[go: up one dir, main page]

JP4116317B2 - 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置 - Google Patents

偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置 Download PDF

Info

Publication number
JP4116317B2
JP4116317B2 JP2002109223A JP2002109223A JP4116317B2 JP 4116317 B2 JP4116317 B2 JP 4116317B2 JP 2002109223 A JP2002109223 A JP 2002109223A JP 2002109223 A JP2002109223 A JP 2002109223A JP 4116317 B2 JP4116317 B2 JP 4116317B2
Authority
JP
Japan
Prior art keywords
curable adhesive
organic birefringent
transparent substrate
birefringent film
ultraviolet curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002109223A
Other languages
English (en)
Other versions
JP2003302527A (ja
Inventor
明繁 村上
康弘 東
秀一 曳地
孝二 森
哲司 守
剛 鈴土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002109223A priority Critical patent/JP4116317B2/ja
Publication of JP2003302527A publication Critical patent/JP2003302527A/ja
Application granted granted Critical
Publication of JP4116317B2 publication Critical patent/JP4116317B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置に関する。
【0002】
【従来の技術】
光ディスク用の光ピックアップ装置では、光源からの入射光束と「光ディスクにより反射され光ディスクの情報を帯びた戻り光束」とを分離して、戻り光束を効率良く光検出手段に導くために偏光分離素子が用いられている。偏光分離素子として「プリズムを接着したビームスプリッタ」が、λ/4波長板とともに用いられているが、光ピックアップ装置の小型化・低コスト化の要請に答えるため、薄型化の可能な「複屈折回折格子型の偏光分離素子」の使用が意図されている。
【0003】
特開2000−7513号公報は、この種の偏光分離素子として、透明基板上に「入射光の異なる振動面に対し屈折率が異なる有機複屈折膜」を接着し、この有機複屈折膜の表面に周期的な凹凸による回折格子を形成したものを開示している。有機複屈折膜としては「延伸した有機高分子膜」が用いられている。
【0004】
この偏光分離素子では、接着剤を用いて有機複屈折膜を透明基板に接着しているが、回折格子を透過する光束に対して光路長を一定にするためには、接着剤層の厚さを均一にして有機複屈折膜の表面を平坦化する必要があり、接着の際に、接着される有機複屈折膜に「うねり」や「波打ち」が生じないようにしなければならない。さらに、接着剤層に気泡が入ると、入射・射出光束が気泡により散乱されて回折効率が低下するため、気泡を巻き込まない接着法が必要となる。
【0005】
【発明が解決しようとする課題】
この発明は、有機複屈折膜を用いる偏光分離素子の製造過程において、有機複屈折膜を透明基板に接着する際、接着剤層の層厚を均一化し、接着剤層に気泡を巻き込むことなく有機複屈折膜の表面を良好に平坦化できる「偏光分離素子の作製方法」、この方法を実現するための「接着装置」、上記方法により作製され、有機複屈折膜の表面が平坦な「偏光分離素子」、さらにこの偏光分離素子を用いた「光ピックアップ装置」の実現を課題とする。
【0006】
【課題を解決するための手段】
この発明の偏光分離素子の作製方法は「透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程と」を有する、偏光分離素子の作製方法であって以下の点を特徴とする。
【0007】
即ち、請求項1記載の作製方法は、接着工程が「透明基板に第1の回転を与えて透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に有機複屈折膜を載置し、透明基板に第2の回転を与えて有機複屈折膜表面を平坦化した後、紫外線硬化型接着剤に紫外線を照射して紫外線硬化型接着剤を硬化する工程」からなることを特徴とする。
【0008】
請求項2記載の作製方法は、接着工程が「透明基板に第1の回転を与えて透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に有機複屈折膜を載置し、透明基板に第2の回転を与えて有機複屈折膜表面を平坦化しつつ、第2の回転中に紫外線硬化型接着剤に紫外線を照射して紫外線硬化型接着剤を硬化する工程」からなることを特徴とする。
【0009】
請求項3記載の作製方法は、接着工程が「スプレー法により透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に有機複屈折膜を載置し、透明基板に第3の回転を与えて有機複屈折膜表面を平坦化した後、紫外線硬化型接着剤に紫外線を照射して紫外線硬化型接着剤を硬化する工程」からなることを特徴とする。上記「第3の回転」は、前述の「第1、第2の回転」と区別するためにこのように命名されている。
【0010】
請求項4記載の作製方法は、接着工程が「スプレー法により透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に有機複屈折膜を載置し、透明基板に第3の回転を与えて有機複屈折膜表面を平坦化しつつ、第3の回転中に紫外線硬化型接着剤に紫外線を照射して紫外線硬化型接着剤を硬化する工程」からなることを特徴とする。
【0011】
請求項5記載の作製方法は、接着工程が「ロールコーターにより透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に有機複屈折膜を載置し、透明基板に第4の回転を与えて有機複屈折膜表面を平坦化した後、紫外線硬化型接着剤に紫外線を照射して紫外線硬化型接着剤を硬化する工程」からなることを特徴とする。上記「第4の回転」は、前述の「第1、第2、第3の回転」と区別するためにこのように命名されている。
【0012】
請求項6記載の作製方法は、接着工程が「ロールコーターにより透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に有機複屈折膜を載置し、透明基板に第4の回転を与えて有機複屈折膜表面を平坦化しつつ、第4の回転中に紫外線硬化型接着剤に紫外線を照射して紫外線硬化型接着剤を硬化する工程」からなることを特徴とする。
【0013】
上述の如く、この発明においては、有機複屈折膜は、透明基板上に紫外線硬化型接着剤により接着されるが、紫外線硬化型接着剤の層を透明基板上に塗布形成する方法としては、回転による塗布、スプレーによる塗布、ロールコーターによる塗布が可能である。これらの方法により形成された紫外線硬化型接着剤の層上に載置される有機複屈折膜は、直径:100mmの円形状で厚さ:50μm以上である。有機複屈折膜は、膜中心と回転中心を合わせて、紫外線硬化型接着剤の層上に載置される。
透明基板に与えられる回転(上記第2、第3、第4の回転)は1000〜3000rpmの回転速度を有し、この回転による遠心力の作用を受けて「波打ち」や「うねり」が矯正される。
【0014】
この「回転」が開始される際、紫外線硬化型接着剤は未だ固化していない流動状態にあるので、やはり遠心力の作用を受けて層厚を均一化される。
【0015】
紫外線硬化型接着剤に紫外線を照射する時期は、上記の如く、第2、第3、第4の回転が行われた後でもよいし、第2、第3、第4の回転の最中において行っても良い。紫外線の照射は、通常、有機複屈折膜を介して行われる。
【0016】
上記請求項1〜6の任意の1に記載の偏光分離素子の作製方法で、紫外線硬化型接着剤の、塗布後の層厚:Tc、紫外線照射による硬化後の紫外線硬化型接着剤の層厚:Tadは、Tc>Tadとなることができる(請求項7)。
【0017】
請求項1〜7の任意の1に記載の偏光分離素子の作製方法は上記の如く「有機複屈折膜の膜厚を50μm以上」として行われる。
【0018】
請求項1〜7の任意の1に記載の偏光分離素子の作製方法は「透明基板に接着する面と反対側の面に粘着剤を介して保護膜を設けた有機複屈折膜」を、紫外線硬化型接着剤の層上に載置し、紫外線照射による紫外線硬化型接着剤の硬化後に、有機複屈折膜から保護膜を剥離するようにできる(請求項8)。
【0019】
この発明の偏光分離素子は、上記請求項1〜8の任意の1に記載の作製方法により作製されたものである(請求項9)。この発明の光ピックアップ装置は、請求項9記載の偏光分離素子を用いたものである(請求項10)。
【0020】
この発明の接着装置は、上記請求項1〜8の任意の1に記載の作製方法において、接着工程を実施するための装置であって、スピンテーブルと、回転機構と、塗布機構と、載置機構と、紫外線照射機構とを有する(請求項11)。
【0021】
「スピンテーブル」は、透明基板を保持するためのものである。
「回転機構」は、スピンテーブルを回転させる機構である。
「塗布機構」は、スピンテーブルに保持された透明基板に紫外線硬化型接着剤を塗布する機構である。
【0022】
「載置機構」は、透明基板上に塗布された紫外線硬化型接着剤の上に有機複屈折膜を載置する機構である。
「紫外線照射機構」は、透明基板上に層状に形成された紫外線硬化型接着剤に紫外線を照射する機構である。
【0023】
【発明の実施の形態】
以下に「偏光分離素子の作製方法」の実施の形態を、具体的な実施例に即して説明する。
【0024】
【実施例】
実施例1
図1において、符号10はスピンテーブルを示している。
【0025】
図1(a)に示すように、スピンテーブル10の上に透明基板1を載置する。透明基板1はショット製光学ガラス「BK7」によるもので、直径:100mm、厚さ:1.0mmの円板形状であり、真空吸着でスピンテーブル10に固定的に保持される。
【0026】
透明基板1のセット後、スピンテーブル10を10〜50rpmで回転させつつ、ディスペンサー12を用いて、屈折率:1.52、粘度:500cpのアクリル系の紫外線硬化型接着剤3を3〜10g、透明基板1の中央部に滴下し、次いでスピンテーブル10を150〜500rpmで回転(第1の回転)させ、透明基板1の全面に紫外線硬化型接着剤3を広げた後、スピンテーブル10の回転を停止する。
【0027】
この状態で、図1(b)に示すように透明基板1上に紫外線硬化型接着剤3の層が形成される。
【0028】
続いて、図1(c)に示すように、直径:100mm、厚さ:100μmの有機複屈折膜5を、その中心をスピンテーブル10の回転中心にほぼ合せながら、図示されない載置装置を用いて、紫外線硬化型接着剤3の層上に載置したのち、スピンテーブル10を1000〜3000rpmで回転(第2の回転)させ、剰余の紫外線硬化型接着剤を振り切り、接着剤層の厚さを透明基板1の基板面上で均一化するとともに、有機複屈折膜5の表面を平坦化する(図1(d))。
【0029】
その後、スピンテーブル10の回転を停止し、図1(e)に示すように、有機複屈折膜5の側から図示されない「高圧水銀灯」を用いて紫外線UVを照射し、紫外線硬化型接着剤3を硬化させる。
【0030】
このようにして有機複屈折膜5が接着された透明基板1(以下、単に「基板」と言う)をスピンテーブル10から外し、有機複屈折膜5上にポジレジストを厚さ:1.1μmに塗布し、90℃の温度で30分のプリベークを行ったのち、基板を「縮小投影露光装置(NA=0.45、σ=0.6、波長:i線)」にセットし、「1000周期分の1.5μmラインアンドスペースパターン」のレチクルを用いて露光し、現像液NMD−3を用いて現像を行い、100℃の温度で30分のポストベークを行い周期的なレジストパターンを完成させる。
【0031】
上記レジストパターン上にスパッタ法でAlを蒸着し、アセトンを用いてレジストを溶解してAlのリフトオフを行い、レジストパターンを反転させたAlパターンを完成させ、次いで、ECRエッチング装置を用い、酸素ガスを主成分とするエッチングガス雰囲気中で、上記Alパターンを金属マスクとして有機複屈折膜を深さ4μmエッチングし、リン酸系のAlエッチング液を用いてAlパターンを除去し、1000周期分の凹凸による回折格子を完成させる。
【0032】
図1(f)は、回折格子を形成した状態を説明図的に示している。
付言すると、図1(f)において、有機複屈折膜5の上面に形成されている凹凸における「個々の凸部」に上記「1000周期分の凹凸による回折格子」が形成されている。即ち、回折格子は、有機複屈折膜5の上面に、同じものが数100個形成される。
【0033】
このように回折格子を形成された基板を、平面加工した直径:200mm、厚み:50mmのステンレス台上に載置し、回折格子面に「光学的に等方的なアクリル系の紫外線硬化型接着剤(以下「等方性接着剤」と言う)」をマイクロシリンジで1.0ml滴下し、両面を光学研磨した直径:100mm、厚み:1mmの円板状の対向透明基板(材質:ショット製光学ガラスBK7)の片面に「粘着剤が塗布されたλ/4波長板」を貼付け、λ/4波長板を貼り付けた面を等方性接着剤側にして等方性接着剤上に載置する。
【0034】
対向透明基板上に「光学研磨した光学ガラス」を載せて対向透明基板に100gf/cmの圧力を加え、等方性接着剤を被接着面全面に広げる。なお、対向透明基板の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜を形成している。この状態で対向透明基板を通して紫外線を照射して等方性接着剤を硬化させる。
【0035】
図1(g)は、等方性接着剤を硬化させた状態を示している。符号6は「等方性接着剤」、符号7は「λ/4波長板」、符号8は「粘着剤」、符号9は「対向透明基板」を示している。反射防止膜は図示を省略されている。この状態を「中間完成体」と呼び、符号1Aで示す。
【0036】
次いで、図1(h)に示すように、中間完成体1Aに含まれている数100個の回折格子を、ダイシングソー15を用いて「5mm角(各々が、1個の回折格子を有する)」に切りだし、偏光分離素子100(複数個)を完成させる。
【0037】
この作製方法によると、第1の回転により透明基板全面に紫外線硬化型接着剤が塗布されるため、透明基板上に「接着剤が無い領域」が生じない。そのため、接着剤を塗布した透明基板に有機複屈折膜を載置すると、有機複屈折膜は全面に渡って接着剤層を介して透明基板表面と接するので、紫外線照射によって全面接着が可能となる。
【0038】
なお上記例では、透明基板1をスピンテーブル10に固定後、スピンテーブル10を回転させながら透明基板1の中央部にアクリル系の紫外線硬化型接着剤を滴下して接着剤を塗布したが、接着剤の塗付方法は上記方法に限定されるものでは無く、透明基板1をスピンテーブル10に固定し、スピンテーブル10を停止したまま透明基板1の中央部に接着剤を滴下し、その後、スピンテーブル10を回転させて透明基板全面に接着剤を広げても良い。
【0039】
また、上記例では紫外線硬化型接着剤3を室温で塗布したが、紫外線硬化型接着剤3の粘度が高く、有機複屈折膜5を載せたときに紫外線硬化型接着剤3の流動性が乏しく、気泡を巻き込みやすい場合は、紫外線硬化型接着剤3が塗布された透明基板1をオーブンや赤外線ランプ等で加熱し、紫外線硬化型接着剤の粘度を低下させた後に有機複屈折膜5を載置するか、あるいは、紫外線硬化型接着剤3をオーブン等で予め加熱し、紫外線硬化型接着剤3の粘度を低下させた後に第1の回転によって透明基板1に塗布し、その後に有機複屈折膜5を載置するのが良い。
【0040】
上記実施例1の作製プロセスの接着工程(透明基板に接着剤層を塗布形成し、形成された接着剤層上に有機複屈折膜を載置し、第2の回転後、紫外線照射により接着剤層を固化させる)において、第1の回転の回転数を300〜500rpmの3水準に変化させ、第2の回転の回転数を1000〜3000rpmの4水準に変化させ、他の条件は同一として6種の基板体(直径:100mm、厚さ:1mの円板状の透明基板上に、紫外線硬化型接着剤の塗布層を介して、直径:100mm、厚さ:100μmの円形状の有機複屈折膜を接着したもの)A〜Fを作製した。
【0041】
これら基板体A〜Fに対し、有機複屈折膜表面の平坦度を触針式の表面粗さ計で測定した。「平坦度」は、完成品である個々の偏光分離素子の最大長(上記例では5mmに相当)の範囲における有機複屈折膜表面の「うねりや波打ちを含めた最大表面粗さ」であり、基板体A〜Fの任意の5点を測定長:5mmで「うねりや波打ちを含めた最大表面粗さ」を測定し、その最大値を平坦度とした。
【0042】
その後、ダイシングソーを用いて基板体A〜Fを直径方向で切断し、切断面を倍率:200倍の金属顕微鏡で観察し、硬化後における紫外線硬化型接着剤の接着剤層の層厚:Tadを測定した。
【0043】
一方において、第1の回転の条件(300〜500rpmの3水準)で透明基板に紫外線硬化型接着剤を塗布し、有機複屈折膜を載せない状態で高圧水銀灯を用いて紫外線を照射して硬化させ、ダイシングソーを用いて基板直径方向で切断し、切断面を倍率:200倍の金属顕微鏡で観察して、紫外線硬化型接着剤の層厚:Tを求めた。紫外線硬化型接着剤の硬化時の体積収縮は一般的に数%程度であることから、上記方法で求めた層厚:Tは第1の回転後の層厚:Tcと数%程度の差で一致すると考えられるため、上記層厚:Tを「紫外線硬化型接着剤の塗布後の層厚:Tc」と見なした。
【0044】
基板体A〜Fの個々におけるTc、Tad、平坦度(何れも、単位は「μm」である)は以下の如くである。
Figure 0004116317
回折格子の形成された領域内で「透過光に対する光路長」を一定にするために、有機複屈折膜の表面の平坦度を「概ね1μm以下」にすると良いことが実験結果から判っている。
【0045】
基板体A〜Fの平坦度を見ると、全条件において、面内5点全てにおいて平坦度は1μm以下となっており、有機複屈折膜の全表面に渡って良好な平坦性が得られていることが判る。また、中間完成体A〜Fの全てでTc>Tadである。
【0046】
上記基板体A〜Fを用い、実施例1における「接着工程以後の工程」を実行して、5mm角の偏光分離素子を作製し、市販の波面収差測定装置:ザイゴ・マーク4を用いて波面収差を測定した結果、全チップとも0.02λrms(ルートミーンスクエア値)以下となっており、偏光分離素子によって回折する光の波面の乱れが小さいことが確認された。これは有機複屈折膜の平坦度が1μm以下と良好であるためと考えられる。
【0047】
以上のように、実施例1の作製方法では、第2の回転によって有機複屈折膜や「透明基板に塗布された紫外線硬化型接着剤」に遠心力を作用させることにより、透明基板上の紫外線硬化型接着剤の層上に有機複屈折膜を載置したときに発生する「有機複屈折膜表面のうねりや波打ち等の凹凸」を改善しつつ、接着剤を振り切ることができ、紫外線硬化型接着剤の塗布後の層厚:Tc、硬化後の層厚:Tadの関係がTc>Tadとなる。
【0048】
なお、透明基板をスピンテーブル10に真空吸着して、アクリル系の紫外線硬化型接着剤を滴下し、スピンテーブル10を回転(第1の回転)させて接着剤を透明基板全面に均一に塗布した後に、光学式の膜厚計を用いて紫外線硬化型接着剤の塗布後の膜厚:Tcを直接求めても良い。
【0049】
実施例1の作製方法において、直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板を、スピンテーブルに真空吸着で固定してアクリル系の紫外線硬化型接着剤を滴下し、スピンテーブルを回転(第1の回転)させて接着剤を透明基板全面に均一に塗布した。
【0050】
この状態において、接着剤層上に載置する有機複屈折膜として、直径:100mmの円形状で、膜厚がそれぞれ、6μm、20μm、50μm、80μm、100μm、150μmのものを用意し、それぞれを、その中心がスピンテーブルの回転中心にほぼ一致するようにして、紫外線硬化型接着剤の層上に載置装置を用いて載置し、スピンテーブルを再び回転(第2の回転)させて、紫外線硬化型接着剤を振り切り、有機複屈折膜表面を平坦化した。
【0051】
その後、スピンテーブルの回転を停止し、メタルハライドランプを用いて紫外線を照射し、紫外線硬化型接着剤を硬化させて、前記「基板体」と同様のサンプルを6種作製した。
【0052】
第1の回転の回転数は400rpm、第2の回転の回転数は1000rpmである。これら6種のサンプルにおける有機複屈折膜表面の平坦度を上記と同様にして測定した。結果は、以下の如くである。
Figure 0004116317
この結果から、有機複屈折膜の膜厚が50μm以上の場合に、有機複屈折膜表面の「良好な平坦性」を確保できることがわかる。有機複屈折膜の膜厚が20μm以下になると、有機複屈折膜の「腰の強さ」がきわめて弱くなり、また軽量のために作用する遠心力も小さくなり、第2の回転による遠心力でも表面の平坦化が不十分であると考えられる。
【0053】
上記サンプル3〜6に対し、実施例1の「接着工程後の各工程」を実行して、多数の偏光分離素子を得た。有機複屈折膜の膜厚が50μm以上あり、第2の回転によって有機複屈折膜表面が良好な平坦性を持つため、紫外線を照射することによって、良好な平坦性を保った状態で有機複屈折膜を透明基板に接着することができ、有機複屈折膜上に回折格子を形成し、対向透明基板を接着し、切断して多数の偏光分離素子を得るのに高い製造歩留を達成できた。
【0054】
実施例2
図2を参照して実施例2を説明する。繁雑を避けるため、混同の虞がないと思われるものについては、全図面を通じて同一の符号を付することとする。
【0055】
図2(a)、(b)に示すように、実施例1におけると同様の直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板1をスピンテーブル10に真空吸着して固定し、ディスペンサー12により、屈折率:1.52、粘度:500cpのアクリル系の紫外線硬化型接着剤(実施例1で用いたものと同じもの)3を滴下し、スピンテーブル10を回転(第1の回転)させて接着剤3を透明基板全面に均一に塗布する。
【0056】
次いでスピンテーブル10の回転を停止し、図2(c)、(d)に示す如く、片面に粘着剤2を介して有機高分子による保護膜4を設けられた有機複屈折膜(直径:100mm、厚さ:100μm、円形状)5を、その中心をスピンテーブル10の回転中心に略合致させるようにして、紫外線硬化型接着剤3の層上に、図示されない載置装置を用いて載置し、スピンテーブル10を再回転(第2の回転)させ、剰余の紫外線硬化型接着剤を振り切って保護膜表面を平坦化する。
【0057】
スピンテーブル10の回転を停止後、保護膜4上から高圧水銀灯を用いて紫外線UVを照射し、紫外線硬化型接着剤3を硬化させる(図2(e))。紫外線は保護膜4での吸収を考慮して実施例1のエネルギー値の1.2倍を照射する。
【0058】
紫外線硬化型接着剤3の硬化後、ピンセット等で、有機複屈折膜5から保護膜4を剥離する(図2(f))。その後、基板1をスピンテーブル10から外し、実施例1と同様のリソグラフィー/エッチングのプロセスにより回折格子を形成後、図2(g)に示す如く、光学的に等方的なアクリル系の紫外線硬化型接着剤(等方性接着剤)6を用い、粘着剤8によってλ/4波長板7を貼付けられた直径:100mm、厚み:1mmの円板形状の対向透明基板(材質:ショット製光学ガラスBK7)9を接着して中間完成体1Aとする。対向透明基板9の自由表面(空気と接する面)には入射光の反射が最小となるように「反射防止膜(図示されず)」を形成する。
【0059】
図2(h)に示すように、中間完成体1Aをダイシングソー15で5mm角に切断し、複数の偏光分離素子100を得る。
【0060】
この作製方法によると、透明基板1と有機複屈折膜5の貼合せを行う「接着工程」を、有機複屈折膜5の回折格子形成面を保護膜4で被覆した状態で行うことができ、接着工程の際に「回折格子を形成する面」に異物が付着したり、傷がついたりすることがない。特に、スピンテーブル10を回転させて剰余の紫外線硬化型接着剤を振り切る際、振り切られた接着剤のミストが「回折格子を形成する面」に付着しない(接着剤のミストは保護膜に付き、紫外線照射後保護膜を剥離するので、有機複屈折膜表面には残らない)ので、異物の非常に少ない有機複屈折膜表面を実現でき、リソグラフィー工程において異物やキズによって発生するパターン欠陥を低減でき、偏光分離素子の製造歩留を向上できる。
【0061】
実施例2の作製方法において、直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板をスピンテーブルに真空吸着して固定し、アクリル系の紫外線硬化型接着剤を滴下し、スピンテーブルを回転(第1の回転)させて接着剤を透明基板全面に均一に塗布した。
【0062】
この状態において、接着剤層上に載置する有機複屈折膜として、片面に粘着剤を介して「有機高分子からなる保護膜」が設けられた有機複屈折膜(直径:100mm 円形状)として、膜厚がそれぞれ、6μm、20μm、50μm、80μm、100μm、150μmのものを用意し(粘着剤の膜厚は9〜14μm、保護膜の膜厚は20μmであり、このため有機複屈折膜・粘着剤・保護膜の膜厚の和である総膜厚は35〜180μmとなった。)、それぞれをその中心がスピンテーブル10の回転中心にほぼ一致するようにして、紫外線硬化型接着剤の層上に載置装置を用いて載置し、スピンテーブルを再回転(第2の回転)させて剰余の紫外線硬化型接着剤を振り切り、有機複屈折膜表面を平坦化した。
【0063】
その後、スピンテーブル10の回転を停止し、保護膜上から高圧水銀灯を用いて紫外線を照射し、紫外線硬化型接着剤を硬化させた。紫外線の強度は実施例2と同じである。次いで、ピンセットを用いて、有機複屈折膜から保護膜を剥離して各々サンプル1〜6とした。
【0064】
第1の回転の回転数は400rpm、第2の回転の回転数は1000rpmである。これら6種のサンプルにおける有機複屈折膜表面の平坦度を上記と同様にして測定した。結果は、以下の如くである(単位は何れも「μm」である)。
Figure 0004116317
この結果から、有機複屈折膜と粘着剤と保護膜の総膜厚が50μm以上である場合に、有機複屈折膜表面の良好な平坦性を確保できることがわかる。有機複屈折膜、粘着剤、保護膜の総膜厚が35μmの場合は、保護膜・粘着剤・有機複屈折膜の全体の「腰の強さ」が十分に強くならないため、第2の回転の遠心力でも保護膜表面を十分に平坦化できず、有機複屈折膜表面の平坦性も低下したものと考えられる。
【0065】
上記サンプル2〜6(有機複屈折膜の膜厚:20〜150μm)に対し、実施例2の「接着工程後の各工程」を実行して、多数の偏光分離素子を得た。有機複屈折膜と粘着剤と保護膜の総膜厚が50μm以上あり、第2の回転によって有機複屈折膜表面が良好な平坦性を持つため、紫外線を照射して紫外線硬化型接着剤を硬化し、有機複屈折膜から保護膜を剥離することによって、良好な平坦性を保った状態で有機複屈折膜を透明基板に接着することができ、有機複屈折膜上に回折格子を形成し、対向透明基板を接着し、切断して多数の偏光分離素子を得るのに高い製造歩留を達成できた。
【0066】
また実施例2の作製方法によれば、実施例1の方法では平坦性を確保することが困難であった「より薄い有機複屈折膜」でも、良好な平坦性を保ちながら透明基板に接着することができることから、より広い膜厚範囲の有機複屈折膜を利用できる。
【0067】
なお、上記例では、主に有機複屈折膜の膜厚をパラメータとして総膜厚を制御したが、粘着剤ないし保護膜の膜厚を変えて総膜厚を50μm以上としても同様な効果を期待でき、有機複屈折膜、粘着剤、保護膜の膜厚を同時に変えて総膜厚を50μm以上としても良い。
【0068】
実施例3
図3を参照して、実施例3を説明する。
図3(a)、(b)に示すように、直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板1をスピンテーブル10に載置し、真空吸着によってスピンテーブル10に固定し、スピンテーブル10を10〜50rpmで回転させながら、ディスペンサー12を用いて屈折率:1.58、粘度:600cpのエポキシ系の紫外線硬化型接着剤3を、透明基板1の中央部に3〜11g滴下する。滴化後、スピンテーブル10を150〜500rpmで回転(第1の回転)させ、透明基板1の全面に紫外線硬化型接着剤を広げたのち、スピンテーブル10の回転を停止する。
【0069】
次いで、図3(c)、(d)に示すように、図示されない載置装置を用いて、直径:100mm、厚さ:80μmで円形状の有機複屈折膜5を、その中心がスピンテーブル10の回転中心に略合致するようにして、紫外線硬化型接着剤3の層上に載置し、スピンテーブル10を1000〜3000rpmで60秒間回転(第2の回転)させ、有機複屈折膜5の表面を概ね平坦化した後に、第2の回転を継続しつつ、図示されないメタルハライドランプを用いて紫外線UVを照射し、紫外線硬化型接着剤3を硬化させる。
【0070】
紫外線の強度を実施例1の場合の1/10〜1/4と小さくして、紫外線照射中も紫外線硬化型接着剤3の振り切りが続くようにし、紫外線硬化型接着剤3が完全硬化するまで、有機複屈折膜5の表面の平坦化を進行させる。
【0071】
接着剤3の硬化完了後、スピンテーブル10の回転を停止し、有機複屈折膜5を接着した透明基板1(以下単に「基板」という)をスピンテーブル10から外し、有機複屈折膜5上にポジレジストを1.5μmの厚さに塗布し、80℃の温度で30分プリベークする。プリベーク後、基板を縮小投影露光装置(NA=0.54、σ=0.6、波長;i線)に装着し、「1000周期分の1.0μmのラインアンドスペースパターン」のレチクルを用いて露光し、現像液NMD−3を用いて現像を行い、100℃の温度で30分ポストベークを行って、周期的なレジストパターンを完成させる。
【0072】
前記レジストパターンを110℃の雰囲気で1,1,3,3−テトラメチルヘキサジシラザン蒸気にさらし、レジスト表面に1,1,3,3−テトラメチルヘキサジシラザンをドープし、その後「ECRエッチング装置」を用いて酸素ガスを主成分とするエッチングガス雰囲気中で、レジストパターンをマスクとして有機複屈折膜を深さ4μmエッチングし、剥離液を用いてレジストパターンを除去して「1000周期分の凹凸による回折格子」を多数形成する。
【0073】
図3(e)は、多数の回折格子(個々の回折格子は、図の上側面の「凹凸の各凸部」に形成されている)を形成された基板を示している。
【0074】
平面加工した直径:200mm、厚み:50mmのステンレス台上に、回折格子を形成した基板を置き、回折格子面に「光学的に等方的なエポキシ系の紫外線硬化型接着剤(等方性接着剤)」をマイクロシリンジで1.0ml滴下し、その上に「両面を光学研磨した直径:100mm、厚み:1mmの円板形状の対向透明基板(材質;ショット製光学ガラスBK7)」を載置し、更に対向透明基板上に光学研磨した光学ガラスを乗せて100gf/cmの圧力を加え、等方性接着剤を被接着面全面に広げる。
【0075】
対向透明基板の被接着面と対向する面には、入射光の反射が最小となるよう反射防止膜(図示せず)を形成する。この状態で対向透明基板を通して紫外線を照射し、等方性接着剤を硬化する。このようにして、図3(f)に示す中間完成体1Bが得られる。
【0076】
最後に、図3(g)に示すように、ダイシングソー15を用いて中間完成体1Bを5mm角に切りだし、複数の偏光分離素子101を完成させる。
【0077】
実施例3の作製方法によると、第1の回転により透明基板全面に紫外線硬化型接着剤が塗布されるため、透明基板上では接着剤が無い領域が発生せず、接着剤3が塗布された透明基板1に有機複屈折膜5を載置すると、有機複屈折膜5は全面に渡って接着剤3を介して透明基板1の表面と接するので、紫外線照射による全面接着が可能となる。
【0078】
また第2の回転によって、有機複屈折膜5や、透明基板1に塗布された紫外線硬化型接着剤3に遠心力をかけることにより、有機複屈折膜1の表面のうねりや波打ち等の凹凸を改善しつつ接着剤を振り切ることができる。更に第2の回転中に紫外線を照射するので、有機複屈折膜表面のうねりや波打ち等の凹凸を改善した状態で接着剤が硬化され、良好な平面性を持つ有機複屈折膜の接着が可能となる。
【0079】
実施例3では、透明基板1をスピンテーブル10に固定した後、スピンテーブル10を回転させながら、透明基板1の中央部にエポキシ系の接着剤3を滴下して接着剤3を塗布したが、接着剤3の塗付方法はこの方法に限定されるものではなく、透明基板1をスピンテーブル10に固定後、スピンテーブル10を停止したまま透明基板中央部に接着剤を滴下し、その後、スピンテーブル10を回転させて透明基板全面に接着剤を広げても良い。
【0080】
実施例4
図4を参照して、実施例4を説明する。
図4(a)、(b)に示すように、直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板1をスピンテーブル10に載置し、真空吸着によってスピンテーブル10に固定した状態で、スプレー13を用いて屈折率:1.58、粘度:600cpのエポキシ系の紫外線硬化型接着剤(実施例3で用いたものと同じもの)3を、透明基板1の全面に均一に塗布する。紫外線硬化型接着剤3の塗布厚は40〜80μm程度が良い。
図4(c)、(d)に示すように、紫外線硬化型接着剤3上に、直径:100mm、厚さ:80μmの円形状の有機複屈折膜5を、図示されない載置装置を用いて、膜中心がスピンテーブル10の回転中心に略合致するように載置し、スピンテーブル10を1000〜3000rpmで回転(第3の回転)させて剰余の接着剤を振り切り、接着剤層の厚さを基板面上で均一化して有機複屈折膜5の表面を平坦化する。
【0081】
スピンテーブル10の回転を停止して、図4(e)に示すように、有機複屈折膜5の側から、高圧水銀灯を用いて紫外線を照射し、紫外線硬化型接着剤3を硬化させる。
【0082】
以下、前述の実施例3の場合と同様にして、リソグラフィー/エッチングによって有機複屈折膜表面に回折格子を形成し、図4(f)に示すように、光学的に等方的なエポキシ系の紫外線硬化型接着剤(等方性接着剤)6を用いて、直径:100mm、厚み:1mmの円板形状の対向透明基板(材質;ショット製光学ガラスBK7)9を接着する。対向透明基板9の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜を形成する。
【0083】
このようにして得られる中間完成体1Bを、図4(g)に示す如くダイシングソー15を用いて5mm角に切断し、多数の偏光分離素子101を得る。
【0084】
実施例4の作製方法によると、スプレー法によって透明基板1の全面に紫外線硬化型接着剤3が塗布されるため、透明基板1上には「接着剤が無い領域」が生じない。そのため、接着剤3が塗布された透明基板1に有機複屈折膜5を載置すると、有機複屈折膜5は全面に渡って接着剤層を介して透明基板表面と接するので、紫外線照射によって全面接着が可能となる。
【0085】
また、第3の回転によって、有機複屈折膜5や紫外線硬化型接着剤3に遠心力をかけることによって、有機複屈折膜5の表面のうねりや波打ち等の凹凸を改善しながら、接着剤を振り切ることができ、その後に紫外線を照射することによって紫外線硬化型接着剤を硬化させるので、有機複屈折膜5の接着工程において平坦性の良い有機複屈折膜表面を得ることができる。
【0086】
実施例4では、紫外線硬化型接着剤3を「室温」でスプレー塗布したが、紫外線硬化型接着剤3の粘度が高く、有機複屈折膜5を載せたときに紫外線硬化型接着剤3の流動性が乏しく、気泡を巻き込みやすい場合は、紫外線硬化型接着剤3が塗布された透明基板をオーブンや赤外線ランプ等で加熱し、紫外線硬化型接着剤3の粘度を低下させた後に有機複屈折膜5を載置するか、あるいは、紫外線硬化型接着剤3をオーブン等で予め加熱し、粘度を低下させた後にスプレー法によって透明基板1に塗布し、その後に有機複屈折膜5を載置するのが良い。
【0087】
実施例5
図5を参照して実施例5を説明する。
図5(a)、(b)に示すように、直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板1をスピンテーブル10に載置し、真空吸着によってスピンテーブル10に固定し、スプレー13を用いて屈折率:1.58、粘度:600cpのエポキシ系の紫外線硬化型接着剤(実施例3で用いたものと同じもの)3を透明基板1の全面に均一に塗布する。紫外線硬化型接着剤の塗布厚は40〜80μm程度が良い。
【0088】
図5(c)、(d)に示すように、片面に粘着剤2を介して、有機高分子からなる保護膜4が設けられた有機複屈折膜(直径:100mm、厚さ:50μm 円形状)を、紫外線硬化型接着剤3上に、膜中心をスピンテーブル10の回転中心に略合致させ、保護膜が自由表面となるようにして載置装置(図示されず)を用いて載置し、その後、スピンテーブル10を1000〜3000rpmで60秒回転(第3の回転)させ、保護膜表面を概ね平坦化した後に、第3の回転を継続しつつ高圧水銀灯(図示されず)を用いて紫外線UVを照射し、紫外線硬化型接着剤3を硬化させる。
【0089】
紫外線の強度を実施例4の1/10〜1/4とし、紫外線照射中も紫外線硬化型接着剤の振り切りが続くようにし、紫外線硬化型接着剤が完全硬化するまで保護膜表面の平坦化を進行させる。
【0090】
続いて、スピンテーブル10の回転を停止し、ピンセット等を用いて保護膜4を有機複屈折膜5から剥離する(図5(e))。
【0091】
以下、実施例4と同様にして、リソグラフィー/エッチングによって有機複屈折膜表面に回折格子を形成し、図5(f)に示す如く、光学的に等方的なエポキシ系の紫外線硬化型接着剤(等方性接着剤)6を用いて、直径:100mm、厚み:1mmの円板形状の対向透明基板(材質;ショット製光学ガラスBK7)9を接着し、中間完成体1Bとする。対向透明基板9の面には入射光の反射が最小となるよう反射防止膜を形成する。
【0092】
図5(g)に示すように中間完成体1Bを、ダイシングソー15で5mm角に切断し、多数の偏光分離素子101を得る。
【0093】
実施例5の作製方法によると、スプレー法によって透明基板1の全面に紫外線硬化型接着剤3が塗布されるため、接着剤層3上に有機複屈折膜5を載置すると、有機複屈折膜5は全面に渡って接着剤層3を介して透明基板1の表面と接するので、紫外線照射によって全面接着が可能となる。また第3の回転によって有機複屈折膜5や紫外線硬化型接着剤3に遠心力をかけることによって、有機複屈折膜5の表面のうねりや波打ち等の凹凸を改善しつつ、剰余の接着剤を振り切ることができ、第3の回転中に紫外線照射を行って紫外線硬化型接着剤3を硬化するため、平坦な表面を持つ有機複屈折膜/接着層/透明基板を得ることができる。
【0094】
更に、透明基板1と有機複屈折膜5を貼り合せる「接着工程」は、有機複屈折膜5における「回折格子形成面」を保護膜4で被覆した状態で行うことができ、接着工程で回折格子形成面にキズや異物が付くことがなく、偏光分離素子の製造歩留を向上できる。
【0095】
実施例6
図6を参照して実施例6を説明する。
図6(a)、(b)に示すように、直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板1をロールコーター14に設置し、溝のないロールを用いて屈折率:1.52、粘度:500cpのアクリル系の紫外線硬化型接着剤(実施例1で用いたものと同じもの)3を透明基板1の全面に均一に塗布する。紫外線硬化型接着剤3の塗布厚は40〜80μmとする。
【0096】
図6(c)に示すように、直径:100mm、厚さ:100μmの円形状の有機複屈折膜5を、図示されない載置装置を用いて、膜中心が透明基板1の中心に略合致するようにして紫外線硬化型接着剤3上に載置する。
【0097】
図6(d)に示すように、有機複屈折膜5を載置した透明基板1をスピンテーブル10に載置し、真空吸着で固定し、スピンテーブル10を1000〜3000rpmで60秒間回転(第4の回転)させ、有機複屈折膜5の表面を概ね平坦化した後、第4の回転を継続しつつ図示されない高圧水銀灯を用いて紫外線UVを照射し、紫外線硬化型接着剤3を硬化させる。
【0098】
紫外線UVの強度は、実施例1の1/10〜1/4とし、紫外線照射中も剰余の紫外線硬化型接着剤3の振り切りが続くようにし、紫外線硬化型接着剤3が完全硬化するまで有機複屈折膜表面の平坦化を進行させる。
【0099】
以下、スピンテーブル10の回転を停止し、有機複屈折膜5を接着した透明基板(以下「基板」という)をスピンテーブル10から外し、実施例1と同様にしてリソグラフィー/エッチングによって回折格子を形成する(図6(e))。
【0100】
実施例1と同様、アクリル系の紫外線硬化型接着剤(等方性接着剤)6を用い、粘着剤8によってλ/4波長板7が貼付けられた対向透明基板(ショット製光学ガラスBK7、直径:100mm、厚み:1mm 円板形状)9を基板に接着する。
【0101】
対向透明基板9の自由表面には入射光の反射が最小となるよう反射防止膜を形成する。このようにして、図6(f)に示す如き中間完成体1Aが得られる。
【0102】
最後に、中間完成体1Aをダイシングソー15で5mm角に切断し、複数の偏光分離素子100を完成させる。
【0103】
実施例6の作製方法によると、ロールコーター14によって透明基板1の全面に紫外線硬化型接着剤3が塗布されるため透明基板1上に「接着剤が無い領域」が生じない。そのため接着剤3が塗布された透明基板1に有機複屈折膜5を載置すると、有機複屈折膜5は全面に渡って接着剤層3を介して透明基板表面と接するので、紫外線照射によって全面接着が可能となる。
【0104】
また、第4の回転によって有機複屈折膜5や紫外線硬化型接着剤3に遠心力をかけることによって、有機複屈折膜5の表面のうねりや波打ち等の凹凸を改善しつつ、剰余の接着剤3を振り切ることができ、第4の回転中に紫外線を照射することによって、紫外線硬化型接着剤を硬化させるので、有機複屈折膜5の接着工程において平坦性の良い有機複屈折膜表面を得ることができる。
【0105】
なお、実施例6では「溝の無いロール」で透明基板1に紫外線硬化型接着剤3を塗布するため、比較的平面性の良い紫外線硬化型接着剤3の塗布層を得られるが、溝付きロールを用いた場合は接着剤表面に「筋状のムラ」が発生する。その場合は、紫外線硬化型接着剤3を塗布された透明基板1をオーブン等で加熱し、紫外線硬化型接着剤3の粘度を低下させて「塗布された接着剤の表面」の平坦性を改善するのが良い。
【0106】
また、実施例6では、紫外線硬化型接着剤3を「室温」で塗布したが、紫外線硬化型接着剤3の粘度が高く、有機複屈折膜5を載置したときに紫外線硬化型接着剤3の流動性が乏しく、気泡を巻き込みやすい場合は、紫外線硬化型接着剤3を塗布された透明基板をオーブンや赤外線ランプ等で加熱し、紫外線硬化型接着剤3の粘度を低下させた後に有機複屈折膜5を載置するか、オーブン等で予め加熱して粘度を低下させた紫外線硬化型接着剤3をロールコーターによって透明基板1に塗布し、その後に有機複屈折膜5を載置するのが良い。
【0107】
実施例7
図7を参照して、実施例7を説明する。
【0108】
図7(a)、(b)に示すように、直径:100mm、厚さ1.0mmのショット製光学ガラスBK7からなる円板形状の透明基板1をロールコーター14にセットし、溝の無いロールを用いて屈折率:1.52、粘度:500cpのアクリル系の紫外線硬化型接着剤(実施例1で用いたものと同じもの)3を透明基板1の全面に均一に塗布する。紫外線硬化型接着剤3の塗布厚は40〜80μmとする。
【0109】
次いで、図7(c)に示すように、片面に粘着剤2を介して有機高分子による保護膜4を設けられた有機複屈折膜(直径:100mm、厚さ:50μm、円形状)5を、その中心を透明基板1の中心にほぼ合せ、保護膜4側が自由表面となるようにして、図示されない載置装置を用いて紫外線硬化型接着剤3上に載置する。
【0110】
図7(d)に示すように、後保護膜4で被覆された有機複屈折膜5を載置した透明基板1をスピンテーブル10に乗せ、真空吸着で固定した後、スピンテーブル10を1000〜3000rpmで回転(第4の回転)させ、保護膜表面を平坦化する。スピンテーブル10の回転を停止し、図示されない高圧水銀灯を用いて紫外線UVを照射し、紫外線硬化型接着剤を硬化させ(図7(e))、その後、スピンテーブル10の回転を停止し、ピンセット等を用いて有機複屈折膜5から保護膜4を剥離する。紫外線UVの強度は保護膜での吸収を考慮し、実施例6における強度の1.2倍とする。
【0111】
有機複屈折膜5を接着された透明基板1をスピンテーブル10から外し、実施例1と同様にして、リソグラフィー/エッチングによって回折格子を形成すると図7(g)の如き状態となる。
【0112】
次いで、図7(h)に示すように、実施例1と同様にアクリル系の紫外線硬化型接着剤(等方性接着剤)6を用い、粘着剤8によってλ/4波長板7が貼付けられた円板形状の対向透明基板(ショット製光学ガラスBK7、直径:100mm、厚み:1mm)9を接着すると中間完成体1Aが得られる。
【0113】
最後に、中間完成体1Aをダイシングソーで5mm角に切断し、複数の偏光分離素子100を得る(図7(i))。
【0114】
実施例7の作製方法によると、ロールコーター14によって透明基板1の全面に紫外線硬化型接着剤3が塗布されるため、接着剤3が塗布された透明基板1に有機複屈折膜5を載置すると、有機複屈折膜5は全面に渡って接着剤層3を介して透明基板1の表面と接するので紫外線照射によって全面接着が可能となる。
【0115】
また第4の回転によって有機複屈折膜5や紫外線硬化型接着剤3に遠心力をかけることによって、有機複屈折膜5の表面のうねりや波打ち等の凹凸を改善しつつ剰余の接着剤を振り切ることができ、第4の回転後に紫外線照射を行って紫外線硬化型接着剤3を硬化するため、平坦な表面を持つ有機複屈折膜/接着層/透明基板を得ることができる。
【0116】
更に実施例3と同様、透明基板1と有機複屈折膜5の貼り合せを行う接着工程を、有機複屈折膜5の回折格子形成面を保護膜で被覆した状態で行うことができ、リソグラフィー工程において異物やキズによって発生するパターン欠陥を低減でき、偏光分離素子の製造歩留を向上できる。
【0117】
実施例7でも、溝の無いロールで透明基板に紫外線硬化型接着剤を塗布するため、紫外線硬化型接着剤3の比較的平面性の良い塗布層が得られるが、溝付ロールを用いる場合は接着剤層の表面に筋状のムラが発生する。その場合は、紫外線硬化型接着剤を塗布された透明基板をオーブンで加熱し、紫外線硬化型接着剤3の粘度を低下させて接着剤層表面の平坦性を改善するのが良い。
【0118】
【発明の実施の形態】
図8は、光ピックアップ装置の実施の1形態を示す。
この光ピックアップ装置はCD用であり、レーザーダイオード81から出射された波長:780nmの光は偏光分離素子83、コリメータレンズ85、対物レンズ87を通って光ディスクであるCD―RW90を照射し、記録面での反射光は戻り光束となり、偏光分離素子83で回折され光検出素子89に導光され、フォーカス検出・トラック検出・信号検出が行われる。
【0119】
偏光分離素子83として、実施例1の作製方法で作製されたものを用いて図8の光ピックアップ装置を構成し、これを用いて、CD−RWに信号を記録し、その後同じ光ピックアップ装置で信号の再生を行った所「プリズムを接着したビームスプリッタとλ/4波長板を組み合わせた従来の偏光分離素子」を用いた場合と同等の再生信号出力を得ることができ、この実施の形態の光ピックアップ装置が「従来のもの」と同等の記録/再生特性を持つことを確認できた。
【0120】
図8に示す実施の形態の光ピックアップ装置では、偏光分離素子83が従来の「プリズムを接着したビームスプリッタ」よりも小さくなっており、かつ偏光分離素子にλ/4波長板も組み込んでいるため、従来の光ピックアップと比較して小型化を実現できる。
【0121】
図9は光ピックアップ装置の実施の別形態を示す。
この光ピックアップ装置はDVD用のものであり、レーザーダイオード81から出射された波長:680nmの光は偏光分離素子83とコリメータレンズ85、λ/4波長板86、対物レンズ87を通った後、光ディスクであるDVD91を照射し、DVD91の記録面で反射された戻り光束はλ/4波長板86で直線偏光になった後、偏光分離素子83で回折して光検出素子89に導光され、フォーカス検出・トラック検出・信号検出が行われる。
【0122】
偏光分離素子83として、実施例3の作製方法で作製したものを用いて、図9の光ピックアップ装置を構成し、DVD−ROMから情報信号の再生を行った所「プリズムを接着したビームスプリッタをλ/4波長板と組合せて用いる、従来のDVD用の光ピックアップ装置」と同等の信号出力を得ることができ、この実施の形態の光ピックアップ装置が、従来の光ピックアップ装置と同等の再生特性を持つことを確認できた。
【0123】
また図9の光ピックアップ装置では、偏光分離素子83が「プリズムを接着したビームスプリッタ」よりも小さくなっているため、従来の光ピックアップ装置よりも小型になっている。
【0124】
図10は、有機複屈折膜を接着するための「接着装置」の実施の1形態を示している。この接着装置は、透明基板1を保持するスピンテーブル10と、スピンテーブル10を回転させるステッピングモーター等からなる回転機構(図示されていない)と、透明基板1に紫外線硬化型接着剤を塗布するディスペンサー(ロボットアーム12Aで制御駆動される)12からなる塗布機構と、2本の吸着アーム50によって有機複屈折膜5の両端を保持し、透明基板1上に塗布された紫外線硬化型接着剤の層上に有機複屈折膜5を載置する載置機構55と、紫外線硬化型接着剤に紫外線を照射する高圧水銀灯やメタルハライドランプ等からなる紫外線照射機構60から構成されている。
【0125】
有機複屈折膜5を透明基板1に接着する手順は以下の如くである。
【0126】
直径:100mm、厚さ:1.0mmのショット製光学ガラスBK7からなる透明基板1(円形状の一部を切り欠かれて「オリエンテーションフラット」を形成されている)をスピンテーブル10に載置し、真空吸着によってスピンテーブル10に固定する。次いで、ロボットアーム12Aによりディスペンサー12を透明基板1の中央部上方に移動し、スピンテーブル10を回転機構によって10rpmで回転させながら、屈折率:1.52、粘度:500cpのアクリル系の紫外線硬化型接着剤を4g滴下する。
【0127】
その後、ディスペンサー12を元位置に復帰させ、スピンテーブル10を300rpmで回転(第1の回転)させ、透明基板全面に紫外線硬化型接着剤を広げ、その後スピンテーブル10の回転を停止する。
【0128】
続いて、直径:100mm、厚さ:100μmで円形状(一部を切り欠かれて「オリエンテーションフラット」を形成されている)の有機複屈折膜5の両端を、載置機構の2本の吸着アーム50に真空吸着して保持し、有機複屈折膜5を透明基板1上へ移動し、有機複屈折膜5の中心をスピンテーブル10の回転中心にほぼ合せながら、2本の吸着アーム50の真空吸着を徐々に解除して紫外線硬化型接着剤の上に有機複屈折膜を載置する。
【0129】
載置装置を元位置に戻したのち、スピンテーブル10を1800rpmで回転(第2の回転)させ、紫外線硬化型接着剤を振り切り、有機複屈折膜5の表面を平坦化したのち、スピンテーブル10の回転を停止し、透明基板の上方へ紫外線照射機構60を移動し、有機複屈折膜5側から紫外線を照射して紫外線硬化型接着剤を硬化させる。紫外線照射終了後、紫外線照射機構60を元位置に戻し、スピンテーブル10の真空吸着を解除して有機複屈折膜5を接着した透明基板1を取り出す。
【0130】
上記のように、この接着装置を用いると、実施例1の作製方法における接着工程を実現でき、透明基板に接着される有機複屈折膜表面の平面度を向上できる。
【0131】
図10の実施の形態では、第2の回転の停止後に紫外線照射機構60によって紫外線を照射したが、第2の回転中に透明基板1上に紫外線照射機構60を移動し、有機複屈折膜5の側から紫外線を照射すると、実施例3の作製方法における接着工程を実現できる。更に、上記実施の形態では、紫外線硬化型接着剤の塗布にディスペンサー12を用いているが、スプレーを用いることによって実施例4、5の作製方法における接着工程を実現でき、紫外線硬化型接着剤の塗布にロールコーターを用いると、実施例6、7の作製方法における定着工程を実現することができる。
【0132】
また、これらの実施の形態において、片面に粘着剤を介して有機高分子からなる保護膜が付いた有機複屈折膜を用いると、実施例2、5、7の作製方法における定着工程を実現できる。
【0133】
【発明の効果】
以上に説明したように、この発明によれば新規な偏光分離素子、その作成方法、光ピックアップ装置、定着装置を実現できる。
この発明の作製方法によれば、接着工程において有機複屈折膜の表面を極めて高精度に平坦化できる。そしてこの作成方法で作製された偏光分離素子は、透過光に対する光路長が回折格子形成領域で実質的に均一であり、回折光における波面の乱れを有効に軽減できる。従って、この偏光分離素子を用いた光ピックアップ装置は、光ディスクに対する情報の記録・再生・消去の1以上を良好に行うことができ、従来のものよりもコンパクトに構成できる。また、この発明の接着装置によれば、この発明の作製方法における接着工程を良好に実現できる。
【図面の簡単な説明】
【図1】実施例1の作製方法を説明するための図である。
【図2】実施例2の作製方法を説明するための図である。
【図3】実施例3の作製方法を説明するための図である。
【図4】実施例4の作製方法を説明するための図である。
【図5】実施例5の作製方法を説明するための図である。
【図6】実施例6の作製方法を説明するための図である。
【図7】実施例7の作製方法を説明するための図である。
【図8】光ピックアップ装置の実施の1形態を示す図である。
【図9】光ピックアップ装置の実施の別形態を示す図である。
【図10】接着装置の実施の1形態を説明するための図である。
【符号の説明】
1 透明基板
3 紫外線硬化型接着剤
5 有機複屈折膜
100 偏光分離素子

Claims (11)

  1. 透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、上記有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて上記有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程とを有する、偏光分離素子の作製方法において、
    接着工程が、透明基板に第1の回転を与えて透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に、直径:100mmの円形状で、厚み:50μm以上の有機複屈折膜を、膜中心と回転中心を合わせて載置し、上記透明基板に、1000〜3000rpmの回転数の第2の回転を与えて、遠心力の作用により有機複屈折膜表面を平坦化した後、上記紫外線硬化型接着剤に紫外線を照射して上記紫外線硬化型接着剤を硬化する工程からなることを特徴とする偏光分離素子の作製方法。
  2. 透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、上記有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて上記有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程とを有する、偏光分離素子の作製方法において、
    接着工程が、透明基板に第1の回転を与えて透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に、直径:100mmの円形状で、厚み:50μm以上の有機複屈折膜を、膜中心と回転中心を合わせて載置し、上記透明基板に、1000〜3000rpmの回転数の第2の回転を与えて、遠心力の作用により有機複屈折膜表面を平坦化しつつ、第2の回転中に上記紫外線硬化型接着剤に紫外線を照射して上記紫外線硬化型接着剤を硬化する工程からなることを特徴とする偏光分離素子の作製方法。
  3. 透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、上記有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて上記有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程とを有する、偏光分離素子の作製方法において、
    接着工程が、スプレー法により透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に、直径:100mmの円形状で、厚み:50μm以上の有機複屈折膜を、膜中心と回転中心を合わせて載置し、上記透明基板に、1000〜3000rpmの回転数の第3の回転を与えて、遠心力の作用により有機複屈折膜表面を平坦化した後、上記紫外線硬化型接着剤に紫外線を照射して上記紫外線硬化型接着剤を硬化する工程からなることを特徴とする偏光分離素子の作製方法。
  4. 透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、上記有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程とを有する偏光分離素子の作製方法において、
    接着工程が、スプレー法により透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に、直径:100mmの円形状で、厚み:50μm以上の有機複屈折膜を、膜中心と回転中心を合わせて載置し、上記透明基板に、1000〜3000rpmの回転数の第3の回転を与えて、遠心力の作用により有機複屈折膜表面を平坦化しつつ、第3の回転中に上記紫外線硬化型接着剤に紫外線を照射して上記紫外線硬化型接着剤を硬化する工程からなることを特徴とする偏光分離素子の作製方法。
  5. 透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、接着された有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程とを有する、偏光分離素子の作製方法において、
    接着工程が、ロールコーターにより透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に、直径:100mmの円形状で、厚み:50μm以上の有機複屈折膜を、膜中心と回転中心を合わせて載置し、上記透明基板に、1000〜3000rpmの回転数の第4の回転を与えて、遠心力の作用により有機複屈折膜表面を平坦化した後、上記紫外線硬化型接着剤に紫外線を照射して上記紫外線硬化型接着剤を硬化する工程からなることを特徴とする偏光分離素子の作製方法。
  6. 透明基板上に、入射光の異なる振動面に対して屈折率が異なる有機複屈折膜を接着する接着工程と、接着された有機複屈折膜上に周期的なマスクパターンを形成し、このマスクパターンを用いて有機複屈折膜をエッチングして周期的な凹凸による回折格子を多数個形成する工程とを有する、偏光分離素子の作製方法において、
    接着工程が、ロールコーターにより透明基板全面に紫外線硬化型接着剤を塗布し、塗布された紫外線硬化型接着剤上に、直径:100mmの円形状で、厚み:50μm以上の有機複屈折膜を、膜中心と回転中心を合わせて載置し、上記透明基板に、1000〜3000rpm以上の回転数の第4の回転を与えて、遠心力の作用により有機複屈折膜表面を平坦化しつつ、第4の回転中に上記紫外線硬化型接着剤に紫外線を照射して上記紫外線硬化型接着剤を硬化する工程からなることを特徴とする偏光分離素子の作製方法。
  7. 請求項1〜6の任意の1に記載の偏光分離素子の作製方法において、
    紫外線硬化型接着剤の、塗布後の層厚:Tc、紫外線照射による硬化後の上記紫外線硬化型接着剤の層厚:Tadが、Tc>Tadとなることを特徴とする偏光分離素子の作製方法。
  8. 請求項1〜7の任意の1に記載の偏光分離素子の作製方法において、
    透明基板と接着する面と反対側の面に粘着剤を介して保護膜を設けた有機複屈折膜を紫外線硬化型接着剤の層上に載置し、
    紫外線照射による上記紫外線硬化型接着剤の硬化後に、上記有機複屈折膜から上記保護膜を剥離することを特徴とする偏光分離素子の作製方法。
  9. 請求項1〜8の任意の1に記載の作製方法により作製された偏光分離素子。
  10. 請求項9記載の偏光分離素子を用いた光ピックアップ装置。
  11. 透明基板を保持するスピンテーブルと、
    このスピンテーブルを回転させる回転機構と、
    上記スピンテーブルに保持された透明基板に、紫外線硬化型接着剤を塗布する塗布機構と、
    上記透明基板上に塗布された紫外線硬化型接着剤の上に有機複屈折膜を載置する載置機構と、
    上記有機複屈折膜を介して上記紫外線硬化型接着剤に紫外線を照射する紫外線照射機構とを有し、
    請求項1〜8の任意の1に記載の作成方法における接着工程を行う有機複屈折膜の接着装置。
JP2002109223A 2002-04-11 2002-04-11 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置 Expired - Fee Related JP4116317B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109223A JP4116317B2 (ja) 2002-04-11 2002-04-11 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109223A JP4116317B2 (ja) 2002-04-11 2002-04-11 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置

Publications (2)

Publication Number Publication Date
JP2003302527A JP2003302527A (ja) 2003-10-24
JP4116317B2 true JP4116317B2 (ja) 2008-07-09

Family

ID=29392744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109223A Expired - Fee Related JP4116317B2 (ja) 2002-04-11 2002-04-11 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP4116317B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348580B2 (ja) * 2008-01-31 2013-11-20 住友化学株式会社 偏光板の製造方法
JP5449815B2 (ja) * 2009-03-26 2014-03-19 住友化学株式会社 偏光板の製造方法
JP5668086B2 (ja) * 2013-02-21 2015-02-12 住友化学株式会社 偏光板の製造方法
KR102375853B1 (ko) * 2019-04-25 2022-03-17 주식회사 엘지화학 회절 도광판 및 회절 도광판의 제조 방법

Also Published As

Publication number Publication date
JP2003302527A (ja) 2003-10-24

Similar Documents

Publication Publication Date Title
JP4129430B2 (ja) 多層光学製品のための方法および装置
JP2010276940A (ja) ガラス基材の接合方法、及びガラス接合体
JP4116317B2 (ja) 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置
TW200421292A (en) Method of manufacturing an optical data storage medium, optical data storage medium and apparatus for performing said method
JP2003302514A (ja) 回折光学素子およびその製造方法および光ピックアップ装置および光ディスクドライブ装置
TWI225246B (en) Micro optical pickup head module, method of manufacturing the same and method of manufacturing the objective lens of the same
JP4283621B2 (ja) 偏光分離素子の作製方法、偏光分離素子および光ピックアップ装置
JP4440706B2 (ja) 偏光ホログラム素子、その製造方法、および偏光ホログラム素子を用いた光ピックアップ装置、および光ディスクドライブ装置
JP4139129B2 (ja) 偏光分離素子の作製方法、接着装置及び光ピックアップ装置
JP4237020B2 (ja) 偏光分離素子の作製方法
JP2004020813A (ja) 回折光学素子およびその製造方法および光ピックアップ装置および光ディスクドライブ装置
JP3537701B2 (ja) 光学記録媒体、光学記録媒体の製造方法、および、光学記録媒体の製造装置
JP4084078B2 (ja) 偏光分離素子の作製方法及び偏光分離素子、光ピックアップ装置、接着装置
JP4229709B2 (ja) 偏光分離素子の作製方法およびそのための有機複屈折膜の接着装置
JP2003302529A (ja) 偏光分離素子およびその作製方法、接着装置及び光ピックアップ装置
JP4421249B2 (ja) 偏光分離素子の製造方法
JP4445288B2 (ja) アライメント接着方法、アライメント接着装置、光学素子、光ピックアップ装置
JP4222860B2 (ja) 有機複屈折膜を用いた偏光分離素子の作製方法およびそれに用いる有機複屈折膜の接着装置
JPH11311711A (ja) 光学素子の製造方法および製造された光学素子
JP4084071B2 (ja) 偏光分離素子の作製方法及び偏光分離素子、ホログラムレーザーユニット、光ピックアップ
JP2005249856A (ja) アライメント接合方法、アライメント接合装置、光学素子
JP2002288895A (ja) 光記録媒体の製造方法
JP2003109251A (ja) 光記録媒体及びその製造方法ならびに保護膜形成性樹脂材料
JP2004233382A (ja) 偏光分離素子の製造方法、偏光分離素子、ホログラムレーザユニット及び光ピックアップ装置
JP2004126039A (ja) 光情報記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees