JP6829572B2 - 捲回式非水系リチウム型蓄電素子 - Google Patents
捲回式非水系リチウム型蓄電素子 Download PDFInfo
- Publication number
- JP6829572B2 JP6829572B2 JP2016192479A JP2016192479A JP6829572B2 JP 6829572 B2 JP6829572 B2 JP 6829572B2 JP 2016192479 A JP2016192479 A JP 2016192479A JP 2016192479 A JP2016192479 A JP 2016192479A JP 6829572 B2 JP6829572 B2 JP 6829572B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- negative electrode
- positive electrode
- less
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
これらの蓄電システムに用いられる電池の第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。
電気二重層キャパシタのうち、電極に活性炭を用いたものは、0.5〜1kW/L程度の出力特性を有する。この電気二重層キャパシタは、耐久性(サイクル特性及び高温保存特性)も高く、前記高出力が要求される分野で最適のデバイスと考えられてきた。しかし、そのエネルギー密度は1〜5Wh/L程度に過ぎない。そのため、更なるエネルギー密度の向上が必要である。
リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(非水系リチウム型蓄電素子)の一種であって、正極においては約3V以上で電気二重層キャパシタと同様の陰イオンの吸着・脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵・放出によるファラデー反応によって、充放電を行う蓄電素子である。
上述の電極材料とその特徴をまとめると、電極に活性炭等の材料を用い、活性炭表面のイオンの吸着・脱離(非ファラデー反応)により充放電を行う場合は、高出力かつ高耐久性を実現するが、エネルギー密度が低くなる(例えば1倍とする。)。一方、電極に酸化物や炭素材料を用い、ファラデー反応により充放電を行う場合は、エネルギー密度が高くなる(例えば活性炭を用いた非ファラデー反応の10倍とする。)が、耐久性及び出力特性に課題がある。
例えば、非対向部に電解液が浸透しないように浸透防止処理をする技術が知られている(特許文献1)。これは、負極活物質層の他の部位からの拡散や、正極活物質層からの回り込みによって、負極の非対向部にリチウムイオンが拡散されるのを防ぎ、蓄電素子の容量低下を防ぐことができる。
以上のように、実用化にあたって重要な優れたエネルギー密度とともに、高い入出力特性、高負荷充放電サイクルに対する耐久性を十分に確保できる技術は見出されていなかった。
したがって、本発明が解決しようとする課題は、捲回式の蓄電素子における充放電反応に寄与しにくい負極の非対向部へのリチウムイオンの移動を抑制し、優れたエネルギー密度と高い入出力特性を有し、さらに高負荷充放電サイクルに対する耐久性を備えた非水系リチウム型蓄電素子を提供することである。
すなわち、本発明は、以下の通りのものである:
[1]活物質以外のリチウム化合物を含む正極、負極、セパレータ、リチウムイオンを含む非水系電解液からなる非水系リチウム型蓄電素子であって、
前記正極が正極集電体を有し、前記集電体上に活物質及びリチウム化合物からなる正極活物質層が設けられ、かつ、前記負極は負極集電体上にリチウムイオンを吸蔵放出可能な活物質を含み、さらに、
前記正極と前記負極はセパレータを介して捲回した電極捲回体からなり、加えて、
前記負極は、前記セパレータを介在して、前記正極と前記負極とが対向する対向部と、
前記セパレータを介在して、対向する前記正極が存在しない非対向部を有し、そして、
前記非対向部における負極電位が、前記対向部における負極電位よりも50mV以上高いことを特徴とする非水系リチウム型蓄電素子。
[2]前記非対向部の負極活物質層において、負極電位の勾配が500mV/m以上ある、[1]に記載の非水系リチウム型蓄電素子。
[3]前記対向部の負極活物質中のリチウムイオン濃度(質量%)に対する前記非対向部の負極活物質中のリチウムイオン濃度(質量%)の比が、0.85以下である、[1]又は[2]に記載の非水系リチウム型蓄電素子。
[4]前記対向部の負極の厚みに対する前記非対向部の負極の厚みの比が、0.80以上0.95以下である、[1]〜[3]のいずれか一項に記載の非水系リチウム型蓄電素子。
[5]前記リチウム化合物が、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種のリチウム化合物である、[1]〜[4]のいずれか一項に記載の非水系リチウム型蓄電素子。
[6]前記正極活物質層の固体7Li−NMRスペクトルについて、
繰り返し待ち時間10秒とした測定により得られた−40ppm〜40ppmにおけるピーク面積をaとし、繰り返し待ち時間3000秒とした測定により得られた−40ppm〜40ppmにおけるピーク面積をbとしたとき、1.04≦b/a≦5.56である、[1]〜[5]のいずれか一項に記載の非水系リチウム型蓄電素子。
[7]前記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、前記正極中に含まれるリチウム化合物の量が1質量%以上50質量%以下である、[1]〜[6]のいずれか一項に記載の非水系リチウム型蓄電素子。
[8]下記一般式(1)〜(3)の中から選択される化合物の、前記対向部における負極活物質層単位質量当たりの含有量をA、前記正極活物質層単位質量当たりの含有量をBとしたとき、0.2≦A/B≦20である、[1]〜[7]のいずれか一項に記載の非水系リチウム型蓄電素子。
[9]前記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、[1]〜[8]のいずれか一項に記載の非水系リチウム型蓄電素子。
[10]前記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、かつ、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、さらに、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、[1]〜[8]のいずれか一項に記載の非水系リチウム型蓄電素子。
[11][1]〜[10]のいずれか一項に記載の非水系リチウム型蓄電素子において、充放電サイクル時の該非水系リチウム型蓄電素子において、初期の静電容量をF(F)、常温放電内部抵抗をRa(Ω)、環境温度25℃にて、セル電圧を2.2Vから3.8Vまで、300Cのレートでの高負荷充放電サイクルを60,000回行った後の静電容量をFe(F)常温放電内部抵抗をRe(Ω)、としたとき、以下の:
(a)Re/Raが0.90以上1.5以下である;
(b)Fe/Fが0.80以上
を同時に満たす、前記非水系リチウム型蓄電素子。
非水系リチウム型蓄電素子は一般に、正極、負極、セパレータ、電解液、及び外装体を主な構成要素とする。
正極は、正極集電体と、その片面又は両面に存在する正極活物質層とを有する。
また、正極は、蓄電素子組み立て前の正極前駆体として、リチウム化合物を含むことが好ましい。後述のように、本実施形態では蓄電素子組み立て工程内で、負極にリチウムイオンをプレドープすることが好ましいが、そのプレドープ方法としては、前記リチウム化合物を含む正極前駆体、負極、セパレータ、外装体、及び非水系電解液を用いて蓄電素子を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。前記リチウム化合物は前記正極前駆体の正極集電体上に形成された正極活物質層に含有されることが好ましい。
本明細書中、リチウムドープ工程前における正極状態のことを正極前駆体、リチウムドープ工程後における正極状態のことを正極と定義する。
また、正極前駆体の正極活物質層には、正極活物質以外のリチウム化合物が含有されることが好ましい。
正極活物質は、活性炭を含む。正極活物質としては、活性炭のみを使用してもよく、又は活性炭に加えて、後述するような他の炭素材料を併用してもよい。この炭素材料としては、カーボンナノチューブ、導電性高分子、又は多孔性の炭素材料を使用することがより好ましい。正極活物質には、活性炭を含む1種類以上の炭素材料を混合して使用してもよく、炭素材料以外の材料(例えば、リチウムと遷移金属との複合酸化物等)を含んでもよい。好ましくは該正極活物質の総量に対する該炭素材料の含有率が50質量%以上であり、より好ましくは70質量%以上である。該炭素材料の含有率が100質量%であることができるが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。
(1)高い入出力特性のためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、活性炭1ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、活性炭2ともいう。)が好ましい。
以下、前記(1)活性炭1及び前記(2)活性炭2について、個別に順次説明していく。
活性炭1のメソ孔量V1は、蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。他方、正極の嵩密度の低下を抑える点から、0.8cc/g以下であることが好ましい。上記V1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
活性炭1のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましい。他方、活性炭の嵩を抑え、電極としての密度を増加させ、単位体積当たりの容量を増加させるという点から、1.0cc/g以下であることが好ましい。上記V2は、より好ましくは0.6cc/g以上1.0cc/g以下、更に好ましくは0.8cc/g以上1.0cc/g以下である。尚、下限と上限の組み合わせは任意のものであることができる。
上記のような特徴を有する活性炭1は、例えば、以下に説明する原料及び処理方法を用いて得ることができる。
これらの原料を上記活性炭1とするための炭化及び賦活の方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400〜700℃(好ましくは450〜600℃)程度において、30分〜10時間程度に亘って焼成する方法が挙げられる。
この賦活方法では、賦活ガスを0.5〜3.0kg/h(好ましくは0.7〜2.0kg/h)の割合で供給しながら、上記炭化物を3〜12時間(好ましくは5〜11時間、更に好ましくは6〜10時間)かけて800〜1,000℃まで昇温して賦活するのが好ましい。
更に、上記炭化物の賦活処理に先立ち、予め上記炭化物を1次賦活してもよい。この1次賦活では、通常、炭素材料を水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で焼成してガス賦活する方法が、好ましく採用できる。
上記炭化方法における焼成温度及び焼成時間と、上記賦活方法における賦活ガス供給量、昇温速度及び最高賦活温度とを適宜組み合わせることにより、本実施形態において使用できる、上記の特徴を有する活性炭1を製造することができる。
上記平均粒子径が2μm以上であると、活物質層の密度が高いために電極体積当たりの容量が高くなる傾向がある。ここで、平均粒子径が小さいと耐久性が低いという欠点を招来する場合があるが、平均粒子径が2μm以上であればそのような欠点が生じ難い。一方で、平均粒子径が20μm以下であると、高速充放電には適合し易くなる傾向がある。上記平均粒子径は、より好ましくは2〜15μmであり、更に好ましくは3〜10μmである。上記平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
活性炭2のメソ孔量V1は、蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい。他方、V1は、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。上記V1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは、1.2cc/g以上1.8cc/g以下である。
なお、活性炭2のV1、V2及びBET比表面積については、それぞれ上記で説明された好適な範囲の上限と下限を、任意に組み合わせることができる。
活性炭2の原料として用いられる炭素源としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、例えば、木材、木粉、ヤシ殻等の植物系原料;石油ピッチ、コークス等の化石系原料;フェノール樹脂、フラン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂等の各種合成樹脂等が挙げられる。これらの原料の中でも、フェノール樹脂、及びフラン樹脂は、高比表面積の活性炭を作製するのに適しており特に好ましい。
この賦活方法では、炭化物とKOH、NaOH等のアルカリ金属化合物との質量比が1:1以上(アルカリ金属化合物の量が、炭化物の量と同じかこれよりも多い量)となるように混合した後に、不活性ガス雰囲気下で600〜900℃(好ましくは650℃〜850℃)の範囲において、0.5〜5時間加熱を行い、その後アルカリ金属化合物を酸及び水により洗浄除去し、更に乾燥を行う。
なお、マイクロ孔量を大きくし、メソ孔量を大きくしないためには、賦活する際に炭化物の量を多めにしてKOHと混合するとよい。マイクロ孔量及びメソ孔量の双方を大きくするためには、KOHの量を多めに使用するとよい。また、主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行うことが好ましい。
活性炭2の平均粒子径は2μm以上20μm以下であることが好ましく、より好ましくは3μm以上10μm以下である。
活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
上記の活性炭1及び2は、これらのうちのいずれか一方を選択して使用してもよいし、両者を混合して使用してもよい。
正極活物質は、活性炭1及び2以外の材料(例えば、前記特定のV1及び/若しくはV2を有さない活性炭、又は活性炭以外の材料(例えば、リチウムと遷移金属との複合酸化物等))を含んでもよい。例示の態様において、活性炭1の含有量、又は活性炭2の含有量、又は活性炭1及び2の合計含有量が、それぞれ、全正極活物質の50質量%より多いことが好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、100質量%であることが最も好ましい。
本実施形態の正極前駆体の正極活物質層には、正極活物質以外のリチウム化合物が含有されることが好ましい。また、本実施形態の正極の正極活物質層には、正極活物質以外のリチウム化合物が含有される。
前記リチウム化合物としては、後述のリチウムドープ工程において正極で分解し、リチウムイオンを放出することが可能である、炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上が好適に用いられる。中でも、炭酸リチウム、酸化リチウム、及び水酸化リチウムがより好適であり、空気中での取り扱いが可能であり、かつ吸湿性が低いという観点から炭酸リチウムがさらに好適に用いられる。このようなリチウム化合物は、電圧の印加によって分解し、負極へのリチウムドープのドーパント源として機能するとともに、正極活物質層において空孔を形成するから、電解液の保持性に優れ、イオン伝導性に優れる正極を形成することができる。
また、電圧によって分解したリチウム化合物は負極の非対向部よりも対向部へ優先的にドープされるため、負極の非対向部へのリチウムドープが抑制され、負極電位を高くすることが可能である。本明細書における負極電位は、金属リチウム基準の電位のことを示す。
リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることが最も好ましい。他方、正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、該リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
リチウム化合物の微粒子化には、様々な方法を用いることができる。例えば、ボールミル、ビーズミル、リングミル、ジェットミル、ロッドミル等の粉砕機を使用することができる。
正極は、正極活物質以外のリチウム化合物を含有する。正極が含有する、正極活物質以外のリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであることが好ましい。更に好ましくは、0.5μm≦X1≦5μmである。X1が0.1μm以上の場合、高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。X1が10μm以下の場合、高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。
本明細書中、正極活物質層の固体7Li−NMRスペクトルにおける、繰り返し待ち時間10秒とした場合の−40ppm〜40ppmにおけるピーク面積aと、繰り返し待ち時間3000秒とした場合の−40ppm〜40ppmにおけるピーク面積bとの面積比b/aは、以下の方法により算出することができる。
上記の方法によって得られる正極活物質層の固体7Li−NMRスペクトルから−40ppm〜40ppmにおけるピーク面積a、bをそれぞれ取得し、b/aを算出する。
正極中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば、下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
以下に記載するSEM−EDX、ラマン、XPSを測定する際には、アルゴンボックス中で非水系リチウム型蓄電素子を解体して正極を取り出し、正極表面に付着した電解質を洗浄した後に測定を行うことが好ましい。正極の洗浄方法については、正極表面に付着した電解質を洗い流せればよいため、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート溶媒が好適に利用できる。洗浄方法としては、例えば、正極質量の50〜100倍のジエチルカーボネート溶媒に正極を10分間以上浸漬させ、その後溶媒を取り替えて再度正極を浸漬させる。その後正極をジエチルカーボネートから取り出し、真空乾燥(温度:0〜200℃、圧力:0〜20kPa、時間:1〜40時間の範囲で正極中のジエチルカーボネートの残存が1質量%以下になる条件とする。ジエチルカーボネートの残存量については、後述する蒸留水洗浄、液量調整後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。)させた後に、前記SEM−EDX、ラマン、XPSの解析を実施する。
前記解析手法にてリチウム化合物を同定できなかった場合、その他の解析手法として、固体7Li−NMR、XRD(X線回折)、TOF−SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることにより、リチウム化合物を同定することもできる。
酸素を含有するリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例として、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着やスパッタリング等の方法により表面処理することもできる。SEM−EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
炭酸イオンからなるリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071〜1104cm−1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算するが、この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を前記炭酸イオンの頻度分布から差し引く。
リチウムの電子状態をXPSにより解析することによりリチウムの結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(リチウム)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングにてクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。得られたXPSスペクトルについて、Li1sの結合エネルギー50〜54eVのピークをLiO2又はLi−C結合、55〜60eVのピークをLiF、Li2CO3、LixPOyFz(式中、x、y、zは1〜6の整数である)、C1sの結合エネルギー285eVのピークをC−C結合、286eVのピークをC−O結合、288eVのピークをCOO、290〜292eVのピークをCO3 2−、C−F結合、O1sの結合エネルギー527〜530eVのピークをO2−(Li2O)、531〜532eVのピークをCO、CO3、OH、POx(式中、xは1〜4の整数である)、SiOx(式中、xは1〜4の整数である)、533eVのピークをC−O、SiOx(式中、xは1〜4の整数である)、F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC−F結合、LixPOyFz(式中、x、y、zは1〜6の整数である)、PF6 −、P2pの結合エネルギーについて、133eVのピークをPOx(式中、xは1〜4の整数である)、134〜136eVのピークをPFx(式中、xは1〜6の整数である)、Si2pの結合エネルギー99eVのピークをSi、シリサイド、101〜107eVのピークをSixOy(式中、x、yは任意の整数である)として帰属することができる。得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。前記で得られた電子状態の測定結果及び存在元素比の結果から、存在するリチウム化合物を同定することができる。
正極の蒸留水洗浄液をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。また、質量分析計や荷電化粒子検出を検出器と組み合わせて測定することもできるため、SEM−EDX、ラマン、XPSの解析結果から同定されたリチウム化合物を基に適切なカラム、検出器を組み合わせることが好ましい。
サンプルの保持時間は、使用するカラムや溶離液等の条件が決まれば、イオン種成分毎に一定であり、また、ピークのレスポンスの大きさはイオン種毎に異なるが濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
正極中に含まれるリチウム化合物の定量方法を以下に記載する。
正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水での洗浄前後の正極質量変化からリチウム化合物を定量することができる。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。有機溶媒による洗浄については正極表面に堆積した非水系電解液分解物を除去できれば良いため、有機溶媒は特に限定されないが、前記リチウム化合物の溶解度が2%以下である有機溶媒を用いることでリチウム化合物の溶出が抑制されるため好ましい。例えば、メタノール、アセトン等の極性溶媒が好適に用いられる。
本実施形態における正極活物質層は、必要に応じて、正極活物質及びリチウム化合物の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーとしては、特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、黒鉛、カーボンナノチューブ、これらの混合物等を用いることができる。導電性フィラーの使用量は、正極活物質100質量部に対して、好ましくは0質量部以上30質量部以下である。より好ましくは0.01質量部以上20質量部以下、さらに好ましくは1質量部以上15質量部以下である。導電性フィラーの使用量が30質量部よりも多くなると、正極活物質層における正極活物質の含有割合が少なくなるために、正極活物質層体積当たりのエネルギー密度が低下するので好ましくない。
結着剤としては、特に制限されるものではないが、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着剤の使用量は、正極活物質100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは3質量部以上27質量部以下、さらに好ましくは5質量部以上25質量部以下である。結着剤の使用量が1質量部以上であれば、十分な電極強度が発現される。一方で結着剤の使用量が30質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、正極活物質100質量部に対して、好ましくは、0質量部又は0.1質量部以上、10質量部以下である。分散安定剤の使用量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない材料であれば特に制限はないが、金属箔が好ましい。本実施の形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔が特に好ましい。
該金属箔は凹凸や貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
正極集電体の厚みは、正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることが出来る。さらに、得られた正極前駆体にプレスを施して、正極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
前記塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm未満では、正極活物質を含む各種材料粉末の粒子径以下のサイズとなり、塗工液作製時に材料を破砕していることになり好ましくない。また、粒度が100μm以下であれば、塗工液吐出時の詰まりや塗膜のスジ発生等がなく、安定に塗工ができる。
また、該塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。他方、プレス圧力が20kN/cm以下であれば、正極前駆体に撓みやシワが生じることがなく、所望の正極活物質層膜厚や嵩密度に調整できる。
また、プレスロール同士の隙間は、所望の正極活物質層の膜厚や嵩密度となるように乾燥後の正極前駆体膜厚に応じて任意の値を設定できる。さらに、プレス速度は正極前駆体に撓みやシワが生じない任意の速度に設定できる。
また、プレス部の表面温度は室温でもよいし、必要によりプレス部を加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは融点マイナス45℃以上、さらに好ましくは融点マイナス30℃以上である。他方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは融点プラス30℃以下、さらに好ましくは融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面を90℃以上200℃以下に加温することが好ましく、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下にプレス部の表面を加熱することである。また、結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面を40℃以上150℃以下に加温することが好ましく、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下にプレス部の表面を加温することである。
また、プレス圧力、隙間、速度、及びプレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
後述のリチウムドープ工程後の正極における正極活物質層の嵩密度は、0.25g/cm3以上であることが好ましく、より好ましくは0.30g/cm3以上1.3g/cm3以下の範囲である。正極活物質層の嵩密度が0.25g/cm3以上であれば、高いエネルギー密度を発現でき、蓄電素子の小型化を達成できる。他方、この嵩密度が1.3g/cm3以下であれば、正極活物質層内の空孔における電解液の拡散が十分となり、高い出力特性が得られる。
本発明に係る正極活物質層は、下記式(1)〜(3)から選択される1種以上の化合物を該正極物質層の単位質量当たり1.60×10−4mol/g〜100×10−4mol/g含有することが好ましい。
特に好ましい化合物は、
LiOC2H4OLi、LiOC3H6OLi、LiOC2H4OCOOLi、LiOCOOC3H6OLi、LiOCOOC2H4OCOOLi及びLiOCOOC3H6OCOOLiで表される化合物である。
特に好ましい化合物は、
LiOC2H4OH、LiOC3H6OH、LiOC2H4OCOOH、LiOC3H6OCOOH、LiOCOOC2H4OCOOH、LiOCOOC3H6OCOOH、LiOC2H4OCH3、LiOC3H6OCH3、LiOC2H4OCOOCH3、LiOC3H6OCOOCH3、LiOCOOC2H4OCOOCH3、LiOCOOC3H6OCOOCH3、LiOC2H4OC2H5、LiOC3H6OC2H5、LiOC2H4OCOOC2H5、LiOC3H6OCOOC2H5、LiOCOOC2H4OCOOC2H5、LiOCOOC3H6OCOOC2H5で表される化合物である。
特に好ましい化合物は、
HOC2H4OH、HOC3H6OH、HOC2H4OCOOH、HOC3H6OCOOH、HOCOOC2H4OCOOH、HOCOOC3H6OCOOH、HOC2H4OCH3、HOC3H6OCH3、HOC2H4OCOOCH3、HOC3H6OCOOCH3、HOCOOC2H4OCOOCH3、HOCOOC3H6OCOOCH3、HOC2H4OC2H5、HOC3H6OC2H5、HOC2H4OCOOC2H5、HOC3H6OCOOC2H5、HOCOOC2H4OCOOC2H5、HOCOOC3H6OCOOC2H5、CH3OC2H4OCH3、CH3OC3H6OCH3、CH3OC2H4OCOOCH3、CH3OC3H6OCOOCH3、CH3OCOOC2H4OCOOCH3、CH3OCOOC3H6OCOOCH3、CH3OC2H4OC2H5、CH3OC3H6OC2H5、CH3OC2H4OCOOC2H5、CH3OC3H6OCOOC2H5、CH3OCOOC2H4OCOOC2H5、CH3OCOOC3H6OCOOC2H5、C2H5OC2H4OC2H5、C2H5OC3H6OC2H5、C2H5OC2H4OCOOC2H5、C2H5OC3H6OCOOC2H5、C2H5OCOOC2H4OCOOC2H5、C2H5OCOOC3H6OCOOC2H5
で表される化合物である。
正極活物質層に前記化合物を混合する方法、
正極活物質層に前記化合物を吸着させる方法、
正極活物質層に前記化合物を電気化学的に析出させる方法
等が挙げられる。
中でも、非水系電解液中に、分解してこれらの前記化合物を生成し得る前駆体を含有させておき、蓄電素子を作製する工程における前記前駆体の分解反応を利用して、正極活物質層内に前記化合物を堆積させる方法が好ましい。
また、前記化合物の総量は、前記正極活物質層の単位質量当たり、100×10−4mol/g以下であることが好ましく、80×10−4mol/g以下であることがより好ましく、70×10−4mol/g以下であることが最も好ましい。前記化合物の総量が正極活物質層の単位質量当たり100×10−4mol/g以下であれば、正極界面におけるLiイオンの拡散を阻害することがなく、高い入出力特性を発現することができる。
負極は、負極集電体と、その片面又は両面に存在する負極活物質層とを有する。
負極活物質層は、リチウムイオンを吸蔵・放出できる負極活物質を含む。これ以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
前記負極活物質は、リチウムイオンを吸蔵・放出可能な物質を用いることができる。具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。好ましくは該負極活物質の総量に対する該炭素材料の含有率が50質量%以上であり、より好ましくは70質量%以上である。該炭素材料の含有率が100質量%でよいが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下であることが好ましい。
第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
複合炭素材料1は、BET比表面積が100m2/g以上3000m2/g以下の炭素材料1種以上を該基材として用いた該複合炭素材料である。該基材は、特に制限されるものではないが、活性炭やカーボンブラック、鋳型多孔質炭素、高比表面積黒鉛、カーボンナノ粒子等を好適に用いることができる。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料1を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
該ドープ量が530mAh/g以上であれば、複合炭素材料1におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされ、更に所望のリチウム量に対する複合炭素材料1の量を低減することができる。そのため、負極膜厚を薄くすることが可能となり、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が2,500mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれがない。
複合炭素材料1aは、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、0.010≦Vm1≦0.300、0.001≦Vm2≦0.650であることが好ましい。
メソ孔量Vm1は、より好ましくは0.010≦Vm1≦0.225、さらに好ましくは0.010≦Vm1≦0.200である。マイクロ孔量Vm2は、より好ましくは0.001≦Vm2≦0.200、更に好ましくは0.001≦Vm2≦0.150、特に好ましくは0.001≦Vm2≦0.100である。
メソ孔量Vm1が0.300cc/g以下であれば、BET比表面積を大きくすることができ、リチウムイオンのドープ量を高めることができることに加え、負極の嵩密度を高めることができる。その結果、負極を薄膜化することができる。また、マイクロ孔量Vm2が0.650cc/g以下であれば、リチウムイオンに対する高い充放電効率が維持できる。他方、メソ孔量Vm1及びマイクロ孔量Vm2が下限以上(0.010≦Vm1、0.001≦Vm2)であれば、高い入出力特性が得られる。
該活性炭においては、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.050≦V1≦0.500、0.005≦V2≦1.000、かつ、0.2≦V1/V2≦20.0であることが好ましい。
上記の複合炭素材料1aを製造するための具体的方法としては、例えば、炭素質材料前駆体から揮発した炭化水素ガスを含む不活性雰囲気中で活性炭を熱処理し、気相で炭素質材料を被着させる方法が挙げられる。また、活性炭と炭素質材料前駆体とを予め混合し熱処理する方法、又は溶媒に溶解させた炭素質材料前駆体を活性炭に塗布して乾燥させた後に熱処理する方法も可能である。
複合炭素材料2は、BET比表面積が0.5m2/g以上80m2/g以下の炭素材料1種以上を前記基材として用いた前記複合炭素材料である。該基材は、特に制限されるものではないが、天然黒鉛、人造黒鉛、低結晶黒鉛、ハードカーボン、ソフトカーボン、カーボンブラック等を好適に用いることができる。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料2を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
該ドープ量が50mAh/g以上であれば、複合炭素材料2におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされるため、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が700mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれがない。
複合炭素材料2aの平均粒子径は1μm以上10μm以下であることが好ましい。この平均粒子径は、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことが出来る。他方、10μm以下であれば、複合炭素材料2aと非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
本発明における負極活物質層は、必要に応じて、負極活物質の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーの種類は特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維等が例示される。導電性フィラーの使用量は、負極活物質100質量部に対して、好ましくは0質量部以上30質量部以下である。より好ましくは0質量部以上20質量部以下、さらに好ましくは0質量部以上15質量部以下である。
本発明における負極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化がおこらない金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
該金属箔は凹凸や貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
負極集電体の厚みは、負極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
負極は、負極集電体の片面上又は両面上に負極活物質層を有して成る。典型的な態様において負極活物質層は負極集電体に固着している。
負極は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることが出来る。さらに得られた負極にプレスを施して、負極活物質層の膜厚や嵩密度を調整してもよい。或いは、溶剤を使用せずに、負極活物質を含む各種材料を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて負極集電体に貼り付ける方法も可能である。
また、該塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましい。より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
また、プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
本発明におけるBET比表面積及び平均細孔径、メソ孔量、マイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Am. Chem. Soc., 73, 373(1951))。
また、MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、R.S.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。
先ず、本実施形態における負極活物質層をエチルメチルカーボネート又はジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層と、を得る。この抽出は、典型的にはArボックス内にて、環境温度23℃で行われる。
上記のようにして得られた抽出液と、抽出後の負極活物質層と、に含まれるリチウム量を、それぞれ、例えばICP−MS(誘導結合プラズマ質量分析計)等を用いて定量し、その合計を求めることによって、負極活物質におけるリチウムイオンのドープ量を知ることができる。そして、得られた値を抽出に供した負極活物質量で割り付けて、上記単位の数値を算出すればよい。
試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。次いで、スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
本発明に係る負極活物質層は、前記式(1)〜(3)から選択される1種以上の化合物を該負極物質層の単位質量当たり0.50×10−4mol/g〜120×10−4mol/g含有することが好ましい。
負極活物質層に前記化合物を混合する方法、
負極活物質層に前記化合物を吸着させる方法、
負極活物質層に前記化合物を電気化学的に析出させる方法
等が挙げられる。
中でも、非水系電解液中に、分解してこれらの前記化合物を生成し得る前駆体を含有させておき、蓄電素子を作製する工程における前記前駆体の分解反応を利用して、負極活物質層内に前記化合物を堆積させる方法が好ましい。
また、前記化合物の総量は、前記負極活物質層の単位質量当たり、120×10−4mol/g以下であることが好ましく、100×10−4mol/g以下であることがより好ましく、80×10−4mol/g以下であることが最も好ましい。前記化合物の総量が負極活物質層の単位質量当たり120×10−4mol/g以下であれば、負極界面でのLiイオンの拡散を阻害することがなく、高い入出力特性を発現することができる。
本実施形態の電解液は、非水系電解液である。すなわち、この電解液は、後述する非水溶媒を含む。非水系電解液は、該非水系電解液の総量を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。すなわち、非水系電解液は、リチウムイオンを電解質として含む。
本実施形態の非水系電解液は、リチウム塩として、例えば、(LiN(SO2F)2)、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C2F5)、LiN(SO2CF3)(SO2C2F4H)、LiC(SO2F)3、LiC(SO2CF3)3、LiC(SO2C2F5)3、LiCF3SO3、LiC4F9SO3、LiPF6、LiBF4等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、LiPF6及び/又はLiN(SO2F)2を含むことが好ましい。
非水系電解液中のリチウム塩濃度は、該非水系電解液の総量を基準として、0.5mol/L以上であることが好ましく、0.5mol/L以上2.0mol/L以下の範囲がより好ましい。リチウム塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。また、リチウム塩濃度が2.0mol/L以下である場合、未溶解のリチウム塩が非水系電解液中に析出すること、及び電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下せず、出力特性も低下しないため好ましい。
本実施形態の非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び正極活物質層にリチウム化合物を適量堆積させる点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。
環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。上記合計含有量が15質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能となり、高いリチウムイオン伝導度を発現することができる。さらに正極活物質層にリチウム化合物を適量堆積させることが可能となり、電解液の酸化分解を抑制することができる。
鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。上記鎖状カーボネートの含有量が30質量%以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。上記合計濃度が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
本実施形態の非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、特に制限されないが、例えば、スルトン化合物、環状ホスファゼン、非環状含フッ素エーテル、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物等を単独で用いることができ、また、2種以上を混合して用いてもよい。
前記スルトン化合物としては、例えば、下記一般式(5)〜(7)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、単独で用いてもよく、又は2種以上を混合して用いてもよい。
前記環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン等を挙げることができ、これらのうちから選択される1種以上が好ましい。
非環状含フッ素エーテルとしては、例えば、HCF2CF2OCH2CF2CF2H、CF3CFHCF2OCH2CF2CF2H、HCF2CF2CH2OCH2CF2CF2H、CF3CFHCF2OCH2CF2CFHCF3等が挙げられ、中でも、電気化学的安定性の観点から、HCF2CF2OCH2CF2CF2Hが好ましい。
含フッ素環状カーボネートについては、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)から選択して使用されることが好ましい。
フッ素原子を含有する環状カーボネートの含有量は、該非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。フッ素原子を含有する環状カーボネートの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することによって、高温における耐久性が高い蓄電素子が得られる。他方、フッ素原子を含有する環状カーボネートの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記のフッ素原子を含有する環状カーボネートは、単独で使用しても、2種以上を混合して使用してもよい。
環状炭酸エステルについては、ビニレンカーボネートが好ましい。
環状炭酸エステルの含有量は、該非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状炭酸エステルの含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温における耐久性が高い蓄電素子が得られる。他方、環状炭酸エステルの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。
環状カルボン酸エステルとしては、例えば、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等を挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。中でも、ガンマブチロラクトンが、リチウムイオン解離度の向上に由来する電池特性向上の点から、特に好ましい。
環状カルボン酸エステルの含有量は、該非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。他方、環状カルボン酸エステルの含有量が5質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の環状カルボン酸エステルは、単独で使用しても、2種以上を混合して使用してもよい。
環状酸無水物については、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸から選択される1種以上が好ましい。中でも工業的な入手のし易さによって電解液の製造コストが抑えられる点、非水系電解液中に溶解し易い点等から、無水コハク酸及び無水マレイン酸から選択することが好ましい。
環状酸無水物の含有量は、該非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。他方、環状酸無水物の含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。尚、上記の環状酸無水物は、単独で使用しても、2種以上を混合して使用してもよい。
正極前駆体及び負極は、セパレータを介して捲回され、正極前駆体、負極及びセパレータを有する電極捲回体が形成される。
前記セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜、又は電気二重層キャパシタで用いられるセルロース製の不織紙等を用いることができる。これらのセパレータの片面または両面に、有機または無機の微粒子からなる膜が積層されていてもよい。また、セパレータの内部に有機または無機の微粒子が含まれていてもよい。
セパレータの厚みは5μm以上35μm以下が好ましい。5μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。他方、35μm以下の厚みとすることにより、非水系リチウム型蓄電素子の入出力特性が高くなる傾向があるため好ましい。
また、有機または無機の微粒子からなる膜は、1μm以上10μm以下が好ましい。1μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。他方、10μm以下の厚みとすることにより、非水系リチウム型蓄電素子の入出力特性が高くなる傾向があるため好ましい。
[非水系リチウム型蓄電素子]
本実施形態の非水系リチウム型蓄電素子は、後述する電極捲回体が、前記非水系電解液とともに前記外装体内に収納されて構成される。
蓄電素子の組み立て工程で得られる電極捲回体は、正極前駆体と負極を、セパレータを介して捲回して成る捲回体に正極端子及び負極端子を接続したものである。電極捲回体の形状は円筒型であっても、扁平型であってもよい。扁平型の捲回体の一例を図1に示す。
正極端子と負極端子の接続の方法は特に限定はしないが、抵抗溶接や超音波溶接などの方法で行う。
セパレータを介して正極前駆体の正極活物質層と負極の負極活物質層とを対向させる構成の蓄電素子においては、負極の面積が正極の面積よりも若干大きくなるように設計されている。これは、正負極の対向面積のばらつきを少なくするとともに、リチウムが負極活物質層以外の部分に析出するのを防止するためである。したがって、負極活物質層には、セパレータを介して、正極活物質層に対向する対向部と、正極活物質層に対向しない非対向部とが併存している。特に捲回式の蓄電素子においては、捲回軸方向の非対向部よりも周方向における巻き始め部分と巻き終わり部分に顕著な非対向部が存在する。
負極の非対向部にリチウムイオンが移動して吸蔵されると、吸蔵されたリチウムイオンは充放電反応に寄与しにくく、蓄電素子の容量が低下することが懸念される。そのため、非対向部にマスキングを施して、後述のリチウムドープ工程においてリチウムイオンが非対向部にドープされる量を軽減することが好ましい。非対向部のドープ量を減少させることにより、非対向部の負極電位が対向部の負極電位よりも相対的に高くなる。このため、非対向部にリチウムイオンが移動しにくく、容量の低下を抑制することができる。
マスキングは、ポリエチレン又はポリプロピレン等のポリオレフィン系の樹脂など、リチウムイオンが透過しない材質からなるイオン非透過部材から成ることが好ましい。マスキングは、後述のガス抜き工程において取り外すことができるように、取っ手をつけておくと良い。完成した蓄電素子の中には残らないため、体積や重量が増加する心配はない。
また、対向部と非対向部で負極電位に差をつけるためには、上記のマスキング以外にもリチウムドープ工程における電流値を制御することでも可能である。
外装体としては、金属缶、ラミネート包材等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネート包材としては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムから成る3層構成のものが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する非水系電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
乾燥した電極捲回体は、金属缶やラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。外装体の封止方法は特に限定しないが、ラミネート包材を用いる場合は、ヒートシールやインパルスシールなどの方法を用いる。
外装体へ収納した電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法に限定はないが、真空乾燥などにより乾燥する。残存溶媒は、正極活物質層又は負極活物質層の質量あたり、1.5質量%以下が好ましい。残存溶媒が1.5質量%より多いと、系内に溶媒が残存し、自己放電特性やサイクル特性を悪化させるため、好ましくない。
組立工程の終了後に、外装体の中に収納された電極捲回体に、非水系電解液を注液する。注液工程の終了後に、更に、含浸を行い、正極、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープ工程において、ドープが不均一に進むため、得られる非水系リチウム型蓄電素子の抵抗が上昇したり、耐久性が低下したりする。上記含浸の方法としては、特に制限されないが、例えば、注液後の電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸工程終了後には、外装体が開口した状態の電極捲回体を減圧しながら封止することで密閉する。
リチウムドープ工程において、好ましい工程としては、前記正極前駆体と負極との間に電圧を印加して前記リチウム化合物を分解することにより、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極の対向部活物質層にリオチウムイオンがプレドープされる。一方、負極の非対向部では、対向する正極がないため、リチウムイオンの還元が生じにくく、相対的にリチウムイオン濃度が低くなる。非対向部のリチウムイオン濃度は、正極から離れるにつれて、少なくなる傾向にあり、濃度勾配を持つ。この相対的なリチウムイオン濃度差をさらに顕著に生じさせるためには、負極の非対向部にマスキングをする方法やドープ電流値を制御する方法が挙げられる。負極の非対向部にマスキングがなされている場合、リチウムイオンが透過せず非対向部へのプレドープは抑制される。この時の非対向部は、負極の対向部の活物質層から拡散してくるリチウムイオンやマスキングと非対向部の活物質層との隙間からリチウムイオンを含む電解液が浸透することによりわずかにドープされる。
前述した通り、対向部と非対向部の負極電位の差をつくるためには、負極の非対向部にマスキングをして物理的にドープを抑制する方法やドープ電流値を制御して電位勾配による斑をつくる方法がある。この両者の方法を組み合わせて使用しても良いし、ドープ電流値の制御のみを使用しても、良好な電位差をつくることができる。
マスキングによる方法はマスキングと負極との間に電解液が浸透する空隙を設けていても良いし、設けなくても良い。ドープ電流値を制御する方法は、電流値を増大させると対向部と非対向部の電位差が大きくなる傾向にあり、非対向部における電位勾配も急になる。
対向部に対する非対向部の電位差は、リチウムイオンが非対向部に移動しにくいという観点から+50mV以上あることが好ましい。更に好ましくは、+80mV以上である。電位勾配は、充放電中に非対向部に入り込んできたリチウムイオンがより端部まで移動するのを防ぐために、500mV/m以上あることが好ましい。さらに好ましくは、650mV/m以上である。
また、このリチウムドープ工程において、正極前駆体中のリチウム化合物の酸化分解に伴い、CO2等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;前記外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
リチウムドープ工程の終了後に、電極捲回体にエージングを行うことが好ましい。エージング工程において非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
上記エージングの方法としては、特に制限されないが、例えば、高温環境下で非水系電解液中の溶媒を反応させる方法等を用いることができる。
エージング工程の終了後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム型蓄電素子の抵抗が上昇してしまう。
上記ガス抜きの方法としては、特に制限されないが、例えば、前記外装体を開口した状態で電極捲回体を減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。また、負極の非対向部にマスキングを施した場合は、ガス抜き工程で外装体を開口したときに、マスキングを取り除くことが好ましい。
[対向部と非対向部における負極電位]
対向部に対する非対向部の電位差は、リチウムイオンが非対向部に移動しにくいという観点から50mV以上高いことが好ましい。更に好ましくは、非対向部の負極電位が対向部よりも80mV以上高いことである。非対向部の負極電位が対向部の負極電位よりも50mV以上高ければ、充放電中のリチウムイオンが非対向部に移動しにくく、対向部にリチウムイオンが集中し、充放電反応に寄与するため、容量が増加してエネルギー密度の高い蓄電素子を提供することができる。また、非対向部にリチウムイオンが移動しにくいことで余分な拡散抵抗を低減させることができ、高い入出力特性が得られる。
対向部の負極電位は金属リチウム基準で、50mV以上300mV以下であることが好ましく、更に好ましくは60mV以上250mV以下である。50mV以上であれば、リチウムの析出を防ぐことができ、300mV以下であれば、リチウムイオンが拡散されやすくなり高い入出力特性が得られる。
電位勾配は、充放電中に非対向部に入り込んできたリチウムイオンがより端部まで移動するのを防ぐために、500mV/m以上あることが好ましい。更に好ましくは650mV/m以上あることである。電位勾配が500mV/m以上あれば、充放電サイクル中に非対向部の活物質中にリチウムイオンが移動してきても、それ以上拡散・移動することを妨げることができる。すなわち、長期の充放電サイクルにおいても、容量が低下しにくく、サイクル耐久性を備えた蓄電素子を提供することができる。
上記で述べた電位差と電位勾配は、蓄電素子の中で少なくとも1箇所以上存在していれば良い。
対向部に対する非対向部のリチウムイオン濃度(質量%)の比率は、前述した負極電位を発現させる観点から、0.85以下であることが好ましい。更に好ましくは、0.75以下である。対向部に対する非対向部のリチウムイオン濃度(質量%)が0.85以下であれば、良好な負極電位差を発現させやすくなり、リチウムイオンが非対向部に移動しにくく、対向部にリチウムイオンが集中して充放電反応に寄与するため、容量が増加してエネルギー密度の高い蓄電素子を提供することができる。また、非対向部にリチウムイオンが移動しにくいことで余分な拡散抵抗を低減させることができ、高い入出力特性が得られる。
対向部の負極の厚みに対する非対向部の負極の厚みの比が、0.80以上0.95以下であることが好ましい。これは、対向部の負極活物質は、リチウムイオンが挿入されているため膨張しているのに対して、非対向部の負極活物質は、リチウムイオンの吸蔵量が対向部の吸蔵量よりも少なく、膨張の程度が小さいためである。対向部に対する非対向部の負極の厚みの比が、0.80以上であれば負極の膨張収縮時の対向部と非対向部の境目に生じる応力を緩和することができ、充放電サイクル等の耐久性が向上する。また、対向部に対する非対向部の負極の厚みの比が、0.95以下であれば、蓄電素子の小型化に貢献することができ、体積当たりのエネルギー密度向上に繋がる。
[静電容量]
本明細書中、静電容量F(F)とは、以下の方法によって得られる値である:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行う。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとする。ここで得られたQを用いて、F=Q/(3.8−2.2)により算出される値をいう。
本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である:
先に述べた方法で算出された静電容量F(F)を用いて、F×(3.82−2.22)/2/3600により算出される値をいう。
非水系リチウム型蓄電素子の体積は、特に指定はないが、電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
例えば、ラミネートフィルムによって収納された電極捲回体の場合は、電極捲回体のうち、正極活物質層および負極活物質層が存在する領域が、カップ成形されたラミネートフィルムの中に収納されるが、この非水系リチウム型蓄電素子の体積(V1)は、このカップ成形部分の外寸長さ(l1)、外寸幅(w1)、及びラミネートフィルムを含めた非水系リチウム型蓄電素子の厚み(t1)により、V1=l1×w1×t1で計算される。
角型の金属缶に収納された電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、単にその金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V2)は、角型の金属缶の外寸長さ(l2)と外寸幅(w2)、外寸厚み(t2)により、V2=l2×w2×t2で計算される。
また、円筒型の金属缶に収納された電極捲回体の場合においても、非水系リチウム型蓄電素子の体積としては、その金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V3)は、円筒型の金属缶の底面または上面の外寸半径(r)、外寸長さ(l3)により、V3=3.14×r×r×l3で計算される。
[エネルギー密度]
本明細書中、エネルギー密度とは、電気量Eと体積Vi(i=1、2、3)を用いてE/Vi(Wh/L)の式により得られる値である。
本明細書では、常温放電内部抵抗Ra(Ω)とは、以下の方法によって得られる値である:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=3.8−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
本明細書中、高負荷充放電サイクル試験後の常温放電内部抵抗上昇率は、以下の方法によって測定する:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。前記充放電工程を60000回繰り返し、試験開始前と、試験終了後に常温放電内部抵抗測定を行い、試験開始前の常温放電内部抵抗をRa(Ω)、試験終了後の常温放電内部抵抗をRe(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の抵抗上昇率はRe/Raにより算出される。
本明細書では、高負荷充放電サイクル試験後の容量回復率は、以下の方法によって測定する:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う。前記充放電工程を60000回繰り返し、その後20Cの電流値で電圧4.5Vに到達後、定電圧で1時間充電する。その後、前記静電容量と同様の測定方法を用いて得られる容量値を高負荷充放電サイクル試験後の静電容量Feとしたとき、容量値を高負荷充放電サイクル試験開始前の静電容量Fに対する高負荷充放電サイクル試験後の容量回復率はFe/Fにより算出される。
完成した捲回式非水系リチウム型蓄電素子を、正極と負極が接触しないように解体すると図2の模式図のようになる。図2に示すように、解体後得られた負極活物質には、正極活物質と対向する対向部と正極活物質と対向しない非対向部が存在しており、負極の両面が対向部となる箇所、片面が対向部となる箇所、両面が非対向部となる箇所がそれぞれ存在する。本明細書における非対向部の電位測定とは、両面が非対向部となる箇所を対象に実施する。一方、対向部の電位測定は、負極の両面が対向部となる箇所を対象に実施する。対向部と非対向部における負極電位の測定方法は下記の通りである。測定はリチウムを吸蔵している電極を取り扱うため、アルゴン雰囲気下で実施した。
1.対向部
負極の両面が対向部となる箇所を切り出し、参照極であるセパレータに包んだ金属リチウムを押し当てて、電解液を滴下する。その後、よく含浸した状態で参照極と負極の未塗工部(銅箔)の電位差をテスターにて5箇所測定し、平均をとった値を対向部の負極電位とする。
2.非対向部
負極の両面が非対向部となる箇所を切り出し、参照極であるセパレータに包んだ金属リチウムを押し当てて、電解液を滴下する。その後、よく含浸した状態で参照極と負極の未塗工部(銅箔)の電位差をテスターにて5箇所測定し、平均をとった値を非対向部の負極電位とする。
以上のようにして、対向部と非対向部の負極電位を測定する。本明細書で規定する対向部と非対向部の電位差は、(非対向部の負極電位)―(対向部の負極電位)によって算出される。
負極の両面が非対向部となる箇所を切り出し、図3に示すように5分割する。次いで、前述した[対向部と非対向部における負極電位の測定方法]と同様にして、5箇所の負極電位を測定し、負極電位の最大値Vmaxと最小値Vminを求める。最大値を有する負極の非対向部片と最小値を有する非対向部片との間の距離Lを測量し、(Vmax−Vmin)/Lによって電位勾配が算出される。
固体7Li−NMRの測定装置としては、市販の装置を用いることができる。室温環境下において、マジックアングルスピニングの回転数を14.5kHzとし、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。測定に際しては測定の間の繰り返し待ち時間を十分にとるように設定する。シフト基準として1mol/Lの塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとする。1mol/Lの塩化リチウム水溶液測定時には試料を回転させず、照射パルス幅を45°パルスとして、シングルパルス法にて測定する。
上記の方法によって得られた負極活物質層の固体7Li−NMRスペクトルについて、4ppm〜30ppmの範囲にある成分についてピーク面積を求める。そして、これらのピーク面積を、測定用ローター中における試料高さを負極活物質層測定時と同じにして測定した1mol/Lの塩化リチウム水溶液のピーク面積で除し、さらに測定に用いる負極活物質層の質量で除すことで、負極活物質層中のリチウム量を算出できる。前記負極活物質層の質量とは、負極活物質層に吸蔵されるリチウムイオンや負極活物質層に含有される被膜や堆積物等を含む負極活物質層の質量である。また、負極活物質層中のリチウム量は、リチウムイオン量と同義であり、非対向部の負極活物質単位質量当たりのリチウム量を対向部の負極活物質単位質量当たりのリチウム量で除することにより、対向部に対する非対向部のリチウムイオン濃度比を算出することができる。
測定はアルゴン雰囲気下で実施する。蓄電素子を解体して取り出した負極において、両面が対向部の箇所と両面が非対向部の箇所の膜厚をそれぞれ5箇所ずつ膜厚計で測定し平均をとることによって、対向部の膜厚T1と非対向部の膜厚T2が得られる。対向部の膜厚T1に対する非対向部の膜厚T2の比、T2/T1を求めることによって膜厚比が算出される。
[実施例1]
[炭酸リチウムの粉砕]
平均粒子径53μmの炭酸リチウム200gを、アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、液体窒素で−196℃に冷却化した後、ドライアイスビーズを用い、周速10.0m/sにて9分間粉砕した。−196℃で熱変性を防止し、脆性破壊することにより得られた炭酸リチウムについて平均粒子径を測定することで仕込みの炭酸リチウム粒子径を求めたところ、2.0μmであった。
[活性炭1の調製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で前記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.1μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウムを用いて下記方法で正極塗工液を製造した。
活性炭1又は2を59.5質量部、炭酸リチウムを28.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。
得られた非水系リチウム型蓄電素子の正極につき、正極活物質層の固体7Li−NMR測定を行った。
先ず、上記で製造した非水系リチウム型蓄電素子に対して、アスカ電子製の充放電装置(ACD−01)を用いて、環境温度25℃の下で、50mAの電流で2.9Vまで定電流充電した後、2.9Vの定電圧を印加する定電流定電圧充電を2時間行った。
次いで、正極活物質層の採取をアルゴン雰囲気下で行った。非水系リチウム型蓄電素子をアルゴン雰囲気下で解体し、正極を取り出した。続いて、得られた正極をジエチルカーボネートに2分以上浸漬してリチウム塩等を除去した。同様の条件でジエチルカーボネートへの浸漬をもう1度行った後、風乾した。その後、正極から正極活物質層を採取した。
得られた正極活物質層を試料として、固体7Li−NMR測定を行った。測定装置としてJEOL RESONANCE社製ECA700(7Li−NMRの共鳴周波数は272.1MHzである)を用い、室温環境下において、マジックアングルスピニングの回転数を14.5kHz、照射パルス幅を45°パルスとして、シングルパルス法により測定した。観測範囲は−400ppm〜400ppmの範囲とし、ポイント数は4096点とした。その他の繰り返し待ち時間以外の測定条件、例えば積算回数、レシーバーゲインなどをすべて同一としたうえで、繰り返し待ち時間を10秒とした場合と3000秒とした場合についてそれぞれ測定を行い、NMRスペクトルを得た。シフト基準として1mol/L塩化リチウム水溶液を用い、外部標準として別途測定したそのシフト位置を0ppmとした。塩化リチウム水溶液測定時には試料を回転させず、照射パルス幅を45°パルスとして、シングルパルス法により測定した。
上記の方法によって得られた正極活物質層の固体7Li−NMRスペクトルから上述した方法によりb/aを算出したところ、5.7であった。
[活物質の調製]
複合炭素材料Aの代わりに平均粒子径4.9μmの人造黒鉛を基材として用い、石炭系ピッチの使用量を50gとし、さらに熱処理温度を1000℃とした他は活物質Aの調製と同様にして複合炭素材料Bを製造し、評価を行った。その結果、複合炭素材料BのBET比表面積は6.1m2/gであった。石炭系ピッチ由来の炭素質材料の人造黒鉛に対する質量比率は2%であった。
上記で得た複合炭素材料Bを負極活物質として用いて負極を製造した。
複合炭素材料Bを80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,798mPa・s、TI値は2.7であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μmの貫通孔を持たない電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た。得られた負極についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。上記で得られた負極の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極活物質層の膜厚は片面あたりの厚さは25μmであった。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=40:60(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が50:50(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.6mol/L及び0.6mol/Lであった。
[組立工程]
得られた両面負極を12.2cm×450cm、両面正極前駆体を12.0cm×300cmにカットした。負極と正極前駆体はそれぞれ未塗工部を有する。この未塗工部は端部側から幅2cmになるように形成した。未塗工部が互いに反対方向となるように、それぞれ厚み15μmの微多孔膜セパレータを挟み、かつセパレータから未塗工部が突出するようにして楕円形状に捲回し、捲回体をプレスして扁平形状に成型した。その後、負極と正極前駆体とに電極端子を超音波溶接にて接合して電極捲回体とした。この電極捲回体をアルミラミネート包材からなる外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。これを、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。
アルミラミネート包材の中に収納された電極捲回体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に前記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す工程を4回繰り返した後、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す工程を合計7回繰り返した(それぞれ、−95,−96,−97,−81,−97,−97,−97kPaまで減圧した)。以上の工程により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値1000mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。また、負極の非対向部には、あらかじめ組立時にポリエチレンの膜でマスキングをしておき、非対向部にリチウムイオンがドープされるのを抑制した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、1.0Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。その後、非水系リチウム型蓄電素子を60℃の恒温槽に60時間保管した。
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。次いで、負極の非対向部に取り付けられたマスキングを取出した後、減圧チャンバーの中に前記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す工程を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の工程により、非水系リチウム型蓄電素子が完成した。
[対向部と非対向部の負極電位の測定]
アルゴン雰囲気下で蓄電素子を解体し、取り出した負極について負極の両面が対向部となる箇所をセラミック製のはさみで切り出した。次いで、参照極であるポリオレフィン系のセパレータに包んだ金属リチウムを押し当てて、蓄電素子に使用したのと同じ電解液を滴下した。その後、よく含浸した状態で参照極と負極の未塗工部(銅箔)の電位差をテスターにて測定したところ、200mVであった。負極の両面が非対向部となる箇所についても同様に切り出して測定したところ、1800mVであった。従って、対向部と非対向部の電位差は、1600mVであった。
アルゴン雰囲気下で蓄電素子を解体し、取り出した負極について負極の両面が対向部となる箇所と非対向部となる箇所をセラミック製のはさみで切り出し、それぞれの負極活物質層の固体7Li−NMRスペクトルを測定した。−10ppm〜35ppmのスペクトル範囲において4ppm〜30ppmの間にピークの最大値を有し、4ppm〜30ppmのピーク面積より計算されるリチウムイオンを吸蔵した負極活物質層の単位質量当たりのリチウム量を算出し、非対向部の前記リチウム量を対向部の前記リチウム量で除することにより、負極に吸蔵されているリチウムイオン濃度の比を算出したところ、0.09であった。
アルゴン雰囲気下で蓄電素子を解体し、取り出した負極について負極の両面が対向部となる箇所と負極の両面が非対向部になる箇所を、それぞれ小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、任意の10か所で測定した厚さの平均値を求めることによって算出した。算出した値から、対向部の膜厚に対する非対向部膜厚の比を求めると0.82であった。
25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、2Cの電流値で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行った。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出された静電容量F(F)を用いて、E/V1=F×(3.82−2.22)/2/3600/Vによりエネルギー密度を算出したところ32.8Wh/Lであった。
蓄電素子の体積V1(=l1×w1×t1)は、蓄電素子のラミネートフィルムのカップ成形部分の外寸長さ(l1)と外寸幅(w1)、並びにラミネートフィルムを含めた蓄電素子の厚み(t1)により求められる値を使用した。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Rを算出した。得られた常温内部抵抗Rは、2.10mΩであった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う充放電工程を60000回繰り返した。高負荷充放電サイクル試験後に前記[放電内部抵抗Rの算出]と同様にして高負荷充放電サイクル試験後の常温放電内部抵抗Reを算出した。このRe(Ω)を、前記[放電内部抵抗Rの算出]で求めた高負荷充放電サイクル試験前の内部抵抗R(Ω)で除して算出した比Re/Rは1.21であった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、300Cの電流値で3.8Vに到達するまで定電流充電し、続いて300Cの電流値で2.2Vに到達するまで定電流放電を行う充放電工程を60000回繰り返した。サイクル終了後に20Cの電流値で4.5Vまで充電し、その後定電圧充電を1時間継続した。その後の静電容量Feを測定し、高負荷充放電サイクル前の静電容量Fで除した値は、Fe/F=0.84であった。
非水系リチウム型蓄電素子の作製条件を、それぞれ、以下の表1に示す通りとした他は、実施例1と同様にして、実施例2〜28と比較例1〜6の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。得られた非水系リチウム型蓄電素子の評価結果を以下の表2に示す。また、比較例1〜比較例6についての作製条件の補足を下記に記す。
[組立]
予め負極の非対向部に負極活物質の単位質量当たり350mAh/gに相当するリチウム金属箔を貼り付ける他、実施例1と同様に蓄電素子の組立を行った。
得られた蓄電素子に対して、電流値を50mAに変えた他、実施例1と同様にリチウムドープを実施後、45℃に設定した恒温槽内で21時間放置することで、負極にリチウムドープを行った。
[組立]
予め負極両面に負極活物質の単位質量当たり350mAh/gに相当するリチウム金属箔を貼り付ける他、実施例1と同様に蓄電素子の組立を行った。
得られた蓄電素子に対して、45℃に設定した恒温槽内で21時間放置することで、負極にリチウムドープを行った。
[放電内部抵抗]
放電内部抵抗(mΩ)の結果を下記のように評価した。
AA:2.00以下
A:2.00超2.50以下
B:2.50超3.00以下
C:3.00超
エネルギー密度(Wh/L)の結果を下記のように評価した。
AA:33.0以上
A:28.0以上33.0未満
B:21.0以上28.0未満
C:21.0未満
充放電サイクル時の内部抵抗上昇率の結果を下記のように評価した。
AA:1.25以下
A:1.25超1.50以下
B:1.50超2.00以下
C:2.00超
充放電サイクル時の容量回復率の結果を下記のように評価した。
AA:0.85以上
A:0.80以上0.85未満
B:0.75以上0.80未満
C:0.75未満
2 両面正極
3 両面負極
4 セパレータ
5 捲回体の解体側面図
6 両面正極
7 両面負極
8 セパレータ
9 対向部
10 非対向部
11 負極から切り出した非対向部
12 電位勾配測定時に分割した非対向部
Claims (5)
- 活物質以外のリチウム化合物を含む正極、負極、セパレータ、リチウムイオンを含む非水系電解液からなる非水系リチウム型蓄電素子であって、
前記正極が、正極集電体を有し、前記正極集電体上に活物質及びリチウム化合物からなる正極活物質層が設けられ、かつ、前記負極は、負極集電体を有し、前記負極集電体上にリチウムイオンを吸蔵放出可能な活物質を含み、さらに、
前記正極と前記負極はセパレータを介して捲回した電極捲回体からなり、加えて、
前記負極は、前記セパレータを介在して、前記正極と前記負極とが対向する対向部と、
前記セパレータを介在して、対向する前記正極が存在しない非対向部を有し、そして、
前記非対向部における負極電位が、前記対向部における負極電位よりも50mV以上高く、
前記リチウム化合物が、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種のリチウム化合物である、非水系リチウム型蓄電素子。 - 前記非対向部の負極活物質層において、負極電位の勾配が500mV/m以上ある、請求項1に記載の非水系リチウム型蓄電素子。
- 前記対向部の負極活物質中のリチウムイオン濃度(質量%)に対する前記非対向部の負極活物質中のリチウムイオン濃度(質量%)の比が、0.85以下である、請求項1又は2に記載の非水系リチウム型蓄電素子。
- 前記対向部の負極の膜厚に対する前記非対向部の負極の膜厚の比が、
0.80以上0.95以下である、請求項1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。 - 請求項1〜4のいずれか一項に記載の非水系リチウム型蓄電素子において、充放電サイクル時の該非水系リチウム型蓄電素子において、初期の静電容量をF(F)、常温放電内部抵抗をRa(Ω)、環境温度25℃にて、セル電圧を2.2Vから3.8Vまで、300Cのレートでの高負荷充放電サイクルを60,000回行った後の静電容量をFe(F)常温放電内部抵抗をRe(Ω)、としたとき、以下の:
(a)Re/Raが0.90以上1.5以下である;
(b)Fe/Fが0.80以上
を同時に満たす、前記非水系リチウム型蓄電素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192479A JP6829572B2 (ja) | 2016-09-30 | 2016-09-30 | 捲回式非水系リチウム型蓄電素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192479A JP6829572B2 (ja) | 2016-09-30 | 2016-09-30 | 捲回式非水系リチウム型蓄電素子 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018056412A JP2018056412A (ja) | 2018-04-05 |
JP2018056412A5 JP2018056412A5 (ja) | 2019-09-12 |
JP6829572B2 true JP6829572B2 (ja) | 2021-02-10 |
Family
ID=61833156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016192479A Active JP6829572B2 (ja) | 2016-09-30 | 2016-09-30 | 捲回式非水系リチウム型蓄電素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6829572B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7463973B2 (ja) | 2021-01-07 | 2024-04-09 | トヨタ自動車株式会社 | 電池システム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000049053A (ja) * | 1998-07-28 | 2000-02-18 | Tokin Corp | 電気二重層キャパシタ |
JP4597727B2 (ja) * | 2005-03-18 | 2010-12-15 | 本田技研工業株式会社 | 電気二重層キャパシタ |
US7817403B2 (en) * | 2005-08-30 | 2010-10-19 | Fuji Jukogyo Kabushiki Kaisha | Lithium ion capacitor |
JP5230108B2 (ja) * | 2007-01-26 | 2013-07-10 | 三洋電機株式会社 | 非水電解質二次電池 |
JP4979432B2 (ja) * | 2007-03-28 | 2012-07-18 | 三洋電機株式会社 | 円筒型リチウム二次電池 |
JP2010225291A (ja) * | 2009-03-19 | 2010-10-07 | Toyota Motor Corp | リチウムイオン二次電池及びその製造方法 |
JP2012069894A (ja) * | 2009-09-28 | 2012-04-05 | Sumitomo Chemical Co Ltd | ナトリウムイオン型蓄電デバイス |
JP2013038170A (ja) * | 2011-08-05 | 2013-02-21 | National Institute Of Advanced Industrial & Technology | ナトリウムイオンキャパシタ |
FR3005199B1 (fr) * | 2013-04-24 | 2015-05-29 | Commissariat Energie Atomique | Dispositif electrochimique du type supercondensateur a base d'un electrolyte comprenant, comme sel conducteur, au moins un sel a base d'un element alcalin autre que le lithium |
WO2015079624A1 (ja) * | 2013-11-29 | 2015-06-04 | ソニー株式会社 | 電極および電池 |
-
2016
- 2016-09-30 JP JP2016192479A patent/JP6829572B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018056412A (ja) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6227837B1 (ja) | 非水系リチウム型蓄電素子 | |
JP6714566B2 (ja) | 非水系リチウム型蓄電素子の製造方法 | |
JP6815305B2 (ja) | 非水系リチウム蓄電素子の製造方法 | |
JP6997208B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6957250B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6786335B2 (ja) | 非水系リチウム蓄電素子 | |
JP6976113B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815150B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815126B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6829572B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP6829573B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP6815148B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754260B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056428A (ja) | 非水系リチウム型蓄電素子用の負極 | |
JP6754659B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754656B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6792978B2 (ja) | 非水系アルカリ金属型蓄電素子 | |
JP6815146B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815151B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815147B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754655B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754657B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056434A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056430A (ja) | 非水系リチウム型蓄電素子 | |
JP2018026408A (ja) | 非水系アルカリ土類金属型蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190730 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6829572 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |