[go: up one dir, main page]

JP4804091B2 - 反応容器 - Google Patents

反応容器 Download PDF

Info

Publication number
JP4804091B2
JP4804091B2 JP2005286068A JP2005286068A JP4804091B2 JP 4804091 B2 JP4804091 B2 JP 4804091B2 JP 2005286068 A JP2005286068 A JP 2005286068A JP 2005286068 A JP2005286068 A JP 2005286068A JP 4804091 B2 JP4804091 B2 JP 4804091B2
Authority
JP
Japan
Prior art keywords
reaction
flow path
cross
sectional area
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005286068A
Other languages
English (en)
Other versions
JP2007089529A (ja
Inventor
僚子 今川
広幸 黒木
祐輔 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
RIKEN Institute of Physical and Chemical Research
Toppan Inc
Original Assignee
Shimadzu Corp
RIKEN Institute of Physical and Chemical Research
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, RIKEN Institute of Physical and Chemical Research, Toppan Inc filed Critical Shimadzu Corp
Priority to JP2005286068A priority Critical patent/JP4804091B2/ja
Publication of JP2007089529A publication Critical patent/JP2007089529A/ja
Application granted granted Critical
Publication of JP4804091B2 publication Critical patent/JP4804091B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、例えば、生化学反応などに用いられる反応容器に関する。
従来、例えば生化学反応などにおいて微量の試料溶液を処理する反応容器として、反応場としての複数の凹部または流路を有するものが提供されている(例えば、特許文献1参照)。このような反応容器では、各凹部または流路の温度状態を制御可能なペルチェ素子などからなる温度制御装置を備える反応装置により、各凹部または流路に供給した反応溶液の加熱を行っている。
ここで、流路状の反応部を有する反応容器の場合、流路に供給された反応溶液が流路の開口部からのみ外部に露出しているので、反応時の反応溶液の蒸発を減少することができる。このとき、より反応溶液の蒸発を防止するため、反応溶液が供給された流路に対して、例えば、ミネラルオイルなどの封止液をさらに供給することで、流路をこの封止液で封止して反応溶液を流路と封止液とで閉塞することがある。
特許第2759071号公報
しかしながら、上記従来の反応容器には、以下の課題が残されている。すなわち、流路に反応溶液や封止液を供給する際、流路内に空気が気泡として混入する場合がある。通常、生化学反応に用いられる反応容器の厚さは数cm以下であり、このような反応容器に開口部や流路を形成する場合、開口部と流路とを連通する連通孔の長さは反応容器の厚さによって制限される。このため、反応溶液の加温時にこの気泡が膨張することで、封止液が開口部から押し出されて流路の外部に流出してしまう。このため、反応溶液が蒸発し、反応溶液の損失が発生するという問題がある。
本発明は、前述の課題に鑑みてなされたもので、反応溶液の損失を回避できる反応容器を提供することを目的とする。
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の反応容器は、生化学反応を行なう反応部が基材上に形成された反応容器であって、前記反応部は、試料溶液が供給される流路と、前記試料溶液を前記流路内に注入するための注液部と、を有し、前記注液部は、前記基材の外面に開口された開口部を有し少なくとも前記流路の断面積より大きな断面積を有する液溜部と、前記液溜部の断面積よりも小さい断面積であって且つ前記流路の断面積よりも大きい断面積を有し前記流路の一端と前記液溜部とを連通させる連通部と、を有していることを特徴とする。
この発明では、開口部の面積を流路の断面積よりも広くすることで、流路内に貯留された試料溶液を加温したときに試料溶液が連通孔を介して開口部から押し出されることを防止できる。すなわち、開口部の面積が流路の断面積よりも広いので、連通孔のうち少なくとも開口部の近傍を含む部分において、その断面積が流路の断面積よりも広い液溜部が形成される。そして、試料溶液や封止液を流路に供給する際に流路内に気泡が混入して加温と共に気泡が膨張した場合であっても、流路から押し出された封止液がこの液溜部に貯留されて開口部から流出することが抑制される。したがって、試料溶液の損失を回避できる。
また、上述したように開口部の断面積が流路の断面積よりも広いので、開口部から流路への溶液の供給が容易である。
また、反応部が流路を有していることから、流路への溶液の供給及び供給した試料溶液や封止液の回収が容易となる。
また、本発明の反応容器は、前記開口部の面積が、1mm以上50mm以下であることが好ましい。
この発明では、開口部の面積を1mm以上50mm以下とすることで、開口部から流路への溶液の供給が困難となることが回避できる。
また、本発明の反応容器は、前記流路の断面積が、0.5mm以上10mm以下であることが好ましい。
この発明では、流路の断面積を0.5mm以上10mm以下とすることで、試料溶液への加温が均一に行われ、精製された試料溶液の成分を均一化することができる。
また、本発明の反応容器は、前記開口部の面積が、前記流路の断面積の1.5倍以上10倍以下であることが好ましい。
この発明では、開口部の面積を流路の断面積に対して1.5倍以上10倍以下とすることで、溶液の供給が困難となることを回避すると共に、溶液への加温を均一に行って精製された試料溶液の成分の均一化を図ることができる。
また、本発明の反応容器は、前記流路の他端が、前記基材の一面に形成された他の開口部と他の連通孔を介して連通されていることとしてもよい。
この発明では、流路に試料溶液を貯留した後、2つの開口部からそれぞれ流路に封止液を供給することで、試料溶液を封止液により封止する。
また、本発明の反応容器は、前記流路が、前記基材の一面に形成された溝部と、該溝部の開口端の少なくとも一部を覆うフィルムとによって形成されていることが好ましい。
この発明では、溝部を形成する基材に対して相対的に薄いために熱伝導率が基材よりも大きくなるフィルムによって流路を形成することから、流路内に貯留された溶液全体の温度状態を容易に均一に制御することができる。
また、本発明の反応容器は、前記基材の表面上に、光学分析可能な検出部を備えることが好ましい。
この発明では、単一の基材に対して、少なくとも所望の反応を生じさせる処理と、検出処理とを連続的に効率よく実行することができる。
また、本発明の反応容器は、前記基材の表面上に、反応試薬を収容する試薬収容部が設けられていることが好ましい。
この発明では、単一の基材に対して、少なくとも反応試薬を収容する処理と、所望の反応を生じさせる処理とを連続的に効率よく実行することができる。
また、本発明の反応容器は、前記試薬収容部が凹状であることが好ましい。
この発明では、基材の表面上に試薬収容部を容易に形成することができる。
また、本発明の反応容器は、前記反応部が、酵素反応用であることとしてもよい。
この発明では、反応部の溶液全体に対して酵素反応を容易に均一に発生させることができる。
また、本発明の反応容器は、前記酵素反応が、ポリメラーゼ連鎖反応であることとしてもよい。
この発明では、反応部の溶液全体に対してポリメラーゼ連鎖反応を容易に均一に発生させることができる。
本発明の反応容器によれば、開口部の面積を流路の断面積よりも広くすることで、流路内に貯留された試料溶液を加温したときに試料溶液が連通孔を介して開口部から押し出されることを防止できる。また、開口部から流路への溶液の供給が容易となる。さらに、反応部が流路を有していることから、流路への溶液の供給及び供給した試料溶液や封止液の回収が容易となる。
以下、本発明にかかる反応容器の一実施形態を、図面を参照しながら説明する。
本実施形態による反応容器1は、例えば図1に示すように、単一のほぼ長方形板状の基材2に設けられた試薬収容部3と、反応部4と、検出部5とを備えている。
基材2は、例えばPC(ポリカーボネート)やPP(ポリプロピレン)、シクロオレフィン系ポリマー、フッ素系ポリマー、シリコン樹脂などの各プラスチックまたはこれら複数のプラスチックの適宜の組合せ、ガラスなどで形成されており、耐熱性、耐薬品性、成形加工性などに優れている。
試薬収容部3は、例えば基材2の長手方向に沿った一方の端部に設けられており、基材2の表面(一面)2A上に形成された複数の凹穴状の試薬収容凹部11によって構成されている。
複数の試薬収容凹部11には、例えばポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)などの各種の反応処理に用いられる検体試薬などの各種の試薬や、希釈液またはバッファ液などを収容される。ここで、試薬収容凹部11の大きさは、収容する試薬の量に応じて適宜設定されており、例えば開口径が0.1mm〜10mm、深さが0.1mm〜10mmとなっている。
なお、試薬収容凹部11の形状は、特に限定されるものではなく、例えば円錐台形や角錐台形、円錐、角錐、曲面状の底部を有する形状など、適宜のウェル形状であればよく、加工性形成や溶液の注入性などによって適宜に設定される。また、試薬収容凹部11の内面には、例えば親水化または撥水化などの表面処理を施してもよい。
また、試薬収容凹部11の内面は、例えばPCやPP、PS(ポリスチレン)、PE(ポリエチレン)、PET(ポリエチレンテレフタレート)、POM(ポリアセタール)、PA(ポリアミド)、PAN(ポリアクリロニトリル)、PMMA(ポリメチルメタクリレート)、TPXフィルム(三井化学株式会社製)などのメチルペンテン系フィルム、ゼオノア(日本ゼオン株式会社製)などのシクロオレフィン系フィルム、シリコン樹脂フィルム、フッ素系ポリマーフィルムなどの各プラスチックまたはこれら複数のプラスチックを適宜組合せた被覆フィルムによって被覆されてもよい。
反応部4は、例えば基材2の長手方向に沿った央部に設けられており、図2(a)〜(d)に示すように、基材2の裏面(他面)2B上に形成された溝部12及びこの溝部12の開口端12Aを覆うフィルム13によって形成された空間である流路14と、基材2の厚さ方向に貫通して基材2の表面2A上に設けられた2つの各開口部15、16と溝部12とをそれぞれ連通する貫通孔である注液部(連通孔)17、18とを備えている。
すなわち、この反応部4は、流路状であって、基材2の表面2A上で開口する一方の開口部15から反応部4の内部に供給された溶液が順次一方の注液部17と溝部12及びフィルム13によって形成された流路14と他方の注液部18とを流通可能となっている。
ここで、流路14の断面積は0.5mm以上10mm以下となっており、開口部15、16の面積は1mm以上50mm以下となっている。ただし、開口部15、16の面積は、流路14の断面積の1.5倍以上10倍以下となるように構成されている。
注液部17、18は、開口部15、16にそれぞれ連通される液溜部21、22と、液溜部21、22と流路14の両端とをそれぞれ連通する連通部23、24とをそれぞれ備えている。
液溜部21、22は、その断面積が開口部15、16の面積と同等となるように形成されている。また、連通部23、24は、その断面積が液溜部21、22の断面積よりも狭くなるように構成されている。
なお、基材2の表面2A側から溝部12に向かって切削または金型形成などによる凹部を形成し、流路14の表面2A側の壁厚を薄くしてもよい。このようにすれば、表面2Aに対向する位置(例えば、表面2Aの上方の位置)に反応のための熱源を配置する場合において、流路14内に熱が迅速かつ均一に伝達される。
なお、フィルム13は、PCやPP、PS、PE、PET、POM、PA、PAN、PMMA、TPXフィルム(三井化学株式会社製)などのメチルペンテン系フィルム、ゼオノア(日本ゼオン株式会社製)などのシクロオレフィン系フィルム、シリコン樹脂フィルム、フッ素系ポリマーフィルムなどの各プラスチックまたはこれら複数のプラスチックを適宜組み合わせた単層構造または多層構造のフィルム、あるいは、例えば、アルミニウムや銅、金などの各金属またはこれら複数の金属を適宜組み合わせた単層構造または多層構造のフィルム、さらには、プラスチックと金属との組み合わせによる多層構造のフィルムからなる。
そして、フィルム13の厚さは、例えば1〜500μmであって、好ましくは1〜100μmであって、この範囲内で薄くなることにしたがって、より好ましくなる。なお、厚さが1μm未満であると、熱変形が過剰に大きくなると共に所望の強度を確保することができなくなる。一方、フィルム13の厚さが500μmよりも厚くなると、熱伝導性が過剰に低下し、反応部4内の溶液の温度状態を外部から制御する際に、溶液全体に対して温度状態を均一に制御することが困難となって、反応状態に対する所望の均一性を確保することができなくなる。また、金属からなるフィルム13は、好ましくは、厚さが1〜50μmである。
また、プラスチックからなるフィルム13は、好ましくは熱伝導率が0.1kcal/mh℃以上であり、例えばPPでは熱伝導率が0.119kcal/mh℃程度であり、PCでは熱伝導率が0.166kcal/mh℃程度であり、PEでは熱伝導率が0.252kcal/mh℃程度である。
また、金属からなるフィルム13は、好ましくは、熱伝導率が100kcal/mh℃以上であって、例えばアルミニウムでは熱伝導率が177kcal/mh℃程度であり、銅では熱伝導率が324kcal/mh℃程度であり、金では熱伝導率が254kcal/mh℃程度である。
なお、プラスチックからなる単層構造のフィルム13は、好ましくは厚さが10μm〜100μm程度である。
なお、金属からなる単層構造のフィルム13は、例えば軟質アルミニウムの場合、好ましくは、厚さが5μm〜80μm程度であり、硬質アルミニウムの場合、好ましくは、厚さが5μm〜50μm程度である。
また、プラスチックからなる多層構造のフィルム13は、例えばPETまたはOPP(延伸ポリプロピレン)などにより形成され、好ましくは、厚さが1μm〜20μm程度に設定されることで、所望の強靭性及び柔軟性が確保される。
また、プラスチックと金属との組み合わせによる多層構造のフィルム13は、例えばアルミニウムの場合、好ましくは、厚さが7μm〜50μm程度であり、さらに、アルミニウムの表面上には、反応容器1の基材2の表面に、例えば熱溶着あるいは圧着により貼付可能なシール層が、アルミニウムと一体となるように設けられている。このシール層は、例えばナイロンなどの樹脂フィルム状のシーラントがアルミニウムの表面上に積層、あるいは、例えばマレイン酸変性ポリプロピレンなどがアルミニウムの表面上に塗工されて形成されている。このフィルム13では、さらに、強度を増大させるために、アルミニウム層側にPETまたはOPPなどのフィルムを積層させても良い。
検出部5は、例えば基材2の長手方向に沿った他方の端部に設けられており、基材2の表面上に形成された複数の凹穴状の検出凹部26によって構成されている。
ここで、検出凹部26は、DNAの分析に用いる試薬の量に応じて適宜設定されているが、試薬の量が微量であるため、例えば開口径が0.01mm〜5mm、深さが0.01mm〜5mmとなっている。
なお、検出凹部26の形状は、試薬収容凹部11と同様に、特に限定されるものではなく、上述した適宜のウェル形状であればよく、加工性形成や溶液の注入性などによって適宜に設定される。また、検出凹部26の内面には、例えば親水化または撥水化などの表面処理を施してもよい。
また、検出凹部26の内面は、上述と同様に、各プラスチックまたはこれら複数のプラスチックを適宜組合せた被覆フィルムによって被覆されてもよい。
以上のような構成の反応容器1は、図3に示すような生化学反応装置30を用いて生化学反応試験を行うために用いられる。
この生化学反応装置30は、反応容器1に対して反応試薬を収容する試薬収容装置31と、例えば酵素反応であるポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)などの所定反応を生じさせる反応装置32と、例えば光学分析などによりDNA(deoxyribonucleic acid)などの検体を検出する検出装置33とを備えている。
試薬収容装置31は、例えばPCRなどの各種の反応処理に用いられる検体試薬や他の試薬、希釈液またはバッファ液などを反応容器1に収納するように構成されている。
反応装置32は、後述する反応溶液の温度状態を制御するペルチェ素子などを備える温度制御装置34を有して構成されている。例えば、図3に示すように、温度制御装置34は、反応容器1の反応部4を厚さ方向の両側(すなわち、反応容器1の表面側と裏面側)から挟み込むようにして配置される2つのペルチェ素子35、36を備えている。ここで、反応容器1の表面と当接する各ペルチェ素子35、36は、反応容器1の反応部4の表面形状(例えば、凸形状など)に沿った形状(例えば、凹形状など)を有するように構成されている。
検出装置33は、反応装置32によるPCRなどの所定反応によって調整された検体と、検出用の各種の試薬とを、反応容器1の検出部5において反応させ、あらかじめ検体または核酸プローブに付した標識物質(例えば、蛍光物質)の有無を、例えば反応容器1の検出部5の裏面側などから検出する発光検出を行う。
次に、反応容器1を用いた生化学反応装置30の動作を、図4を参照しながら説明する。
まず、試薬収容装置31が各種の試薬などを反応容器1に収容する試薬収容工程を行う(図4に示すステップST1)。これは、例えばPCRなどの各種の反応処理に用いられる検体試薬及び他の試薬と、検出時に用いられる各種の試薬と、希釈液またはバッファ液などとを、反応容器1の試薬収容部3に収容する。
次に、例えばPCRなどを生じさせる反応工程を行う。これは、反応溶液供給工程と封止工程と反応生成工程とからなる。
まず、反応溶液(試料溶液)を供給する反応溶液供給工程を行う(図4に示すステップST2)。これは、例えば、図5(a)、(b)に示すように、反応部4の開口部15から流路14の内部に反応溶液Rを供給する。なお、PCRに対する反応溶液として、例えば血液などから抽出したDNAまたはあらかじめ精製された鋳型DNAと、ポリメラーゼ酵素と、各塩基の材料であるdNTP(デオキシヌクレオチド3リン酸)と、pH及び濃度調整のための希釈液またはバッファ液とからなる。ここで、開口部15、16の面積が1mm以上50mm以下であり、かつ開口部15、16の面積が流路14の断面積の1.5倍以上10倍以下となるように構成されているので、流路14への反応溶液の供給が容易に行われる。
そして、封止液としてミネラルオイルを供給する封止工程を行う(図4に示すステップST3)。これは、反応溶液を貯留している流路14の内部へと向かうように開口部15、16からミネラルオイルを供給し、例えば、図5(a)、(b)に示すように、流路14の内部において雰囲気中に露出する反応溶液Rの液面上にミネラルオイルMを重層させ、流路14の内部を封止する。なお、反応溶液RやミネラルオイルMの供給時に、流路14内に気泡が混入する場合がある。
続いて、PCRを生じさせる反応生成工程を行う。これは、変性工程とアニーリング工程と伸長反応工程とからなる。
これは、まず反応溶液中のDNAを熱変性させる変性工程を行う(図4に示すステップST4)。これは、温度制御装置34により反応部4の温度状態を所定時間(例えば、5秒〜25秒など)にわたって所定温度(例えば、90℃〜100℃程度)となるように制御し、反応溶液のDNAを熱変性させる。
次に、DNAを結合(アニーリング)させるアニーリング工程を行う(図4に示すステップST5)。これは、温度制御装置34により反応部4の温度状態を所定時間(例えば、15秒〜60秒など)にわたって所定温度(例えば、50℃〜60℃程度)となるように制御し、各種のプライマーであるDNAの断片を所望の遺伝子配列と結合させる。
そして、DNAポリメラーゼによる相補鎖合成を行う伸長反応工程を行う(図4に示すステップST6)。これは、温度制御装置34により反応部4の温度状態を所定時間(例えば、1分〜5分など)にわたって所定温度(例えば、65℃〜75℃程度)となるように制御することで、DNAポリメラーゼによる相補鎖合成を行う。ここで、これら変性工程、アニーリング工程及び伸長反応工程において反応部4を加熱することにより流路14内に混入された気泡が加熱によって膨張しても、開口部15、16の面積が流路14よりも広く、注液部17、18にそれぞれ流路14よりも断面積の広い液溜部21、22が形成されているので、流路14から押し出されたミネラルオイルが液溜部21、22に貯留される。これにより、ミネラルオイルが開口部15、16から押し出されることが防止されるので、反応溶液の閉塞状態が維持され、反応溶液の蒸発などによる損失が回避されている。また、流路14の断面積が0.5mm以上10mm以下となっているので、試料溶液への加温が均一に行われ、精製された試料溶液の成分が均一化される。
この後、一連の処理を継続するか否かを判定し(図4に示すステップST7)、継続する場合にはステップST4に戻り、終了する場合には次の検出工程に進む。
次に、検体及び検出用の各種の試薬を用いた検出工程を行う(図4に示すステップST8)。これは、反応生成工程におけるPCRにより調整された検体と、検出用の各種の試薬(例えば、核酸プローブなど)とを、反応容器1の検出部5においてハイブリダイゼーションなどにより反応させ、あらかじめ検体または核酸プローブに付した標識物質(例えば、蛍光物質)の有無を、例えば反応容器1の検出部5の裏面側などから検出する発光検出を行う。
以上のようにして、反応容器1を用いた生化学反応装置30の動作を行う。
ここで、上述した反応容器1の反応部4の製造方法について説明する。
まず、例えば、射出成型法または切削加工法により、例えば、PCやPP、シクロオレフィン系ポリマー、フッ素系ポリマー、シリコン樹脂などの各プラスチックまたはこれら複数のプラスチックの適宜の組合せからなる基材2の裏面2B上に溝部12を形成する。
次に、例えば切削加工法により、基材2の厚さ方向に貫通して基材2の表面2A上に設けられた各開口部15、16と溝部12とを連通する一対の貫通孔である注液部17、18を形成する。
そして、フィルム13により溝部12の開口端12Aを覆って溝部12を封止するようにしてフィルム13を基材2の裏面2B上に熱溶着または圧着により、あるいはポリ酢酸ビニル系及びポリアミド系などの熱可塑性樹脂接着剤を用いて貼着することにより、溝部12とフィルム13とで流路14を形成する。
なお、フィルム13がPEなどからなる場合には、熱溶着性であることから、接着剤を用いずに基材2と貼り合わせることができる。また、フィルム13は、樹脂フィルムや金属フィルムまたはこれらを積層したフィルムに接着層を積層あるいはシーラントを塗布することにより形成したものを用いてもよい。
以上のように構成された反応容器1によれば、流路14内に気泡が混入した状態で所定温度まで加熱することにより気泡が膨張した場合であっても、開口部15、16の面積が流路14の断面積よりも広く、注液部17、18にそれぞれ流路14よりも断面積の広い液溜部21、22が形成されているので、流路14から押し出されたミネラルオイルが液溜部21、22に貯留される。このため、ミネラルオイルが開口部15、16から流出することが防止され、反応溶液の閉塞状態が維持される。したがって、反応溶液の損失を回避できる。ここで、開口部15、16の面積が1mm以上50mm以下であり、かつ開口部15、16の面積が流路14の断面積の1.5倍以上10倍以下となるように構成されているので、流路14への反応溶液の供給が容易に行える。また、流路14の断面積が0.5mm以上10mm以下となっているので、試料溶液への加温が均一に行われ、精製された試料溶液の成分が均一化できる。
また、反応部4が流路14を有していることから、流路14への溶液の供給及び供給した溶液の回収が容易となる。
さらに、フィルム13が熱伝導性フィルムにより形成されることで、反応部4に貯留された溶液全体の温度状態を、より一層、容易に均一に制御することができる。
しかも、単一の基材2に対して、試薬収容部3と反応部4と検出部5とを備えているので、一連の試薬収容工程、反応工程及び検出工程を連続的に効率よく実行することができる。
次に、本発明にかかる反応容器を実施例により具体的に説明する。
まず、実施例として、PPからなる樹脂板(ノバテック社製PP、3mm厚)の基材2に切削加工により溝部12及び注液部17、18をそれぞれ形成した。この溝部12の開口端12Aを封止するようにして、フィルム13としてABI PRISM Optical Cover(ABI社製、100μm厚)を貼り、中空の流路14を有する反応容器1を作成した。ここで、開口部15、16は平面視円形を有しており、その直径が3mmとなっている。また、液溜部21、23の基材2の厚さ方向における長さが1.7mmとなっている。さらに、流路14は断面円形状を有しており、その直径が1mmとなっている。
そして、開口部15、16から流路14の内部にミネラルオイル12μl、PCR反応溶液4μl、ミネラルオイル12μlを順に入れた。ここで、PCR反応溶液が流路14の中央に位置するように各液を供給している。
その後、反応部4の厚さ方向の上下両面にヒータを熱伝導性を向上させるためのアルミブロックを介して配置し、以下の条件で反応生成工程であるPCR反応を実行した。
この反応生成工程では、まず94℃で2分間加熱し、続いて95℃で1秒間、60℃で1秒間、75℃で1秒間の加熱を35サイクル行い、さらに15℃の加温を行っている。
続いて、比較例として、実施例と同様の樹脂板を用いて溝部及び注液部をそれぞれ形成し、フィルムを貼って中空の流路を有する反応容器を作成した。ここで、開口部は平面視円形を有しており、その直径が1mmとなっている。また、流路は断面円形状を有しており、その直径が1mmとなっている。
そして、実施例と同様に、開口部から流路の内部にミネラルオイル及びPCR反応溶液を入れ、同様のPCR反応を実行した。
この結果、実施例の反応容器ではPCR反応溶液がほとんど蒸発することなく、ほぼ全量を回収することができ、反応が良好に進行することが確認できた。一方、比較例の反応容器ではPCR反応の途中でPCR反応溶液の蒸発が発生し、反応効率の低下または溶液が回収不能となる場合があることを確認した。
これより、流路14内に混入した気泡が膨張した場合であっても、開口部15、16の面積が流路14の断面積よりも広いことで液溜部21、22が形成されているので、流路14から押し出されたミネラルオイルが液溜部21、22に貯留されてミネラルオイルが開口部15、16から流出することが防止され、反応溶液の閉塞状態が維持されることが確認された。
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では反応部4における基材2の表面2Aに2つの開口部15、16が設けられているが、図6(a)〜(d)に示すように、開口部15のみが表面2Aに形成されている構成としてもよい。この反応部40には、流路14の開口部15から離間する一端側と基材2の表面2Aとを連通するような貫通孔である空気孔41が形成されている。
また、上記実施形態では注液部17、18がそれぞれ液溜部21、22及び連通部23、24を備えているが、図7(a)〜(d)に示すように、注液部51、52全体において断面積が開口部15、16と同一であるように構成してもよい。すなわち、この注液部51、52は、基材2の厚さ方向にわたってその断面積が上記実施形態における液溜部21、22の断面積と同一となっている。このような構成の反応部50においても、上記実施形態と同様に、反応溶液の加温時に流路14から押し出されたミネラルオイルが注液部51、52に貯留されるので、反応溶液の閉塞状態が維持されて反応溶液の損失を回避できる。
また、上記実施形態では基材2の裏面2B上に形成された溝部12及び基材2の裏面2B上に貼付されたフィルム13によって流路14を形成しているが、図8(a)〜(d)に示すように、基材2に形成された中空孔によって流路61を構成してもよい。この流路61は、基材2の内部で中空であって基材2の表面2Aに形成された開口部15、16にそれぞれ連通するように形成されている。
ここで、この流路61を有する反応部60の製造方法は、例えば、上記実施形態でのフィルム13の代わりに、基材2と同等のほぼ長方形板状の第2基材62を基材2の裏面2B上に、例えばポリ酢酸ビニル系及びポリアミド系などの熱可塑性樹脂接着剤を用いて貼付し、第2基材62により溝部の開口端を覆うことで溝部の開口端を封止して流路61を形成する。また、この反応部60の製造方法では、例えば射出成型法により、例えばPC、PP、シクロオレフィン系ポリマー、フッ素系ポリマー、シリコン樹脂などの各プラスチックまたは複数のプラスチックを適宜組み合わせたものからなる基材2の内部に中空孔を形成することで流路61を構成してもよい。
また、開口部の面積を1mm以上50mm以下としているが、反応溶液の加温時に気泡の膨張によって反応溶液が開口部から押し出されず、開口部の面積が流路の断面積よりも広ければ、開口部の面積を1mmより狭くしたり、50mmより大きくしたりしてもよい。
同様に、流路の断面積を0.5mm以上10mm以下としているが、反応溶液の加温時に気泡の膨張によって反応溶液が開口部から押し出されず、開口部の面積が流路の断面積よりも広く、反応溶液への加温が均一に行われて精製された反応溶液の成分を均一化することができれば、流路の断面積を0.5mmより狭くしたり、10mmより大きくしたりしてもよい。
さらに、開口部の面積を流路の断面積に対して1.5倍以上10倍以下としているが、溶液の供給が困難となることが回避できると共に、溶液への加温を均一に行って精製された反応溶液の成分の均一化を図ることができれば、1.5倍未満でも、10倍より大きくてもよい。
また、反応容器が試薬収容部と反応部と検出部とを備えているが、反応容器は少なくとも反応部を備えていればよい。
また、反応容器は、例えば、試薬の種類や数、検体の種類や数などに応じて、複数の試薬収容部と複数の反応部と複数の検出部とを備える構成としてもよい。
また、反応容器において、試薬収容部と反応部と検出部とを流路などによって互いに接続してもよい。この場合、検査時間を短縮することができると共に、微量の試料及び試薬で各種の分析を精度よく行うことができ、分析に要する費用の削減が図れる。
また、反応部には、封止液としてミネラルオイルを加えているが、反応溶液より比重が軽ければ他の溶液を加えてもよい。
また、検体DNAまたは抗原などは反応部内に固定してもよいし、固定させずに保持させておくだけでもよい。
また、アニーリング工程と伸長反応工程とを順次実行しているが、アニーリング工程及び伸長反応工程を同時に実行してもよい。このとき、温度制御装置により反応部の温度状態を、所定時間(例えば、1分〜5分など)にわたって所定温度(例えば、50℃〜70℃程度)となるように制御することで、各種のプライマー(つまり、DNAの断片)を所望の遺伝子配列と結合させると共に、DNAポリメラーゼによる相補鎖合成を行う。
また、PCRを、マルチプレックスPCRとしてもよい。このマルチプレックスPCRでは、プライマーのミスアニーリングやオリゴマー化の発生を抑制するために反応溶液が相対的に高温状態になってから伸長反応工程の実行を開始するホットスタート法を適用することが好ましい。
また、生化学反応装置は、抗原抗体反応及びDNA反応の検出など、さまざまな生化学系の反応用として用いることができる。
抗原抗体反応による抗原検出の場合、例えば、あらかじめ反応部内に抗原を含む試薬を添加し、抗原または抗体に標識物質を付しておくことで、反応の有無を検出できる。ここで、標識物質としては、蛍光などの発光物質が一般的に用いられる。
また、DNAの検出の場合、例えば、あらかじめ検出部内に核酸プローブを用意しておき、次に、検体DNAをウェル状の検出部に供給して核酸プローブと検体DNAとのハイブリダイゼーション反応により、DNAの検出を行うことができる。また、検体DNAとして、血液などから抽出したDNAをPCR法、LAMP法などにより調整したものを用いることができる。また、核酸プローブとして配列の異なる核酸を複数用意することで検体DNAがどのような配列であるかを検出することができる。
さらに、生化学反応装置は、一塩基遺伝子多型(SNP:Single Nucleotide Polymorphism)の解析用いることができる。このとき、プローブ核酸やその検出に用いる物質は複数あってもよく、それらの物質の一つが標識されていればよい。
また、標識物質は、結合したプローブ核酸と検体DNAに特異的に作用するものを反応後に加えることもできる。このようなものとしては、インターカレーターなどがある。また、ここでいう標識物質としては、間接的なものも含まれる。すなわち、蛍光物質などに結合する物質を標識物質として検体DNAに結合させておき、後から蛍光物質を加えてもよい。
また、多段階反応を行ってSNPまたはDNAを検出してもよい。例えば、インベーダー・アッセイ法(サードウェイブテクノロジーズInc(米国ウィスコンシン州マディソン市))を用いてもよい。これによりSNP解析の具現化を図ることが可能となる。
この場合、検出DNAの検出に用いるプローブ核酸などの物質が複数種でもよく、あらかじめ反応部内に少なくとも1種の物質を入れておき、その後、検出DNAと他の物質とを同時または順次注入し、反応を行ってもよい。
本発明の一実施形態における反応容器を示す斜視図である。 図1の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のA−A矢視断面図である。 生化学反応装置の構成を示すブロック図である。 図3の生化学反応装置の動作を示すフローチャートである。 反応部において反応溶液の液面上にミネラルオイルを重層した状態を示すもので、(a)は斜視図、(b)は断面図である。 本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のB−B矢視断面図である。 同じく、本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のC−C矢視断面図である。 同じく、本発明を適用可能な他の反応部を示すもので、(a)は斜視図、(b)は平面図、(c)は裏面図、(d)は(c)のD−D矢視断面図である。
符号の説明
1 反応容器、2 基材、2A 表面(一面)、2B 裏面(他面)、3 試薬収容部
4、40、50、60 反応部、5 検出部、12 溝部、12A 開口端
13 フィルム、14、61 流路、17、18、51、52 注液部(連通孔)
R 反応溶液(試料溶液)

Claims (11)

  1. 生化学反応を行なう反応部が基材上に形成された反応容器であって、
    前記反応部は、
    試料溶液が供給される流路と、
    前記試料溶液を前記流路内に注入するための注液部と、
    を有し、
    前記注液部は、
    前記基材の外面に開口された開口部を有し少なくとも前記流路の断面積より大きな断面積を有する液溜部と、
    前記液溜部の断面積よりも小さい断面積であって且つ前記流路の断面積よりも大きい断面積を有し前記流路の一端と前記液溜部とを連通させる連通部と、
    を有していることを特徴とする反応容器。
  2. 前記開口部の面積が、1mm以上50mm以下であることを特徴とする請求項1に記載の反応容器。
  3. 前記流路の断面積が、0.5mm以上10mm以下であることを特徴とする請求項1または2に記載の反応容器。
  4. 前記開口部の面積が、前記流路の断面積の1.5倍以上10倍以下であることを特徴とする請求項1から3のいずれか1項に記載の反応容器。
  5. 前記流路の他端が、前記基材の一面に形成された他の開口部と他の連通孔を介して連通されていることを特徴とする請求項1から4のいずれか1項に記載の反応容器。
  6. 前記流路が、前記基材の他面に形成された溝部と、該溝部の開口端の少なくとも一部を覆うフィルムとによって形成されていることを特徴とする請求項1から5のいずれか1項に記載の反応容器。
  7. 前記基材の表面上に、光学分析可能な検出部を備えることを特徴とする請求項1から6のいずれか1項に記載の反応容器。
  8. 前記基材の表面上に、反応試薬を収容する試薬収容部が設けられていることを特徴とする請求項1から7のいずれか1項に記載の反応容器。
  9. 前記試薬収容部が凹状であることを特徴とする請求項8に記載の反応容器。
  10. 前記反応部が、酵素反応用であることを特徴とする請求項1から9のいずれか1項に記載の反応容器。
  11. 前記酵素反応が、ポリメラーゼ連鎖反応であることを特徴とする請求項10に記載の反応容器。
JP2005286068A 2005-09-30 2005-09-30 反応容器 Expired - Fee Related JP4804091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286068A JP4804091B2 (ja) 2005-09-30 2005-09-30 反応容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286068A JP4804091B2 (ja) 2005-09-30 2005-09-30 反応容器

Publications (2)

Publication Number Publication Date
JP2007089529A JP2007089529A (ja) 2007-04-12
JP4804091B2 true JP4804091B2 (ja) 2011-10-26

Family

ID=37975902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286068A Expired - Fee Related JP4804091B2 (ja) 2005-09-30 2005-09-30 反応容器

Country Status (1)

Country Link
JP (1) JP4804091B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004300B2 (ja) * 2008-04-23 2012-08-22 東レエンジニアリング株式会社 温度センサ付流路形成体
WO2018037447A1 (ja) * 2016-08-22 2018-03-01 株式会社島津製作所 流体デバイス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551917B2 (ja) * 2000-11-29 2004-08-11 株式会社島津製作所 反応容器及びそれを用いる反応装置
JP4442035B2 (ja) * 2001-01-11 2010-03-31 株式会社島津製作所 マイクロチャンネル型チップ
JP2004219199A (ja) * 2003-01-14 2004-08-05 Teruo Fujii 化学マイクロデバイス

Also Published As

Publication number Publication date
JP2007089529A (ja) 2007-04-12

Similar Documents

Publication Publication Date Title
US9777317B2 (en) Microfluidic PCR device
US20160251698A1 (en) Analysis Unit for Carrying Out a Polymerase Chain Reaction, Analysis Device, Method for Operating such an Analysis Unit, and Method for Producing such an Analysis Unit
US20080003145A1 (en) Sample Distribution Devices and Methods
US20210276009A1 (en) Micro chamber plate
WO2007002588A2 (en) Thermal-cycling pipette tip
EP2114570A1 (en) Microfluidic device
JP4870991B2 (ja) 反応容器
WO2006098435A1 (ja) 検出チップ及びこれを用いた物質の検出方法
JP4804091B2 (ja) 反応容器
JP4804090B2 (ja) 反応容器
CN103074203A (zh) 用于核酸扩增反应的微芯片及其制造方法
JP4799187B2 (ja) 容器
JP5000861B2 (ja) 反応チップ
JP4781144B2 (ja) 反応容器
JP5080740B2 (ja) 反応容器
JP2007136379A (ja) マイクロリアクタおよびその製造方法
JP4717643B2 (ja) 反応容器用蓋体及び反応容器
JP5015441B2 (ja) 反応チップおよび反応方法
JP5009534B2 (ja) 反応容器
JP5009532B2 (ja) 断熱容器及び反応容器ユニット
JP2006345816A (ja) 反応チップ
JP4870946B2 (ja) 反応容器および反応方法
JP4750482B2 (ja) 反応方法
JP4892219B2 (ja) 反応チップおよび反応装置および反応チップの製造方法
JP5009531B2 (ja) 反応容器

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees