[go: up one dir, main page]

JP4804090B2 - 反応容器 - Google Patents

反応容器 Download PDF

Info

Publication number
JP4804090B2
JP4804090B2 JP2005286067A JP2005286067A JP4804090B2 JP 4804090 B2 JP4804090 B2 JP 4804090B2 JP 2005286067 A JP2005286067 A JP 2005286067A JP 2005286067 A JP2005286067 A JP 2005286067A JP 4804090 B2 JP4804090 B2 JP 4804090B2
Authority
JP
Japan
Prior art keywords
reaction
flow path
film
base material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005286067A
Other languages
English (en)
Other versions
JP2007089528A (ja
Inventor
広幸 黒木
僚子 今川
祐輔 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
RIKEN Institute of Physical and Chemical Research
Toppan Inc
Original Assignee
Shimadzu Corp
RIKEN Institute of Physical and Chemical Research
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, RIKEN Institute of Physical and Chemical Research, Toppan Inc filed Critical Shimadzu Corp
Priority to JP2005286067A priority Critical patent/JP4804090B2/ja
Publication of JP2007089528A publication Critical patent/JP2007089528A/ja
Application granted granted Critical
Publication of JP4804090B2 publication Critical patent/JP4804090B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、例えば、生化学反応などに用いられる反応容器に関する。
従来、例えば生化学反応などにおいて微量の試料溶液を処理する反応容器として、反応場としての複数の凹部または流路を有するものが提供されている(例えば、特許文献1参照)。このような反応容器では、各凹部または流路の温度状態を制御可能なペルチェ素子などからなる温度制御装置を備える反応装置により、各凹部または流路に供給した反応溶液の加熱を行っている。
ここで、流路状の反応部を有する反応容器の場合、流路に供給された反応溶液が流路の開口部からのみ外部に露出しているので、反応時の反応溶液の蒸発を減少することができる。しかし、混入した気泡の膨張、流路状反応部の表面粗さや加工スジなどの表面状態、温度制御装置の挟み込み具合などにより、反応液が移動し、加熱部から外れて効率低下を起こしたり、さらには反応液が開口部まで到達して蒸発したりしてしまうことがある。このとき、より反応溶液の蒸発を防止するため、反応溶液が供給された流路に対して、例えば、ミネラルオイルなどの封止液をさらに供給することで、流路をこの封止液で封止して反応溶液を流路と封止液とで閉塞することがある。
特許第2759071号公報
しかしながら、上記従来の反応容器には、以下の課題が残されている。すなわち、流路に反応溶液や封止液を供給したとき、流路内に空気が気泡として混入することがある。この気泡は反応溶液が加熱されることで膨張し、これにより封止液が開口部から押し出されて流路の外部に流出することがある。このため、反応溶液が蒸発し、反応溶液の損失が発生するという問題がある。
本発明は、前述の課題に鑑みてなされたもので、反応溶液の損失を回避できる反応容器を提供することを目的とする。
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の反応容器は、基材に設けられた流路を有する反応部を備え、前記流路が、試料溶液を貯留する反応本部と、前記基材の外部から前記試料溶液を供給可能な送液部と、前記反応本部の一端及び前記送液部の一端を連通する屈曲部とを有し、前記流路が、前記基材の一面に形成された溝部と、該溝部の開口端の少なくとも一部を覆う熱伝導性を有するフィルムとによって形成されていることを特徴とする。
この発明では、反応本部に試料溶液を貯留して送液部及び屈曲部にそれぞれ試料溶液を流路内で密封するための封止液を供給することで、試料溶液が屈曲部を越えて送液部まで至ることを防止できる。すなわち、試料溶液や封止液を供給する際に流路内に気泡が混入した状態で試料溶液を所定温度まで加熱し、気泡が加熱と共に膨張した場合であっても、反応本部と送液部との間に屈曲部が設けられているので、試料溶液が反応本部から屈曲部を超えて送液部まで押し出されることが抑制される。したがって、試料溶液の損失を回避できる。
また、反応部が流路を有していることから、流路への溶液の供給及び供給した試料溶液や封止液の回収が容易となる。
さらに、この発明では、溝部を形成する基材に対して相対的に薄いために熱伝導率が基材よりも大きくなるフィルムによって流路を形成することから、流路内に貯留された溶液全体の温度状態を容易に均一に制御することができる。
また、本発明の反応容器は、前記流路の断面積が、0.1mm以上10mm以下であることが好ましい。
この発明では、流路の断面積を0.1mm以上10mm以下とすることで、精製された試料溶液の成分を均一化することができる。
また、本発明の反応容器は、前記流路が、前記試料溶液を供給可能な他の送液部を有し、該他の送液部の一端が前記反応本部の他端と他の屈曲部を介して連通されていることとしてもよい。
この発明では、反応本部に試料溶液を貯留した後、2つの送液部にそれぞれ封止液を貯留することで試料溶液を封止液により封止する。
また、本発明の反応容器は、前記フィルムの厚さが1μm以上500μm以下であることが好ましい。
また、本発明の反応容器は、前記フィルムの熱伝導率が0.1kcal/mh℃以上であることが好ましい。
また、本発明の反応容器は、前記基材の表面上に、光学分析可能な検出部を備えることが好ましい。
この発明では、単一の基材に対して、少なくとも所望の反応を生じさせる処理と、検出処理とを連続的に効率よく実行することができる。
また、本発明の反応容器は、前記基材の表面上に、反応試薬を収容する試薬収容部が設けられていることが好ましい。
この発明では、単一の基材に対して、少なくとも反応試薬を収容する処理と、所望の反応を生じさせる処理とを連続的に効率よく実行することができる。
また、本発明の反応容器は、前記試薬収容部が凹状であることが好ましい。
この発明では、基材の表面上に試薬収容部を容易に形成することができる。
また、本発明の反応容器は、前記反応部が、酵素反応用であることとしてもよい。
この発明では、反応部の溶液全体に対して酵素反応を容易に均一に発生させることができる。
また、本発明の反応容器は、前記酵素反応が、ポリメラーゼ連鎖反応であることとしてもよい。
この発明では、反応部の溶液全体に対してポリメラーゼ連鎖反応を容易に均一に発生させることができる。
本発明の反応容器によれば、反応本部に試料溶液を貯留して送液部及び屈曲部にそれぞれ封止液を供給することで、試料溶液が屈曲部を越えて送液部まで至ることを防止できる。また、反応部が流路を有していることから、流路への溶液の供給及び供給した溶液の回収が容易となる。
以下、本発明にかかる反応容器の一実施形態を、図面を参照しながら説明する。
本実施形態による反応容器1は、例えば図1に示すように、単一のほぼ長方形板状の基材2に設けられた試薬収容部3と、反応部4と、検出部5とを備えている。
基材2は、例えばPC(ポリカーボネート)やPP(ポリプロピレン)、シクロオレフィン系ポリマー、フッ素系ポリマー、シリコン樹脂などの各プラスチックまたはこれら複数のプラスチックの適宜の組合せ、ガラスなどで形成されており、耐熱性、耐薬品性、成形加工性などに優れている。
試薬収容部3は、例えば基材2の長手方向に沿った一方の端部に設けられており、基材2の表面2A上に形成された複数の凹穴状の試薬収容凹部11によって構成されている。
複数の試薬収容凹部11には、例えばポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)などの各種の反応処理に用いられる検体試薬などの各種の試薬や、希釈液またはバッファ液などを収容される。ここで、試薬収容凹部11の大きさは、収容する試薬の量に応じて適宜設定されており、例えば開口径が0.1mm〜10mm、深さが0.1mm〜10mmとなっている。
なお、試薬収容凹部11の形状は、特に限定されるものではなく、例えば円錐台形や角錐台形、円錐、角錐、曲面状の底部を有する形状など、適宜のウェル形状であればよく、加工性形成や溶液の注入性などによって適宜に設定される。また、試薬収容凹部11の内面には、例えば親水化または撥水化などの表面処理を施してもよい。
また、試薬収容凹部11の内面は、例えばPCやPP、PS(ポリスチレン)、PE(ポリエチレン)、PET(ポリエチレンテレフタレート)、POM(ポリアセタール)、PA(ポリアミド)、PAN(ポリアクリロニトリル)、PMMA(ポリメチルメタクリレート)、TPXフィルム(三井化学株式会社製)などのメチルペンテン系フィルム、ゼオノア(日本ゼオン株式会社製)などのシクロオレフィン系フィルム、シリコン樹脂フィルム、フッ素系ポリマーフィルムなどの各プラスチックまたはこれら複数のプラスチックを適宜組合せた被覆フィルムによって被覆されてもよい。
反応部4は、例えば基材2の長手方向に沿った央部に設けられており、図2(a)〜(d)に示すように、基材2の裏面(一面)2B上に形成された溝部12及びこの溝部12の開口端12Aを覆うフィルム13によって形成された空間である流路14と、基材2の厚さ方向に貫通して基材2の表面2A上に設けられた2つの各開口部15、16と溝部12とをそれぞれ連通する貫通孔である注液部17、18とを備えている。
すなわち、この反応部4は、流路状であって、基材2の表面2A上で開口する一方の開口部15から反応部4の内部に供給された溶液が順次一方の注液部17と溝部12及びフィルム13によって形成された流路14と他方の注液部18とを流通可能となっている。
流路14は、反応本部21と、反応本部21の両端にそれぞれ連通する一対の屈曲部22、23と、一対の屈曲部22、23にそれぞれ連通する一対の送液部24、25とによって構成されている。すなわち、この流路14は、注液部17、18との間を少なくとも2箇所において屈曲するように接続されている。ここで、反応本部21の軸線L1と送液部24の軸線L2とのなす角度θ1が5°以上100°以下となっており、軸線L1と送液部25の軸線L3とのなす角度θ2が5°以上100°以下となっている。すなわち、流路14の経路の向きは、屈曲部22によって角度θ1だけ変更され、屈曲部23によって角度θ2だけ変更されている。また、流路14の断面積は、0.1mm以上10mm以下となっている。
なお、基材2の表面2A側から溝部12に向かって切削または金型形成などによる凹部を形成し、流路14の表面2A側の壁厚を薄くしてもよい。このようにすれば、表面2Aに対向する位置(例えば、表面2Aの上方の位置)に反応のための熱源を配置する場合において、流路14内に熱が迅速かつ均一に伝達される。
なお、フィルム13は、PCやPP、PS、PE、PET、POM、PA、PAN、PMMA、TPXフィルム(三井化学株式会社製)などのメチルペンテン系フィルム、ゼオノア(日本ゼオン株式会社製)などのシクロオレフィン系フィルム、シリコン樹脂フィルム、フッ素系ポリマーフィルムなどの各プラスチックまたはこれら複数のプラスチックを適宜組み合わせた単層構造または多層構造のフィルム、あるいは、例えば、アルミニウムや銅、金などの各金属またはこれら複数の金属を適宜組み合わせた単層構造または多層構造のフィルム、さらには、プラスチックと金属との組み合わせによる多層構造のフィルムからなる。
そして、フィルム13の厚さは、例えば1〜500μmであって、好ましくは1〜100μmであって、この範囲内で薄くなることにしたがって、より好ましくなる。なお、厚さが1μm未満であると、熱変形が過剰に大きくなると共に所望の強度を確保することができなくなる。一方、フィルム13の厚さが500μmよりも厚くなると、熱伝導性が過剰に低下し、反応部4内の溶液の温度状態を外部から制御する際に、溶液全体に対して温度状態を均一に制御することが困難となって、反応状態に対する所望の均一性を確保することができなくなる。また、金属からなるフィルム13は、好ましくは、厚さが1〜50μmである。
また、プラスチックからなるフィルム13は、好ましくは熱伝導率が0.1kcal/mh℃以上であり、例えばPPでは熱伝導率が0.119kcal/mh℃程度であり、PCでは熱伝導率が0.166kcal/mh℃程度であり、PEでは熱伝導率が0.252kcal/mh℃程度である。
また、金属からなるフィルム13は、好ましくは、熱伝導率が100kcal/mh℃以上であって、例えばアルミニウムでは熱伝導率が177kcal/mh℃程度であり、銅では熱伝導率が324kcal/mh℃程度であり、金では熱伝導率が254kcal/mh℃程度である。
なお、プラスチックからなる単層構造のフィルム13は、好ましくは厚さが10μm〜100μm程度である。
なお、金属からなる単層構造のフィルム13は、例えば軟質アルミニウムの場合、好ましくは、厚さが5μm〜80μm程度であり、硬質アルミニウムの場合、好ましくは、厚さが5μm〜50μm程度である。
また、プラスチックからなる多層構造のフィルム13は、例えばPETまたはOPP(延伸ポリプロピレン)などにより形成され、好ましくは、厚さが1μm〜20μm程度に設定されることで、所望の強靭性および柔軟性が確保される。
また、プラスチックと金属との組み合わせによる多層構造のフィルム13は、例えばアルミニウムの場合、好ましくは、厚さが7μm〜50μm程度であり、さらに、アルミニウムの表面上には、反応容器1の基材2の表面に、例えば熱溶着あるいは圧着により貼付可能なシール層が、アルミニウムと一体となるように設けられている。このシール層は、例えばナイロンなどの樹脂フィルム状のシーラントがアルミニウムの表面上に積層、あるいは、例えばマレイン酸変性ポリプロピレンなどがアルミニウムの表面上に塗工されて形成されている。このフィルム13では、さらに、強度を増大させるために、アルミニウム層側にPETまたはOPPなどのフィルムを積層させても良い。
検出部5は、例えば基材2の長手方向に沿った他方の端部に設けられており、基材2の表面上に形成された複数の凹穴状の検出凹部26によって構成されている。
ここで、検出凹部26は、DNAの分析に用いる試薬の量に応じて適宜設定されているが、試薬の量が微量であるため、例えば開口径が0.01mm以上5mm以下、深さが0.01mm以上5mm以下となっている。
なお、検出凹部26の形状は、試薬収容凹部11と同様に、特に限定されるものではなく、上述した適宜のウェル形状であればよく、加工性形成や溶液の注入性などによって適宜に設定される。また、検出凹部26の内面には、例えば親水化または撥水化などの表面処理を施してもよい。
また、検出凹部26の内面は、上述と同様に、各プラスチックまたはこれら複数のプラスチックを適宜組合せた被覆フィルムによって被覆されてもよい。
以上のような構成の反応容器1は、図3に示すような生化学反応装置30を用いて生化学反応試験を行うために用いられる。
この生化学反応装置30は、反応容器1に対して反応試薬を収容する試薬収容装置31と、例えば酵素反応であるポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)などの所定反応を生じさせる反応装置32と、例えば光学分析などによりDNA(deoxyribonucleic acid)などの検体を検出する検出装置33とを備えている。
試薬収容装置31は、例えばPCRなどの各種の反応処理に用いられる検体試薬や他の試薬、希釈液またはバッファ液などを反応容器1に収納するように構成されている。
反応装置32は、後述する反応溶液の温度状態を制御するペルチェ素子などを備える温度制御装置34を有して構成されている。例えば、図3に示すように、温度制御装置34は、反応容器1の反応部4を厚さ方向の両側(すなわち、反応容器1の表面側と裏面側)から挟み込むようにして配置される2つのペルチェ素子35、36を備えている。ここで、反応容器1の表面と当接する各ペルチェ素子35、36は、反応容器1の反応部4の表面形状(例えば、凸形状など)に沿った形状(例えば、凹形状など)を有するように構成されている。
検出装置33は、反応装置32によるPCRなどの所定反応によって調整された検体と、検出用の各種の試薬とを、反応容器1の検出部5において反応させ、あらかじめ検体または核酸プローブに付した標識物質(例えば、蛍光物質)の有無を、例えば反応容器1の検出部5の裏面側などから検出する発光検出を行う。
次に、反応容器1を用いた生化学反応装置30の動作を、図4を参照しながら説明する。
まず、試薬収容装置31が各種の試薬などを反応容器1に収容する試薬収容工程を行う(図4に示すステップST1)。これは、例えばPCRなどの各種の反応処理に用いられる検体試薬及び他の試薬と、検出時に用いられる各種の試薬と、希釈液またはバッファ液などとを、反応容器1の試薬収容部3に収容する。
次に、例えばPCRなどを生じさせる反応工程を行う。これは、反応溶液供給工程と封止工程と反応生成工程とからなる。
まず、反応溶液(試料溶液)を供給する反応溶液供給工程を行う(図4に示すステップST2)。これは、例えば、図5(a)、(b)に示すように、反応部4の開口部15から流路14の内部に反応溶液Rを供給する。ここで、反応溶液Rは、反応本部21内に貯留されるように供給する。なお、PCRに対する反応溶液として、例えば血液などから抽出したDNAまたはあらかじめ精製された鋳型DNAと、ポリメラーゼ酵素と、各塩基の材料であるdNTP(デオキシヌクレオチド3リン酸)と、pH及び濃度調整のための希釈液またはバッファ液とからなる。
そして、封止液としてミネラルオイルを供給する封止工程を行う(図4に示すステップST3)。これは、反応溶液を貯留している流路14の内部へと向かうように開口部15、16からミネラルオイルを供給し、例えば、図5(a)、(b)に示すように、流路14の内部において雰囲気中に露出する反応溶液Rの液面上にミネラルオイルMを重層させ、流路14の内部を封止する。ここで、ミネラルオイルMは、送液部24、25及び屈曲部22、23を充填するように供給する。したがって、反応溶液Rは、反応本部21内に留まり、屈曲部22、23に貯留されていない。なお、反応溶液RやミネラルオイルMの供給時に、流路14内に気泡が混入する場合がある。
続いて、PCRを生じさせる反応生成工程を行う。これは、変性工程とアニーリング工程と伸長反応工程とからなる。
これは、まず反応溶液中のDNAを熱変性させる変性工程を行う(図4に示すステップST4)。これは、温度制御装置34により反応部4の温度状態を所定時間(例えば、5秒〜25秒など)にわたって所定温度(例えば、90℃〜100℃程度)となるように制御し、反応溶液のDNAを熱変性させる。
次に、DNAを結合(アニーリング)させるアニーリング工程を行う(図4に示すステップST5)。これは、温度制御装置34により反応部4の温度状態を所定時間(例えば、15秒〜60秒など)にわたって所定温度(例えば、50℃〜60℃程度)となるように制御し、各種のプライマーであるDNAの断片を所望の遺伝子配列と結合させる。
そして、DNAポリメラーゼによる相補鎖合成を行う伸長反応工程を行う(図4に示すステップST6)。これは、温度制御装置34により反応部4の温度状態を所定時間(例えば、1分〜5分など)にわたって所定温度(例えば、65℃〜75℃程度)となるように制御することで、DNAポリメラーゼによる相補鎖合成を行う。ここで、これら変性工程、アニーリング工程及び伸長反応工程において反応部4を加熱することにより流路14内に混入された気泡が加熱によって膨張しても、流路14が屈曲部22、23において屈曲しているため、反応溶液が屈曲部22、23を超えて送液部24、25押し出されることが防止されている。これにより、反応溶液の閉塞状態が維持されるので、反応溶液の蒸発などによる損失が回避されている。
この後、一連の処理を継続するか否かを判定し(図4に示すステップST7)、継続する場合にはステップST4に戻り、終了する場合には次の検出工程に進む。
次に、検体及び検出用の各種の試薬を用いた検出工程を行う(図4に示すステップST8)。これは、反応生成工程におけるPCRにより調整された検体と、検出用の各種の試薬(例えば、核酸プローブなど)とを、反応容器1の検出部5においてハイブリダイゼーションなどにより反応させ、あらかじめ検体または核酸プローブに付した標識物質(例えば、蛍光物質)の有無を、例えば反応容器1の検出部5の裏面側などから検出する発光検出を行う。
以上のようにして、反応容器1を用いた生化学反応装置30の動作を行う。
ここで、上述した反応容器1の反応部4の製造方法について説明する。
まず、例えば、射出成型法または切削加工法により、例えば、PCやPP、シクロオレフィン系ポリマー、フッ素系ポリマー、シリコン樹脂などの各プラスチックまたはこれら複数のプラスチックの適宜の組合せからなる基材2の裏面2B上に溝部12を形成する。
次に、例えば切削加工法により、基材2の厚さ方向に貫通して基材2の表面2A上に設けられた各開口部15、16と溝部12とを連通する一対の貫通孔である注液部17、18を形成する。
そして、フィルム13により溝部12の開口端12Aを覆って溝部12を封止するようにしてフィルム13を基材2の裏面2B上に熱溶着または圧着により、あるいはポリ酢酸ビニル系及びポリアミド系などの熱可塑性樹脂接着剤を用いて貼着することにより、溝部12とフィルム13とで流路14を形成する。
なお、フィルム13がPEなどからなる場合には、熱溶着性であることから、接着剤を用いずに基材2と貼り合わせることができる。また、フィルム13は、樹脂フィルムや金属フィルムまたはこれらを積層したフィルムに接着層を積層あるいはシーラントを塗布することにより形成したものを用いてもよい。
以上のように構成された反応容器1によれば、流路14内に気泡が混入した状態で所定温度まで加熱することで気泡が膨張した場合であっても、反応本部21と送液部24、25との間に屈曲部22、23が設けられていることで加熱時に反応溶液が反応本部21から屈曲部22、23を超えて送液部24、25まで押し出されることが抑制される。このため、ミネラルオイルが開口部15、16から流出することが防止され、反応溶液の閉塞状態が維持される。したがって、反応溶液の損失を回避できる。ここで、流路14が屈曲部22、23においてその経路の向きが5°以上100°以下ずつ変更されているので、より確実に反応溶液が送液部24、25まで押し出されることを抑制できる。
また、反応部4が流路14を有していることから、流路14への溶液の供給及び供給した溶液の回収が容易となる。
また、流路14の断面積を0.1mm以上10mm以下とすることで、精製された反応溶液の成分を均一化することができる。
さらに、フィルム13が熱伝導性フィルムにより形成されることで、反応部4に貯留された溶液全体の温度状態を、より一層、容易に均一に制御することができる。
しかも、単一の基材2に対して、試薬収容部3と反応部4と検出部5とを備えているので、一連の試薬収容工程、反応工程及び検出工程を連続的に効率よく実行することができる。
次に、本発明にかかる反応容器を実施例により具体的に説明する。
まず、実施例として、26mm×19mm×3mmのPPからなる樹脂板(ノバテック社製PP)の基材2を射出成形法によって形成した。そして、この基材2に8個の試薬収容凹部11を有する試薬収容部3と、反応部4と、24個の検出凹部26を有する検出部5とを切削加工により形成した。
ここで、8個の試薬収容凹部11のうち、2個は開口径(直径)が8mm、深さが5mmとなっており、他の2個は開口径(直径)が6mm、深さが4mmとなっており、残りの4個は開口径(直径)が3.4mm、深さが4mmとなっている。また、試薬収容凹部11は、底部が円錐状の円柱状を有しており、それぞれの内面に親水化処理が施されている。試薬収容凹部11には、それぞれPCR反応に用いられる検体試薬などの試薬や希釈液、インベーダ法に用いられる試薬類、酵素及び封止液のミネラルオイルが収容されている。
また、反応部4の流路14は、幅1mm、高さ1mm、断面積が1mmの矩形状を有しており、反応本部21の長さが20mm、送液部24、25の長さがそれぞれ3mmとなっている。そして、反応本部21の軸線と送液部24、25の軸線とのなす角度θ1、θ2は、それぞれ45°となっている。さらに、反応溶液に熱を伝わりやすくするため、基材2における流路14内の中央部近傍(反応溶液が存在する部分を含む)は、基材2の上部から流路14まで貫通しない程度に掘り下げられている。すなわち、平面視で流路14の中央部付近を含む領域において、基材2が13mm×19mm、深さ1.7mmだけ掘り下げられている。
また、フィルム13は、厚さ70μmのPPからなる樹脂フィルムと厚さ30μmのアルミニウムからなる金属フィルムとを重ね合わせて形成されており、厚さが100μmとなっている。
また、検出凹部26は、その形状が円錐台形となっており、開口径(直径)が3mm、深さが1.7mmとなっている。そして、検出凹部26のそれぞれの内面には親水化処理が施されている。
なお、反応装置32は、反応部4の上下を挟み込むように配置されたペルチェ素子35、36を有する温度制御装置34を備えている。また、検出装置33は、検出部5にあらかじめ標識物質を付した核酸プローブが配置されており、PCR反応によって調整された検体、各種試薬を反応させ、検出部5の裏面側から蛍光検出を行う。
そして、開口部15、16から流路14の内部にミネラルオイル5μl、PCR反応溶液5μl、ミネラルオイル5μlを順に入れた。ここで、PCR反応溶液が流路14の中央に位置するように各液を供給している。
その後、反応部4の厚さ方向の上下両面にヒータを熱伝導性を向上させるためのアルミブロックを介して配置し、以下の条件で反応生成工程であるPCR反応を実行した。
この反応生成工程では、まず94℃で2分間加熱し、続いて95℃で1秒間、60℃で1秒間、72℃で1秒間の加熱を45サイクル行い、さらに15℃の加温を行っている。
その後、インベーダ試薬を用いて反応、検出を行った。
同様に他の実施例として、反応本部21の軸線と送液部24、25の軸線とのなす角度θ1、θ2がそれぞれ90°である反応容器を作成し、上述と同様のPCR反応を実行した。そして、インベーダ試薬を用いて反応、検出を行った。
続いて、比較例として、実施例と同様の樹脂板を用いて流路及び注液部をそれぞれ形成し、フィルムを貼って中空の流路を有する反応容器を作成した。ここで、流路は、反応本部と反応本部の両端にそれぞれ連通される送液部とを有しており、実施例の反応容器と異なり屈曲部が設けられていない。したがって、反応本部の軸線と送液部の軸線とのなす角度が、それぞれ180°となっている。
そして、実施例と同様に、開口部から流路の内部にミネラルオイル及びPCR反応溶液を入れ、同様のPCR反応を実行した。その後、インベーダ試薬を用いて反応、検出を行った。
この結果、実施例の反応容器では、PCR反応溶液がほとんど蒸発することなく、ほぼ全量を回収することができ、反応が良好に進行することが確認できた。一方、比較例の反応容器では、混入した気泡が加熱膨張してヒータによる加熱領域からPCR反応溶液が外れることで十分なPCR反応が行われなかったり、PCR反応溶液が気泡により押し出されて蒸発したりすることで、反応効率の低下または溶液が回収不能となる場合があることを確認した。また、比較例の反応容器では、流路の断面積のわずかなアンバランスや加熱制御部の伝熱のわずかなアンバランスが存在する場合にも、同様にPCR反応溶液が移動して加熱領域から外れることで十分なPCR反応が行われない場合があることを確認した。
これより、流路14内に混入した気泡が膨張した場合であっても、反応本部21と送液部24、25との間に屈曲部22、23が設けられているので、加熱時に反応溶液が反応本部21から屈曲部22、23を超えて送液部24、25まで押し出されることが抑制され、反応溶液の閉塞状態が維持されることが確認された。
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では反応部4における基材2の表面2Aに2つの開口部15、16が設けられているが、図6(a)〜(d)に示すように、開口部15のみが表面2Aに形成されている構成としてもよい。この反応部40には、流路14の送液部25において反応本部21から離間する一端側と基材2の表面2Aとを連通するような貫通孔である空気孔41が形成されている。
ここで、このように送液部25が空気孔41によって基材2の表面2Aと連通している場合には、送液部25と反応本部21との間に屈曲部23を設けず、送液部25の軸線と反応本部21の軸線とが一致した状態で連通されている構成としてもよい。また、屈曲部を3箇所以上に設けてもよい。
また、上記実施形態では流路14が平面視で蛇行形状を有しているが、図7(a)〜(d)に示すような流路51を有する反応部50としてもよい。この流路51は、送液部52、53が平面視でそれぞれ開口部54、55から離間するように延出しており、送液部52、53の一端が屈曲部56、57を介して反応本部58に連通されている。
また、上記実施形態では反応本部21の軸線が直線となっているが、図8(a)〜(d)に示すように、軸線が蛇行形状である反応本部61としてもよい。この反応部60の流路62は、その軸線が蛇行形状を有する反応本部61と、反応本部61の両端にそれぞれ屈曲部22、23を介して連通されている送液部24、25とを備えている。
また、上記実施形態では基材2の裏面2B上に形成された溝部12及び基材2の裏面2B上に貼付されたフィルム13によって流路14を形成しているが、図9(a)〜(d)に示すように、基材2に形成された中空孔によって流路71を構成してもよい。この流路71は、基材2の内部で中空であって基材2の表面2Aに形成された開口部15、16にそれぞれ連通するように形成されている。
ここで、この流路71を有する反応部70の製造方法は、例えば、上記実施形態でのフィルム13の代わりに、基材2と同等のほぼ長方形板状の第2基材72を基材2の裏面2B上に、例えばポリ酢酸ビニル系及びポリアミド系などの熱可塑性樹脂接着剤を用いて貼付し、第2基材72により溝部の開口端を覆うことで溝部の開口端を封止して流路71を形成する。また、この反応部70の製造方法では、例えば射出成型法により、例えばPC、PP、シクロオレフィン系ポリマー、フッ素系ポリマー、シリコン樹脂などの各プラスチックまたは複数のプラスチックを適宜組み合わせたものからなる基材2の内部に中空孔を形成することで流路71を構成してもよい。
また、流路の断面積を0.1mm以上10mm以下としているが、0.1mmより狭くしたり、10mmより大きくしたりしてもよい。
また、屈曲部を介して連通される反応本部の軸線と送液部の軸線とのなす角度は、加熱時に気泡の膨張によっても反応溶液の閉塞状態が維持されれば、5°未満や100°を超える角度であってもよい。
また、反応容器が試薬収容部と反応部と検出部とを備えているが、反応容器は少なくとも反応部を備えていればよい。
また、反応容器は、例えば、試薬の種類や数、検体の種類や数などに応じて、複数の試薬収容部と複数の反応部と複数の検出部とを備える構成としてもよい。
また、反応容器において、試薬収容部と反応部と検出部とを流路などによって互いに接続してもよい。この場合、検査時間を短縮することができると共に、微量の試料及び試薬で各種の分析を精度よく行うことができ、分析に要する費用の削減が図れる。
また、反応部には、封止液としてミネラルオイルを加えているが、反応溶液より比重が軽ければ他の溶液を加えてもよい。
また、検体DNAまたは抗原などは反応部内に固定してもよいし、固定させずに保持させておくだけでもよい。
また、アニーリング工程と伸長反応工程とを順次実行しているが、アニーリング工程及び伸長反応工程を同時に実行してもよい。このとき、温度制御装置により反応部の温度状態を、所定時間(例えば、1分〜5分など)にわたって所定温度(例えば、50℃〜70℃程度)となるように制御することで、各種のプライマー(つまり、DNAの断片)を所望の遺伝子配列と結合させると共に、DNAポリメラーゼによる相補鎖合成を行う。
また、PCRを、マルチプレックスPCRとしてもよい。このマルチプレックスPCRでは、プライマーのミスアニーリングやオリゴマー化の発生を抑制するために反応溶液が相対的に高温状態になってから伸長反応工程の実行を開始するホットスタート法を適用することが好ましい。
また、生化学反応装置は、抗原抗体反応及びDNA反応の検出など、さまざまな生化学系の反応用として用いることができる。
抗原抗体反応による抗原検出の場合、例えば、あらかじめ反応部内に抗原を含む試薬を添加し、抗原または抗体に標識物質を付しておくことで、反応の有無を検出できる。ここで、標識物質としては、蛍光などの発光物質が一般的に用いられる。
また、DNAの検出の場合、例えば、あらかじめ検出部内に核酸プローブを用意しておき、次に、検体DNAをウェル状の検出部に供給して核酸プローブと検体DNAとのハイブリダイゼーション反応により、DNAの検出を行うことができる。また、検体DNAとして、血液などから抽出したDNAをPCR法、LAMP法などにより調整したものを用いることができる。また、核酸プローブとして配列の異なる核酸を複数用意することで検体DNAがどのような配列であるかを検出することができる。
さらに、生化学反応装置は、一塩基遺伝子多型(SNP:Single Nucleotide Polymorphism)の解析用いることができる。このとき、プローブ核酸やその検出に用いる物質は複数あってもよく、それらの物質の一つが標識されていればよい。
また、標識物質は、結合したプローブ核酸と検体DNAに特異的に作用するものを反応後に加えることもできる。このようなものとしては、インターカレーターなどがある。また、ここでいう標識物質としては、間接的なものも含まれる。すなわち、蛍光物質などに結合する物質を標識物質として検体DNAに結合させておき、後から蛍光物質を加えてもよい。
また、多段階反応を行ってSNPまたはDNAを検出してもよい。例えば、インベーダー・アッセイ法(サードウェイブテクノロジーズInc(米国ウィスコンシン州マディソン市))を用いてもよい。これによりSNP解析の具現化を図ることが可能となる。
この場合、検出DNAの検出に用いるプローブ核酸などの物質が複数種でもよく、あらかじめ反応部内に少なくとも1種の物質を入れておき、その後、検出DNAと他の物質とを同時または順次注入し、反応を行ってもよい。
本発明の一実施形態における反応容器を示す斜視図である。 図1の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のA−A矢視断面図である。 生化学反応装置の構成を示すブロック図である。 図3の生化学反応装置の動作を示すフローチャートである。 反応部において反応溶液の液面上にミネラルオイルを重層した状態を示すもので、(a)は斜視図、(b)は断面図である。 本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のB−B矢視断面図である。 同じく、本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のC−C矢視断面図である。 同じく、本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のD−D矢視断面図である。 同じく、本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のE−E矢視断面図である。
符号の説明
1 反応容器
2 基材
2B 裏面(一面)
3 試薬収容部
4、40、50、60、70 反応部
5 検出部
12 溝部
12A 開口端
13 フィルム
14、51、62、71 流路
21、58、61 反応本部
22、23、56、57 屈曲部
24、25、52、53 送液部
R 反応溶液(試料溶液)

Claims (10)

  1. 基材に設けられた流路を有する反応部を備え、
    前記流路が、試料溶液を貯留する反応本部と、前記基材の外部から前記試料溶液を供給可能な送液部と、前記反応本部の一端及び前記送液部の一端を連通する屈曲部とを有し、
    前記流路が、前記基材の一面に形成された溝部と、該溝部の開口端の少なくとも一部を覆う熱伝導性を有するフィルムとによって形成されている
    ことを特徴とする反応容器。
  2. 前記流路の断面積が、0.1mm以上10mm以下であることを特徴とする請求項1に記載の反応容器。
  3. 前記流路が、前記試料溶液を供給可能な他の送液部を有し、該他の送液部の一端が前記反応本部の他端と他の屈曲部を介して連通されていることを特徴とする請求項1または2に記載の反応容器。
  4. 前記フィルムの厚さが1μm以上500μm以下であることを特徴とする請求項1から3のいずれか1項に記載の反応容器。
  5. 前記フィルムの熱伝導率が0.1kcal/mh℃以上であることを特徴とする請求項1から4のいずれか1項に記載の反応容器。
  6. 前記基材の表面上に、光学分析可能な検出部を備えることを特徴とする請求項1からのいずれか1項に記載の反応容器。
  7. 前記基材の表面上に、反応試薬を収容する試薬収容部が設けられていることを特徴とする請求項1からのいずれか1項に記載の反応容器。
  8. 前記試薬収容部が凹状であることを特徴とする請求項に記載の反応容器。
  9. 前記反応部が、酵素反応用であることを特徴とする請求項1からのいずれか1項に記載の反応容器。
  10. 前記酵素反応が、ポリメラーゼ連鎖反応であることを特徴とする請求項に記載の反応容器。
JP2005286067A 2005-09-30 2005-09-30 反応容器 Expired - Fee Related JP4804090B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286067A JP4804090B2 (ja) 2005-09-30 2005-09-30 反応容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286067A JP4804090B2 (ja) 2005-09-30 2005-09-30 反応容器

Publications (2)

Publication Number Publication Date
JP2007089528A JP2007089528A (ja) 2007-04-12
JP4804090B2 true JP4804090B2 (ja) 2011-10-26

Family

ID=37975901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286067A Expired - Fee Related JP4804090B2 (ja) 2005-09-30 2005-09-30 反応容器

Country Status (1)

Country Link
JP (1) JP4804090B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239353B2 (ja) * 2008-01-22 2013-07-17 凸版印刷株式会社 温度制御装置および温度制御方法
JP5881936B2 (ja) * 2009-04-20 2016-03-09 ソニー株式会社 試料溶液導入キット及び試料溶液注入器
JP6756358B2 (ja) * 2018-12-14 2020-09-16 大日本印刷株式会社 試薬入りマイクロプレートおよびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004701A (ja) * 2001-06-25 2003-01-08 Hitachi Electronics Eng Co Ltd 電気泳動用マイクロプレート

Also Published As

Publication number Publication date
JP2007089528A (ja) 2007-04-12

Similar Documents

Publication Publication Date Title
US20160251698A1 (en) Analysis Unit for Carrying Out a Polymerase Chain Reaction, Analysis Device, Method for Operating such an Analysis Unit, and Method for Producing such an Analysis Unit
US20070003443A1 (en) Thermal-cycling pipette tip
EP2114570A1 (en) Microfluidic device
JP4870991B2 (ja) 反応容器
JP2008233002A (ja) 反応チップ及びそれを用いた反応方法
JP4804090B2 (ja) 反応容器
WO2006098435A1 (ja) 検出チップ及びこれを用いた物質の検出方法
JP4804091B2 (ja) 反応容器
JP4799187B2 (ja) 容器
JP2009183179A (ja) マイクロチップ
CN103074203A (zh) 用于核酸扩增反应的微芯片及其制造方法
JP5080740B2 (ja) 反応容器
JP5000861B2 (ja) 反応チップ
JP4781144B2 (ja) 反応容器
JP4717643B2 (ja) 反応容器用蓋体及び反応容器
JP2006345816A (ja) 反応チップ
JP4892219B2 (ja) 反応チップおよび反応装置および反応チップの製造方法
JP5009532B2 (ja) 断熱容器及び反応容器ユニット
JP4769027B2 (ja) 容器
JP5009534B2 (ja) 反応容器
JP4870946B2 (ja) 反応容器および反応方法
JP4750482B2 (ja) 反応方法
JP5009531B2 (ja) 反応容器
JP2009047643A (ja) バイオチップ及びバイオチップの温度検知方法
JP2007289818A (ja) マイクロリアクタおよびマイクロリアクタを用いたマイクロ総合分析システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees