JP4229709B2 - 偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置 - Google Patents
偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置 Download PDFInfo
- Publication number
- JP4229709B2 JP4229709B2 JP2003013304A JP2003013304A JP4229709B2 JP 4229709 B2 JP4229709 B2 JP 4229709B2 JP 2003013304 A JP2003013304 A JP 2003013304A JP 2003013304 A JP2003013304 A JP 2003013304A JP 4229709 B2 JP4229709 B2 JP 4229709B2
- Authority
- JP
- Japan
- Prior art keywords
- birefringent film
- organic birefringent
- transparent substrate
- curable adhesive
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Head (AREA)
- Polarising Elements (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Description
【発明の属する技術分野】
本発明は、偏光分離素子の作製技術に関し、特に透明基板に有機複屈折膜を接着する際に有機複屈折膜の透明基板からのはみ出しや位置ズレを抑制することを可能にした偏光分離素子の作製方法、およびそのために用いる有機複屈折膜の接着装置に関する。
【0002】
【従来の技術】
光ディスク用ピックアップでは、光源からの入射光と光ディスクからの反射光(情報信号)を分離して、反射光(情報信号)を効率よく受光素子に導くために、偏光分離素子が用いられている。従来、プリズムを接着したビームスプリッタとλ/4波長板の組み合わせが用いられるのが普通であったが、ピックアップの小型化、低コスト化の要求に答えるため、ビームスプリッタの替わりに薄型の偏光分離素子が実現できる複屈折回折格子型偏光分離素子が開発されつつある。
【0003】
直交する2つの偏光成分を分離する方法として、特開2000−75130号公報(特許文献1)では透明基板上に入射光の異なる振動面に対し屈折率が異なる有機複屈折膜を接着し、かつ有機複屈折膜表面に周期的な凹凸格子(以降回折格子と略す)を形成した偏光分離素子が提案されている。なお有機複屈折膜は延伸した有機高分子材料からなる。
【0004】
上記の偏光分離素子では、接着剤を用いて有機複屈折膜を透明基板へ接着するが、接着の際に、回折格子面内で光路を一定とするため接着層厚さを均一にする必要がある。
【0005】
また、接着層に気泡が入ると光(入射光、出射光)が気泡によって散乱し回折効率が低下するため、気泡を巻きこまないような接着法が必要となる。
【0006】
以上の点から、透明基板へ有機複屈折膜を接着する方法は、貼り合せ光ディスクで用いられているスピンナー法が適している。
【0007】
以下、スピンナー法について説明する。
図21は、スピンナー法による貼り合せ光ディスクの作製工程を説明するための図である。
【0008】
(1)第1の基板803のハブ804をスピンテーブル801のセンターピン802にさし込み、スピンテーブル801を回転させながら第1の基板803に紫外線硬化型接着剤805を滴下する(図21(a)参照)。
【0009】
(2)第1の基板803全面に紫外線硬化型接着剤805が広がったらスピンテーブル801の回転を停止する(図21(b)参照)。
【0010】
(3)その後、第2の基板806のハブ807をスピンテーブル801のセンターピン802にさし込み、第1の基板803と第2の基板806を紫外線硬化型接着剤805を介して合わせる(図21(c)参照)。
【0011】
(4)その後、スピンテーブル801を回転させ、余分な紫外線硬化型接着剤805を振り切り接着層の厚さを一定にする(図21(d)参照)。
【0012】
(5)その後、スピンテーブル801の回転を停止し、紫外線(UV)808を照射して接着層を硬化し、貼り合せ光ディスク809を完成させる(図21(e)参照)。
【0013】
ここで、上記の方法を有機複屈折膜の接着に用いる場合の構成例と、そのときに生じる問題点を述べる。
【0014】
偏光分離素子は大きさが数mm程度であるため、直径4〜8インチの透明基板に接着された有機複屈折膜上に数10〜数100個の回折格子をアレイ状に作製し、その後ダイシングによって個々の偏光分離素子を取り出すようにしている。
【0015】
また、1枚の基板から取れる偏光分離素子数を多くするため、有機複屈折膜や透明基板にハブは設けない構成を採用する。そのためスピンテーブルに透明基板を真空吸着し、その後透明基板の中央に紫外線硬化型接着剤を滴下し、スピンテーブルを回転して接着剤を透明基板全面に広げた後、有機複屈折膜を透明基板上に載せるが、有機複屈折膜にはハブがないためセンターピンで固定できず、フリーな状態で透明基板に載る。
【0016】
一般的には載置装置を用いて有機複屈折膜を接着剤が塗布された透明基板に載せているが、スピンテーブルの回転中心に有機複屈折膜の中心を正確に合せることは載置装置の機械的精度の点から困難な場合が多い。
【0017】
図22は、スピンテーブル上の有機複屈折膜が位置ずれを起こす例を説明するための図である。図22(a)に示すように、有機複屈折膜906が正確にスピンテーブル901の回転中心に載っていない場合にスピンテーブル901を回転させると、同図(b)に示すように、有機複屈折膜906が位置ずれを起こすことになる。同図において、903は透明基板、905は紫外線硬化型接着剤を示している。
【0018】
位置ずれが大きい場合は透明基板903から有機複屈折膜906がはみ出してしまう。紫外線照射によって紫外線硬化型接着剤905を硬化させた後、回折格子を形成するためリソグラフィー/ドライエッチングを行うが、装置内や工程間の搬送は基板側面をクランプして行うことが多く、透明基板903から有機複屈折膜906がはみ出していると搬送が困難になり、回折格子を形成できない。
【0019】
そのため、スピンテーブル901の回転中に有機複屈折膜906の位置ずれが発生した場合は、スピンテーブル901の回転を一旦停止し、適切な位置へ有機複屈折膜906を戻す作業を行った後、再びスピンテーブル901を回転させる必要があった。このような作業の繰り返しが、貼り合せ工程のスループットを悪くする原因になっていた。また上記作業を行った場合、スピンテーブル901の回転時間を一定にすることができず、基板間で接着層厚さが不均一になってしまうという問題を生じていた。
【0020】
スピンテーブル901の回転中に有機複屈折膜906の位置ずれを起こさないためには、回転中に紫外線を照射する方法が考えられる。例えば、貼り合せ光ディスクの作製方法としては、特開平10−334521号公報(特許文献2)や特開2000−268416号公報(特許文献3)において、回転中に紫外線を照射して紫外線硬化型接着剤を硬化する方法が提案されている。しかしながら偏光分離素子の作製においては、基板をある程度回転させて接着層厚さを均一化させた後に紫外線を照射しなければならないので、有機複屈折膜の位置ずれを完全に防止することは困難であった。
【0021】
また、載置装置に画像認識機能を搭載し、スピンテーブルの回転中心と有機複屈折膜の中心を検出し、載置装置にフィードバック制御を掛けながらスピンテーブルの回転中心に有機複屈折膜の中心を置く方法は、スピンテーブルの回転中心と有機複屈折膜の中心との位置合せ精度を著しく向上できるため、スピンテーブルの回転中に有機複屈折膜の位置ずれが起きにくいという利点がある。
【0022】
しかしながら、この構成を採用する場合、載置装置にCCDなどを用いた検出機構やフィードバック機構を設ける必要があり、載置装置のコストが上昇するという問題がある。また、貼り合せ時に位置検出やフィードバック制御を行うため、貼り合せ工程のスループットが低下してしまうという問題も生じる。そのため、この方法では安価に偏光分離素子を作製することが困難となる。
【0023】
【特許文献1】
特開2000−75130号公報
【特許文献2】
特開平10−334521号公報
【特許文献3】
特開2000−268416号公報
【0024】
【発明が解決しようとする課題】
本発明は、上記問題点を解消することを目的とするものである。以下、請求項毎の目的を述べる。
【0025】
請求項1〜12に記載の発明は、透明基板に有機複屈折膜を接着する際に有機複屈折膜の透明基板からのはみ出しや位置ズレを抑制することが可能な偏光分離素子の作製方法を提供することを目的としている。
【0027】
請求項13〜16に記載の発明は、透明基板に有機複屈折膜を接着する際に有機複屈折膜の透明基板からのはみ出しや位置ズレを起こすことを抑制できる有機複屈折膜の接着装置を提供することを目的としている。
【0028】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る偏光分離素子の作製方法,および有機複屈折膜の接着装置は、各々、次の如き構成を採用したことを特徴としている。以下、請求項毎の構成の特徴を記す。
【0029】
a)請求項1記載の発明は、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、接着工程が、透明基板に第1の回転を与えて透明基板全面に紫外線硬化型接着剤を塗布するステップと、該紫外線硬化型接着剤上に有機複屈折膜を載置するステップと、有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと透明基板に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を滴下しながら紫外線硬化型接着剤を振り切るステップと、透明基板に紫外線を照射して紫外線硬化型接着剤を硬化するステップを有することを特徴としている。
【0030】
b)請求項2記載の発明は、請求項1記載の偏光分離素子の作製方法において、複数のピンを、透明基板を回転させるスピンテーブルに着脱可能としたことを特徴としている。
【0031】
c)請求項3記載の発明は、請求項1または2記載の偏光分離素子の作製方法において、複数のピンを、有機複屈折膜の直径方向で対向する4箇所に設けたことを特徴としている。
【0032】
d)請求項4記載の発明は、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて前記有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、接着工程が、透明基板に第1の回転を与えて全面に紫外線硬化型接着剤を塗布するステップと、紫外線硬化型接着剤上に有機複屈折膜を載置するステップと、有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと透明基板に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を滴下しながら紫外線硬化型接着剤を振り切るステップと、第2の回転中に第1の紫外線を照射し紫外線硬化型接着剤を半硬化するステップと、透明基板に第2の紫外線を照射して紫外線硬化型接着剤を硬化するステップを有することを特徴としている。
【0033】
e)請求項5記載の発明は、請求項4記載の偏光分離素子の作製方法において、複数のピンを、透明基板を回転させるスピンテーブルに着脱可能としたことを特徴としている。
【0034】
f)請求項6記載の発明は、請求項4または5記載の偏光分離素子の作製方法において、複数のピンを、有機複屈折膜の直径方向で対向する4箇所に設けたことを特徴としている。
【0035】
g)請求項7記載の発明は、請求項4から6のいずれかに記載の偏光分離素子の作製方法において、有機複屈折膜は、透明基板と接着する面と対向する面に粘着剤を介して保護膜を備え、透明基板に第1の紫外線を照射した後に有機複屈折膜から保護膜を剥離することを特徴としている。
【0036】
h)請求項8記載の発明は、請求項4から6のいずれかに記載の偏光分離素子の作製方法において、有機複屈折膜は、透明基板と接着する面と対向する面に粘着剤を介して保護膜を備え、透明基板に第2の紫外線を照射した後に有機複屈折膜から保護膜を剥離することを特徴としている。
【0037】
i)請求項9記載の発明は、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて前記有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、接着工程が、有機複屈折膜に第1の回転を与えて有機複屈折膜全面に紫外線硬化型接着剤を塗布するステップと、紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置するステップと、透明基板側面に近接ないし接触するように設けられた複数のピンと有機複屈折膜に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を噴霧しながら紫外線硬化型接着剤を振り切るステップと、有機複屈折膜に紫外線を照射して紫外線硬化型接着剤を硬化するステップとを有することを特徴としている。
【0038】
j)請求項10記載の発明は、請求項9記載の偏光分離素子の作製方法において、複数のピンを、透明基板の直径方向で対向する4箇所に設けたことを特徴としている。
【0039】
k)請求項11記載の発明は、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、接着工程が、有機複屈折膜に第1の回転を与えて有機複屈折膜全面に紫外線硬化型接着剤を塗布するステップと、紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置するステップと、透明基板側面に近接ないし接触するように設けられた複数のピンと有機複屈折膜に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を噴霧しながら紫外線硬化型接着剤を振り切るステップと、該第2の回転中に第1の紫外線を照射し紫外線硬化型接着剤を半硬化するステップと、有機複屈折膜に第2の紫外線を照射して紫外線硬化型接着剤を硬化するステップを有することを特徴としている。
【0040】
l)請求項12記載の発明は、請求項11記載の偏光分離素子の作製方法において、複数のピンを、透明基板の直径方向で対向する4箇所に設けたことを特徴としている。
【0043】
m)請求項13記載の発明は、透明基板を保持するスピンテーブルと、該スピンテーブルを回転させる回転機構と、透明基板に紫外線硬化型接着剤を塗布する塗布機構と、透明基板上に塗布された紫外線硬化型接着剤上に有機複屈折膜を載置する載置機構と、有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと、紫外線硬化型接着剤は溶解するが有機複屈折膜は溶解しない有機溶媒を透明基板に滴下するリンス機構と、前記透明基板に紫外線を照射する紫外線照射機構を有することを特徴としている。
【0044】
n)請求項14記載の発明は、請求項15記載の有機複屈折膜の接着装置において、複数のピンをスピンテーブルから着脱する着脱機構を有することを特徴としている。
【0045】
o)請求項15記載の発明は、有機複屈折膜を保持するスピンテーブルと、該スピンテーブルを回転させる回転機構と、有機複屈折膜に紫外線硬化型接着剤を塗布する塗布機構と、有機複屈折膜に塗布された紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置する載置機構と、透明基板側面に近接ないし接触する複数のピンと、紫外線硬化型接着剤は溶解するが有機複屈折膜は溶解しない有機溶媒を透明基板に噴霧するリンス機構と、有機複屈折膜に紫外線を照射する紫外線照射機構を有することを特徴としている。
【0046】
p)請求項16記載の発明は、請求項15記載の有機複屈折膜の接着装置において、スピンテーブルの有機複屈折膜と接触する面が多孔質であることを特徴としている。
【0047】
【発明の実施の形態】
以下、本発明の実施例を、図面を用いて詳細に説明する。
【0048】
<実施例1>
図1および図2は、本発明に係る偏光分離素子の作製方法の一実施例を示す図である。
以下、図1(a)〜(g)および図2(a)〜(c)に沿って本実施例における偏光分離素子の作製方法を説明する。
【0049】
(1)まず、図1(a)に示すように、透明基板を固定するスピンテーブル1に、後述する図1(d)の工程で紫外線硬化型接着剤の上に載置する有機複屈折膜の側面に近接ないし接触することが可能な複数のピン2を設けておく。本実施例では、図3(a)の正面図、および同図(b)の側面図に詳しく示した如く、有機複屈折膜6の直径方向で対向する4箇所のうち3箇所にピン2を設けている。
【0050】
(2)次に、図1(b)に示すように、直径100mm、厚さ1.0mmのショット製光学ガラスBK7からなる透明基板3をスピンテーブル1に載せ、真空吸着によってスピンテーブル1に固定する。なお、図1(b)の工程では有機複屈折膜の直径方向で対向する4箇所のうちピンを設けなかった1箇所から透明基板3をスピンテーブル1に載せるようにする。
【0051】
その後スピンテーブル1を10〜50rpmで回転させながら、透明基板3の中央部にディスペンサー4を用いて屈折率1.52、粘度500cpのアクリル系紫外線硬化型接着剤5を3〜10g滴下する。その後、スピンテーブル1を150〜500rpmで回転(第1の回転)させ、透明基板3の全面に紫外線硬化型接着剤5を広げる。
【0052】
(3)その後、図1(c)に示すように、スピンテーブル1の回転を停止する。
【0053】
(4)その後、図1(d)に示すように、有機複屈折膜の中心をスピンテーブルの回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤5の上に直径90mm、厚さ100μmの有機複屈折膜6を載せる。その際、有機複屈折膜6の側面は、スピンテーブル1に設けた複数のピン2と近接ないし接触するようにしておく。
【0054】
(5)その後、図1(e)に示すように、スピンテーブル1を1000〜3000rpmで回転(第2の回転)させ、紫外線硬化型接着剤5を振り切り、接着層厚さを基板面内で一定にして有機複屈折膜表面を平坦化する。
【0055】
なお、複数のピン2は、スピンテーブル1に設けられているので、第2の回転によって透明基板3と同時に回転することになる。
【0056】
(6)さらに、図1(f)に示すように、第2の回転中にイソプロピルアルコールなどの有機溶剤7を滴下しながら紫外線硬化型接着剤5を振り切り、有機複屈折膜表面をさらに平坦化する。
【0057】
なお、イソプロピルアルコールは、本実施例に用いたアクリル系紫外線硬化型接着剤5を溶解しかつ有機複屈折膜6を溶解しない有機溶媒である。本工程を行うことにより透明基板3の周辺部に残っていた紫外線硬化型接着剤5はイソプロピルアルコールなどの有機溶剤7によって除去される。
【0058】
(7)その後、図1(g)に示すように、スピンテーブル1の回転を停止し、有機複屈折膜6側から高圧水銀灯を用いて紫外線8を照射し、紫外線硬化型接着剤5を硬化させる。
【0059】
(8)その後、有機複屈折膜6を接着した透明基板(以下、単に基板と略す)3をスピンテーブル1から外し、有機複屈折膜6上にポジレジストを0.7μmの厚さに塗布し、60℃30分のプリベークを行う。その後、基板3を縮小投影露光装置(NA=0.30、波長;i線)に装着し、0.9μmラインアンドスペースパターンのレチクルを用いて露光を行い、現像液NMD-3(商標)を用いて現像を行い、周期的なレジストパターンを完成させる。
【0060】
その後、前記のレジストパターン上に真空蒸着法によってAlを60nm蒸着し、引き続きアセトンを用いてレジストを溶解してAlのリフトオフを行い、レジストパターンを反転させたAlパターンを完成させる。
【0061】
その後、NLD (Neutral Loop Discharge)エッチング装置を用い酸素ガスを主成分とするエッチングガス雰囲気中で、前記のAlパターンを金属マスクにして有機複屈折膜6を深さ3μmエッチングする。
【0062】
その後、リン酸系のAlエッチング液を用いてAlパターンを除去し、図2(a)に示すように、凹凸格子(以後回折格子9と記述)を完成させる。
【0063】
(9)その後、平面加工したφ200mm、厚み50mmのステンレス台上に回折格子を形成した基板を置き、回折格子面に光学的に等方的なアクリル系紫外線硬化型接着剤(等方性接着剤)11をマイクロシリンジで1.0mL滴下する。
【0064】
次に、両面を光学研磨した直径100mm、厚み1.5mmの対向透明基板(材質;ショット製光学ガラスBK7)12を前記の等方性接着剤11を塗布した基板面に載せ、さらに対向透明基板12上に光学研磨した光学ガラスを載せ、対向透明基板12に100gf/cm2の圧力を加え、等方性接着剤11を被接着面全面に広げる。図2(b)は、このときの構成を示す図である。
【0065】
なお、対向透明基板12の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。この状態で対向透明基板12を通して紫外線を照射し、等方性接着剤11を硬化させる。
【0066】
(10)その後、図2(c)に示すように、ダイシングソー13を用いて5mm角に切りだし、複数の偏光分離素子14を完成させる。
【0067】
本方法によると、紫外線硬化型接着剤5上に載置された有機複屈折膜6の側面には近接ないし接触して複数のピン2がある。そのためスピンテーブル1の回転中心に有機複屈折膜6の中心が完全には載っていない場合においても、第2の回転中では少なくともピン2を設けた3方向については有機複屈折膜はその側面がピン2に接触する位置までしかずれないため、大きな位置ずれが生じるのを抑制できる。その結果、紫外線を照射して接着剤を硬化させた後、次工程や装置内で基板を搬送する際に搬送不良が起きる確率を小さくすることができる。
【0068】
また、従来位置ずれ修正のため行われていた作業(有機複屈折膜の位置ずれが起きた場合スピンテーブルの回転を停止し、適切な位置へ有機複屈折膜を戻す作業を繰り返す)を少なくすることができるため、貼り付け工程のスループットが向上する。
【0069】
なお、本実施例では有機複屈折膜6の直径方向で対向する4箇所のうち3箇所にピン2を設けたが、対向する2箇所のみに設けた場合は、少なくとも有機複屈折膜の位置ずれを2方向で制限できるため、本実施例の効果よりも小さいが、次工程や装置内で基板を搬送する際に搬送不良が起きる確率を低下させることができる。
【0070】
本実施例では、透明基板3をスピンテーブル1に固定した後、スピンテーブル1を回転させながら透明基板3の中央部にアクリル系紫外線硬化型接着剤5を滴下して接着剤を塗布するようにしたが、紫外線硬化型接着剤5の塗付方法は本方法に限定される必要は無く、透明基板3をスピンテーブル1に固定した後、スピンテーブル1を停止したまま透明基板3の中央部に紫外線硬化型接着剤5を滴下し、その後スピンテーブル1を回転させて透明基板3全面に紫外線硬化型接着剤を広げるようにしてもよい。
【0071】
また、本実施例では紫外線硬化型接着剤5を室温で塗布したが、紫外線硬化型接着剤5の粘度が高く有機複屈折膜6を載せた時に紫外線硬化型接着剤5の流動性が乏しく、気泡を巻き込みやすい時は、紫外線硬化型接着剤5が塗布された透明基板3をオーブンや赤外線ランプなどを用いて加熱し、紫外線硬化型接着剤5の粘度を低下させた後に有機複屈折膜6を載せるのがよい。または紫外線硬化型接着剤5をオーブンなどを用いて予め加熱し、紫外線硬化型接着剤5の粘度を低下させた後に、第1の回転によって透明基板3に塗布し、その後に有機複屈折膜6を載せるのがよい。
【0072】
<実施例2>
図4および図5は、本発明に係る偏光分離素子の作製方法の別の一実施例を示す図である。
以下、図4(a)〜(h)および図5(a)〜(c)に沿って本実施例における偏光分離素子の作製方法を説明する。
【0073】
(1)本実施例では、透明基板を固定するスピンテーブルに、後述する図4(c)の工程で紫外線硬化型接着剤25の上に載置する有機複屈折膜26の側面に近接ないし接触することが可能な複数のピン22をスピンテーブル21から着脱可能に設けておく。本実施例では、図6(a)の正面図、および同図(b)の側面図に詳しく示した如く、有機複屈折膜26の直径方向で対向する4箇所にピン22を設けている。
【0074】
(2)まず、図4(a)および(b)に示すように、直径100mm、厚さ1.0mmのショット製光学ガラスBK7からなる透明基板23をスピンテーブル21に載せ、真空吸着によってスピンテーブル21に固定する。その後、実施例1と同様に屈折率1.52、粘度500cpのアクリル系紫外線硬化型接着剤25を透明基板23の全面に塗布する。
【0075】
(3)その後、図4(c)に示すように、有機複屈折膜26の中心をスピンテーブル21の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤25の上に直径90mm、厚さ85μmの有機複屈折膜26を載せる。
【0076】
(4)その後、図4(d)に示すように、有機複屈折膜26の側面と近接ないし接触するように、スピンテーブル21に着脱可能な複数のピン22を設置・固定する。
【0077】
(5)その後、図4(e)に示すように、スピンテーブル21に第2の回転を与え、紫外線硬化型接着剤25を振り切り、接着層の厚さを透明基板23面内で一定にして有機複屈折膜26の表面を平坦化する。
なお、本実施例では、着脱可能な複数のピン22は、スピンテーブル21に固定されているため、第2の回転によって透明基板23と同時に回転することになる。
【0078】
(6)さらに、図4(f)に示すように、第2の回転中にイソプロピルアルコールなどの有機溶剤27を滴下しながら紫外線硬化型接着剤25を振り切り、透明基板23の周辺部に残っていた紫外線硬化型接着剤25を除去する。
【0079】
(7)その後、図4(g)に示すように、スピンテーブル21の回転を停止し、着脱可能な複数のピン22をスピンテーブル21から外して退避させる。
【0080】
(8)その後、図4(h)に示すように、有機複屈折膜26側から高圧水銀灯を用いて紫外線を照射し、紫外線硬化型接着剤25を硬化させる。
【0081】
(9)その後、有機複屈折膜を接着した透明基板(以下基板と略す)をスピンテーブル21から外し、実施例1と同様にレジストパターンを形成し、その後Al蒸着後、リフトオフによって金属パターンを形成し、NLDを用い有機複屈折膜を3μmの深さでエッチングし、Alを除去して、図5(a)に示すように回折格子29を作製する。
【0082】
(10)その後、平面加工したステンレス台上に回折格子29を形成した基板を置き、回折格子面にアクリル性の等方性接着剤31を滴下し、両面を光学研磨した直径100mm、厚み1.5mmの対向透明基板(材質;ショット製光学ガラスBK7)32を接着した。図5(b)は、このときの構成を示す図である。なお、対向透明基板32の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。
【0083】
(11)その後、図5(c)に示すように、ダイシングソー33を用いて5mm角に切りだし、複数の偏光分離素子34を完成させる。
【0084】
本方法によると、透明基板23を回転するスピンテーブル21から着脱可能な複数のピン22が紫外線硬化型接着剤25上に載置された有機複屈折膜26の側面に近接ないし接触する構造となる。
【0085】
そのため、図4(a)の工程ではスピンテーブル21から複数のピン22を外した状態で透明基板23をスピンテーブル21に載せることができ、透明基板23をスピンテーブル21に載せるための空間を確保するため、ピン22を設置できない領域を作る必要がない。上記実施例1では有機複屈折膜6の直径方向で対向する4箇所のうちピンを設けなかった1箇所が、透明基板をスピンテーブルに載せるための空間を確保するためにピン設置ができない領域に相当している。
【0086】
その結果、図4(d)の工程で、有機複屈折膜26の側面に近接ないし接触するようにスピンテーブル21に複数のピン22を設置する場合、ピン22の配置を自由に設定することができる。
【0087】
本実施例では、実施例1よりもピン数を1個多くすることができ、有機複屈折膜26の直径方向で対向する4箇所にピン22を設けることができる。そのため、有機複屈折膜26の中心がスピンテーブル21の回転中心に完全には載っていない場合においても、全てのピン22が有機複屈折膜26の側面に接触している時は第2の回転中に有機複屈折膜26の位置ずれを防止することができる。
【0088】
また、ピン22が有機複屈折膜26の側面に近接している時は、上記実施例1と比較してピン22を設けられない禁止領域がないため、第2の回転中に有機複屈折膜が最大で動ける範囲はピン22と有機複屈折膜26の側面との距離に限定され、大きな位置ずれを抑制できる。
【0089】
その結果、紫外線28を照射して紫外線硬化型接着剤を硬化させた後、次工程や装置内で基板を搬送する際に搬送不良が起きる確率を飛躍的に減少させることができる。
【0090】
また、従来、位置ずれ修正のため行われていた作業(有機複屈折膜の位置ずれが起きた場合スピンテーブルの回転を停止し、適切な位置へ有機複屈折膜を戻す作業を繰り返す)が必要ないため、貼り付け工程のスループットが向上する。
【0091】
さらに、位置ずれ修正のため行われていた作業を無くすことによって、スピンテーブルの回転時間を一定にでき、基板間で接着層厚さを均一にすることが可能となる。
【0092】
よって偏光分離分離素子の製造コストを低減でき、かつ基板間で均一な接着層を実現できることから素子間でも接着層厚さの変動を抑制でき、均一な接着層を持つ偏光分離素子が作製できる。
【0093】
なお、有機複屈折膜の位置ずれをX,Yの4方向(+X,−X,+Y,−Y方向)で制限するためには、有機複屈折膜側面に近接ないし接触する複数のピンは少なくとも有機複屈折膜のX,Yの4方向に設けることが望ましい。
【0094】
本実施例では、図6に示すように、有機複屈折膜26の直径方向で対向する4箇所にピン22を設けているため、最小のピン数で有機複屈折膜26の位置ずれをX,Yの4方向で抑制できる。
【0095】
なお、有機複屈折膜の直径方向で対向する6箇所以上に着脱可能なピンを設けた場合も有機複屈折膜の位置ずれを少なくともX,Y方向の両方向で抑制できるので、本実施例と同等の効果を期待できる。
【0096】
また、本実施例では、有機複屈折膜26の側面に近接ないし接触するように複数のピン22を設けたが、有機複屈折膜26を紫外線硬化型接着剤25に置く位置精度を考えると、有機複屈折膜26の側面が複数のピン22と接触するように置くためには、載置装置に画像認識機能を搭載し、スピンテーブル21の回転中心と有機複屈折膜26の中心を検出し、載置装置にフィードバック制御を掛けながらスピンテーブル21の回転中心に有機複屈折膜26の中心を置く必要があり、載置装置のコストアップにつながる。
【0097】
そのため、載置装置のコストを抑えるためには、有機複屈折膜26の側面に近接して複数のピン22を設けることが望ましい。複数のピン22と有機複屈折膜26の側面との間隔は有機複屈折膜26を置く載置装置の位置精度や有機複屈折膜26や透明基板23の大きさおよび公差などを考慮して決めればよいが、一般的には有機複屈折膜26を置く載置装置の位置精度は容易に1mm以下に抑え込めるので、1.5mm程度にしておけば、第2の回転中に有機複屈折膜26が位置ずれを起こしても最大で1.5mmまでしか動かないので、有機複屈折膜26が透明基板23からはみ出すことがほとんど起こらなくなる。
【0098】
<実施例3>
図7および図8は、本発明に係る偏光分離素子の作製方法の別の一実施例を示す図である。
以下、図7(a)〜(g)および図8(a)〜(c)に沿って本実施例における偏光分離素子の作製方法を説明する。
【0099】
(1)本実施例では、実施例1と同様、図7(a)に示すように、有機複屈折膜の直径方向で対向する4箇所のうち3箇所に、紫外線硬化型接着剤の上に載置する有機複屈折膜の側面に近接ないし接触することが可能な複数のピン42をスピンテーブル41に設けておく。
【0100】
(2)次に、図7(b)(c)に示すように、直径100mm、厚さ1.0mmのショット製光学ガラスBK7からなる透明基板43をスピンテーブル41に載せ、真空吸着によってスピンテーブル41に固定する。
【0101】
(3)その後、実施例1と同様、屈折率1.52、粘度500cpのアクリル系紫外線硬化型接着剤45を透明基板43の全面に塗布する。
【0102】
(4)その後、図7(d)に示すように、有機複屈折膜46の中心をスピンテーブル41の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤45の上に直径90mm、厚さ100μmの有機複屈折膜46を載せる。その際、有機複屈折膜46の側面はスピンテーブル41に設けた複数のピン42と近接ないし接触するようにしておく。
【0103】
(5)その後、図7(e)に示すように、スピンテーブル41に第2の回転を与え、紫外線硬化型接着剤45を振り切り、接着層厚さを透明基板43の面内で一定にして有機複屈折膜46の表面を平坦化する。
【0104】
なお、本実施例では、複数のピン42はスピンテーブル41に固定されているため、第2の回転によって透明基板と同時に回転することになる。
【0105】
(6)さらに、図7(f)に示すように、第2の回転中にイソプロピルアルコールなどの有機溶剤47を滴下し、かつ有機複屈折膜46側から高圧水銀灯を用いて第1の紫外線を照射する。本工程により、透明基板周辺部に残っていた紫外線硬化型接着剤46は除去され、かつ紫外線硬化型接着剤46は半硬化する。
【0106】
ここで、第1の紫外線の照射エネルギーを実施例1,2の紫外線の照射エネルギーよりも小さくし、第1の紫外線照射によって紫外線硬化型接着剤45は重合して高粘度化する程度に留め、紫外線硬化型接着剤46の完全硬化は、後述する図7(g)の工程における第2の紫外線照射によって行われるようにしておく。
【0107】
(7)その後、図7(g)に示すように、スピンテーブル41の回転を停止し、有機複屈折膜46側から高圧水銀灯を用いて第2の紫外線を照射し、紫外線硬化型接着剤46を完全硬化させる。
【0108】
(8)その後、有機複屈折膜を接着した透明基板(以下基板と略す)をスピンテーブルから外し、実施例1と同様にレジストパターンを形成し、その後Al蒸着後、リフトオフによって金属パターンを形成し、NLDを用い有機複屈折膜を3μmの深さでエッチングし、Alを除去して回折格子を作製する。図8(a)はこのときの構成を示す図である。
【0109】
(9)その後、平面加工したステンレス台上に回折格子49を形成した基板を置き、回折格子面にアクリル性の等方性接着剤51を滴下し、両面を光学研磨した直径100mm、厚み1.5mmの対向透明基板(材質;ショット製光学ガラスBK7)52を接着する。図8(b)はそのときの構成を示す図である。なお、対向透明基板52の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。
【0110】
(10)その後、図8(c)に示すように、ダイシングソー53を用いて5mm角に切りだし、複数の偏光分離素子54を完成させる。
【0111】
本方法によると、第1の紫外線照射によって紫外線硬化型接着剤は重合を開始して高粘度化するため、紫外線硬化型接着剤と有機複屈折膜との固着力が強まり、透明基板の回転によって起こる有機複屈折膜の位置ずれを低減できる。その結果有機複屈折膜が透明基板からはみ出す頻度が小さくなり、本実施例のようにX,Yの3方向にのみピンを設けた場合も実施例1よりも搬送不良を低減でき、より低コストで偏光分離素子を実現できる。
【0112】
なお、接着層の厚さを均一化するため、透明基板を回転させてある程度接着剤を振り切らなければならないので、第1の紫外線照射によって紫外線硬化型接着剤が急激に高粘度することを避ける必要があり、第1の紫外線は比較的弱い強度で照射するのがよく、本実施例では実施例1,2の紫外線の1/10の強度で紫外線照射を行った。
【0113】
また、第1の紫外線照射によって紫外線硬化型接着剤が高粘度化するため、接着層厚さを均一化するためには透明基板の回転数を最適化する必要があり、本実施例では第1の紫外線照射中に3ステップで回転数を上昇させた。
【0114】
なお、本実施例では有機溶媒の滴下中に透明基板を回転しながら第1の紫外線を照射したが、第1の紫外線の照射は本実施例に限定される必要はなく、前記の有機溶媒の滴下前、あるいは滴下後の一方であっても何ら構わず、第1の紫外線照射によって紫外線硬化型接着剤が重合を始め、高粘度化して有機複屈折膜との固着力が大きくなればよい。
【0115】
<実施例4>
図9および図10は、本発明に係る偏光分離素子の作製方法の別の一実施例を示す図である。
以下、図9(a)〜(h)および図10(a)〜(d)に沿って本実施例における偏光分離素子の作製方法を説明する。
【0116】
(1)本実施例では、実施例2と同様、透明基板63を固定するスピンテーブル61に、図9(c)の工程で紫外線硬化型接着剤の上に載置する有機複屈折膜の側面に近接ないし接触することが可能な複数のピンをスピンテーブルから着脱可能にしておく。本実施例でも複屈折膜の直径方向で対向する4箇所にピンを設けている。
【0117】
(2)まず、図9(a)に示すように、直径100mm、厚さ1.0mmショット製光学ガラスBK7からなる透明基板63をスピンテーブル61に載せ、真空吸着によってスピンテーブル61に固定する。その後、スピンテーブル61を10〜50rpmで回転させながら、透明基板63の中央部にディスペンサー64を用いて屈折率1.58、粘度600cpのエポキシ系紫外線硬化型接着剤65を3〜8g滴下する。
【0118】
その後、スピンテーブル61を150〜500rpmで回転(第1の回転)させ、透明基板63全面に紫外線硬化型接着剤65を広げる。その後、スピンテーブル61の回転を停止する。図9(b)はこのときの構成を示す図である。
【0119】
(3)その後、図9(c)示すように、有機高分子からなる保護膜661が粘着剤662によって貼りついた有機複屈折膜(直径90mm、厚さ70μm)66を、その中心をスピンテーブル61の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤65の上に載せる。
【0120】
(4)その後、図9(d)に示すように、有機複屈折膜66の側面と近接ないし接触するように、スピンテーブル61に着脱可能な複数のピン62を設置・固定する。
【0121】
(5)その後、図9(e)に示すように、スピンテーブル61に1000〜3000rpmの第2の回転を与え、紫外線硬化型接着剤65を振り切り、接着層厚さを基板面内で一定にして有機複屈折膜66の表面を平坦化する。
【0122】
なお、着脱可能な複数のピン62はスピンテーブル61に固定されているため、第2の回転によって透明基板63と同時に回転することになる。
【0123】
(6)さらに、図9(f)に示すように、第2の回転中にアセトンなどの有機溶剤67を滴下し、かつ保護膜661上から高圧水銀灯を用いて第1の紫外線を照射する。本工程により、透明基板63周辺部に残っていた紫外線硬化型接着剤65は除去され、かつ紫外線硬化型接着剤65は半硬化する。
【0124】
ここで、第1の紫外線の照射エネルギーは紫外線硬化型接着剤65が硬化に必要なエネルギーの1/5〜1/10程度とし、紫外線照射によって紫外線硬化型接着剤65は重合して高粘度化する程度に留め、紫外線硬化型接着剤65の完全硬化は図10(a)の工程での第2の紫外線照射によって行われるようにしておく。
【0125】
なお、アセトンは保護膜661および有機複屈折膜66を溶解せず、未硬化の紫外線硬化型接着剤65を溶解する有機溶媒である。
【0126】
(7)その後、図9(g)に示すように、スピンテーブル61の回転を停止し、着脱可能な複数のピン62をスピンテーブル61から外して退避させる。
【0127】
(8)その後、図9(h)に示すように、ピンセットなどを用いて、有機複屈折膜66から保護膜661を剥離する。
【0128】
(9)次に、図10(a)に示すように、有機複屈折膜66側から高圧水銀灯を用いて第2の紫外線を照射し、紫外線硬化型接着剤65を完全硬化させる。
【0129】
(10)その後、有機複屈折膜66を接着した透明基板(以下基板と略す)63をスピンテーブル61から外し、有機複屈折膜66上にスパッタ法によりCrを成膜し、その後、ポジレジストを0.7μmの厚さに塗布し、60℃30分のプリベークを行う。
【0130】
その後、基板を縮小投影露光装置(NA=0.30、波長;i線)に装着し、0.8μmラインアンドスペースパターンのレチクルを用いて露光を行い、現像液NMD-3(商標)を用いて現像し、ポストべークを行って周期的なレジストパターンを完成させた。
【0131】
その後、硝酸セリウムアンモニウム系のエッチング液でCrをエッチングし、その後レジストをアセトンで除去してCrパターンを完成させる。その後NLDエッチング装置を用い酸素ガスを主成分とするエッチングガス雰囲気中で、前記のCrパターンを金属マスクにして有機複屈折膜を深さ3μmエッチングする。
【0132】
その後、前記のエッチング液を用いてCrパターンを除去し、凹凸格子(以後回折格子と記述)69を完成させる。図10(b)はそのときの構成を示す図である。
【0133】
(11)その後、平面加工したφ200mm、厚み50mmのステンレス台上に回折格子69を形成した基板を置き、回折格子面に光学的に等方的なエポキシ系紫外線硬化型接着剤(等方性接着剤)71をマイクロシリンジで1.0mL滴下する。そして両面を光学研磨した直径100mm、厚み1.5mmの対向透明基板(材質;ショット製光学ガラスBK7)72を前記の等方性接着剤71を塗布した基板面に載せ、さらに対向透明基板72上に光学研磨した光学ガラスを載せ、対向透明基板72に100gf/cm2の圧力を加え、等方性接着剤71を被接着面全面に広げる。図10(c)は、このときの構成を示す図である。
【0134】
なお、対向透明基板72の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。この状態で対向透明基板72を通して紫外線を照射し、等方性接着剤71を硬化する。
【0135】
(12)その後、図10(d)に示すように、ダイシングソー73を用いて5mm角に切りだし、複数の偏光分離素子74を完成させる。
【0136】
本方法によると、第2の回転中は有機複屈折膜に粘着剤を介して保護膜がついている。そのため有機複屈折膜の剛性が大きくなり、第2の回転中に有機複屈折膜側面がピンに接触した場合も有機複屈折膜が変形しにくくなり、有機複屈折膜表面の平面性が改善される期待がある。
【0137】
また、保護膜を比較的厚くしてピンが保護膜のみに接触するようにした場合は、ピン先端とスピンテーブルとの間隔を大きくでき、Z方向でのピン先端の位置精度を緩くでき、ピンの着脱機構を簡素化できる。
【0138】
さらに、透明基板と有機複屈折膜の貼り合せ工程は、有機複屈折膜の面のうち回折格子を形成する面を保護膜で被覆した状態で行うことができる。そのため貼り合せ工程で回折格子を形成する面にキズや異物を付ける確率が著しく減る。
【0139】
特に、スピンテーブルを回転させ、紫外線硬化型接着剤を振り切る工程において、振り切った接着剤のミストが回折格子を形成する面に付着しない(接着剤のミストは保護膜に付き、紫外線照射後保護膜を剥離するので、有機複屈折膜表面には残らない)ため、異物の非常に少ない有機複屈折膜表面を実現できる。そのためリソグラフィー工程において異物やキズによって発生するパターン欠陥を低減でき、偏光分離素子の製造歩留を向上できる。
【0140】
また、第1の紫外線照射によって紫外線硬化型接着剤は重合を開始して高粘度化するため、紫外線硬化型接着剤と有機複屈折膜との固着力が強まり、透明基板の回転によって起こる有機複屈折膜の位置ずれをさらに低減できる。
【0141】
<実施例5>
図11および図12は、本発明に係る偏光分離素子の作製方法の別の一実施例を示す図である。
以下、図11(a)〜(h)および図12(a)〜(d)に沿って本実施例における偏光分離素子の作製方法を説明する。
【0142】
(1)本実施例では、実施例4と同様に透明基板83を固定するスピンテーブル81に、図11(c)の工程で紫外線硬化型接着剤の上に載置する有機複屈折膜の側面に近接ないし接触することが可能な複数のピンをスピンテーブルから着脱可能にしておく。本実施例でも複屈折膜の直径方向で対向する4箇所にピンを設けている。
【0143】
(2)まず、図11(a)に示すように、直径100mm、厚さ1.0mmショット製光学ガラスBK7からなる透明基板83をスピンテーブル81に載せ、真空吸着によってスピンテーブル81に固定する。その後、実施例4と同様に屈折率1.58、粘度600cpのエポキシ系紫外線硬化型接着剤85を透明基板83の全面に塗布する。図11(b)はこのときの構成を示す図である。
【0144】
(3)その後、図11(c)に示すように、有機高分子からなる保護膜861が粘着剤862によって付着された有機複屈折膜(直径90mm、厚さ70μm)86を、その中心をスピンテーブル81の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤85の上に載せる。
【0145】
(4)その後、図11(d)に示すように、有機複屈折膜86の側面と近接ないし接触するように、スピンテーブル81に着脱可能な複数のピン82を設置・固定する。
【0146】
(5)その後、図11(e)に示すように、スピンテーブルに1000〜3000rpmの第2の回転を与え、紫外線硬化型接着剤85を振り切り、接着層厚さを基板面内で一定にして有機複屈折膜86の表面を平坦化する。なお、着脱可能な複数のピン82はスピンテーブル81に固定されているため、第2の回転によって透明基板83と同時に回転することになる。
【0147】
(6)さらに、図11(f)に示すように、第2の回転中にアセトンなどの有機溶媒87を滴下し、かつ保護膜861上から高圧水銀灯を用いて第1の紫外線を照射する。本工程により、透明基板83の周辺部に残っていた紫外線硬化型接着剤85は除去され、かつ紫外線硬化型接着剤85は半硬化する。
【0148】
(7)その後、図11(g)に示すように、スピンテーブル81の回転を停止し、着脱可能な複数のピン82をスピンテーブル81から外して退避させる。
【0149】
(8)そして、図11(h)に示すように、保護膜861側から高圧水銀灯を用いて第2の紫外線を照射し、紫外線硬化型接着剤85を完全硬化させる。なお、第2の紫外線のエネルギーは保護膜861での吸収を考慮し、実施例4の1.1倍とする。
【0150】
(9)その後、図12(a)に示すように、ピンセットなどを用いて、有機複屈折膜86から保護膜861を剥離する。
【0151】
(10)その後、有機複屈折膜86を接着した透明基板(以下基板と略す)83をスピンテーブル81から外し、実施例4と同様にして有機複屈折膜86に回折格子89を形成する。図12(b)は、このときの構成を示す図である。
【0152】
(11)その後、平面加工したφ200mm、厚み50mmのステンレス台上に回折格子を形成した基板を置き、回折格子面にエポキシ系等方性接着剤91を滴下し、両面を光学研磨した直径100mm、厚み1.5mmの対向透明基板(材質;ショット製光学ガラスBK7)92を接着する。図12(c)は、このときの構成を示す図である。なお、対向透明基板92の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。
【0153】
(12)その後、図12(d)に示すように、ダイシングソー93を用いて5mm角に切りだし、複数の偏光分離素子94を完成させる。
【0154】
本方法によっても、実施例4と同様に以下の効果が期待できる。すなわち、第2の回転中は有機複屈折膜に粘着剤を介して保護膜がついているため、有機複屈折膜の剛性を大きくできる。
【0155】
また、保護膜を比較的厚くしてピンが保護膜のみに接触するようにした場合は、Z方向でのピン先端の位置精度を緩くでき、ピンの着脱機構を簡素化できる。
さらに、有機複屈折膜の面のうち回折格子を形成する面を保護膜で被覆した状態で透明基板と有機複屈折膜の貼り合せを行うことができる。
【0156】
<実施例6>
図13および図14は、本発明に係る偏光分離素子の作製方法の別の一実施例を示す図である。
【0157】
ドライエッチング装置では基板周辺をクランプし、裏面から冷却しながらエッチングを行う場合が多い。クランプ時の応力によって有機複屈折膜や接着剤などの比較的軟質な材料は破壊する懸念があるため、基板周辺では有機複屈折膜を無くして透明基板を直接クランプすることが望ましい。そのため透明基板は有機複屈折膜よりも大きくして行う場合が多い。そのため、上記実施例1〜5においてはφ90mmの有機複屈折膜とφ100mmの透明基板を接着している。
【0158】
本実施例では、スピンテーブルに有機複屈折膜を固定し、紫外線硬化型接着剤を塗布後、有機複屈折膜よりもサイズの大きい透明基板を載せる方法を採用する。そのためスピンテーブルに設ける複数のピンのうち対向する2本のピンの間隔は透明基板の直径と同等以上にしているので、透明基板よりも小さい有機複屈折膜は複数のピンに邪魔されず、スピンテーブルの上に載置することができる。
【0159】
以下、図13(a)〜(g)および図14(a)〜(c)に沿って本実施例における偏光分離素子の作製方法を説明する。
【0160】
(1)図13(a)に示すように、有機複屈折膜を固定するスピンテーブル101に、図13(d)の工程で紫外線硬化型接着剤の上に載置する透明基板103の側面に近接ないし接触することが可能な複数のピン102を設けておく。本実施例では、図15(a)の正面図、および同図(b)の側面図に詳しく示した如く、透明基板103の直径方向で対向する4箇所にピン102を設けている。
【0161】
(2)図13(b)の工程では複数のピン102の上方から有機複屈折膜106をスピンテーブル101に載せるようにする。直径90mm、厚さ100μmの有機複屈折膜106をスピンテーブル101に載せ、真空吸着によってスピンテーブル101に固定する。その後、実施例5と同様に屈折率1.58、粘度600cpのエポキシ系紫外線硬化型接着剤105を有機複屈折膜106の全面に塗布する。
(3)図13(c)は、このときの構成を示す図である。
【0162】
(4)その後、図13(d)に示すように、透明基板の中心をスピンテーブル101の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤105の上に直径100mm、厚さ1.0mmのショット製光学ガラスBK7からなる透明基板103を載せる。その際、透明基板103の側面はスピンテーブル101に設けた複数のピン102と近接ないし接触するようにしておく。
【0163】
(5)その後、図13(e)に示すように、スピンテーブル101に第2の回転を与え、紫外線硬化型接着剤105を振り切り、接着層厚さを基板面内で一定にする。なお、複数のピン102はスピンテーブル101に固定されているため、第2の回転によって有機複屈折膜106と同時に回転することになる。
【0164】
(6)さらに、図13(f)に示すように、第2の回転中にスピンテーブル101の下方からアセトンなどの有機溶媒107を噴霧し、透明基板103の周辺部に残っていた紫外線硬化型接着剤105を除去する。
【0165】
(7)その後、図13(g)に示すように、スピンテーブル101の回転を停止し、透明基板103側から高圧水銀灯を用いて紫外線を照射し、紫外線硬化型接着剤105を硬化させる。
【0166】
(8)その後、有機複屈折膜106を接着した透明基板(以下基板と略す)103をスピンテーブル101から外し、実施例4と同様に有機複屈折膜106に回折格子109を形成する。図14(a)は、このときの構成を示す図である。
【0167】
(9)その後、平面加工したφ200mm、厚み50mmのステンレス台上に回折格子109を形成した透明基板103を置き、回折格子面にエポキシ系等方性接着剤111を滴下し、両面を光学研磨した直径100mm、厚み1.5mmの対向透明基板(材質;ショット製光学ガラスBK7)112を接着する。図14(b)は、このときの構成を示す図である。なお、対向透明基板112の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。
【0168】
(10)その後、図14(c)に示すように、ダイシングソー113を用いて5mm角に切りだし、複数の偏光分離素子114を完成させる。
【0169】
本方法によると、スピンテーブル101に設ける複数のピン102は透明基板103と近接ないし接触している。そのため、対向する2本のピン102の間隔は透明基板103の直径と同等以上となる。そのため、透明基板103よりも小さい有機複屈折膜106は複数のピン102に邪魔されず、スピンテーブル101の上に載置することが可能となり、スピンテーブル101から着脱できないピン102であっても、上記実施例1,3とは異なりピン102の配置を自由に設定できる。
【0170】
なお、透明基板の位置ずれをX,Yの4方向(+X,−X,+Y,−Y方向)で制限するためには、透明基板の側面に近接ないし接触する複数のピンは少なくとも透明基板のX,Yの4方向でピンを設けることが望ましい。
【0171】
本実施例では、図15(a)の正面図および図15(b)の側面図に示すように、透明基板の直径方向で対向する4箇所にピンを設けているため、最小のピン数で透明基板の位置ずれをX,Yの4方向で抑制できた。
【0172】
なお、透明基板の直径方向で対向する6箇所以上に着脱可能なピンを設けた場合も透明基板の位置ずれを少なくともX,Y方向の両方向で抑制できるので、本実施例と同等の効果を期待できる。
【0173】
また、本実施例では透明基板の側面に近接ないし接触するように複数のピンを設けたが、透明基板を紫外線硬化型接着剤に置く位置精度を考えると、透明基板が複数のピンと接触するように置くためには、載置装置に画像認識機能を搭載し、スピンテーブルの回転中心と透明基板の中心を検出し、載置装置にフィードバック制御を掛けながらスピンテーブルの回転中心の中心を置く必要があり、載置装置のコストアップにつながる。
【0174】
そのため、載置装置のコストを抑えるためには、透明基板の側面に近接して複数のピンを設けることが望ましい。複数のピンと透明基板との間隔は透明基板を置く載置装置の位置精度や透明基板や有機複屈折膜の大きさや公差などを考慮して決めればよいが、一般的には載置装置の位置精度は容易に1mm以下に抑え込めるので、1.5mm程度にしておけば、第2の回転中に透明基板が位置ずれを起こしても最大で1.5mmまでしか動かないので、有機複屈折膜が透明基板からはみ出すことがほとんど起こらない。
【0175】
なお、本実施例ではスピンテーブルに有機複屈折膜を真空吸着で固定している。スピンテーブルの吸着穴が大きいと、有機複屈折膜が引きこまれてしまい表面に凹部ができて好ましくない。
【0176】
よって、スピンテーブルの吸着穴を有機複屈折膜の膜厚に対し十分小さくすることが望ましい。しかし機械加工の精度を考慮すると微細な穴を加工することは容易ではない。
【0177】
そこで、スピンテーブルの有機複屈折膜と接触する面をアルミナやジルコニアなどの多孔質材料で作り、多孔質材料のマイクロポアを吸着穴に用いると、有機複屈折膜が吸着穴に引き込まれず、接着後平滑な有機複屈折膜表面を得ることができる。
【0178】
なお、接着後の有機複屈折膜の平面性はスピンテーブルの平面性にも強く影響されるため、通常のスピンテーブルよりも吸着面の平面性を向上させておく必要がある。
【0179】
また、実施例3のように、第2の回転中に第1の紫外線を照射し紫外線硬化型接着剤を半硬化し、その後、有機複屈折膜に第2の紫外線を照射して紫外線硬化型接着剤を硬化すると、第1の紫外線照射によって紫外線硬化型接着剤は重合を開始して高粘度化するため、紫外線硬化型接着剤と有機複屈折膜との固着力が強まり、有機複屈折膜の回転によって起こる透明基板の位置ずれをさらに低減できるのでより望ましい。
【0180】
また、実施例4〜5のように有機複屈折膜に粘着剤を介して保護膜をつけて接着を行ってもよい。
【0181】
以上のように、実施例1〜6の作製方法によると、有機複屈折膜の接着工程では透明基板から有機複屈折膜がはみ出す頻度を小さくできることから、偏光分離素子の製造歩留を向上することが可能となる。また有機複屈折膜を透明基板に接着して作製しているので、従来のプリズムを接着したビームスプリッタよりも小さい偏光分離素子を作製できる。
【0182】
特に、実施例2,4,5,6の作製方法によると、有機複屈折膜ないし透明基板の位置ずれをX,Yの4方向で制限できるため、有機複屈折膜が透明基板からはみ出すことがほとんどない。
【0183】
そのため、従来位置ずれ修正のため行われていた作業(スピンテーブルの回転中に有機複屈折膜の位置ずれが発生した場合、スピンテーブルの回転を停止し、適切な位置へ有機複屈折膜を戻し、再びスピンテーブルを回転させる)が不要となる。その結果スピンテーブルの回転時間を一定にすることができ、基板間で接着層厚さを均一にできる。
【0184】
<実施例7>
図16は、本発明に係る光ピックアップの構成の一実施例を示す図である。
本実施例におけるCD用光ピックアップでは、レーザーダイオード201から出射された波長780nmの光は実施例1の偏光分離素子202とコリメータレンズ203、λ/4波長板204、対物レンズ205を通った後、CD(図はCD−RWの例)206を照射し、CD206の記録ピットからの反射光はλ/4波長板204で直線偏光になった後、偏光分離素子202で回折してフォトダイオード207に導かれ、フォーカス検出、トラック検出、信号検出が行われる。
【0185】
本実施例の光ピックアップを用い、CD−RWに信号を記録し、その後、同じ光ピックアップで信号の再生を行ったところ、プリズムを接着したビームスプリッタとλ/4波長板を組み合わせた従来のCD用光ピックアップと同等の再生信号出力を得ることができ、本実施例の光ピックアップが従来の光ピックアップと同等の記録/再生特性を持つことが確認できた。
【0186】
また、本実施例のピックアップでは、偏光分離素子202が、プリズムを接着した従来型のビームスプリッタよりも小さくなっており、従来の光ピックアップと比較して小型化が実現できた。
【0187】
<実施例8>
図17は、本発明に係る光ピックアップの構成の別の一実施例を示す図である。
本実施例におけるDVD用光ピックアップでは、レーザーダイオード301から出射された波長680nmの光は実施例3の偏光分離素子302とコリメータレンズ303、λ/4波長板304、対物レンズ305を通った後、DVD306を照射し、DVD306の記録ピットからの反射光はλ/4波長板304で直線偏光になった後、偏光分離素子302で回折してフォトダイオード307に導かれ、フォーカス検出、トラック検出、信号検出が行われる。
【0188】
本実施例の光ピックアップを用い、DVD−ROMから情報信号の再生を行ったところ、プリズムを接着したビームスプリッタとλ/4波長板を組み合わせた従来のDVD用光ピックアップと同等の信号出力を得ることができ、本実施例の光ピックアップが従来の光ピックアップと同等の再生特性を持つことが確認できた。
【0189】
また、本実施例のピックアップでは、偏光分離素子302がプリズムを接着した従来型のビームスプリッタよりも小さくなっているため、従来の光ピックアップよりも小型になっている。
【0190】
<実施例9>
図18は、本発明に係る有機複屈折膜の接着装置の一実施例を示す図である。本実施例における有機複屈折膜の接着装置は、透明基板403を保持するスピンテーブル401と、前記スピンテーブル401を回転させるステッピングモーターなどからなる回転機構(図示されていない)と、前記透明基板403に紫外線硬化型接着剤を塗布するディスペンサー404からなる塗布機構と、2本の吸着アーム407によって有機複屈折膜406の両端を保持し、透明基板403上に塗布された紫外線硬化型接着剤上に有機複屈折膜406を載置する載置機構408と、有機複屈折膜406側面に近接ないし接触する複数のピン402と、硬化前の紫外線硬化型接着剤を溶解しかつ有機複屈折膜406を溶解しない有機溶媒を透明基板403に滴下するリンス機構409と透明基板403に紫外線を照射する高圧水銀灯やメタルハライドランプなどからなる紫外線照射機構410から構成されている。
【0191】
なお、スピンテーブル401上において複数のピン402は、有機複屈折膜406の直径方向で対向する4箇所のうち3箇所に設置・固定している。
【0192】
本実施例の接着装置を用いて有機複屈折膜を接着する手順を次に述べる。
有機複屈折膜の直径方向で対向する4箇所のうちピンを設けなかった1箇所から、直径165mm、厚さ1.5mmのショット製光学ガラスBK7からなる透明基板403をスピンテーブル401に載せ、真空吸着によってスピンテーブル401に固定する。その後、透明基板403の中央部にロボットアーム405によってディスペンサー404を移動し、スピンテーブル401を20rpmで回転させながら、透明基板403の中央部にディスペンサー404を用いて屈折率1.52のアクリル系紫外線硬化型接着剤を10g滴下する。
【0193】
その後、ディスペンサー404を元の位置に戻し、スピンテーブル401を300rpmで回転(第1の回転)させ、透明基板403全面に紫外線硬化型接着剤を広げ、その後、スピンテーブル401の回転を停止する。
【0194】
その後、直径155mm、厚さ80μmの有機複屈折膜406の両端を載置機構408の2本の吸着アーム407に真空吸着して保持し、載置機構408を透明基板403上へ移動し、有機複屈折膜406の中心をスピンテーブル401の回転中心にほぼ合せながら2本の吸着アーム407の真空吸着を徐々に解除して紫外線硬化型接着剤の上に有機複屈折膜406を載せる。その際、スピンテーブル401に固定された複数のピン402は有機複屈折膜406側面と0.5〜1.5mmの距離で近接させるようにする。
【0195】
その後、載置装置408を元の位置に戻し、スピンテーブル401を3ステップで400rpmから900rpmに回転数を上げ(第2の回転)、紫外線硬化型接着剤を振り切り、接着層厚さを面内で一定にした。なお、スピンテーブル401に固定されている複数のピン402も第2の回転では透明基板403と同時に回転する。
【0196】
また900rpmになってから有機複屈折膜406上にリンス機構409を移動して、硬化前の紫外線硬化型接着剤を溶解しかつ有機複屈折膜406を溶解しない有機溶媒(本実施例ではイソプロピルアルコールを使用)を滴下し、基板周辺部に残っていた紫外線硬化型接着剤を除去する。
【0197】
その後、スピンテーブル401の回転を停止し、リンス機構409を元の位置に戻す。そして透明基板403上に紫外線照射機構410を移動し、有機複屈折膜406側から紫外線を照射して紫外線硬化型接着剤を硬化させる。紫外線照射終了後、紫外線照射機構410を元の位置に戻し、スピンテーブル401の真空吸着を解除して有機複屈折膜406を接着した透明基板403を取り出す。
【0198】
上記のように本実施例の接着装置を用いると、実施例1の偏光分離素子の作製方法を実現できるため、透明基板からの有機複屈折膜のはみ出しを抑制できる。
【0199】
また、本実施例では、第2の回転の終了後に紫外線を照射して紫外線硬化型接着剤を硬化したが、第2の回転中に透明基板403上に紫外線照射機構410を移動し、有機複屈折膜406側から第1の紫外線を照射して紫外線硬化型接着剤を半硬化させ、その後、スピンテーブル401の回転を停止し、リンス機構409を元の位置に戻し、さらに、紫外線照射機構410を用いて有機複屈折膜406側から第2の紫外線を照射して紫外線硬化型接着剤を硬化させると実施例3の偏光分離素子の作製方法を実現できることから、透明基板からの有機複屈折膜のはみ出しや位置ズレをさらに抑制できる。
【0200】
なお、本実施例では紫外線照射機構410は1つであるため、第1、第2の紫外線照射では照射時間や照射距離などを変えて第1の紫外線と第2の紫外線を照射するが、光強度の異なる2つの紫外線照射機構を設け、各々第1の紫外線と第2の紫外線を照射してもよい。
【0201】
<実施例10>
図19は、本発明に係る有機複屈折膜の接着装置の別の一実施例を示す図である。
【0202】
本実施例における有機複屈折膜の接着装置は、透明基板503を保持するスピンテーブル501と、前記スピンテーブル501を回転させるステッピングモーターなどからなる回転機構(図示されていない)と、前記透明基板503に紫外線硬化型接着剤を塗布するディスペンサー504からなる塗布機構と、2本の吸着アーム507によって有機複屈折膜506の両端を保持し、透明基板503上に塗布された紫外線硬化型接着剤上に有機複屈折膜506を載置する載置機構508と、有機複屈折膜506側面に近接ないし接触する複数のピン502と、硬化前の紫外線硬化型接着剤を溶解しかつ有機複屈折膜506を溶解しない有機溶媒を透明基板503に滴下するリンス機構509と透明基板503に紫外線を照射する高圧水銀灯やメタルハライドランプなどからなる紫外線照射機構510から構成されている。
【0203】
なお、スピンテーブル501上において複数のピン502は、図示しない着脱機構によって遠隔操作でスピンテーブル501に固定でき、有機複屈折膜506の直径方向で対向する4箇所に配置できる。さらに、複数のピン502は前記の着脱機構によってスピンテーブル501からの取り外しが遠隔操作で行なえる。
【0204】
本実施例の接着装置を用いて有機複屈折膜を接着する手順を次に述べる。
直径165mm、厚さ1.5mmのショット製光学ガラスBK7からなる透明基板503をスピンテーブル501に載せ、真空吸着によってスピンテーブル501に固定する。
【0205】
その後、透明基板503の中央部にロボットアーム505によってディスペンサー504を移動し、スピンテーブル501を20rpmで回転させながら、透明基板503の中央部にディスペンサー504を用いて屈折率1.52のアクリル系紫外線硬化型接着剤を10g滴下する。
【0206】
その後、ディスペンサー504を元の位置に戻し、スピンテーブル501を300rpmで回転(第1の回転)させ、透明基板503全面に紫外線硬化型接着剤を広げ、その後スピンテーブル501の回転を停止する。
【0207】
その後、直径155mm、厚さ80μmの有機複屈折膜506の両端を載置機構508の2本の吸着アーム507に真空吸着して保持し、載置機構508を透明基板503上へ移動し、有機複屈折膜506の中心をスピンテーブル501の回転中心にほぼ合せながら2本の吸着アーム507の真空吸着を徐々に解除して紫外線硬化型接着剤の上に有機複屈折膜506を載せる。
【0208】
その後、載置機構508を元の位置に戻し、図示しない着脱機構によって複数のピン502を動かし、スピンテーブル501の開孔(図示せず)に複数のピン502を挿し込んで固定し、複数のピン502と有機複屈折膜506側面との距離を1〜2mmとした。
【0209】
その後、スピンテーブル501を3ステップで400rpmから900rpmに回転数を上げ(第2の回転)、紫外線硬化型接着剤を振り切り、接着層厚さを面内で一定にした。なお、スピンテーブル501に固定されている着脱可能な複数のピン502も第2の回転では透明基板503と同時に回転する。
【0210】
また、900rpmになってから有機複屈折膜506上にリンス機構509を移動して、硬化前の紫外線硬化型接着剤を溶解しかつ有機複屈折膜506を溶解しない有機溶媒(本実施例ではイソプロピルアルコールを使用)を滴下し、基板周辺部に残っていた紫外線硬化型接着剤を除去する。
【0211】
その後、スピンテーブル501の回転を停止し、リンス機構509を元の位置に戻す。その後、着脱機構によって複数のピン502をスピンテーブル501の開孔から外して退避させた後、透明基板503上に紫外線照射機構510を移動し、有機複屈折膜506側から紫外線を照射して紫外線硬化型接着剤を硬化させる。
【0212】
紫外線照射終了後、紫外線照射機構510を元の位置に戻し、スピンテーブル501の真空吸着を解除して有機複屈折膜506を接着した透明基板503を取り出す。
【0213】
上記のように、本実施例の接着装置を用いると、実施例2の偏光分離素子の作製方法を実現できるため、透明基板からの有機複屈折膜のはみ出しを防止できる。
【0214】
また、本実施例では、第2の回転の終了後に紫外線を照射して紫外線硬化型接着剤を硬化したが、第2の回転中に透明基板503上に紫外線照射機構510を移動し、有機複屈折膜506側から第1の紫外線を照射して紫外線硬化型接着剤を半硬化させ、その後、スピンテーブル501の回転を停止し、リンス機構509を元の位置に戻し、さらに、紫外線照射機構510から有機複屈折膜506側から第2の紫外線を照射して紫外線硬化型接着剤を硬化させてもよい。
【0215】
さらに、有機複屈折膜506に粘着剤を介して保護膜を付けると、実施例4、5の偏光分離素子の作製方法を実現できる。その結果、第2の回転中に有機複屈折膜506の剛性が向上し、有機複屈折膜506の側面がピン502に接触した場合も有機複屈折膜506が変形しにくくなり、有機複屈折膜506表面の平面性が改善される期待がある。
【0216】
また、保護膜を比較的厚くしてピン502が保護膜のみに接触するようにした場合は、ピン502の先端とスピンテーブル501との間隔を大きくでき、Z方向でのピン先端の位置精度を緩くでき、ピンの着脱機構を簡素化できる。
【0217】
さらに、有機複屈折膜506の面のうち回折格子を形成する面を保護膜で被覆した状態で行うことができるため、貼り合せ工程で回折格子を形成する面にキズや異物を付ける確率を著しく減らすことが可能となる。
【0218】
<実施例11>
図20は、本発明に係る有機複屈折膜の接着装置の別の一実施例を示す図である。
【0219】
本発明に係る有機複屈折膜の接着装置は、有機複屈折膜606を保持するスピンテーブル601と、前記スピンテーブル601を回転させるステッピングモーターなどからなる回転機構(図示されていない)と、前記有機複屈折膜606に紫外線硬化型接着剤を塗布するディスペンサー604からなる塗布機構と、2本の吸着アーム607によって透明基板603の両端を保持し、有機複屈折膜606上に塗布された紫外線硬化型接着剤上に透明基板603を載置する載置機構608と、透明基板603側面に近接ないし接触する複数のピン602と、硬化前の紫外線硬化型接着剤を溶解しかつ有機複屈折膜606を溶解しない有機溶媒を透明基板603に噴霧するリンス機構609と透明基板603に紫外線を照射する高圧水銀灯やメタルハライドランプなどからなる紫外線照射機構610から構成されている。
【0220】
なお、スピンテーブル601上において複数のピン602は、透明基板603の直径方向で対向する4箇所に設置・固定している。
【0221】
本実施例の接着装置を用いて有機複屈折膜を接着する手順を次に述べる。
直径155mm、厚さ80μmの有機複屈折膜606をスピンテーブル601に載せ、真空吸着によってスピンテーブル601に固定する。その後、有機複屈折膜606の中央部にロボットアーム605によってディスペンサー604を移動し、スピンテーブル601を20rpmで回転させながら、有機複屈折膜606の中央部にディスペンサー604を用いて屈折率1.58のエポキシ系紫外線硬化型接着剤を11g滴下する
【0222】
なお、スピンテーブル601は有機複屈折膜606と接触する面が多孔質のアルミナから形成されており、スピンテーブル601表面の表面粗さは3um以下に抑えられている。
【0223】
その後、ディスペンサー604を元の位置に戻し、スピンテーブル601を300rpmで回転(第1の回転)させ、有機複屈折膜606全面に紫外線硬化型接着剤を広げ、その後、スピンテーブル601の回転を停止する。
【0224】
その後、直径165mm、厚さ1.5mmのショット製光学ガラスBK7からなる透明基板603の両端を載置機構608の2本の吸着アーム607に真空吸着して保持し、載置機構608を有機複屈折膜606上へ移動し、透明基板603の中心をスピンテーブル601の回転中心にほぼ合せ、透明基板603を斜めに倒すように吸着アーム607を動かして紫外線硬化型接着剤の上に透明基板603を載せる。その際、スピンテーブル601に固定された複数のピン602は透明基板603側面と0.5〜1.5mmの距離で近接させるようにする。
【0225】
その後、載置装置608を元の位置に戻し、スピンテーブル601を3ステップで400rpmから900rpmに回転数を上げ(第2の回転)、紫外線硬化型接着剤を振り切り、接着層厚さを面内で一定にした。
【0226】
なお、スピンテーブル601に固定されている複数のピン602も第2の回転では有機複屈折膜606と同時に回転する。また900rpmになってから透明基板603の下部にリンス機構609を移動して、硬化前の紫外線硬化型接着剤を溶解しかつ有機複屈折膜606を溶解しない有機溶媒(本実施例ではアセトンを使用)を噴霧し、基板周辺部に残っていた紫外線硬化型接着剤を除去する。
【0227】
その後、スピンテーブル601の回転を停止し、リンス機構609を元の位置に戻す。そして透明基板603上に紫外線照射機構610を移動し、透明基板603側から紫外線を照射して紫外線硬化型接着剤を硬化させる。紫外線照射終了後、紫外線照射機構610を元の位置に戻し、スピンテーブル601の真空吸着を解除して有機複屈折膜606を接着した透明基板603を取り出す。
【0228】
上記のように本実施例の接着装置を用いると、実施例6の偏光分離素子の作製方法を実現できるため、透明基板からの有機複屈折膜のはみ出しを防止できる。
【0229】
また、スピンテーブル601の有機複屈折膜606と接触する面が多孔質であるため、真空吸着によってスピンテーブル601に有機複屈折膜606を固定する際に吸着穴に有機複屈折膜606が引き込まれないので、接着後は平面性のよい有機複屈折膜表面を得ることができる。
【0230】
また、本実施例では、第2の回転の終了後に紫外線を照射して紫外線硬化型接着剤を硬化したが、第2の回転中に透明基板603上に紫外線照射機構610を移動し、透明基板603側から第1の紫外線を照射して紫外線硬化型接着剤を半硬化させる。
【0231】
その後、スピンテーブル601の回転を停止し、リンス機構609を元の位置に戻し、さらに、紫外線照射機構610により透明基板603側から第2の紫外線を照射して紫外線硬化型接着剤を硬化させると、透明基板603の位置ずれをさらに抑制できるのでより望ましい。
【0232】
なお、本実施例では紫外線照射機構610は1つであるため、第1、第2の紫外線照射では照射時間や照射距離などを変えて第1の紫外線と第2の紫外線を照射するが、光強度の異なる2つの紫外線照射機構を設け、各々第1の紫外線と第2の紫外線を照射してもよい。
【0233】
【発明の効果】
以下、本発明の効果を請求項毎に述べる。
【0234】
a)請求項1に記載の偏光分離素子の作製方法は、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程が、透明基板に第1の回転を与えて透明基板全面に紫外線硬化型接着剤を塗布するステップと、該紫外線硬化型接着剤上に有機複屈折膜を載置するステップと、有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと透明基板に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を滴下しながら紫外線硬化型接着剤を振り切るステップと、透明基板に紫外線を照射して紫外線硬化型接着剤を硬化するステップを有するようにしている。
【0235】
そのため、スピンテーブルの回転中心に有機複屈折膜の中心が完全には載っていない場合においても、第2の回転中では少なくともピンを設けた方向については有機複屈折膜はその側面がピンに接触する位置までしかずれないため大きな位置ずれを抑制できる。
【0236】
その結果、紫外線を照射して接着剤を硬化させた後、次工程や装置内で基板を搬送する際に搬送不良が起きる確率を小さくすることができる。
【0237】
また、従来位置ずれ修正のため行われていた作業(有機複屈折膜の位置ずれが起きた場合スピンテーブルの回転を停止し、適切な位置へ有機複屈折膜を戻す作業を繰り返す)を少なくすることができるため、貼り付け工程のスループットが向上する。
【0238】
b)請求項2に記載の偏光分離素子の作製方法においては、有機複屈折膜側面に近接ないし接触する複数のピンが透明基板を回転させるスピンテーブルに着脱可能となっている。
【0239】
そのため、透明基板をスピンテーブルに載せる時は複数のピンを外した状態で行うことができ、透明基板をスピンテーブルに載せるための空間を確保するためにピンを設置できない領域を作る必要がない。その結果スピンテーブルに複数のピンを自由に配置できる。
【0240】
請求項3に記載の偏光分離素子の作製方法においては、有機複屈折膜側面に近接ないし接触する複数のピンは有機複屈折膜の直径方向で対向する4箇所に設けている。
【0241】
そのため、最小のピン数で有機複屈折膜の位置ずれをX,Yの4方向(+X,−X,+Y,−Y方向)で制限することができる。
【0242】
請求項4に記載の偏光分離素子の作製方法においては、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程が、透明基板に第1の回転を与えて全面に紫外線硬化型接着剤を塗布するステップと、紫外線硬化型接着剤上に有機複屈折膜を載置するステップと、有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと透明基板に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を滴下しながら紫外線硬化型接着剤を振り切るステップと、該第2の回転中に第1の紫外線を照射し紫外線硬化型接着剤を半硬化するステップと、透明基板に第2の紫外線を照射して紫外線硬化型接着剤を硬化するステップを有するようにしている。
【0243】
そのため、スピンテーブルの回転中心に有機複屈折膜の中心が完全には載っていない場合においても、第2の回転中では少なくともピンを設けた方向については有機複屈折膜はその側面がピンに接触する位置までしかずれないため大きな位置ずれを抑制できる。
【0244】
さらに、第1の紫外線照射によって紫外線硬化型接着剤は重合を開始して高粘度化するため、紫外線硬化型接着剤と有機複屈折膜との固着力が強まり、透明基板の回転によって起こる有機複屈折膜の位置ずれを低減できる。その結果、有機複屈折膜が透明基板からはみ出す頻度をさらに小さくできる。
【0245】
請求項5に記載の偏光分離素子の作製方法においては、有機複屈折膜側面に近接ないし接触する複数のピンが透明基板を回転させるスピンテーブルに着脱可能となっている。
【0246】
そのため、透明基板をスピンテーブルに載せる時は複数のピンを外した状態で行うことができ、透明基板をスピンテーブルに載せるための空間を確保するためにピンを設置できない領域を作る必要がない。その結果スピンテーブルに複数のピンを自由に配置できる。
【0247】
請求項6に記載の偏光分離素子の作製方法においては、有機複屈折膜側面に近接ないし接触する複数のピンは有機複屈折膜の直径方向で対向する4箇所に設けている。
【0248】
そのため、最小のピン数で有機複屈折膜の位置ずれをX,Yの4方向(+X,−X,+Y,−Y方向)で制限することができる。
【0249】
請求項7に記載の偏光分離素子の作製方法においては、有機複屈折膜は透明基板と接着する面と対向する面に粘着剤を介して保護膜が付いており、透明基板に第1の紫外線を照射した後に有機複屈折膜から保護膜を剥離する。
【0250】
また、請求項8に記載の偏光分離素子の作製方法において、有機複屈折膜は透明基板と接着する面と対向する面に粘着剤を介して保護膜が付いており、透明基板に第2の紫外線を照射した後に有機複屈折膜から保護膜を剥離する。
【0251】
そのため、第2の回転中は有機複屈折膜に粘着剤を介して保護膜がついているので、有機複屈折膜の剛性が大きくなり、第2の回転中に有機複屈折膜側面がピンに接触した場合も有機複屈折膜が変形しにくくなり、有機複屈折膜表面の平面性が改善される。
【0252】
また、保護膜を比較的厚くしてピンが保護膜のみに接触するようにした場合は、ピン先端とスピンテーブルとの間隔を大きくでき、Z方向でのピン先端の位置精度を緩くでき、ピンの着脱機構を簡素化できる。
【0253】
さらに、透明基板と有機複屈折膜の貼り合せる場合に、有機複屈折膜の面のうち回折格子を形成する面を保護膜で被覆した状態で行うことができる。そのため貼り合せ工程で回折格子を形成する面にキズや異物を付ける確率が著しく減らすことができる。
【0254】
特に、スピンテーブルを回転させ、紫外線硬化型接着剤を振り切る工程において、振り切った接着剤のミストが回折格子を形成する面に付着しない(接着剤のミストは保護膜に付き、紫外線照射後保護膜を剥離するので、有機複屈折膜表面には残らない)ため、異物の非常に少ない有機複屈折膜表面を実現できる。そのためリソグラフィー工程において異物やキズによって発生するパターン欠陥を低減でき、偏光分離素子の製造歩留を向上できる。
【0255】
請求項9に記載の偏光分子素子の作製方法においては、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程が、有機複屈折膜に第1の回転を与えて有機複屈折膜全面に紫外線硬化型接着剤を塗布するステップと、紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置するステップと、透明基板側面に近接ないし接触するように設けられた複数のピンと有機複屈折膜に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を噴霧しながら紫外線硬化型接着剤を振り切るステップと、有機複屈折膜に紫外線を照射して紫外線硬化型接着剤を硬化するステップとを有するようにしたものである。
【0256】
そのため、スピンテーブルの回転中心に透明基板の中心が完全には載っていない場合においても、第2の回転中では少なくともピンを設けた方向については透明基板はその側面がピンに接触する位置までしかずれないため大きな位置ずれを抑制できる。
【0257】
その結果、紫外線を照射して接着剤を硬化させた後、次工程や装置内で基板を搬送する際に搬送不良が起きる確率を小さくすることができる。
【0258】
また、透明基板は有機複屈折膜よりも大きいため、スピンテーブルに設ける複数のピンのうち対向する2本のピンの間隔は透明基板の直径と同等以上にしているので、透明基板よりも小さい有機複屈折膜は複数のピンに邪魔されず、スピンテーブルの上に載置することができる。その結果、スピンテーブルに複数のピンを自由に配置できる。
【0259】
請求項10に記載の偏光分離素子の作製方法においては、透明基板側面に近接ないし接触する複数のピンは透明基板の直径方向で対向する4箇所に設けているので、最小のピン数で透明基板の位置ずれをX,Yの4方向(+X,−X,+Y,−Y方向)で制限することができる。
【0260】
請求項11に記載の偏光分離素子の作製方法においては、透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程が、有機複屈折膜に第1の回転を与えて有機複屈折膜全面に紫外線硬化型接着剤を塗布するステップと、紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置するステップと、透明基板側面に近接ないし接触するように設けられた複数のピンと有機複屈折膜に第2の回転を与えて有機複屈折膜表面を平坦化するステップと、第2の回転中に紫外線硬化型接着剤を溶解しかつ有機複屈折膜を溶解しない有機溶媒を噴霧しながら紫外線硬化型接着剤を振り切るステップと、該第2の回転中に第1の紫外線を照射し紫外線硬化型接着剤を半硬化するステップと、有機複屈折膜に第2の紫外線を照射して紫外線硬化型接着剤を硬化するステップを有するようにしたものである。
【0261】
そのため、スピンテーブルの回転中心に透明基板の中心が完全には載っていない場合においても、第2の回転中では少なくともピンを設けた方向については透明基板はその側面がピンに接触する位置までしかずれないため大きな位置ずれを抑制できる。
【0262】
さらに、第1の紫外線照射によって紫外線硬化型接着剤は重合を開始して高粘度化するため、紫外線硬化型接着剤と有機複屈折膜との固着力が強まり、有機複屈折膜の回転によって起こる透明基板の位置ずれを低減できる。その結果、有機複屈折膜が透明基板からはみ出す頻度をさらに小さくできる。
【0263】
請求項12に記載の偏光分離素子の作製方法において、透明基板側面に近接ないし接触する複数のピンは透明基板の直径方向で対向する4箇所に設けている。
そのため最小のピン数で透明基板の位置ずれをX,Yの4方向(+X,−X,+Y,−Y方向)で制限することができる。
【0269】
請求項13の有機複屈折膜の接着装置は、透明基板を保持するスピンテーブルと、スピンテーブルを回転させる回転機構と、透明基板に紫外線硬化型接着剤を塗布する塗布機構と、透明基板上に塗布された紫外線硬化型接着剤上に有機複屈折膜を載置する載置機構と、有機複屈折膜側面に近接ないし接触するように設けた複数のピンと、紫外線硬化型接着剤は溶解するが有機複屈折膜は溶解しない有機溶媒を透明基板に滴下するリンス機構と、透明基板に紫外線を照射する紫外線照射機構からなるので、請求項1、4の偏光分離素子の作製方法を実現できる。
【0270】
また、有機複屈折膜に透明基板と接着する面と対向する面に粘着剤を介して保護膜を付けると、請求項7、8の偏光分離素子の作製方法を実現できる。
【0271】
請求項14の有機複屈折膜の接着装置は、複数のピンをスピンテーブルから着脱する着脱機構を有しているので、請求項2、5の偏光分離素子の作製方法を実現できる。また複数のピンを有機複屈折膜の直径方向で対向する4箇所に設けると、請求項3、6の偏光分離素子の作製方法を実現できる。
【0272】
さらに、有機複屈折膜は透明基板と接着する面と対向する面に粘着剤を介して保護膜を付けると、請求項7、8の偏光分離素子の作製方法を実現できる。
【0273】
請求項15の有機複屈折膜の接着装置は、有機複屈折膜を保持するスピンテーブルと、スピンテーブルを回転させる回転機構と、有機複屈折膜に紫外線硬化型接着剤を塗布する塗布機構と、有機複屈折膜に塗布された紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置する載置機構と、透明基板側面に近接ないし接触する複数のピンと、紫外線硬化型接着剤は溶解するが有機複屈折膜は溶解しない有機溶媒を透明基板に噴霧するリンス機構と、有機複屈折膜に紫外線を照射する紫外線照射機構からなるので、請求項9、11の偏光分離素子の作製方法を実現できる。
【0274】
また、複数のピンを透明基板の直径方向で対向する4箇所に設けると、請求項10、12の偏光分離素子の作製方法を実現できる。
【0275】
請求項16に記載の有機複屈折膜の接着装置においては、スピンテーブルの有機複屈折膜と接触する面が多孔質である。そのためマイクロポアを吸着穴として利用できるため、有機複屈折膜を真空吸着で固定する際に吸着穴に有機複屈折膜を引き込まず、接着後では平滑な有機複屈折膜表面を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る偏光分離素子の作製方法の一実施例(実施例1)を示す図である(その1)。
【図2】本発明に係る偏光分離素子の作製方法の一実施例(実施例1)を示す図である(その2)。
【図3】実施例1におけるピン配置を示す図である。
【図4】本発明に係る偏光分離素子の作製方法の一実施例(実施例2)を示す図である(その1)。
【図5】本発明に係る偏光分離素子の作製方法の一実施例(実施例2)を示す図である(その2)。
【図6】実施例2におけるピン配置を示す図である。
【図7】本発明に係る偏光分離素子の作製方法の一実施例(実施例3)を示す図である(その1)。
【図8】本発明に係る偏光分離素子の作製方法の一実施例(実施例3)を示す図である(その2)。
【図9】本発明に係る偏光分離素子の作製方法の一実施例(実施例4)を示す図である(その1)。
【図10】本発明に係る偏光分離素子の作製方法の一実施例(実施例4)を示す図である(その2)。
【図11】本発明に係る偏光分離素子の作製方法の一実施例(実施例5)を示す図である(その1)。
【図12】本発明に係る偏光分離素子の作製方法の一実施例(実施例5)を示す図である(その2)。
【図13】本発明に係る偏光分離素子の作製方法の一実施例(実施例6)を示す図である(その1)。
【図14】本発明に係る偏光分離素子の作製方法の一実施例(実施例6)を示す図である(その2)。
【図15】実施例6におけるピン配置を示す図である。
【図16】本発明に係る光ピックアップ(CD用)の構成の一実施例(実施例7)を示す図である。
【図17】本発明に係る光ピックアップ(DVD用)の構成の一実施例(実施例8)を示す図である。
【図18】本発明に係る有機複屈折膜の接着装置の一実施例(実施例9)を示す図である。
【図19】本発明に係る有機複屈折膜の接着装置の別の一実施例(実施例10)を示す図である。
【図20】本発明に係る有機複屈折膜の接着装置の別の一実施例(実施例11)を示す図である。
【図21】スピンナー法による貼り合せ光ディスクの作製工程を説明するための図である。
【図22】スピンテーブル上の有機複屈折膜が位置ずれを起こす例を説明するための図である。
【.符号の説明】
1,21,41,61,81,101,401,501,601,801,901:スピンテーブル、
2,22,42,62,82,102,402,502,602:ピン、
3,23,43,63,83,103,403,503,603,903:透明基板、
4,44,64,104,404,504,604:ディスペンサー、
5,25,45,65,85,105,805,905:紫外線硬化型接着剤、
6,26,46,66,86,106,406,506,606,906:有機複屈折膜、
7,27,47,67,87,107:有機溶剤、
8,28:紫外線、
9,29,49,69,89,109:回折格子、
11,31,51,71,91,111:等方性接着剤、
12,32,52,72,92,112:対向透明基板、
13,33,53,73,93,113:ダイシングソー、
14,34,54,74,94,114:偏光分離素子、
201,301:レーザーダイオード、
202,302:偏光分離素子、
203,303:コリメータレンズ、
204,304:λ/4波長板、
205,305:対物レンズ、
206:CD−RW、
207,307:フォトダイオード、
306:DVD、
405,505,605:ロボットアーム、
407,507,607:吸着アーム、
408,508,608:載置機構、
409,509,609:リンス機構、
410,510,610:紫外線照射機構、
661,861:保護膜、
662,862:粘着剤、
802:センターピン、
803:第1の基板、
804,807:ハブ、
806:第2の基板、
808:紫外線(UV)
809:貼り合せ光ディスク。
Claims (16)
- 透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、
前記接着工程が、
前記透明基板に第1の回転を与えて前記透明基板全面に紫外線硬化型接着剤を塗布するステップと、
該紫外線硬化型接着剤上に有機複屈折膜を載置するステップと、
前記有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと前記透明基板に第2の回転を与えて前記有機複屈折膜表面を平坦化するステップと、
前記第2の回転中に前記紫外線硬化型接着剤を溶解しかつ前記有機複屈折膜を溶解しない有機溶媒を滴下しながら前記紫外線硬化型接着剤を振り切るステップと、
前記透明基板に紫外線を照射して前記紫外線硬化型接着剤を硬化するステップ
を有することを特徴とする偏光分離素子の作製方法。 - 請求項1記載の偏光分離素子の作製方法において、
前記複数のピンは、前記透明基板を回転させるスピンテーブルに着脱可能であることを特徴とする偏光分離素子の作製方法。 - 請求項1または2記載の偏光分離素子の作製方法において、
前記複数のピンは、前記有機複屈折膜の直径方向で対向する4箇所に設けられることを特徴とする偏光分離素子の作製方法。 - 透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて前記有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、
前記接着工程が、
前記透明基板に第1の回転を与えて全面に紫外線硬化型接着剤を塗布するステップと、
前記紫外線硬化型接着剤上に有機複屈折膜を載置するステップと、
前記有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと前記透明基板に第2の回転を与えて前記有機複屈折膜表面を平坦化するステップと、
前記第2の回転中に前記紫外線硬化型接着剤を溶解しかつ前記有機複屈折膜を溶解しない有機溶媒を滴下しながら前記紫外線硬化型接着剤を振り切るステップと、
該第2の回転中に第1の紫外線を照射し紫外線硬化型接着剤を半硬化するステップと、前記透明基板に第2の紫外線を照射して紫外線硬化型接着剤を硬化するステップ
を有することを特徴とする偏光分離素子の作製方法。 - 請求項4記載の偏光分離素子の作製方法において、
前記複数のピンは、前記透明基板を回転させるスピンテーブルに着脱可能であることを特徴とする偏光分離素子の作製方法。 - 請求項4または5記載の偏光分離素子の作製方法において、
前記複数のピンは、有機複屈折膜の直径方向で対向する4箇所に設けられることを特徴とする偏光分離素子の作製方法。 - 請求項4から6のいずれかに記載の偏光分離素子の作製方法において、
前記有機複屈折膜は、前記透明基板と接着する面と対向する面に粘着剤を介して保護膜を備え、前記透明基板に第1の紫外線を照射した後に前記有機複屈折膜から前記保護膜を剥離することを特徴とする偏光分離素子の作製方法。 - 請求項4から6のいずれかに記載の偏光分離素子の作製方法において、
前記有機複屈折膜は、前記透明基板と接着する面と対向する面に粘着剤を介して保護膜を備え、前記透明基板に第2の紫外線を照射した後に前記有機複屈折膜から前記保護膜を剥離することを特徴とする偏光分離素子の作製方法。 - 透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて前記有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、
前記接着工程が、前記有機複屈折膜に第1の回転を与えて前記有機複屈折膜全面に前記紫外線硬化型接着剤を塗布するステップと、
前記紫外線硬化型接着剤上に前記有機複屈折膜よりもサイズの大きい透明基板を載置するステップと、
前記透明基板側面に近接ないし接触するように設けられた複数のピンと前記有機複屈折膜に第2の回転を与えて前記有機複屈折膜表面を平坦化するステップと、
前記第2の回転中に前記紫外線硬化型接着剤を溶解しかつ前記有機複屈折膜を溶解しない有機溶媒を噴霧しながら前記紫外線硬化型接着剤を振り切るステップと、
前記有機複屈折膜に紫外線を照射して前記紫外線硬化型接着剤を硬化するステップと
を有することを特徴とする偏光分離素子の作製方法。 - 請求項9記載の偏光分離素子の作製方法において、
前記複数のピンは、前記透明基板の直径方向で対向する4箇所に設けられることを特徴とする偏光分離素子の作製方法。 - 透明基板上に入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、前記有機複屈折膜上にマスクパターンを形成し、該マスクパターンを用いて有機複屈折膜をエッチングし回折格子を形成する工程を有する偏光分離素子の作製方法において、
前記接着工程が、
前記有機複屈折膜に第1の回転を与えて前記有機複屈折膜全面に紫外線硬化型接着剤を塗布するステップと、
前記紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置するステップと、
前記透明基板側面に近接ないし接触するように設けられた複数のピンと前記有機複屈折膜に第2の回転を与えて前記有機複屈折膜表面を平坦化するステップと、
前記第2の回転中に前記紫外線硬化型接着剤を溶解しかつ前記有機複屈折膜を溶解しない有機溶媒を噴霧しながら前記紫外線硬化型接着剤を振り切るステップと、
該第2の回転中に第1の紫外線を照射し前記紫外線硬化型接着剤を半硬化するステップと、
前記有機複屈折膜に第2の紫外線を照射して前記紫外線硬化型接着剤を硬化するステップ
を有することを特徴とする偏光分離素子の作製方法。 - 請求項11記載の偏光分離素子の作製方法において、
前記複数のピンは、前記透明基板の直径方向で対向する4箇所に設けられることを特徴とする偏光分離素子の作製方法。 - 透明基板を保持するスピンテーブルと、該スピンテーブルを回転させる回転機構と、前記透明基板に紫外線硬化型接着剤を塗布する塗布機構と、前記透明基板上に塗布された紫外線硬化型接着剤上に有機複屈折膜を載置する載置機構と、前記有機複屈折膜側面に近接ないし接触するように設けられた複数のピンと、前記紫外線硬化型接着剤は溶解するが前記有機複屈折膜は溶解しない有機溶媒を前記透明基板に滴下するリンス機構と、前記透明基板に紫外線を照射する紫外線照射機構とを有することを特徴とする有機複屈折膜の接着装置。
- 請求項13記載の有機複屈折膜の接着装置において、
前記複数のピンをスピンテーブルから着脱する着脱機構を有することを特徴とする有機複屈折膜の接着装置。 - 有機複屈折膜を保持するスピンテーブルと、該スピンテーブルを回転させる回転機構と、前記有機複屈折膜に紫外線硬化型接着剤を塗布する塗布機構と、前記有機複屈折膜に塗布された紫外線硬化型接着剤上に有機複屈折膜よりもサイズの大きい透明基板を載置する載置機構と、前記透明基板側面に近接ないし接触する複数のピンと、前記紫外線硬化型接着剤は溶解するが前記有機複屈折膜は溶解しない有機溶媒を前記透明基板に噴霧するリンス機構と、前記有機複屈折膜に紫外線を照射する紫外線照射機構と、を有することを特徴とする有機複屈折膜の接着装置。
- 請求項15記載の有機複屈折膜の接着装置において、
前記スピンテーブルの有機複屈折膜と接触する面が多孔質であることを特徴とする有機複屈折膜の接着装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003013304A JP4229709B2 (ja) | 2003-01-22 | 2003-01-22 | 偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003013304A JP4229709B2 (ja) | 2003-01-22 | 2003-01-22 | 偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004226610A JP2004226610A (ja) | 2004-08-12 |
JP4229709B2 true JP4229709B2 (ja) | 2009-02-25 |
Family
ID=32901667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003013304A Expired - Fee Related JP4229709B2 (ja) | 2003-01-22 | 2003-01-22 | 偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4229709B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008014778A1 (de) | 2008-03-18 | 2009-09-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Diffraktives Element mit hoher Wellenfrontebenheit |
-
2003
- 2003-01-22 JP JP2003013304A patent/JP4229709B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004226610A (ja) | 2004-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3618057B2 (ja) | 光学素子の製造装置 | |
JP4280567B2 (ja) | 偏光光学素子とその製造方法 | |
JP4229709B2 (ja) | 偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置 | |
JP4440706B2 (ja) | 偏光ホログラム素子、その製造方法、および偏光ホログラム素子を用いた光ピックアップ装置、および光ディスクドライブ装置 | |
JP4222860B2 (ja) | 有機複屈折膜を用いた偏光分離素子の作製方法およびそれに用いる有機複屈折膜の接着装置 | |
JP4084078B2 (ja) | 偏光分離素子の作製方法及び偏光分離素子、光ピックアップ装置、接着装置 | |
JP4139129B2 (ja) | 偏光分離素子の作製方法、接着装置及び光ピックアップ装置 | |
JP4237020B2 (ja) | 偏光分離素子の作製方法 | |
JP4421249B2 (ja) | 偏光分離素子の製造方法 | |
JP4116317B2 (ja) | 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置 | |
JP4283621B2 (ja) | 偏光分離素子の作製方法、偏光分離素子および光ピックアップ装置 | |
JPH11311711A (ja) | 光学素子の製造方法および製造された光学素子 | |
JP4445288B2 (ja) | アライメント接着方法、アライメント接着装置、光学素子、光ピックアップ装置 | |
JP4259894B2 (ja) | 偏光分離素子の作製方法 | |
JP2003302529A (ja) | 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置 | |
JP3196364B2 (ja) | 薄膜磁気ヘッド用スライダ及びその製造方法 | |
JP2004286892A (ja) | アライメント装置、アライメント接着装置、アライメントマーク及び接着方法 | |
JP2005249856A (ja) | アライメント接合方法、アライメント接合装置、光学素子 | |
JP2005242038A (ja) | 位相差板の製造方法 | |
JP2004109342A (ja) | 偏光分離素子及びその製造方法 | |
JP4084071B2 (ja) | 偏光分離素子の作製方法及び偏光分離素子、ホログラムレーザーユニット、光ピックアップ | |
JP2003302528A (ja) | 偏光分離素子の製造方法・偏光分離素子・偏光分離素子の製造装置 | |
JP2004055018A (ja) | 光学記録媒体およびその修理方法 | |
JP2003294919A (ja) | プリズムおよび光学装置の製造方法 | |
JP2003272252A (ja) | スタンパの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |