이 가부시키가이샤 | 리튬 이온 2 차 전지 |
US11107639B2 (en) * | 2016-01-22 | 2021-08-31 | Asahi Kasei Kabushiki Kaisha | Positive electrode precursor |
-
2017
- 2017-01-20 KR KR1020187006971A patent/KR101935214B1/ko active Active
- 2017-01-20 US US15/761,084 patent/US10340526B2/en active Active
- 2017-01-20 CN CN201910618410.5A patent/CN110391094B/zh active Active
- 2017-01-20 EP EP17741567.6A patent/EP3352188B1/en active Active
- 2017-01-20 WO PCT/JP2017/002010 patent/WO2017126690A1/ja active Application Filing
- 2017-01-20 JP JP2017509054A patent/JP6228712B1/ja active Active
- 2017-01-20 TW TW106101999A patent/TWI624980B/zh active
- 2017-01-20 CN CN201780003145.9A patent/CN108028141B/zh active Active
- 2017-01-20 EP EP20181685.7A patent/EP3736843B1/en active Active
- 2017-10-13 JP JP2017199443A patent/JP6714566B2/ja active Active
-
2019
- 2019-04-08 US US16/377,407 patent/US10748716B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126718A (ja) * | 1999-10-22 | 2001-05-11 | Gs-Melcotec Co Ltd | 非水電解質電池用電極の製造方法及び非水電解質電池 |
JP2004014300A (ja) * | 2002-06-06 | 2004-01-15 | Sony Corp | 非水電解質電池及びその製造方法 |
JP2008177263A (ja) * | 2007-01-17 | 2008-07-31 | Sanyo Electric Co Ltd | 活性炭電極及びその製造方法並びに電気二重層キャパシタ及びハイブリッドキャパシタ |
WO2011058748A1 (ja) * | 2009-11-13 | 2011-05-19 | パナソニック株式会社 | 電気化学キャパシタおよびそれに用いられる電極 |
JP2012212629A (ja) * | 2011-03-31 | 2012-11-01 | Fuji Heavy Ind Ltd | リチウムイオン蓄電デバイスの製造方法 |
JP2014199723A (ja) * | 2013-03-29 | 2014-10-23 | 富士重工業株式会社 | プレドープ剤、これを用いた蓄電デバイス及びその製造方法 |
JP2015011943A (ja) * | 2013-07-02 | 2015-01-19 | 日本電気硝子株式会社 | 蓄電デバイス用正極材料およびその製造方法 |
JP2016012620A (ja) * | 2014-06-27 | 2016-01-21 | 株式会社豊田自動織機 | プリドープ剤、リチウムイオンキャパシタ用正極、並びにリチウムイオンキャパシタ及びその製造方法 |
WO2016006632A1 (ja) * | 2014-07-09 | 2016-01-14 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
Also Published As
Publication number | Publication date |
---|---|
JP2018061039A (ja) | 2018-04-12 |
US10748716B2 (en) | 2020-08-18 |
US20190237766A1 (en) | 2019-08-01 |
EP3352188A4 (en) | 2019-06-12 |
TW201737533A (zh) | 2017-10-16 |
EP3736843A1 (en) | 2020-11-11 |
CN110391094A (zh) | 2019-10-29 |
US20180269486A1 (en) | 2018-09-20 |
KR20180030930A (ko) | 2018-03-26 |
EP3352188A1 (en) | 2018-07-25 |
US10340526B2 (en) | 2019-07-02 |
EP3736843B1 (en) | 2023-08-09 |
EP3352188B1 (en) | 2020-07-29 |
CN110391094B (zh) | 2021-10-12 |
JP6714566B2 (ja) | 2020-06-24 |
JPWO2017126690A1 (ja) | 2018-01-25 |
CN108028141A (zh) | 2018-05-11 |
WO2017126690A1 (ja) | 2017-07-27 |
KR101935214B1 (ko) | 2019-01-03 |
CN108028141B (zh) | 2019-09-03 |
TWI624980B (zh) | 2018-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6228712B1 (ja) | 非水系リチウム型蓄電素子 | |
JP6774396B2 (ja) | 非水系リチウム型蓄電素子の製造方法 | |
JP6227839B1 (ja) | 非水系リチウム蓄電素子 | |
JP6815305B2 (ja) | 非水系リチウム蓄電素子の製造方法 | |
JP6976113B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815126B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056428A (ja) | 非水系リチウム型蓄電素子用の負極 | |
JP6754656B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754260B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815148B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6829572B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP6829573B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP2018056429A (ja) | 非水系リチウム型蓄電素子 | |
JP6815151B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754655B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815146B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018026408A (ja) | 非水系アルカリ土類金属型蓄電素子 | |
JP6815147B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056430A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056417A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056408A (ja) | 非水系リチウム型蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171013 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6228712 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |