JP2016034017A - 発光装置 - Google Patents
発光装置 Download PDFInfo
- Publication number
- JP2016034017A JP2016034017A JP2015031963A JP2015031963A JP2016034017A JP 2016034017 A JP2016034017 A JP 2016034017A JP 2015031963 A JP2015031963 A JP 2015031963A JP 2015031963 A JP2015031963 A JP 2015031963A JP 2016034017 A JP2016034017 A JP 2016034017A
- Authority
- JP
- Japan
- Prior art keywords
- light
- layer
- light emitting
- emitting device
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1809—Diffraction gratings with pitch less than or comparable to the wavelength
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1861—Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0003—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8514—Wavelength conversion means characterised by their shape, e.g. plate or foil
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8516—Wavelength conversion means having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer or wavelength conversion layer with a concentration gradient
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Led Device Packages (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
【課題】フォトルミネッセンス材料を利用する発光素子の輝度、指向性、または偏光特性を制御することが可能な、新規な構造を有する発光素子およびそれを備える発光装置を提供する。【解決手段】発光装置300は、発光素子100と、励起光源素子180とを備え、発光素子は、フォトルミネッセンス層110と、透光層120と、サブミクロン構造とを有し、サブミクロン構造は、複数の凸部または複数の凹部を含み、フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、隣接する凸部間または凹部間の距離をDintとし、第1の光に対するフォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立ち、励起光源素子は、フォトルミネッセンス層に導入される励起光を発し、発光素子と励起光源素子とが一体的に形成されている。【選択図】図31
Description
本開示は、発光装置に関し、特に、フォトルミネッセンス層を有する発光装置に関する。
照明器具、ディスプレイ、プロジェクターといった光学デバイスでは、多くの用途において、必要な方向に光を出射することが求められる。蛍光灯、白色LEDなどで使用されるフォトルミネッセンス材料は等方的に発光する。よって、この様な材料は、特定の方向のみに光を出射させるために、リフレクターやレンズなどの光学部品とともに用いられる。例えば、特許文献1は、配光板および補助反射板を用いて指向性を確保した照明システムを開示している。
光学デバイスにおいて、リフレクターやレンズなどの光学部品を配置すると、そのスペースを確保するために、光学デバイス自身のサイズを大きくする必要があり、これら光学部品は無くすか、少しでも小型化することが望ましい。
本開示は、フォトルミネッセンス層の発光効率、指向性、または偏光特性を制御することが可能な、新規な構造を有する発光装置を提供する。
本開示のある実施形態の発光装置は、発光素子と、励起光源素子とを備え、前記発光素子は、フォトルミネッセンス層と、前記フォトルミネッセンス層に近接して配置された透光層と、前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、前記サブミクロン構造は、複数の凸部または複数の凹部を含み、前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立ち、前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、前記発光素子と前記励起光源素子とが一体的に形成されている。
上記の包括的または具体的な態様は、素子、装置、システム、方法、またはこれらの任意の組み合わせで実現されてもよい。
本開示のある実施形態による発光装置は、新規な構成を有し、新規なメカニズムに従って、輝度、指向性、または偏光特性を制御することができる。
本開示は、以下の項目に記載の発光素子および発光装置を含む。
[項目1]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ、発光素子。
[項目2]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含む、項目1に記載の発光素子。
[項目3]
前記第1の光に対する前記透光層の屈折率nt-aは、前記第1の光に対する前記フォトルミネッセンス層の屈折率nwav-aよりも小さい、項目1または2に記載の発光素子。
[項目4]
前記第1の光は、前記サブミクロン構造によって予め決められた第1の方向において強度が最大になる、項目1から3のいずれかに記載の発光素子。
[項目5]
前記第1の方向は、前記フォトルミネッセンス層の法線方向である、項目4に記載の発光素子。
[項目6]
前記第1の方向に出射された前記第1の光は、直線偏光である、項目4または5に記載の発光素子。
[項目7]
前記第1の光の前記第1の方向を基準としたときの指向角は、15°未満である、項目4から6のいずれかに記載の発光素子。
[項目8]
前記第1の光の波長λaと異なる波長λbを有する第2の光は、前記第1の方向と異なる第2の方向において強度が最大となる、項目4から7のいずれかに記載の発光素子。
[項目9]
前記透光層が前記サブミクロン構造を有する、項目1から8のいずれかに記載の発光素子。
[項目10]
前記フォトルミネッセンス層が前記サブミクロン構造を有する、項目1から9のいずれかに記載の発光素子。
[項目11]
前記フォトルミネッセンス層は、平坦な主面を有し、
前記透光層は前記フォトルミネッセンス層の前記平坦な主面上に形成されており、かつ、前記サブミクロン構造を有する、項目1から8のいずれかに記載の発光素子。
[項目12]
前記フォトルミネッセンス層は、透明基板に支持されている、項目11に記載の発光素子。
[項目13]
前記透光層は、前記サブミクロン構造を一方の主面に有する透明基板であって、
前記フォトルミネッセンス層は、前記サブミクロン構造の上に形成されている、項目1から8のいずれかに記載の発光素子。
[項目14]
前記第1の光に対する前記透光層の屈折率nt-aは、前記第1の光に対する前記フォトルミネッセンス層の屈折率nwav-a以上であって、前記サブミクロン構造が有する前記複数の凸部の高さまたは前記複数の凹部の深さは150nm以下である、項目1または2に記載の発光素子。
[項目15]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含み、
前記第1周期構造は、1次元周期構造である、項目1および3から14のいずれかに記載の発光素子。
[項目16]
前記フォトルミネッセンス層が発する光は、空気中の波長がλaと異なるλbの第2の光を含み、前記第2の光に対する前記フォトルミネッセンス層の屈折率をnwav-bとするとき、
前記少なくとも1つの周期構造は、周期をpbとすると、λb/nwav-b<pb<λbの関
係が成り立つ第2周期構造をさらに含み、
前記第2周期構造は、1次元周期構造である、項目15に記載の発光素子。
[項目17]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも2つの周期構造を含み、前記少なくとも2つの周期構造は、互いに異なる方向に周期性を有する2次元周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
[項目18]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された複数の周期構造を含み、
前記複数の周期構造は、マトリクス状に配列された複数の周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
[項目19]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された複数の周期構造を含み、
前記フォトルミネッセンス層が有するフォトルミネッセンス材料の励起光の空気中における波長をλexとし、前記励起光に対する前記フォトルミネッセンス層の屈折率をnwav-exとすると、
前記複数の周期構造は、周期pexが、λex/nwav-ex<pex<λexの関係が成り立つ周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
[項目20]
複数のフォトルミネッセンス層と、複数の透光層とを有し、
前記複数のフォトルミネッセンス層の少なくとも2つと前記複数の透光層の少なくとも2つとは、それぞれ独立に、項目1から19のいずれかに記載の前記フォトルミネッセンス層と前記透光層とにそれぞれ該当する、発光素子。
[項目21]
前記複数のフォトルミネッセンス層と前記複数の透光層は、積層されている、項目20に記載の発光素子。
[項目22]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記フォトルミネッセンス層および前記透光層の内部に擬似導波モードを形成する光を出射する、発光素子。
[項目23]
光が導波することができる導波層と、
前記導波層に近接して配置された周期構造と
を備え、
前記導波層はフォトルミネッセンス材料を有し、
前記導波層において、前記フォトルミネッセンス材料から発せられた光が前記周期構造と作用しながら導波する擬似導波モードが存在する、発光素子。
[項目24]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
隣接する凸部間または凹部間の距離をDintとし、前記フォトルミネッセンス層が有するフォトルミネッセンス材料の励起光の空気中における波長をλexとし、前記励起光に対する前記フォトルミネッセンス層または前記透光層に至る光路に存在する媒質の内で最も屈折率が大きい媒質の屈折率をnwav-exとすると、λex/nwav-ex<Dint<λexの関係が成り立つ、発光素子。
[項目25]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpexとすると、λex/nwav-ex<pex<λexの関係が成り立つ第1周期構造を含む、項目24に記載の発光素子。
[項目26]
透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
前記サブミクロン構造に近接して配置されたフォトルミネッセンス層と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
[項目27]
フォトルミネッセンス層と、
前記フォトルミネッセンス層よりも高い屈折率を有する透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
[項目28]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
[項目29]
前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、項目1から21、24から28のいずれかに記載の発光素子。
[項目30]
前記フォトルミネッセンス層と前記透光層とが互いに接している、項目1から22、24から27のいずれかに記載の発光素子。
[項目31]
前記導波層と前記周期構造とが互いに接している、項目23に記載の発光素子。
[項目32]
項目1から31のいずれかに記載の発光素子と、
前記フォトルミネッセンス層に励起光を照射する、励起光源と、
を備える発光装置。
[項目33]
発光素子と、励起光源素子とを備え、
前記発光素子は、
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目34]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含む、項目33に記載の発光装置。
[項目35]
前記発光素子は、前記フォトルミネッセンス層および前記透光層と、前記励起光源素子との間に、低屈折率層をさらに有し、
前記低屈折率層の前記第1の光に対する屈折率は、前記フォトルミネッセンス層の前記第1の光に対する屈折率よりも小さい、項目33または34に記載の発光装置。
[項目36]
前記低屈折率層は、前記励起光源素子側に、複数の第2の凸部を有する、項目35に記載の発光装置。
[項目37]
前記励起光源素子の出射面は、前記フォトルミネッセンス層または前記透光層と直接接する、項目33または34に記載の発光装置。
[項目38]
前記励起光源素子の出射面は、前記低屈折率層と直接接する、項目35または36に記載の発光装置。
[項目39]
前記発光素子は、前記フォトルミネッセンス層を透過した光を選択的に反射する選択反射層をさらに有する、項目33から38のいずれかに記載の発光装置。
[項目40]
発光素子と、励起光源素子とを備え、
前記発光素子は、
透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
前記サブミクロン構造に近接して配置され、励起光を受けて発光するフォトルミネッセンス層と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目41]
発光素子と、励起光源素子とを備え、
前記発光素子は、
励起光を受けて発光するフォトルミネッセンス層と、
前記フォトルミネッセンス層よりも高屈折率を有する透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目42]
前記フォトルミネッセンス層と前記透光層とが互いに接している、項目33から41のいずれかに記載の発光装置。
[項目43]
発光素子と、励起光源素子とを備え、
前記発光素子は、
励起光を受けて発光するフォトルミネッセンス層と、
前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目44]
前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、項目33から43のいずれかに記載の発光装置。
[項目1]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ、発光素子。
[項目2]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含む、項目1に記載の発光素子。
[項目3]
前記第1の光に対する前記透光層の屈折率nt-aは、前記第1の光に対する前記フォトルミネッセンス層の屈折率nwav-aよりも小さい、項目1または2に記載の発光素子。
[項目4]
前記第1の光は、前記サブミクロン構造によって予め決められた第1の方向において強度が最大になる、項目1から3のいずれかに記載の発光素子。
[項目5]
前記第1の方向は、前記フォトルミネッセンス層の法線方向である、項目4に記載の発光素子。
[項目6]
前記第1の方向に出射された前記第1の光は、直線偏光である、項目4または5に記載の発光素子。
[項目7]
前記第1の光の前記第1の方向を基準としたときの指向角は、15°未満である、項目4から6のいずれかに記載の発光素子。
[項目8]
前記第1の光の波長λaと異なる波長λbを有する第2の光は、前記第1の方向と異なる第2の方向において強度が最大となる、項目4から7のいずれかに記載の発光素子。
[項目9]
前記透光層が前記サブミクロン構造を有する、項目1から8のいずれかに記載の発光素子。
[項目10]
前記フォトルミネッセンス層が前記サブミクロン構造を有する、項目1から9のいずれかに記載の発光素子。
[項目11]
前記フォトルミネッセンス層は、平坦な主面を有し、
前記透光層は前記フォトルミネッセンス層の前記平坦な主面上に形成されており、かつ、前記サブミクロン構造を有する、項目1から8のいずれかに記載の発光素子。
[項目12]
前記フォトルミネッセンス層は、透明基板に支持されている、項目11に記載の発光素子。
[項目13]
前記透光層は、前記サブミクロン構造を一方の主面に有する透明基板であって、
前記フォトルミネッセンス層は、前記サブミクロン構造の上に形成されている、項目1から8のいずれかに記載の発光素子。
[項目14]
前記第1の光に対する前記透光層の屈折率nt-aは、前記第1の光に対する前記フォトルミネッセンス層の屈折率nwav-a以上であって、前記サブミクロン構造が有する前記複数の凸部の高さまたは前記複数の凹部の深さは150nm以下である、項目1または2に記載の発光素子。
[項目15]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含み、
前記第1周期構造は、1次元周期構造である、項目1および3から14のいずれかに記載の発光素子。
[項目16]
前記フォトルミネッセンス層が発する光は、空気中の波長がλaと異なるλbの第2の光を含み、前記第2の光に対する前記フォトルミネッセンス層の屈折率をnwav-bとするとき、
前記少なくとも1つの周期構造は、周期をpbとすると、λb/nwav-b<pb<λbの関
係が成り立つ第2周期構造をさらに含み、
前記第2周期構造は、1次元周期構造である、項目15に記載の発光素子。
[項目17]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも2つの周期構造を含み、前記少なくとも2つの周期構造は、互いに異なる方向に周期性を有する2次元周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
[項目18]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された複数の周期構造を含み、
前記複数の周期構造は、マトリクス状に配列された複数の周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
[項目19]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された複数の周期構造を含み、
前記フォトルミネッセンス層が有するフォトルミネッセンス材料の励起光の空気中における波長をλexとし、前記励起光に対する前記フォトルミネッセンス層の屈折率をnwav-exとすると、
前記複数の周期構造は、周期pexが、λex/nwav-ex<pex<λexの関係が成り立つ周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
[項目20]
複数のフォトルミネッセンス層と、複数の透光層とを有し、
前記複数のフォトルミネッセンス層の少なくとも2つと前記複数の透光層の少なくとも2つとは、それぞれ独立に、項目1から19のいずれかに記載の前記フォトルミネッセンス層と前記透光層とにそれぞれ該当する、発光素子。
[項目21]
前記複数のフォトルミネッセンス層と前記複数の透光層は、積層されている、項目20に記載の発光素子。
[項目22]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記フォトルミネッセンス層および前記透光層の内部に擬似導波モードを形成する光を出射する、発光素子。
[項目23]
光が導波することができる導波層と、
前記導波層に近接して配置された周期構造と
を備え、
前記導波層はフォトルミネッセンス材料を有し、
前記導波層において、前記フォトルミネッセンス材料から発せられた光が前記周期構造と作用しながら導波する擬似導波モードが存在する、発光素子。
[項目24]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
隣接する凸部間または凹部間の距離をDintとし、前記フォトルミネッセンス層が有するフォトルミネッセンス材料の励起光の空気中における波長をλexとし、前記励起光に対する前記フォトルミネッセンス層または前記透光層に至る光路に存在する媒質の内で最も屈折率が大きい媒質の屈折率をnwav-exとすると、λex/nwav-ex<Dint<λexの関係が成り立つ、発光素子。
[項目25]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpexとすると、λex/nwav-ex<pex<λexの関係が成り立つ第1周期構造を含む、項目24に記載の発光素子。
[項目26]
透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
前記サブミクロン構造に近接して配置されたフォトルミネッセンス層と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
[項目27]
フォトルミネッセンス層と、
前記フォトルミネッセンス層よりも高い屈折率を有する透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
[項目28]
フォトルミネッセンス層と、
前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
[項目29]
前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、項目1から21、24から28のいずれかに記載の発光素子。
[項目30]
前記フォトルミネッセンス層と前記透光層とが互いに接している、項目1から22、24から27のいずれかに記載の発光素子。
[項目31]
前記導波層と前記周期構造とが互いに接している、項目23に記載の発光素子。
[項目32]
項目1から31のいずれかに記載の発光素子と、
前記フォトルミネッセンス層に励起光を照射する、励起光源と、
を備える発光装置。
[項目33]
発光素子と、励起光源素子とを備え、
前記発光素子は、
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目34]
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含む、項目33に記載の発光装置。
[項目35]
前記発光素子は、前記フォトルミネッセンス層および前記透光層と、前記励起光源素子との間に、低屈折率層をさらに有し、
前記低屈折率層の前記第1の光に対する屈折率は、前記フォトルミネッセンス層の前記第1の光に対する屈折率よりも小さい、項目33または34に記載の発光装置。
[項目36]
前記低屈折率層は、前記励起光源素子側に、複数の第2の凸部を有する、項目35に記載の発光装置。
[項目37]
前記励起光源素子の出射面は、前記フォトルミネッセンス層または前記透光層と直接接する、項目33または34に記載の発光装置。
[項目38]
前記励起光源素子の出射面は、前記低屈折率層と直接接する、項目35または36に記載の発光装置。
[項目39]
前記発光素子は、前記フォトルミネッセンス層を透過した光を選択的に反射する選択反射層をさらに有する、項目33から38のいずれかに記載の発光装置。
[項目40]
発光素子と、励起光源素子とを備え、
前記発光素子は、
透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
前記サブミクロン構造に近接して配置され、励起光を受けて発光するフォトルミネッセンス層と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目41]
発光素子と、励起光源素子とを備え、
前記発光素子は、
励起光を受けて発光するフォトルミネッセンス層と、
前記フォトルミネッセンス層よりも高屈折率を有する透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目42]
前記フォトルミネッセンス層と前記透光層とが互いに接している、項目33から41のいずれかに記載の発光装置。
[項目43]
発光素子と、励起光源素子とを備え、
前記発光素子は、
励起光を受けて発光するフォトルミネッセンス層と、
前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。
[項目44]
前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、項目33から43のいずれかに記載の発光装置。
本開示の実施形態による発光素子は、フォトルミネッセンス層と、前記フォトルミネッセンス層に近接して配置された透光層と、前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造とを有し、前記サブミクロン構造は、複数の凸部または複数の凹部を含み、隣接する凸部間または凹部間の距離をDintとし、前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ。波長λaは、例えば、可視光の波長範囲内(例えば、380nm以上780nm以下)にある。
フォトルミネッセンス層は、フォトルミネッセンス材料を含む。フォトルミネッセンス材料は、励起光を受けて発光する材料を意味する。フォトルミネッセンス材料は、狭義の蛍光材料および燐光材料を包含し、無機材料だけなく、有機材料(例えば色素)を包含し、さらには、量子ドット(即ち、半導体微粒子)を包含する。フォトルミネッセンス層は、フォトルミネッセンス材料に加えて、マトリクス材料(即ち、ホスト材料)を含んでもよい。マトリクス材料は、例えば、ガラスや酸化物などの無機材料や樹脂である。
フォトルミネッセンス層に近接して配置される透光層は、フォトルミネッセンス層が発する光に対して透過率が高い材料で形成され、例えば、無機材料や樹脂で形成される。透光層は、例えば誘電体(特に、光の吸収が少ない絶縁体)で形成されていることが望ましい。透光層は、例えば、フォトルミネッセンス層を支持する基板であってよい。また、フォトルミネッセンス層の空気側の表面がサブミクロン構造を有する場合、空気層が透光層となり得る。
本開示の実施形態による発光素子においては、後に計算結果および実験結果を参照して詳述するように、フォトルミネッセンス層および透光層の少なくとも一方に形成されたサブミクロン構造(例えば、周期構造)によって、フォトルミネッセンス層および透光層の内部に、ユニークな電場分布を形成する。これは、導波光がサブミクロン構造と相互作用して形成されるものであり、擬似導波モードと表現することもできる。この擬似導波モードを活用することで、以下で説明するように、フォトルミネッセンスの発光効率の増大、指向性の向上、偏光の選択性の効果を得ることができる。なお、以下の説明において、擬似導波モードという用語を使って、本発明者らが見出した、新規な構成および/または新規なメカニズムを説明することがあるが、1つの例示的な説明に過ぎず、本開示をいかなる意味においても限定するものではない。
サブミクロン構造は、例えば複数の凸部を含み、隣接する凸部間の距離(即ち、中心間距離)をDintとすると、λa/nwav-a<Dint<λaの関係を満足する。サブミクロン構造は、複数の凸部に代えて複数の凹部を含んでもよい。以下では、簡単のために、サブミクロン構造が複数の凸部を有する場合を説明する。λは光の波長を表し、λaは空気中での光の波長であることを表現する。nwavはフォトルミネッセンス層の屈折率である。フォトルミネッセンス層が複数の材料を混合した媒質である場合、各材料の屈折率をそれぞれの体積比率で重み付けした平均屈折率をnwavとする。一般に屈折率nは波長に依存するので、λaの光に対する屈折率であることをnwav-aと明示することが望ましいが、簡単のために省略することがある。nwavは基本的にフォトルミネッセンス層の屈折率であるが、フォトルミネッセンス層に隣接する層の屈折率がフォトルミネッセンス層の屈折率よりも大きい場合、当該屈折率が大きい層の屈折率およびフォトルミネッセンス層の屈折率をそれぞれの体積比率で重み付けした平均屈折率をnwavとする。この場合は、光学的には、フォトルミネッセンス層が複数の異なる材料の層で構成されている場合と等価であるからである。
擬似導波モードの光に対する媒質の有効屈折率をneffとすると、na<neff<nwavを満たす。ここで、naは空気の屈折率である。擬似導波モードの光を、フォトルミネッセンス層の内部を入射角θで全反射しながら伝搬する光であると考えると、有効屈折率neffは、neff=nwavsinθと書ける。また、有効屈折率neffは、擬似導波モードの電場が分布する領域に存在する媒質の屈折率によって決まるので、例えば、サブミクロン構造が透光層に形成されている場合、フォトルミネッセンス層の屈折率だけでなく、透光層の屈折率にも依存する。また、擬似導波モードの偏光方向(TEモードとTMモード)により、電場の分布は異なるので、TEモードとTMモードとでは有効屈折率neffは異なり得る。
サブミクロン構造は、フォトルミネッセンス層および透光層の少なくとも一方に形成される。フォトルミネッセンス層と透光層とが互いに接するとき、フォトルミネッセンス層と透光層との界面にサブミクロン構造が形成されてもよい。このとき、フォトルミネッセンス層および透光層がサブミクロン構造を有する。フォトルミネッセンス層はサブミクロン構造を有さなくてもよい。このとき、サブミクロン構造を有する透光層がフォトルミネッセンス層に近接して配置される。ここで、透光層(またはそのサブミクロン構造)がフォトルミネッセンス層に近接するとは、典型的には、これらの間の距離が、波長λaの半分以下であることをいう。これにより、導波モードの電場がサブミクロン構造に到達し、擬似導波モードが形成される。ただし、透光層の屈折率がフォトルミネッセンス層の屈折率よりも大きいときには上記の関係を満足しなくても透光層まで光が到達するため、透光層のサブミクロン構造とフォトルミネッセンス層との間の距離は、波長λaの半分超であってもよい。本明細書では、フォトルミネッセンス層と透光層とが、導波モードの電場がサブミクロン構造に到達し、擬似導波モードが形成されるような配置関係にあるとき、両者が互いに関連付けられていると表現することがある。
サブミクロン構造は、上記のように、λa/nwav-a<Dint<λaの関係を満足するので、サブミクロンオーダーの大きさで特徴づけられる。サブミクロン構造は、例えば、以下に詳細に説明する実施形態の発光素子におけるように、少なくとも1つの周期構造を含む。少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ。すなわち、サブミクロン構造は、隣接する凸部間の距離Dintがpaで一定の周期構造を有する。サブミクロン構造が周期構造を含むと、擬似導波モードの光は、伝搬しながら周期構造と相互作用を繰り返すことにより、サブミクロン構造によって回折される。これは、自由空間を伝播する光が周期構造により回折する現象とは異なり、光が導波しながら(即ち、全反射を繰り返しながら)周期構造と作用する現象である。したがって、周期構造による位相シフトが小さくても(即ち、周期構造の高さが小さくても)効率よく光の回折を起こすことができる。
以上のようなメカニズムを利用すれば、擬似導波モードにより電場が増強される効果によって、フォトルミネッセンスの発光効率が増大するとともに、発生した光が擬似導波モードに結合する。擬似導波モードの光は、周期構造で規定される回折角度だけ進行角度が曲げられる。これを利用することによって、特定の波長の光を特定の方向に出射することができる(指向性が顕著に向上)。さらに、TEとTMモードで有効屈折率neff(=nwavsinθ)が異なるので、高い偏光の選択性を同時に得ることもできる。例えば、後に実験例を示すように、特定の波長(例えば610nm)の直線偏光(例えばTMモード)を正面方向に強く出射する発光素子を得ることができる。このとき、正面方向に出射される光の指向角は例えば15°未満である。なお、指向角は正面方向を0°とした片側の角度とする。
逆に、サブミクロン構造の周期性が低くなると、指向性、発光効率、偏光度および波長選択性が弱くなる。必要に応じて、サブミクロン構造の周期性を調整すればよい。周期構造は、偏光の選択性が高い1次元周期構造であってもよいし、偏光度を小さくできる2次元周期構造であってもよい。
また、サブミクロン構造は、複数の周期構造を含み得る。複数の周期構造は、例えば、周期(ピッチ)が互いに異なる。あるいは、複数の周期構造は、例えば、周期性を有する方向(軸)が互いに異なる。複数の周期構造は、同一面内に形成されてもよいし、積層されてもよい。もちろん、発光素子は、複数のフォトルミネッセンス層と複数の透光層とを有し、これらが複数のサブミクロン構造を有してもよい。
サブミクロン構造は、フォトルミネッセンス層が発する光を制御するためだけでなく、励起光を効率よくフォトルミネッセンス層に導くためにも用いることができる。すなわち、励起光がサブミクロン構造により回折されフォトルミネッセンス層および透光層を導波する擬似導波モードに結合することで、効率よくフォトルミネッセンス層を励起することができる。フォトルミネッセンス材料を励起する光の空気中における波長をλexとし、この励起光に対するフォトルミネッセンス層の屈折率をnwav-exとすると、λex/nwav-ex<Dint<λexの関係が成り立つサブミクロン構造を用いればよい。nwav-exはフォトルミネッセンス材料の励起波長における屈折率である。周期をpexとすると、λex/nwav-ex<pex<λexの関係が成り立つ周期構造を有するサブミクロン構造を用いてもよい。励起光の波長λexは、例えば、450nmであるが、可視光よりも短波長であってもよい。励起光の波長が可視光の範囲内にある場合、フォトルミネッセンス層が発する光とともに、励起光を出射するようにしてもよい。
[1.本開示の基礎となった知見]
本開示の具体的な実施形態を説明する前に、まず、本開示の基礎となった知見を説明する。上述のように、蛍光灯、白色LEDなどで使われるフォトルミネッセンス材料は等方的に発光するので、特定の方向を光で照らすためには、リフレクターやレンズなどの光学部品が必要である。しかしながら、もしフォトルミネッセンス層自身が指向性をもって発光すれば、上記のような光学部品は不要になるので(若しくは小さくできるので)、光学デバイスや器具の大きさを大幅に小さくすることができる。本発明者らは、このような着想に基づき、指向性発光を得るために、フォトルミネッセンス層の構成を詳細に検討した。
本開示の具体的な実施形態を説明する前に、まず、本開示の基礎となった知見を説明する。上述のように、蛍光灯、白色LEDなどで使われるフォトルミネッセンス材料は等方的に発光するので、特定の方向を光で照らすためには、リフレクターやレンズなどの光学部品が必要である。しかしながら、もしフォトルミネッセンス層自身が指向性をもって発光すれば、上記のような光学部品は不要になるので(若しくは小さくできるので)、光学デバイスや器具の大きさを大幅に小さくすることができる。本発明者らは、このような着想に基づき、指向性発光を得るために、フォトルミネッセンス層の構成を詳細に検討した。
本発明者らは、まず、フォトルミネッセンス層からの光が特定の方向に偏るようにするため、発光自体に特定の方向性をもたせることを考えた。発光を特徴付ける指標である発光レートΓは、フェルミの黄金則により、以下の式(1)で表される。
式(1)において、rは位置を表すベクトル、λは光の波長、dは双極子ベクトル、Eは電場ベクトル、ρは状態密度である。一部の結晶性物質を除く多くの物質では、双極子ベクトルdはランダムな方向性を有している。また、フォトルミネッセンス層のサイズと厚さが光の波長よりも十分に大きい場合、電場Eの大きさも向きに依らずほとんど一定である。よって、ほとんどの場合、<(d・E(r))>2の値は方向に依らない。即ち、発光レートΓは方向に依らず一定である。このため、ほとんどの場合においてフォトルミネッセンス層は等方的に発光する。
一方、式(1)から、異方的な発光を得るためには、双極子ベクトルdを特定の方向に揃えるか、電場ベクトルの特定方向の成分を増強するかのいずれかの工夫が必要である。これらのいずれかの工夫を行うことで、指向性発光を実現できる。本開示では、フォトルミネッセンス層へ光を閉じ込める効果により、特定方向の電場成分が増強された擬似導波モードを利用するための構成について検討し、詳細に分析した結果を以下に説明する。
[2.特定の方向の電場のみを強くする構成]
本願発明者らは、電場が強い導波モードを用いて、発光の制御を行うことを考えた。導波構造自体がフォトルミネッセンス材料を含む構成とすることで、発光を導波モードに結合させることができる。しかし、ただ単にフォトルミネッセンス材料を用いて導波構造を形成しただけでは、発せられた光が導波モードとなるため、正面方向へはほとんど光は出てこない。そこで、フォトルミネッセンス材料を含む導波路と周期構造(複数の凸部および複数の凹部の少なくとも一方で形成された)とを組み合わせることを考えた。導波路に周期構造が近接し、光の電場が周期構造と重なりながら導波する場合、周期構造の作用により擬似導波モードが存在する。つまり、この擬似導波モードは、周期構造により制限された導波モードであり、電場振幅の腹が周期構造の周期と同じ周期で発生することを特徴とする。このモードは、光が導波構造に閉じ込められることにより特定方向への電場が強められたモードである。さらに、このモードは周期構造と相互作用することで、回折効果により特定方向の伝播光へと変換されるため、導波路外部へと光を出射することができる。さらに、擬似導波モード以外の光は導波路内に閉じ込められる効果が小さいため、電場は増強されない。よって、発光のほとんどは大きな電場成分を有する擬似導波モードへと結合することになる。
本願発明者らは、電場が強い導波モードを用いて、発光の制御を行うことを考えた。導波構造自体がフォトルミネッセンス材料を含む構成とすることで、発光を導波モードに結合させることができる。しかし、ただ単にフォトルミネッセンス材料を用いて導波構造を形成しただけでは、発せられた光が導波モードとなるため、正面方向へはほとんど光は出てこない。そこで、フォトルミネッセンス材料を含む導波路と周期構造(複数の凸部および複数の凹部の少なくとも一方で形成された)とを組み合わせることを考えた。導波路に周期構造が近接し、光の電場が周期構造と重なりながら導波する場合、周期構造の作用により擬似導波モードが存在する。つまり、この擬似導波モードは、周期構造により制限された導波モードであり、電場振幅の腹が周期構造の周期と同じ周期で発生することを特徴とする。このモードは、光が導波構造に閉じ込められることにより特定方向への電場が強められたモードである。さらに、このモードは周期構造と相互作用することで、回折効果により特定方向の伝播光へと変換されるため、導波路外部へと光を出射することができる。さらに、擬似導波モード以外の光は導波路内に閉じ込められる効果が小さいため、電場は増強されない。よって、発光のほとんどは大きな電場成分を有する擬似導波モードへと結合することになる。
つまり、本願発明者らは、周期構造が近接して設けられた導波路を、フォトルミネッセンス材料を含むフォトルミネッセンス層(あるいはフォトルミネッセンス層を有する導波層)とすることで、発光を特定方向の伝播光へと変換される擬似導波モードへ結合させ、指向性のある光源を実現することを考えた。
導波構造の簡便な構成として、スラブ型導波路に着目した。スラブ型導波路とは、光の導波部分が平板構造を有する導波路のことである。図30は、スラブ型導波路110Sの一例を模式的に示す斜視図である。導波路110Sの屈折率が導波路110Sを支持する透明基板140の屈折率よりも高いとき、導波路110S内を伝播する光のモードが存在する。このようなスラブ型導波路をフォトルミネッセンス層を含む構成とすることで、発光点から生じた光の電場が導波モードの電場と大きく重なりをもつので、フォトルミネッセンス層で生じた光の大部分を導波モードに結合させることができる。さらに、フォトルミネッセンス層の厚さを光の波長程度とすることにより、電場振幅の大きい導波モードのみが存在する状況を作り出すことができる。
さらに、フォトルミネッセンス層に周期構造が近接する場合には、導波モードの電場が周期構造と相互作用することで擬似導波モードが形成される。フォトルミネッセンス層が複数の層で構成されている場合でも、導波モードの電場が周期構造に達していれば、擬似導波モードが形成されることになる。フォトルミネッセンス層の全てがフォトルミネッセンス材料である必要はなく、その少なくとも一部の領域が発光する機能を有していればよい。
また、周期構造を金属で形成した場合には、導波モードとプラズモン共鳴の効果によるモードが形成され、上で述べた擬似導波モードとは異なる性質となる。また、このモードは金属による吸収が大きいためロスが大きくなり、発光増強の効果は小さくなる。したがって、周期構造としては、吸収の少ない誘電体を用いるのが望ましい。
本発明者らは、まずこのような導波路(例えば、フォトルミネッセンス層)の表面に、周期構造を形成することで、特定の角度方向の伝播光として出射することのできる擬似導波モードに発光を結合させることについて検討を行った。図1Aは、そのような導波路(例えば、フォトルミネッセンス層)110と周期構造(例えば、透光層)120とを有する発光素子100の一例を模式的に示す斜視図である。以下、透光層120が周期構造を形成している場合(即ち、透光層120に周期的なサブミクロン構造が形成されている場合)、透光層120を周期構造120ということがある。この例では、周期構造120は、各々がy方向に延びるストライプ状の複数の凸部がx方向に等間隔に並んだ1次元周期構造である。図1Bは、この発光素子100をxz面に平行な平面で切断したときの断面図である。導波路110に接するように周期pの周期構造120を設けると、面内方向の波数kwavをもつ擬似導波モードは、導波路外の伝播光へと変換され、その波数koutは以下の式(2)で表すことができる。
式(2)におけるmは整数であり、回折の次数を表す。
式(2)におけるmは整数であり、回折の次数を表す。
これらの式において、λ0は光の空気中の波長、nwavは導波路の屈折率、noutは出射側の媒質の屈折率、θoutは光が導波路外の基板または空気に出射するときの出射角度である。式(2)〜(4)から、出射角度θoutは、以下の式(5)で表すことができる。
式(5)より、nwavsinθwav=mλ0/pが成立するとき、θout=0となり、導波路の面に垂直な方向(即ち、正面)に光を出射させることができることがわかる。
以上のような原理に基づけば、発光を特定の擬似導波モードに結合させ、さらに周期構造を利用して特定の出射角度の光に変換することにより、その方向に強い光を出射させることができると考えられる。
なお、図1Aおよび図1Bに示すような周期構造を設けた場合には、mが2以上の高次の回折効率は低いため、m=1である1次の回折光を主眼に設計すると良い。このため、本実施形態における周期構造では、m=1として、式(10)を変形した以下の式(11)を満足するように周期pが決定される。
図1Aおよび図1Bに示すように、導波路(フォトルミネッセンス層)110が透明基板に接していない場合には、noutは空気の屈折率(約1.0)となるため、以下の式(12)を満足するように周期pを決定すればよい。
一方、図1Cおよび図1Dに例示するような透明基板140上にフォトルミネッセンス層110および周期構造120を形成した構造を採用してもよい。この場合には、透明基板140の屈折率nsが空気の屈折率よりも大きいことから、式(11)においてnout=nsとした次式(13)を満足するように周期pを決定すればよい。
なお、式(12)、(13)では、式(10)においてm=1の場合を想定したが、m≧2であってもよい。すなわち、図1Aおよび図1Bに示すように発光素子100の両面が空気層に接している場合には、mを1以上の整数として、以下の式(14)を満足するように周期pが設定されていればよい。
以上の不等式を満足するように周期構造の周期pを決定することにより、フォトルミネッセンス層110から発生した光を正面方向に出射させることができるため、指向性を有する発光装置を実現できる。
[3.計算による検証]
[3−1.周期、波長依存性]
本発明者らは、以上のような特定方向への光の出射が実際に可能であるかを光学解析によって検証した。光学解析は、サイバネット社のDiffractMODを用いた計算によって行った。これらの計算では、発光素子に対して外部から垂直に光を入射したときに、フォトルミネッセンス層における光の吸収の増減を計算することで、外部へ垂直に出射する光の増強度を求めた。外部から入射した光が擬似導波モードに結合しフォトルミネッセンス層で吸収されるという過程は、フォトルミネッセンス層における発光が擬似導波モードへと結合し、外部へ垂直に出射する伝播光へと変換される過程と逆の過程を計算していることに対応する。また、擬似導波モードの電場分布の計算においても、同様に外部から光を入射した場合における電場を計算した。
[3−1.周期、波長依存性]
本発明者らは、以上のような特定方向への光の出射が実際に可能であるかを光学解析によって検証した。光学解析は、サイバネット社のDiffractMODを用いた計算によって行った。これらの計算では、発光素子に対して外部から垂直に光を入射したときに、フォトルミネッセンス層における光の吸収の増減を計算することで、外部へ垂直に出射する光の増強度を求めた。外部から入射した光が擬似導波モードに結合しフォトルミネッセンス層で吸収されるという過程は、フォトルミネッセンス層における発光が擬似導波モードへと結合し、外部へ垂直に出射する伝播光へと変換される過程と逆の過程を計算していることに対応する。また、擬似導波モードの電場分布の計算においても、同様に外部から光を入射した場合における電場を計算した。
フォトルミネッセンス層の膜厚を1μm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造の高さを50nm、周期構造の屈折率を1.5とし、発光波長および周期構造の周期をそれぞれ変えて、正面方向に出射する光の増強度を計算した結果を図2に示す。計算モデルは、図1Aに示すように、y方向には均一な1次元周期構造とし、光の偏光はy方向に平行な電場成分を有するTMモードであるとして計算を行った。図2の結果から、増強度のピークが、ある特定の波長と周期との組み合わせにおいて存在することがわかる。なお、図2において、増強度の大きさは色の濃淡で表されており、濃い(即ち黒い)方が増強度が大きく、淡い(即ち白い)方が増強度が小さい。
上記の計算において、周期構造の断面は、図1Bに示すような矩形であるものとしている。式(10)におけるm=1およびm=3の条件を図示したグラフを図3に示す。図2と図3とを比較すると、図2におけるピーク位置はm=1とm=3に対応するところに存在することがわかる。m=1の方が強度が強いのは、3次以上の高次の回折光よりも1次の回折光の回折効率の方が高いからである。m=2のピークが存在しないのは、周期構造における回折効率が低いためである。
図3で示したm=1およびm=3のそれぞれに対応する領域内において、図2では複数のラインが存在することが確認できる。これは、擬似導波モードが複数存在するからであると考えられる。
[3−2.厚さ依存性]
図4は、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造の周期を400nm、高さを50nm、屈折率を1.5とし、発光波長およびフォトルミネッセンス層の厚さtを変えて正面方向に出力する光の増強度を計算した結果を示す図である。フォトルミネッセンス層の厚さtが特定の値であるときに光の増強度がピークに達することがわかる。
図4は、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造の周期を400nm、高さを50nm、屈折率を1.5とし、発光波長およびフォトルミネッセンス層の厚さtを変えて正面方向に出力する光の増強度を計算した結果を示す図である。フォトルミネッセンス層の厚さtが特定の値であるときに光の増強度がピークに達することがわかる。
図4においてピークが存在する波長600nm、厚さt=238nm、539nmのときに、x方向に導波するモードの電場分布を計算した結果を図5Aおよび図5Bにそれぞれ示す。比較のため、ピークが存在しないt=300nmの場合について同様の計算を行った結果を図5Cに示す。計算モデルは、上記と同様、y方向に均一な1次元周期構造であるとした。各図において、黒い領域ほど電場強度が高く、白い領域ほど電場強度が低いことを表している。t=238nm、539nmの場合には高い電場強度の分布があるのに対して、t=300nmでは全体的に電場強度が低い。これは、t=238nm、539nmの場合には、導波モードが存在し、光が強く閉じ込められているからである。さらに、凸部または凸部の直下に電場が最も強い部分(腹)が必ず存在しており、周期構造120と相関のある電場が発生している特徴が見て取れる。つまり、周期構造120の配置に従って、導波するモードが得られていることがわかる。また、t=238nmの場合とt=539nmの場合とを比較すると、z方向の電場の節(白い部分)の数が1つだけ異なるモードであることが分かる。
[3−3.偏光依存性]
次に偏光依存性を確認するために、図2の計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードである場合について光の増強度の計算を行った。本計算の結果を図6に示す。TMモードのとき(図2)に比べ、ピーク位置は多少変化しているものの、図3で示した領域内にピーク位置が納まっている。よって、本実施形態の構成は、TMモード、TEモードのいずれの偏光についても有効であることが確認できた。
次に偏光依存性を確認するために、図2の計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードである場合について光の増強度の計算を行った。本計算の結果を図6に示す。TMモードのとき(図2)に比べ、ピーク位置は多少変化しているものの、図3で示した領域内にピーク位置が納まっている。よって、本実施形態の構成は、TMモード、TEモードのいずれの偏光についても有効であることが確認できた。
[3−4.2次元周期構造]
さらに、2次元の周期構造による効果の検討を行った。図7Aは、x方向およびy方向の両方向に凹部および凸部が配列された2次元の周期構造120’の一部を示す平面図である。図中の黒い領域が凸部、白い領域が凹部を示している。このような2次元周期構造では、x方向とy方向の両方の回折を考慮する必要がある。x方向のみ、あるいはy方向のみの回折に関しては1次元の場合と同様であるが、x、y両方の成分を有する方向(例えば、斜め45°方向)の回折も存在するため、1次元の場合とは異なる結果が得られることが期待できる。このような2次元周期構造に関して光の増強度を計算した結果を図7Bに示す。周期構造以外の計算条件は図2の条件と同じである。図7Bに示すように、図2に示すTMモードのピーク位置に加えて、図6に示すTEモードにおけるピーク位置と一致するピーク位置も観測された。この結果は、2次元周期構造により、TEモードも、回折により変換されて出力されていることを示している。また、2次元周期構造については、x方向およびy方向の両方について、同時に1次の回折条件を満足する回折も考慮する必要がある。このような回折光は、周期pの√2倍(即ち、21/2倍)の周期に対応する角度の方向に出射する。よって、1次元周期構造の場合のピークに加えて、周期pの√2倍の周期についてもピークが発生すると考えられる。図7Bでは、このようなピークも確認できる。
さらに、2次元の周期構造による効果の検討を行った。図7Aは、x方向およびy方向の両方向に凹部および凸部が配列された2次元の周期構造120’の一部を示す平面図である。図中の黒い領域が凸部、白い領域が凹部を示している。このような2次元周期構造では、x方向とy方向の両方の回折を考慮する必要がある。x方向のみ、あるいはy方向のみの回折に関しては1次元の場合と同様であるが、x、y両方の成分を有する方向(例えば、斜め45°方向)の回折も存在するため、1次元の場合とは異なる結果が得られることが期待できる。このような2次元周期構造に関して光の増強度を計算した結果を図7Bに示す。周期構造以外の計算条件は図2の条件と同じである。図7Bに示すように、図2に示すTMモードのピーク位置に加えて、図6に示すTEモードにおけるピーク位置と一致するピーク位置も観測された。この結果は、2次元周期構造により、TEモードも、回折により変換されて出力されていることを示している。また、2次元周期構造については、x方向およびy方向の両方について、同時に1次の回折条件を満足する回折も考慮する必要がある。このような回折光は、周期pの√2倍(即ち、21/2倍)の周期に対応する角度の方向に出射する。よって、1次元周期構造の場合のピークに加えて、周期pの√2倍の周期についてもピークが発生すると考えられる。図7Bでは、このようなピークも確認できる。
2次元周期構造としては、図7Aに示すようなx方向およびy方向の周期が等しい正方格子の構造に限らず、図18Aおよび図18Bのような六角形や三角形を並べた格子構造であってもよい。また、方位方向によって(例えば、正方格子の場合x方向およびy方向)の周期が異なる構造であってもよい。
以上のように、本実施形態では、周期構造とフォトルミネッセンス層とによって形成される特徴的な擬似導波モードの光を、周期構造による回折現象を利用して、正面方向にのみ選択的に出射できることが確認できた。このような構成で、フォトルミネッセンス層を紫外線や青色光などの励起光で励起させることにより、指向性を有する発光が得られる。
[4.周期構造およびフォトルミネッセンス層の構成の検討]
次に、周期構造およびフォトルミネッセンス層の構成や屈折率などの各種条件を変えたときの効果について説明する。
次に、周期構造およびフォトルミネッセンス層の構成や屈折率などの各種条件を変えたときの効果について説明する。
[4−1.周期構造の屈折率]
まず、周期構造の屈折率に関して検討を行った。フォトルミネッセンス層の膜厚を200nm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造は図1Aに示すようなy方向に均一な1次元周期構造とし、高さを50nm、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとして計算を行った。発光波長および周期構造の屈折率を変えて正面方向に出力する光の増強度を計算した結果を図8に示す。また、同様の条件でフォトルミネッセンス層の膜厚を1000nmにした場合の結果を図9に示す。
まず、周期構造の屈折率に関して検討を行った。フォトルミネッセンス層の膜厚を200nm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造は図1Aに示すようなy方向に均一な1次元周期構造とし、高さを50nm、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとして計算を行った。発光波長および周期構造の屈折率を変えて正面方向に出力する光の増強度を計算した結果を図8に示す。また、同様の条件でフォトルミネッセンス層の膜厚を1000nmにした場合の結果を図9に示す。
まず、フォトルミネッセンス層の膜厚に着目すると、膜厚が200nmの場合(図8)に比べ、膜厚が1000nmの場合(図9)のほうが、周期構造の屈折率の変化に対する光強度がピークとなる波長(ピーク波長と称する。)のシフトが小さいことがわかる。これは、フォトルミネッセンス層の膜厚が小さいほど、擬似導波モードが周期構造の屈折率の影響を受けやすいからである。即ち、周期構造の屈折率が高いほど、有効屈折率が大きくなり、その分ピーク波長が長波長側にシフトするが、この影響は、膜厚が小さいほど顕著になる。なお、有効屈折率は、擬似導波モードの電場が分布する領域に存在する媒質の屈折率によって決まる。
次に、周期構造の屈折率の変化に対するピークの変化に着目すると、屈折率が高いほどピークが広がり強度が下がっていることがわかる。これは、周期構造の屈折率が高いほど擬似導波モードの光を外部に放出するレートが高いため、光を閉じ込める効果が減少する、すなわちQ値が低くなることが原因である。ピーク強度を高く保つためには、光を閉じ込める効果が高い(即ちQ値が高い)擬似導波モードを利用して、適度に光を外部に放出する構成にすればよい。これを実現するためには、屈折率がフォトルミネッセンス層の屈折率に比べて大き過ぎる材料を周期構造に用いるのは望ましくないことがわかる。したがって、ピーク強度およびQ値をある程度高くするためには、周期構造を構成する誘電体(即ち、透光層)の屈折率を、フォトルミネッセンス層の屈折率と同等以下にすればよい。フォトルミネッセンス層がフォトルミネッセンス材料以外の材料を含むときも同様である。
[4−2.周期構造の高さ]
次に、周期構造の高さに関して検討を行った。フォトルミネッセンス層の膜厚を1000nm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造は図1Aに示すようなy方向に均一な1次元周期構造で屈折率をnp=1.5、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとして計算を行った。発光波長および周期構造の高さを変えて正面方向に出力する光の増強度を計算した結果を図10に示す。同様の条件で、周期構造の屈折率をnp=2.0とした場合の計算結果を図11に示す。図10に示す結果では、ある程度以上の高さではピーク強度やQ値(即ち、ピークの線幅)が変化していないのに対して、図11に示す結果では、周期構造の高さが大きいほどピーク強度およびQ値が低下していることがわかる。これは、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも高い場合(図10)には、光が全反射するので、擬似導波モードの電場の染み出し(エバネッセント)部分のみが周期構造と相互作用することに起因する。電場のエバネッセント部分と周期構造との相互作用の影響は、周期構造の高さが十分大きい場合には、それ以上高さが変化しても一定である。一方、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも低い場合(図11)は、全反射せずに周期構造の表面にまで光が到達するので、周期構造の高さが大きいほどその影響を受ける。図11を見る限り、高さは100nm程度あれば十分であり、150nmを超える領域ではピーク強度およびQ値が低下していることがわかる。したがって、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも低い場合に、ピーク強度およびQ値をある程度高くするためには、周期構造の高さを150nm以下に設定すればよい。
次に、周期構造の高さに関して検討を行った。フォトルミネッセンス層の膜厚を1000nm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造は図1Aに示すようなy方向に均一な1次元周期構造で屈折率をnp=1.5、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとして計算を行った。発光波長および周期構造の高さを変えて正面方向に出力する光の増強度を計算した結果を図10に示す。同様の条件で、周期構造の屈折率をnp=2.0とした場合の計算結果を図11に示す。図10に示す結果では、ある程度以上の高さではピーク強度やQ値(即ち、ピークの線幅)が変化していないのに対して、図11に示す結果では、周期構造の高さが大きいほどピーク強度およびQ値が低下していることがわかる。これは、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも高い場合(図10)には、光が全反射するので、擬似導波モードの電場の染み出し(エバネッセント)部分のみが周期構造と相互作用することに起因する。電場のエバネッセント部分と周期構造との相互作用の影響は、周期構造の高さが十分大きい場合には、それ以上高さが変化しても一定である。一方、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも低い場合(図11)は、全反射せずに周期構造の表面にまで光が到達するので、周期構造の高さが大きいほどその影響を受ける。図11を見る限り、高さは100nm程度あれば十分であり、150nmを超える領域ではピーク強度およびQ値が低下していることがわかる。したがって、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも低い場合に、ピーク強度およびQ値をある程度高くするためには、周期構造の高さを150nm以下に設定すればよい。
[4−3.偏光方向]
次に、偏光方向に関して検討を行った。図9に示す計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードであるものとして計算した結果を図12に示す。TEモードでは、擬似導波モードの電場の染み出しがTMモードに比べて大きいため、周期構造による影響を受けやすい。よって、周期構造の屈折率npがフォトルミネッセンス層の屈折率nwavよりも大きい領域では、ピーク強度およびQ値の低下がTMモードよりも著しい。
次に、偏光方向に関して検討を行った。図9に示す計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードであるものとして計算した結果を図12に示す。TEモードでは、擬似導波モードの電場の染み出しがTMモードに比べて大きいため、周期構造による影響を受けやすい。よって、周期構造の屈折率npがフォトルミネッセンス層の屈折率nwavよりも大きい領域では、ピーク強度およびQ値の低下がTMモードよりも著しい。
[4−4.フォトルミネッセンス層の屈折率]
次に、フォトルミネッセンス層の屈折率に関して検討を行った。図9に示す計算と同様の条件で、フォトルミネッセンス層の屈折率nwavを1.5に変更した場合の結果を図13に示す。フォトルミネッセンス層の屈折率nwavが1.5の場合においても概ね図9と同様の効果が得られていることがわかる。ただし、波長が600nm以上の光は正面方向に出射していないことがわかる。これは、式(10)より、λ0<nwav×p/m=1.5×400nm/1=600nmとなるからである。
次に、フォトルミネッセンス層の屈折率に関して検討を行った。図9に示す計算と同様の条件で、フォトルミネッセンス層の屈折率nwavを1.5に変更した場合の結果を図13に示す。フォトルミネッセンス層の屈折率nwavが1.5の場合においても概ね図9と同様の効果が得られていることがわかる。ただし、波長が600nm以上の光は正面方向に出射していないことがわかる。これは、式(10)より、λ0<nwav×p/m=1.5×400nm/1=600nmとなるからである。
以上の分析から、周期構造の屈折率はフォトルミネッセンス層の屈折率と同等以下にするか、周期構造の屈折率がフォトルミネッセンス層の屈折率以上の場合には、高さを150nm以下にすれば、ピーク強度およびQ値を高くできることがわかる。
[5.変形例]
以下、本実施形態の変形例を説明する。
以下、本実施形態の変形例を説明する。
[5−1.基板を有する構成]
上述のように、発光素子は、図1Cおよび図1Dに示すように、透明基板140の上にフォトルミネッセンス層110および周期構造120が形成された構造を有していてもよい。このような発光素子100aを作製するには、まず、透明基板140上にフォトルミネッセンス層110を構成するフォトルミネッセンス材料(必要に応じて、マトリクス材料を含む、以下同じ。)で薄膜を形成し、その上に周期構造120を形成する方法が考えられる。このような構成において、フォトルミネッセンス層110と周期構造120とにより、光を特定の方向に出射する機能をもたせるためには、透明基板140の屈折率nsはフォトルミネッセンス層の屈折率nwav以下にする必要がある。透明基板140をフォトルミネッセンス層110に接するように設けた場合、式(10)における出射媒質の屈折率noutをnsとした式(15)を満足するように周期pを設定する必要がある。
上述のように、発光素子は、図1Cおよび図1Dに示すように、透明基板140の上にフォトルミネッセンス層110および周期構造120が形成された構造を有していてもよい。このような発光素子100aを作製するには、まず、透明基板140上にフォトルミネッセンス層110を構成するフォトルミネッセンス材料(必要に応じて、マトリクス材料を含む、以下同じ。)で薄膜を形成し、その上に周期構造120を形成する方法が考えられる。このような構成において、フォトルミネッセンス層110と周期構造120とにより、光を特定の方向に出射する機能をもたせるためには、透明基板140の屈折率nsはフォトルミネッセンス層の屈折率nwav以下にする必要がある。透明基板140をフォトルミネッセンス層110に接するように設けた場合、式(10)における出射媒質の屈折率noutをnsとした式(15)を満足するように周期pを設定する必要がある。
このことを確認するために、屈折率が1.5の透明基板140の上に、図2に示す計算と同じ条件のフォトルミネッセンス層110および周期構造120を設けた場合の計算を行った。本計算の結果を図14に示す。図2の結果と同様、波長ごとに特定の周期において光強度のピークが現れることが確認できるが、ピークが現れる周期の範囲が図2の結果とは異なることがわかる。これに対して、式(10)の条件をnout=nsとした式(15)の条件を図15に示す。図14において、図15に示される範囲に対応する領域内に、光強度のピークが現れていることがわかる。
したがって、透明基板140上にフォトルミネッセンス層110と周期構造120とを設けた発光素子100aでは、式(15)を満足する周期pの範囲において効果が得られ、式(13)を満足する周期pの範囲において特に顕著な効果が得られる。
[5−2.励起光源を有する発光装置]
図16は、図1A、1Bに示す発光素子100と、励起光をフォトルミネッセンス層110に入射させる光源180とを備える発光装置200の構成例を示す図である。上述のように、本開示の構成では、フォトルミネッセンス層を紫外線や青色光などの励起光で励起させることにより、指向性をもつ発光が得られる。そのような励起光を出射するように構成された光源180を設けることにより、指向性をもつ発光装置200を実現できる。光源180から出射される励起光の波長は、典型的には紫外または青色領域の波長であるが、これらに限らず、フォトルミネッセンス層110を構成するフォトルミネッセンス材料に応じて適宜決定される。なお、図16では、光源180がフォトルミネッセンス層110の下面から励起光を入射させるように配置されているが、このような例に限定されず、例えば、フォトルミネッセンス層110の上面から励起光を入射させてもよい。
図16は、図1A、1Bに示す発光素子100と、励起光をフォトルミネッセンス層110に入射させる光源180とを備える発光装置200の構成例を示す図である。上述のように、本開示の構成では、フォトルミネッセンス層を紫外線や青色光などの励起光で励起させることにより、指向性をもつ発光が得られる。そのような励起光を出射するように構成された光源180を設けることにより、指向性をもつ発光装置200を実現できる。光源180から出射される励起光の波長は、典型的には紫外または青色領域の波長であるが、これらに限らず、フォトルミネッセンス層110を構成するフォトルミネッセンス材料に応じて適宜決定される。なお、図16では、光源180がフォトルミネッセンス層110の下面から励起光を入射させるように配置されているが、このような例に限定されず、例えば、フォトルミネッセンス層110の上面から励起光を入射させてもよい。
励起光を擬似導波モードに結合させることで、効率よく光を出射させる方法もある。図17は、そのような方法を説明するための図である。この例では、図1C、1Dに示す構成と同様、透明基板140上にフォトルミネッセンス層110および周期構造120が形成されている。まず、図17(a)に示すように、発光増強のためにx方向の周期pxを決定し、続いて、図17(b)に示すように、励起光を擬似導波モードに結合させるためにy方向の周期pyを決定する。周期pxは、式(10)においてpをpxに置き換えた条件を満足するように決定される。一方、周期pyは、mを1以上の整数、励起光の波長をλex、フォトルミネッセンス層110に接する媒質のうち、周期構造120を除く最も屈折率の高い媒質の屈折率をnoutとして、以下の式(16)を満足するように決定される。
ここで、noutは、図17の例では透明基板140のnsであるが、図16のように透明基板140を設けない構成では、空気の屈折率(約1.0)である。
ここで、noutは、図17の例では透明基板140のnsであるが、図16のように透明基板140を設けない構成では、空気の屈折率(約1.0)である。
このように、式(16)の条件(特に式(17)の条件)を満足するように周期pyを設定することで、励起光を擬似導波モードに変換することができる。その結果、フォトルミネッセンス層110に効率的に波長λexの励起光を吸収させることができる。
図17(c)、(d)は、それぞれ、図17(a)、(b)に示す構造に対して光を入射したときに光が吸収される割合を波長ごとに計算した結果を示す図である。この計算では、px=365nm、py=265nmとし、フォトルミネッセンス層110からの発光波長λを約600nm、励起光の波長λexを約450nm、フォトルミネッセンス層110の消衰係数は0.003としている。図17(d)に示すように、フォトルミネッセンス層110から生じた光だけでなく、励起光である約450nmの光に対して高い吸収率を示している。これは、入射した光が効果的に擬似導波モードに変換されることで、フォトルミネッセンス層に吸収される割合を増大させることができているためである。また、発光波長である約600nmに対しても吸収率が増大しているが、これは、もし約600nmの波長の光をこの構造に入射した場合には、同様に効果的に擬似導波モードに変換されるということである。このように、図17(b)に示す周期構造120は、x方向およびy方向のそれぞれに周期の異なる構造(周期成分)を有する2次元周期構造である。このように、複数の周期成分を有する2次元周期構造を用いることにより、励起効率を高めつつ、出射強度を高めることが可能になる。なお、図17では励起光を基板側から入射しているが、周期構造側から入射しても同じ効果が得られる。
さらに、複数の周期成分を有する2次元周期構造としては、図18Aまたは図18Bに示すような構成を採用してもよい。図18Aに示すように六角形の平面形状を有する複数の凸部または凹部を周期的に並べた構成や、図18Bに示すように三角形の平面形状を有する複数の凸部または凹部を周期的に並べた構成とすることにより、周期とみなすことのできる複数の主軸(図の例では軸1〜3)を定めることができる。このため、それぞれの軸方向について異なる周期を割り当てることができる。これらの周期の各々を、複数の波長の光の指向性を高めるために設定してもよいし、励起光を効率よく吸収させるために設定してもよい。いずれの場合も、式(10)に相当する条件を満足するように各周期が設定される。
[5−3.透明基板上の周期構造]
図19Aおよび図19Bに示すように、透明基板140上に周期構造120aを形成し、その上にフォトルミネッセンス層110を設けてもよい。図19Aの構成例では、基板140上の凹凸からなる周期構造120aに追従するようにフォトルミネッセンス層110が形成された結果、フォトルミネッセンス層110の表面にも同じ周期の周期構造120bが形成されている。一方、図19Bの構成例では、フォトルミネッセンス層110の表面は平坦になるように処理されている。これらの構成例においても、周期構造120aの周期pを式(15)を満足するように設定することにより、指向性発光を実現できる。
図19Aおよび図19Bに示すように、透明基板140上に周期構造120aを形成し、その上にフォトルミネッセンス層110を設けてもよい。図19Aの構成例では、基板140上の凹凸からなる周期構造120aに追従するようにフォトルミネッセンス層110が形成された結果、フォトルミネッセンス層110の表面にも同じ周期の周期構造120bが形成されている。一方、図19Bの構成例では、フォトルミネッセンス層110の表面は平坦になるように処理されている。これらの構成例においても、周期構造120aの周期pを式(15)を満足するように設定することにより、指向性発光を実現できる。
この効果を検証するため、図19Aの構成において、発光波長および周期構造の周期を変えて正面方向に出力する光の増強度を計算した。ここで、フォトルミネッセンス層110の膜厚を1000nm、フォトルミネッセンス層110の屈折率をnwav=1.8、周期構造120aはy方向に均一な1次元周期構造で高さを50nm、屈折率をnp=1.5、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとした。本計算の結果を図19Cに示す。本計算においても、式(15)の条件を満足する周期で光強度のピークが観測された。
[5−4.粉体]
以上の実施形態によれば、周期構造の周期や、フォトルミネッセンス層の膜厚を調整することで任意の波長の発光を強調することができる。例えば、広い帯域で発光するフォトルミネッセンス材料を用いて図1A、1Bのような構成にすれば、ある波長の光のみを強調することが可能である。よって、図1A、1Bのような発光素子100の構成を粉末状にして、蛍光材料として利用してもよい。また、図1A、1Bのような発光素子100を樹脂やガラスなどに埋め込んで利用してもよい。
以上の実施形態によれば、周期構造の周期や、フォトルミネッセンス層の膜厚を調整することで任意の波長の発光を強調することができる。例えば、広い帯域で発光するフォトルミネッセンス材料を用いて図1A、1Bのような構成にすれば、ある波長の光のみを強調することが可能である。よって、図1A、1Bのような発光素子100の構成を粉末状にして、蛍光材料として利用してもよい。また、図1A、1Bのような発光素子100を樹脂やガラスなどに埋め込んで利用してもよい。
図1A、1Bのような単体の構成では、ある特定の波長しか特定の方向に出射できないため、例えば広い波長域のスペクトルを持つ白色などの発光を実現することは難しい。そこで、図20に示すように周期構造の周期やフォトルミネッセンス層の膜厚などの条件の異なる複数の粉末状の発光素子100を混ぜたものを用いることにより、広い波長域のスペクトルを持つ発光装置を実現できる。この場合、個々の発光素子100の一方向のサイズは、例えば数μm〜数mm程度であり、その中に例えば数周期〜数百周期の1次元または2次元の周期構造を含み得る。
[5−5.周期の異なる構造を配列]
図21は、フォトルミネッセンス層の上に周期の異なる複数の周期構造を2次元に配列した例を示す平面図である。この例では、3種類の周期構造120a、120b、120cが隙間なく配列されている。周期構造120a、120b、120cは、例えば、赤、緑、青の波長域の光をそれぞれ正面に出射するように周期が設定されている。このように、フォトルミネッセンス層の上に周期の異なる複数の構造を並べることによっても広い波長域のスペクトルに対し指向性を発揮させることができる。なお、複数の周期構造の構成は、上記のものに限定されず、任意に設定してよい。
図21は、フォトルミネッセンス層の上に周期の異なる複数の周期構造を2次元に配列した例を示す平面図である。この例では、3種類の周期構造120a、120b、120cが隙間なく配列されている。周期構造120a、120b、120cは、例えば、赤、緑、青の波長域の光をそれぞれ正面に出射するように周期が設定されている。このように、フォトルミネッセンス層の上に周期の異なる複数の構造を並べることによっても広い波長域のスペクトルに対し指向性を発揮させることができる。なお、複数の周期構造の構成は、上記のものに限定されず、任意に設定してよい。
[5−6.積層構造]
図22は、表面に凹凸構造が形成された複数のフォトルミネッセンス層110が積層された構造を有する発光素子の一例を示している。複数のフォトルミネッセンス層110の間には、透明基板140が設けられ、各層のフォトルミネッセンス層110の表面に形成された凹凸構造が上記の周期構造またはサブミクロン構造に相当する。図22に示す例では、3層の周期の異なる周期構造が形成されており、それぞれ、赤、青、緑の波長域の光を正面に出射するように周期が設定されている。また、各周期構造の周期に対応する色の光を発するように各層のフォトルミネッセンス層110の材料が選択されている。このように、周期の異なる複数の周期構造を積層することによっても、広い波長域のスペクトルに対し指向性を発揮させることができる。
図22は、表面に凹凸構造が形成された複数のフォトルミネッセンス層110が積層された構造を有する発光素子の一例を示している。複数のフォトルミネッセンス層110の間には、透明基板140が設けられ、各層のフォトルミネッセンス層110の表面に形成された凹凸構造が上記の周期構造またはサブミクロン構造に相当する。図22に示す例では、3層の周期の異なる周期構造が形成されており、それぞれ、赤、青、緑の波長域の光を正面に出射するように周期が設定されている。また、各周期構造の周期に対応する色の光を発するように各層のフォトルミネッセンス層110の材料が選択されている。このように、周期の異なる複数の周期構造を積層することによっても、広い波長域のスペクトルに対し指向性を発揮させることができる。
なお、層数や各層のフォトルミネッセンス層110および周期構造の構成は上記のものに限定されず、任意に設定してよい。例えば2層の構成では、透光性の基板を介して第1のフォトルミネッセンス層と第2のフォトルミネッセンス層とが対向するように形成され、第1および第2のフォトルミネッセンス層の表面に、それぞれ第1および第2の周期構造が形成されることになる。この場合、第1のフォトルミネッセンス層および第1の周期構造の対と、第2のフォトルミネッセンス層および第2の周期構造の対のそれぞれについて、式(15)に相当する条件を満足していればよい。3層以上の構成においても同様に、各層におけるフォトルミネッセンス層および周期構造について、式(15)に相当する条件を満足していればよい。フォトルミネッセンス層と周期構造との位置関係が図22に示すものとは逆転していてもよい。図22に示す例では、各層の周期が異なっているが、これらを全て同じ周期にしてもよい。その場合、スペクトルを広くすることはできないが、発光強度を大きくすることができる。
[5−7.保護層を有する構成]
図23は、フォトルミネッセンス層110と周期構造120との間に保護層150を設けた構成例を示す断面図である。このように、フォトルミネッセンス層110を保護するための保護層150を設けても良い。ただし、保護層150の屈折率がフォトルミネッセンス層110の屈折率よりも低い場合は、保護層150の内部に波長の半分程度しか光の電場が染み出さない。よって、保護層150が波長よりも厚い場合には、周期構造120に光が届かない。このため、擬似導波モードが存在せず、光を特定方向に放出する機能を得ることができない。保護層150の屈折率がフォトルミネッセンス層110の屈折率と同程度あるいはそれ以上の場合には、保護層150の内部にまで光が到達する。よって、保護層150に厚さの制約は無い。ただし、その場合でも、光が導波する部分(以下、この部分を「導波層」と呼ぶ。)の大部分をフォトルミネッセンス材料で形成したほうが大きな光の出力が得られる。よって、この場合でも保護層150は薄いほうが望ましい。なお、保護層150を周期構造(透光層)120と同じ材料を用いて形成してもよい。このとき、周期構造を有する透光層が保護層を兼ねる。透光層120の屈折率はフォトルミネッセンス層110よりも小さいことが望ましい。
図23は、フォトルミネッセンス層110と周期構造120との間に保護層150を設けた構成例を示す断面図である。このように、フォトルミネッセンス層110を保護するための保護層150を設けても良い。ただし、保護層150の屈折率がフォトルミネッセンス層110の屈折率よりも低い場合は、保護層150の内部に波長の半分程度しか光の電場が染み出さない。よって、保護層150が波長よりも厚い場合には、周期構造120に光が届かない。このため、擬似導波モードが存在せず、光を特定方向に放出する機能を得ることができない。保護層150の屈折率がフォトルミネッセンス層110の屈折率と同程度あるいはそれ以上の場合には、保護層150の内部にまで光が到達する。よって、保護層150に厚さの制約は無い。ただし、その場合でも、光が導波する部分(以下、この部分を「導波層」と呼ぶ。)の大部分をフォトルミネッセンス材料で形成したほうが大きな光の出力が得られる。よって、この場合でも保護層150は薄いほうが望ましい。なお、保護層150を周期構造(透光層)120と同じ材料を用いて形成してもよい。このとき、周期構造を有する透光層が保護層を兼ねる。透光層120の屈折率はフォトルミネッセンス層110よりも小さいことが望ましい。
[6.材料および製造方法]
以上のような条件を満たす材料でフォトルミネッセンス層(あるいは導波層)および周期構造を構成すれば、指向性発光を実現できる。周期構造には任意の材料を用いることができる。しかしながら、フォトルミネッセンス層(あるいは導波層)や周期構造を形成する媒質の光吸収性が高いと、光を閉じ込める効果が低下し、ピーク強度およびQ値が低下する。よって、フォトルミネッセンス層(あるいは導波層)および周期構造を形成する媒質として、光吸収性の比較的低いものが用いられ得る。
以上のような条件を満たす材料でフォトルミネッセンス層(あるいは導波層)および周期構造を構成すれば、指向性発光を実現できる。周期構造には任意の材料を用いることができる。しかしながら、フォトルミネッセンス層(あるいは導波層)や周期構造を形成する媒質の光吸収性が高いと、光を閉じ込める効果が低下し、ピーク強度およびQ値が低下する。よって、フォトルミネッセンス層(あるいは導波層)および周期構造を形成する媒質として、光吸収性の比較的低いものが用いられ得る。
周期構造の材料としては、例えば、光吸収性の低い誘電体が使用され得る。周期構造の材料の候補としては、例えば、MgF2(フッ化マグネシウム)、LiF(フッ化リチウム)、CaF2(フッ化カルシウム)、SiO2(石英)、ガラス、樹脂、MgO(酸化マグネシウム)、ITO(酸化インジウム錫)、TiO2(酸化チタン)、SiN(窒化シリコン)、Ta2O5(五酸化タンタル)、ZrO2(ジルコニア)、ZnSe(セレン化亜鉛)、ZnS(硫化亜鉛)などが挙げられる。ただし、前述のとおり周期構造の屈折率をフォトルミネッセンス層の屈折率よりも低くする場合、屈折率が1.3〜1.5程度であるMgF2、LiF、CaF2、SiO2、ガラス、樹脂を用いることができる。
フォトルミネッセンス材料は、狭義の蛍光材料および燐光材料を包含し、無機材料だけなく、有機材料(例えば色素)を包含し、さらには、量子ドット(即ち、半導体微粒子)を包含する。一般に、無機材料をホストとする蛍光材料は屈折率が高い傾向にある。青色に発光する蛍光材料としては、例えば、M10(PO4)6Cl2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、BaMgAl10O17:Eu2+、M3MgSi2O8:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、M5SiO4Cl6:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)を用いることができる。緑色に発光する蛍光材料としては、例えば、M2MgSi2O7:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、SrSi5AlO2N7:Eu2+、SrSi2O2N2:Eu2+、BaAl2O4:Eu2+、BaZrSi3O9:Eu2+、M2SiO4:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、BaSi3O4N2:Eu2+Ca8Mg(SiO4)4Cl2:Eu2+、Ca3SiO4Cl2:Eu2+、CaSi12-(m+n)Al(m+n)OnN16-n:Ce3+、β−SiAlON:Eu2+を用いることができる。赤色に発光する蛍光材料としては、例えば、CaAlSiN3:Eu2+、SrAlSi4O7:Eu2+、M2Si5N8:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、MSiN2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、MSi2O2N2:Yb2+(M=SrおよびCaから選ばれる少なくとも1種)、Y2O2S:Eu3+,Sm3+、La2O2S:Eu3+,Sm3+、CaWO4:Li1+,Eu3+,Sm3+、M2SiS4:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、M3SiO5:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)を用いることができる。黄色に発光する蛍光材料としては、例えば、Y3Al5O12:Ce3+、CaSi2O2N2:Eu2+、Ca3Sc2Si3O12:Ce3+、CaSc2O4:Ce3+、α−SiAlON:Eu2+、MSi2O2N2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、M7(SiO3)6Cl2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)を用いることができる。
量子ドットについては、例えば、CdS、CdSe、コア・シェル型CdSe/ZnS、合金型CdSSe/ZnSなどの材料を用いることができ、材質によって様々な発光波長を得ることができる。量子ドットのマトリクスとしては、例えば、ガラスや樹脂を用いることができる。
図1C、1Dなどに示す透明基板140は、フォトルミネッセンス層110の屈折率よりも低い透光性材料によって構成される。そのような材料として、例えば、MgF(フッ化マグネシウム)、LiF(フッ化リチウム)、CaF2(フッ化カルシウム)、SiO2(石英)、ガラス、樹脂が挙げられる。
続いて、製造方法の一例を説明する。
図1C、1Dに示す構成を実現する方法として、例えば、透明基板140上に蛍光材料を蒸着、スパッタリング、塗布などの工程によってフォトルミネッセンス層110の薄膜を形成し、その後、誘電体を成膜し、フォトリソグラフィなどの方法によってパターニングすることによって周期構造120を形成する方法がある。上記方法の代わりに、ナノインプリントによって周期構造120を形成してもよい。また、図24に示すように、フォトルミネッセンス層110の一部のみを加工することによって周期構造120を形成してもよい。その場合、周期構造120はフォトルミネッセンス層110と同じ材料で形成されることになる。
図1A、1Bに示す発光素子100は、例えば、図1C、1Dに示す発光素子100aを作製した後、基板140からフォトルミネッセンス層110および周期構造120の部分を剥がす工程を行うことで実現可能である。
図19Aに示す構成は、例えば、透明基板140上に半導体プロセスやナノインプリントなどの方法で周期構造120aを形成した後、その上にフォトルミネッセンス層110を構成する材料を蒸着やスパッタリングなどの方法で形成することによって実現可能である。あるいは、塗布などの方法を用いて周期構造120aの凹部をフォトルミネッセンス層110で埋め込むことによって図19Bに示す構成を実現することもできる。
なお、上記の製造方法は一例であり、本開示の発光素子は上記の製造方法に限定されない。
[実験例]
以下に、本開示の実施形態による発光素子を作製した例を説明する。
以下に、本開示の実施形態による発光素子を作製した例を説明する。
図19Aと同様の構成を有する発光素子のサンプルを試作し、特性を評価した。発光素子は以下の様にして作製した。
ガラス基板に、周期400nm、高さ40nmの1次元周期構造(ストライプ状の凸部)を設け、その上からフォトルミネッセンス材料であるYAG:Ceを210nm成膜した。この断面図のTEM像を図25に示し、これを450nmのLEDで励起することでYAG:Ceを発光させたときの、正面方向のスペクトルを測定した結果を図26に示す。図26には、周期構造がない場合の測定結果(ref)と、1次元周期構造に対して平行な偏光成分を持つTMモードと、垂直な偏光成分を持つTEモードを測定した結果について示した。周期構造がある場合は、周期構造がない場合に対して、特定の波長の光が著しく増加していることが見て取れる。また、1次元周期構造に対して平行な偏光成分を持つTMモードの方が、光の増強効果が大きいことが分かる。
さらに、同じサンプルにおいて、出射光強度の角度依存性を測定した結果および計算結果を図27および図28に示す。図27は、1次元周期構造(周期構造120)のライン方向と平行な軸を回転軸として回転させた場合について、図28は、1次元周期構造(即ち、周期構造120)のライン方向に対して垂直な方向を回転軸として回転させた場合についての測定結果(上段)および計算結果(下段)を示している。また、図27および図28のそれぞれにおいて、TMモードおよびTEモードの直線偏光についての結果を示しており、図27(a)はTMモード、図27(b)はTEモード、図28(a)はTEモード、図28(b)はTMモードの直線偏光についての結果をそれぞれ示している。図27および図28から明らかなように、TMモードの方が増強する効果が高く、また増強される波長は角度によってシフトしていく様子が見て取れる。例えば、610nmの光においては、TMモードでかつ正面方向にしか光が存在しないため、指向性かつ偏光発光していることがわかる。また、各図の上段と下段とが整合していることから、上述の計算の妥当性が実験によって裏付けられた。
上記の測定結果から例えば、610nmの光において、ライン方向に対して垂直な方向を回転軸として回転させた場合の強度の角度依存性を示したのが図29である。正面方向に強い発光増強が起きており、そのほかの角度に対しては、ほとんど光が増強されていない様子がみてとれる。正面方向に出射される光の指向角は15°未満であることがわかる。なお、指向角は、強度が最大強度の50%となる角度であり、最大強度の方向を中心に片側の角度で表す。つまり、指向性発光が実現していることがわかる。さらにこれは、全てTMモードの成分であるため、同時に偏光発光も実現していることがわかる。
以上の検証は、広帯域の波長帯で発光するYAG:Ceを使って実験を行ったが、発光が狭帯域のフォトルミネッセンス材料で同様の構成としても、その波長の光に対して指向性や偏光発光を実現することができる。さらに、この場合、他の波長の光は発生しないために他の方向や偏光状態の光は発生しないような光源を実現することができる。
[7.発光素子と励起光源素子とが一体的に形成された発光装置]
本開示のある実施形態による発光装置は、発光素子と励起光源素子とを備える。発光素子と励起光源素子とは、一体的に形成されている。なお、図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。
本開示のある実施形態による発光装置は、発光素子と励起光源素子とを備える。発光素子と励起光源素子とは、一体的に形成されている。なお、図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。
図31(a)を参照して、実施形態による発光装置を説明する。図31(a)は、発光装置300の模式的な断面図である。
発光装置300は、発光素子100と、励起光源素子180とを備える。発光素子100は、フォトルミネッセンス層110と、透光層120と、サブミクロン構造とを有する。透光層120は、フォトルミネッセンス層110に近接して配置される。サブミクロン構造は、フォトルミネッセンス層110および透光層120の少なくとも一方に形成され、フォトルミネッセンス層110または透光層120の面内に広がる。サブミクロン構造は、複数の凸部または複数の凹部を含む。隣接する凸部間または隣接する凹部間の距離をDintとする。フォトルミネッセンス層110が発する光は、空気中の波長がλaの第1の光を含む。第1の光に対するフォトルミネッセンス層110の屈折率をnwav-aとする。これらの間には、λa/nwav-a<Dint<λaの関係が成り立つ。励起光源素子180は、フォトルミネッセンス層110に導入される励起光を発する。発光素子100と励起光源素子180とは、一体的に形成されている。簡単のため、励起光源素子180を、光源180と同じ参照符号で示す。
発光装置300は、発光素子100と励起光源素子180とが一体的に形成されているので、指向性および発光効率に優れた発光素子と励起光源とを含む発光装置の小型化を実現することができる。
図31(a)に示すように、励起光源素子180は、例えば、発光素子100の下面側に設けられている。発光素子100は、例えば、励起光源素子180に支持されている。
励起光源素子180が発する励起光の波長は、典型的には紫外または青色領域の波長である。ただし、励起光源素子180が発する励起光の波長は、これらに限られず、フォトルミネッセンス層110を構成するフォトルミネッセンス材料に応じて適宜決定され得る。励起光源素子180は、例えば、発光ダイオード(LED)である。LEDは、例えば、ボトムエミッション型またはトップエミッション型である。
LEDの構造を、図32(a)および図32(b)を参照して説明する。図32(a)は、ボトムエミッション型のLEDを模式的に示す断面図である。図32(b)は、トップエミッション型のLEDを模式的に示す断面図である。ただし、LEDの構造は、図示するものに限られない。励起光源素子180として、公知のLEDを用いることができる。LEDの構造および原理についてはよく知られているので、詳しい説明は省略する。
図32(a)に示すように、ボトムエミッション型のLEDは、例えば、第1電極181と、第2電極182と、これらの電極の間に設けられた半導体積層構造183と、これらを支持する基板184を備える。基板184が半導体から形成される場合には、第2電極182は、基板184の下面側に設けられていてもよい。例えば、第1電極181は、半導体積層構造183が発する光を反射する。第1電極181は、例えば、反射率が高い金属から形成される。例えば、第2電極182および基板184は、半導体積層構造183が発する光を透過する。第2電極182は、例えば、不純物がドープされた半導体から形成される。半導体積層構造183が発する光は、LEDの下面(基板184側)から出射される。
発光装置300の励起光源素子180が、ボトムエミッション型のLEDである場合は、例えば、基板184上に発光素子100が形成される。すなわち、励起光源素子180の出射面が、発光素子100と接してもよい。励起光源素子180の出射面は、例えば、フォトルミネッセンス層110または透光層120と直接接してもよい。励起光源素子の出射面とは、励起光が最も多く出射される面をいう。出射面は、典型的には、励起光が出射される方向に垂直な面である。例えば、ボトムエミッション型のLEDを用意し、LEDの基板上にフォトルミネッセンス材料を堆積することにより、発光素子100が励起光源素子180に支持される発光装置300を製造することができる。
励起光源素子180の出射面が、フォトルミネッセンス層110または透光層120と直接接することにより、励起光のロスが低減され、励起光が効率よくフォトルミネッセンス層110に導かれ得る。ここで、励起光のロスとは、フォトルミネッセンス層110に導入されない光をいい、例えば、発光装置の外部に漏れる光である。
図32(b)に示すトップエミッション型のLEDにおいては、半導体積層構造183が発する光は、LEDの上面から出射される。すなわち、以下の点において、トップエミッション型のLEDは、ボトムエミッション型のLEDと異なる。両者の相違点は、第1電極181が、半導体積層構造183が発する光を透過する点、および、半導体積層構造183が発する光を反射する反射膜189が、半導体積層構造183の下側(第1電極181側とは反対側)に設けられている点である。反射膜189は、例えば、図示するように基板184の下側(半導体積層構造183側とは反対側)に設けられ得る。あるいは、反射膜189は、例えば、第2電極182と基板184との間に設けられてもよい。第2電極182が、半導体積層構造183が発する光を反射する場合は、反射膜189は省略され得る。励起光源素子180が、トップエミッション型のLEDである場合は、第1電極181上に発光素子100が形成され得る。励起光源素子180の出射面が、発光素子100と接してもよい。励起光源素子180の出射面は、例えば、フォトルミネッセンス層110または透光層120と直接接してもよい。
発光装置300において、励起光源素子180のうち発光素子100と接する層の屈折率は、例えば、フォトルミネッセンス層110の屈折率よりも小さい。この屈折率の関係は、例えば、フォトルミネッセンス層110が発する光が有する、空気中の波長がλaの第1の光に対して成り立つ。従って、励起光源素子180が、発光素子100内に形成される擬似導波モードに与える影響は小さいと考えられる。発光装置300は、発光素子100の指向性および発光効率を低減させることなく、発光素子と励起光源とを含む発光装置の小型化を実現し得る。励起光源素子180がボトムエミッション型のLEDである場合は、励起光源素子180のうち発光素子100と接する層は、例えば、基板184である。基板184は、例えばサファイア(屈折率1.76)または窒化ガリウム(GaN)(屈折率2.4)から形成される。励起光源素子180がトップエミッション型のLEDである場合は、励起光源素子180のうち発光素子100と接する層は、例えば、第1電極181である。半導体積層構造183が発する光を透過する第1電極181は、例えばITOから形成される。
発光装置の構成は、上記の構成に限られない。励起光源素子180のうち発光素子100と接する層の屈折率は、フォトルミネッセンス層110の屈折率よりも大きい場合もある。例えば、図33を参照して後述するように、発光素子が、フォトルミネッセンス層および透光層と、励起光源素子との間に、低屈折率層をさらに有する場合が挙げられる。
図31(b)および図31(c)を参照して、他の実施形態による発光装置301および発光装置302を説明する。図31(b)は、発光装置301の模式的な断面図である。図31(c)は、発光装置302の模式的な断面図である。発光装置301および発光装置302は、発光素子100の構成において、発光装置300と異なる。発光装置301および発光装置302は、発光素子100の構成を除いて、発光装置300と同じであってよい。
図31(a)に図示する発光装置300においては、透光層120が、フォトルミネッセンス層110に支持されている。発光素子100の構成は、これに限られない。例えば、図31(b)に図示する発光装置301が有する発光素子100のように、透光層120上にフォトルミネッセンス層110が設けられていてもよい。例えば、図31(c)に図示する発光装置302が有する発光素子100のように、フォトルミネッセンス層110の上面および下面の両方に透光層120が設けられていてもよい。さらに、図示した例に限られず、発光素子100は、上述した本開示の実施形態による発光素子のいずれかと同じであってよい。発光素子100は、上述した本開示の実施形態による発光素子のいずれか複数を組み合わせた構成であってもよい。
発光装置301および発光装置302の励起光源素子180は、例えば、ボトムエミッション型のLEDである。発光装置301および発光装置302において、励起光源素子180のうち発光素子100と接する層の屈折率は、例えば、フォトルミネッセンス層110および透光層120の屈折率よりも小さい。
発光装置301および発光装置302を製造する際は、例えば、ボトムエミッション型のLEDを用意し、LEDの基板にサブミクロン構造に応じた所定の凹凸形状(パターン)を形成する。凹凸形状の形成には、例えば、公知の半導体プロセスを用いることができる。その後、LEDの基板の上に、透光層120を形成する材料およびフォトルミネッセンス層110を形成する材料を、順に堆積させることで、発光装置301および発光装置302が、それぞれ製造される。
発光装置302の発光素子100は、複数のサブミクロン構造を有する。複数のサブミクロン構造は、例えば、複数の凸部または複数の凹部によって形成された複数の周期構造を含む。複数の周期構造は、例えば、周期pexに対して、λex/nwav-ex<pex<λexの関係が成り立つ周期構造を含む。ここで、励起光源素子180が発する励起光の空気中における波長をλexとする。励起光に対するフォトルミネッセンス層110の屈折率をnwav-exとする。
次に、図33(a)を参照して、さらに他の実施形態による発光装置を説明する。図33(a)は、発光装置310の模式的な断面図である。
発光装置310の発光素子100は、フォトルミネッセンス層110および透光層120と、励起光源素子180との間に、低屈折率層130をさらに有する点において、発光装置300の発光素子100と異なる。低屈折率層130の屈折率は、フォトルミネッセンス層110の屈折率よりも小さい。発光装置310は、低屈折率層130をさらに有する点を除いて、発光装置300と同じであってよい。
発光装置310は、発光素子100と励起光源素子180とが一体的に形成されているので、指向性および発光効率に優れた発光素子と励起光源とを含む発光装置の小型化を実現することができる。
低屈折率層130の第1の光に対する屈折率は、フォトルミネッセンス層110の第1の光に対する屈折率よりも小さい。従って、励起光源素子180が、発光素子100内に形成される擬似導波モードに与える影響は小さいと考えられる。発光装置310は、発光素子100の指向性および発光効率を低減させることなく、発光素子と励起光源とを含む発光装置の小型化を実現し得る。発光装置310は低屈折率層130を有するので、励起光源素子180のうち発光素子100と接する層の屈折率は、例えば、フォトルミネッセンス層110の屈折率よりも大きくてもよい。励起光源素子180のうち発光素子100と接する層の屈折率は、フォトルミネッセンス層110の屈折率よりも小さくてももちろんよい。発光装置310は、低屈折率層130を有することにより、励起光源素子180のうち発光素子100と接する層を形成する材料として、より多くの材料を用いることができる。低屈折率層130は、例えば、二酸化珪素(SiO2)、MgF2、CaF2、BaF2、SrF2、または、常温硬化ガラス(HSQ・SOG)から形成される。低屈折率層130の厚さは、例えば、第1の光の空気中の波長λaよりも大きいことが望ましい。ここで、低屈折率層130の厚さは、フォトルミネッセンス層110の法線方向における厚さである。
発光装置310において、励起光源素子180の出射面は、例えば、低屈折率層130と直接接してもよい。励起光源素子180の出射面が低屈折率層130と直接接することにより、励起光は効率よく低屈折率層130に到達し得る。励起光のフォトルミネッセンス層110への導入効率が向上し得る。
発光装置310の製造方法は、低屈折率層130の形成を除いて、発光装置300の製造方法と同じであってよい。低屈折率層130は、励起光源素子180上に低屈折率層130を形成する材料を堆積することにより形成される。
図33(b)および図33(c)を参照して、さらに他の実施形態による発光装置311および発光装置312を説明する。図33(b)は、発光装置311の模式的な断面図である。図33(c)は、発光装置312の模式的な断面図である。発光装置311および発光装置312は、発光素子100の構成において、発光装置310と異なる。発光装置311および発光装置312は、発光素子100の構成を除いて、発光装置310と同じであってよい。発光装置311は、低屈折率層130をさらに有する点において、発光装置301と異なる。発光装置311は、低屈折率層130をさらに有する点を除いて、発光装置301と同じであってよい。発光装置312は、低屈折率層130をさらに有する点において、発光装置302と異なる。発光装置312は、低屈折率層130をさらに有する点を除いて、発光装置302と同じであってよい。
発光装置311および発光装置312において、低屈折率層130の厚さは、透光層120の厚さよりも大きい。低屈折率層130の厚さは、例えば、透光層120の厚さと第1の光の空気中の波長λaとの和よりも大きいことが望ましい。透光層120と励起光源素子180間の距離が第1の光の空気中の波長λaよりも短くなると、発光素子100と励起光源素子180との間に生成するエバネッセント光が励起光源素子180側に漏れ出得るからである。ここで、低屈折率層130の厚さおよび透光層120の厚さは、フォトルミネッセンス層110の法線方向における厚さである。低屈折率層130の厚さは、図示する例においては、低屈折率層130と励起光源素子180とが接する面から、低屈折率層130とフォトルミネッセンス層110とが接する面までの、フォトルミネッセンス層110の法線方向における長さである。
発光装置311および発光装置312の製造工程においては、低屈折率層130を形成する材料を励起光源素子180上に堆積して成膜した後、低屈折率層130をパターニングする。パターニングは例えば公知の半導体プロセスを用いて行われる。パターニングにより、フォトルミネッセンス層110の下の透光層120(およびサブミクロン構造)が形成される。
発光装置311および発光装置312の励起光源素子180は、例えば、ボトムエミッション型のLEDである。発光装置311および発光装置312の励起光源素子180は、例えば、トップエミッション型のLEDであってもよい。
次に、図34(a)を参照して、さらに他の実施形態による発光装置313を説明する。図34(a)は、発光装置313の模式的な断面図である。
発光装置313の低屈折率層130は、励起光源素子180側に、複数の第2の凸部131aを有する点において、発光装置310の低屈折率層130と異なる。隣接する第2の凸部131a間の距離は、Dintよりも小さくてもよいし、大きくてもよい。発光装置313は、複数の第2の凸部131aをさらに有する点を除いて、発光装置310と同じであってよい。
発光装置313は、発光素子100と励起光源素子180とが一体的に形成されているので、指向性および発光効率に優れた発光素子と励起光源とを含む発光装置の小型化を実現することができる。
複数の第2の凸部131aは、励起光源素子180と低屈折率層130との界面における励起光の反射を低減し得る。複数の第2の凸部131aを有する発光装置313において、励起光源素子180が発する励起光は、低屈折率層130を通って、効率よくフォトルミネッセンス層110に導入される。ここで、界面における励起光の反射には、界面における励起光の反射および界面における励起光の全反射が含まれる。第2の凸部131aによって、反射ロスおよび/または全反射ロスが低減されることにより、励起光が効率よくフォトルミネッセンス層110に導入される。
例えば、隣接する第2の凸部131a間の距離が、Dintよりも小さい場合、複数の第2の凸部131aは、例えば、いわゆるモスアイ構造を構成する。励起光源素子180のうち発光素子100と接する層の屈折率は、例えば、低屈折率層130の屈折率よりも大きい。複数の第2の凸部131aは、例えば、励起光源素子180のうち発光素子100と接する層と同じ材料から形成される。複数の第2の凸部131aが設けられていることにより、励起光源素子180が発する励起光に対する実効屈折率は、フォトルミネッセンス層110の法線方向に沿って、励起光源素子180の屈折率から低屈折率層130の屈折率まで連続的に変化する。これにより、励起光源素子180が発する励起光が効率よくフォトルミネッセンス層110に導入される。発光装置313は、発光素子の指向性および発光効率により優れている。
複数の第2の凸部131aが、励起光源素子180のうち発光素子100と接する層と異なる材料から形成される場合は、複数の第2の凸部131aは、例えば、低屈折率層130の屈折率よりも大きい屈折率を有する材料から形成される。
第2の凸部131aの形状は、例えば、略円錐または略角錐である。第2の凸部131aの形状は、例えば、円錐または角錐の先端(頂点)が丸みを帯びている形状であってもよい。第2の凸部131aの形状は、例えば、円錐台または角錐台であってもよい。第2の凸部131aの形状は、例えば、略半球であってもよい。第2の凸部131aの形状は、例えば、略円柱または略角柱であってもよい。第2の凸部131aは、例えば、周期的に設けられている。第2の凸部131aは、周期的に設けられていなくてもよい(即ち、不規則に配置されていてもよい)。
複数の第2の凸部131aは、上述のいわゆるモスアイ構造に限られない。例えば、隣接する第2の凸部131a間の距離は、Dintよりも大きくてもよい。第2の凸部131aの形状は、例えば、周期性を有する凹凸構造であり得る。複数の第2の凸部131aは、例えば回折格子を構成していてもよい。第2の凸部131aは、例えば、周期的に設けられていなくてもよい。第2の凸部131aによって、励起光の回折および/または散乱が生じるように、第2の凸部131aの形状、高さ、サイズおよび周期が適宜設計されていてもよい。第2の凸部131aにより、励起光源素子180と低屈折率層130との界面における全反射が効果的に抑制され得る。第2の凸部131aによって、励起光の回折および/または散乱が生じることにより、励起光源素子180が発する励起光は、低屈折率層130を通って、効率よくフォトルミネッセンス層110に導入され得る。
低屈折率層130の厚さは、第2の凸部131aの高さよりも大きい。第2の凸部131aの高さは、例えば、50nm〜50μmである。低屈折率層130の厚さは、例えば、第2の凸部131aの高さと第1の光の空気中の波長λaとの和よりも大きいことが望ましい。ここで、低屈折率層130の厚さおよび第2の凸部131aの高さは、フォトルミネッセンス層110の法線方向における長さである。
第2の凸部131aは、例えば周期的に配置されている。第2の凸部131aの周期(ピッチ)は、例えば、200nm〜50μmである。ここで、第2の凸部131aの周期は、フォトルミネッセンス層110に平行な面内において、隣接する第2の凸部131a間の距離である。第2の凸部131aのサイズは、例えば、第2の凸部131aの周期と同じである。第2の凸部131aのサイズは、例えば、第2の凸部131aの周期より小さくてもよい。ここで、第2の凸部131aのサイズは、フォトルミネッセンス層110に平行な面内における、第2の凸部131aのサイズ(例えば、第2の凸部131aの底面が略円である場合はその直径、第2の凸部131aの底面が矩形である場合はその一辺の長さ)である。
発光装置313は、例えば、以下のように製造される。まず、第2の凸部131aを、励起光源素子180上に、例えば、半導体プロセスまたは転写プロセス(例えばナノインプリント等)によって作製する。第2の凸部131aを形成した後、励起光源素子180上に、低屈折率層130を形成する材料、フォトルミネッセンス層110を形成する材料、および、透光層120を形成する材料を順に堆積する。その後、透光層120を形成する材料をパターニングすることにより、サブミクロン構造を形成する。
図34(b)および図34(c)を参照して、さらに他の実施形態による発光装置314および発光装置315を説明する。図34(b)は、発光装置314の模式的な断面図である。図34(c)は、発光装置315の模式的な断面図である。発光装置314および発光装置315は、発光素子100の構成において、発光装置313と異なる。発光装置314および発光装置315は、発光素子100の構成を除いて、発光装置313と同じであってよい。発光装置314は、複数の第2の凸部131aをさらに有する点において、発光装置311と異なる。発光装置314は、複数の第2の凸部131aをさらに有する点を除いて、発光装置311と同じであってよい。発光装置315は、複数の第2の凸部131aをさらに有する点を除いて、発光装置312と異なる。発光装置315は、複数の第2の凸部131aをさらに有する点を除いて、発光装置312と同じであってよい。
発光装置314および発光装置315において、低屈折率層130の厚さは、第2の凸部131aの高さと透光層120の厚さとの合計よりも大きい。第2の凸部131aの高さは、例えば、50nm〜50μmである。低屈折率層130の厚さは、例えば、第2の凸部131aの高さと第1の光の空気中の波長λaとの和よりも大きいことが望ましい。ここで、低屈折率層130の厚さ、透光層120の厚さおよび第2の凸部131aの高さは、フォトルミネッセンス層110の法線方向における長さである。低屈折率層130の厚さは、図示する例においては、第2の凸部131aの底面から、低屈折率層130とフォトルミネッセンス層110とが接する面までの、フォトルミネッセンス層110の法線方向における長さである。
図35に、さらに他の実施形態による発光装置316の模式的な断面図を示す。図35に示すように、励起光源素子180は、側面に反射膜188を有してもよい。励起光源素子180の側面から励起光が漏れることにより、励起光のロス(即ち、フォトルミネッセンス層110に導入されない光)が発生し得る。側面に反射膜188を設けることによって、励起光が効率よくフォトルミネッセンス層110に導かれる。ここで、励起光源素子180の側面とは、例えば、出射面と垂直な面である。反射膜188は、例えば、誘電体多層膜または金属から形成される。反射膜188は、例えば、TiO2またはBaSO4等から形成されてもよい。
上述した例においては、励起光源素子180は例えばLEDであるが、これに限られない。上述した実施形態による発光装置の励起光源素子180は、例えば、レーザであってもよい。一般に、レーザが発する光は、LEDが発する光よりも単色性に優れているので、フォトルミネッセンス層110への励起光の導入効率が向上され得る。
励起光源素子180として用いられるレーザの構造を、図36(a)および図36(b)を参照して説明する。図36(a)は、端面発光レーザの構造を説明するための模式図であり、図36(b)は、面発光レーザの構造を説明するための模式図である。ただし、レーザの構造は、図示するものに限定されない。励起光源素子180として、公知のレーザを用いることができる。レーザの構造および原理についてはよく知られているので、詳しい説明は省略する。
図36(a)に示すように、端面発光レーザにおいては、例えば、基板184上に共振器185が設けられている。共振器185の反射鏡185aは、例えば、基板184と平行な面内において、共振器185の両端に設けられている。基板184のへき開された端面が反射鏡として機能することにより、共振器185が形成されていてもよい。端面発光レーザにおいて、レーザ光は、基板184に平行な方向に出射される。図36(b)に示すように、面発光レーザを励起光源素子180として用いてもよい。面発光レーザにおいて、共振器185の反射鏡185aは、例えば、基板184と平行に設けられる。レーザ光は、基板184に垂直な方向に出射される。
レーザを励起光源素子180として用いる発光装置においては、励起光源素子180の出射面が、発光素子100と接してもよい。励起光源素子180の出射面は、例えば、フォトルミネッセンス層110または透光層120と直接接してもよい。励起光源素子180として、例えば、半導体レーザを用いることができる。半導体レーザにおいては、pn接合に電圧を印加することにより、レーザ発振が起こる。例えば、窒化ガリウム系半導体を材料とする半導体レーザを用いてもよい。
図37(a)および図37(b)は、それぞれ、端面発光レーザを励起光源素子180として有する、発光装置317および発光装置318を模式的に示す断面図である。図37(a)に示すように、フォトルミネッセンス層110が、励起光源素子180から出射される励起光の方向に垂直に設けられていてもよい。図37(b)に示すように、フォトルミネッセンス層110が、励起光源素子180から出射される励起光の方向に平行に設けられていてもよい。
上述した実施形態による発光装置は、フォトルミネッセンス層110の上面側に配置された選択反射層170をさらに有してもよい。図38を参照して、発光装置320を説明する。図38は、発光装置320の模式的な断面図である。
発光装置320の発光素子100は、フォトルミネッセンス層110の上面側に配置された選択反射層170をさらに有する。図38に図示する例においては、発光装置320は、選択反射層170をさらに有する点を除いて発光装置314と同じである。発光装置320は、これに限られない。発光装置320は、選択反射層170をさらに有する点を除いて、上述した本開示の実施形態による発光装置のいずれかまたはいずれか複数の組み合わせと同じであってよい。発光装置320の発光素子100は、選択反射層170をさらに有する点を除いて、上述した本開示の実施形態による発光素子のいずれかまたはいずれか複数の組み合わせと同じであってよい。
発光装置320は、発光素子100と励起光源素子180とが一体的に形成されているので、指向性および発光効率に優れた発光素子と励起光源とを含む発光装置の小型化を実現することができる。
選択反射層170は、特定の波長領域の光のみを透過および反射する光学フィルタである。例えば、励起光源素子180が発する励起光のうちフォトルミネッセンス層110を透過したものが、選択反射層170によって反射されることで、励起光のフォトルミネッセンス層110への導入効率が向上し得る。発光装置320の発光素子は、優れた指向性および発光効率を実現し得る。選択反射層170は、フォトルミネッセンス層110が発する光は反射せず透過するように設定され得る。発光装置320の発光素子の指向性および発光効率は、より向上され得る。さらに、発光装置320から出射される光の波長を、選択反射層170によって選択することができる。発光装置320から出射される光は、優れた単色性を有し得る。
選択反射層170は、上記の例に限られず、任意に設定され得る。例えば、選択反射層170は、励起光のうちフォトルミネッセンス層110を透過したものと、フォトルミネッセンス層110が発する光との両方を透過するように、設定されてもよい。例えば、選択反射層170は、励起光のうちフォトルミネッセンス層110を透過したものと、フォトルミネッセンス層110が発する光との両方が、フォトルミネッセンス層110の法線方向に出射されるように、設定されてもよい。この場合、発光装置320から出射される光は、共にフォトルミネッセンス層110の法線方向に出射される(指向性に優れる)光であって、互いに異なる波長の光を含むことができる。発光装置320から出射される光の多色化および白色化が実現され得る。
選択反射層170は、例えば、誘電体多層膜構造を有する。誘電体多層膜は、よく知られているように、屈折率の異なる誘電体を交互に積層することにより作製される。それぞれの誘電体膜の材料(例えば屈折率)および厚さは、選択反射層170の有する反射性および/または透過性に応じて適宜決定される。選択反射層170は、例えば、バンドパスフィルタまたはダイクロイックミラーである。
本開示の発光素子によれば、指向性を有する発光装置を実現できるため、例えば、照明、ディスプレイ、プロジェクターといった光学デバイスに適用可能である。
100、100a 発光素子
110 フォトルミネッセンス層(導波路)
120、120’、120a、120b、120c 透光層(周期構造、サブミクロン構造)
130 低屈折率層
140 透明基板
150 保護層
170 選択反射層
180 光源(励起光源素子)
200、300〜302、310〜318、320 発光装置
110 フォトルミネッセンス層(導波路)
120、120’、120a、120b、120c 透光層(周期構造、サブミクロン構造)
130 低屈折率層
140 透明基板
150 保護層
170 選択反射層
180 光源(励起光源素子)
200、300〜302、310〜318、320 発光装置
Claims (12)
- 発光素子と、励起光源素子とを備え、
前記発光素子は、
フォトルミネッセンス層と、
前記フォトルミネッセンス層に近接して配置された透光層と、
前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。 - 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含む、請求項1に記載の発光装置。
- 前記発光素子は、前記フォトルミネッセンス層および前記透光層と、前記励起光源素子との間に、低屈折率層をさらに有し、
前記低屈折率層の前記第1の光に対する屈折率は、前記フォトルミネッセンス層の前記第1の光に対する屈折率よりも小さい、請求項1または2に記載の発光装置。 - 前記低屈折率層は、前記励起光源素子側に、複数の第2の凸部を有する、請求項3に記載の発光装置。
- 前記励起光源素子の出射面は、前記フォトルミネッセンス層または前記透光層と直接接する、請求項1または2に記載の発光装置。
- 前記励起光源素子の出射面は、前記低屈折率層と直接接する、請求項3または4に記載の発光装置。
- 前記発光素子は、前記フォトルミネッセンス層を透過した光を選択的に反射する選択反射層をさらに有する、請求項1から6のいずれかに記載の発光装置。
- 発光素子と、励起光源素子とを備え、
前記発光素子は、
透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
前記サブミクロン構造に近接して配置され、励起光を受けて発光するフォトルミネッセンス層と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。 - 発光素子と、励起光源素子とを備え、
前記発光素子は、
励起光を受けて発光するフォトルミネッセンス層と、
前記フォトルミネッセンス層よりも高屈折率を有する透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。 - 前記フォトルミネッセンス層と前記透光層とが互いに接している、請求項1から9のいずれかに記載の発光装置。
- 発光素子と、励起光源素子とを備え、
前記発光素子は、
励起光を受けて発光するフォトルミネッセンス層と、
前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、を有し、
前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立ち、
前記励起光源素子は、前記フォトルミネッセンス層に導入される励起光を発し、
前記発光素子と前記励起光源素子とが一体的に形成されている、発光装置。 - 前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、請求項1から11のいずれかに記載の発光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015031963A JP2016034017A (ja) | 2014-02-28 | 2015-02-20 | 発光装置 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037992 | 2014-02-28 | ||
JP2014037992 | 2014-02-28 | ||
JP2014154511 | 2014-07-30 | ||
JP2014154511 | 2014-07-30 | ||
JP2015031963A JP2016034017A (ja) | 2014-02-28 | 2015-02-20 | 発光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016034017A true JP2016034017A (ja) | 2016-03-10 |
Family
ID=54008561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015031963A Pending JP2016034017A (ja) | 2014-02-28 | 2015-02-20 | 発光装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9890912B2 (ja) |
JP (1) | JP2016034017A (ja) |
CN (1) | CN105940510B (ja) |
WO (1) | WO2015129224A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016034014A (ja) * | 2014-02-28 | 2016-03-10 | パナソニックIpマネジメント株式会社 | 発光素子および発光装置 |
JP6569856B2 (ja) | 2015-03-13 | 2019-09-04 | パナソニックIpマネジメント株式会社 | 発光装置および内視鏡 |
US10182702B2 (en) | 2015-03-13 | 2019-01-22 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
US10359155B2 (en) | 2015-08-20 | 2019-07-23 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus |
JP6748905B2 (ja) | 2015-08-20 | 2020-09-02 | パナソニックIpマネジメント株式会社 | 発光装置 |
JP6719094B2 (ja) * | 2016-03-30 | 2020-07-08 | パナソニックIpマネジメント株式会社 | 発光素子 |
CN114879358B (zh) | 2016-10-26 | 2025-03-28 | 奇跃公司 | 用于增强现实系统的耦出光栅 |
CN109217100B (zh) * | 2017-07-05 | 2021-03-05 | 深圳光峰科技股份有限公司 | 荧光芯片及其制造方法 |
TWI668502B (zh) * | 2018-04-24 | 2019-08-11 | 微采視像科技股份有限公司 | 光偏折膜及應用其之顯示裝置 |
EP3933263B1 (en) * | 2019-02-26 | 2025-05-28 | Toppan Printing Co., Ltd. | Wavelength selection filter, method of manufacturing wavelength selection filter, and display device |
CN109839746A (zh) * | 2019-03-05 | 2019-06-04 | 京东方科技集团股份有限公司 | 一种近眼显示设备及其制作方法 |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5517039A (en) | 1994-11-14 | 1996-05-14 | Hewlett-Packard Company | Semiconductor devices fabricated with passivated high aluminum-content III-V material |
FR2728399B1 (fr) | 1994-12-20 | 1997-03-14 | Bouadma Nouredine | Composant laser a reflecteur de bragg en materiau organique et procede pour sa realisation |
JP3931355B2 (ja) | 1995-09-06 | 2007-06-13 | 日亜化学工業株式会社 | 面状光源 |
JP2991183B2 (ja) | 1998-03-27 | 1999-12-20 | 日本電気株式会社 | 有機エレクトロルミネッセンス素子 |
US6728034B1 (en) | 1999-06-16 | 2004-04-27 | Matsushita Electric Industrial Co., Ltd. | Diffractive optical element that polarizes light and an optical pickup using the same |
JP2001059905A (ja) | 1999-06-16 | 2001-03-06 | Matsushita Electronics Industry Corp | 回折型光学素子および当該回折型光学素子を用いた光ピックアップ |
JP2001155520A (ja) * | 1999-11-22 | 2001-06-08 | Sharp Corp | 面状光源、並びにそれを用いたバックライト光学系およびディスプレイ |
CN1483150A (zh) | 2000-12-28 | 2004-03-17 | ��ʿͨ��ʽ���� | 导光板和具有该导光板的液晶显示装置 |
US20030021314A1 (en) | 2001-07-27 | 2003-01-30 | The Furukawa Electric Co, Ltd. | Distributed bragg reflector semiconductor laser suitable for use in an optical amplifier |
KR100464358B1 (ko) | 2002-03-11 | 2005-01-03 | 삼성전자주식회사 | 분배 브락 반사경을 갖는 반도체 레이저의 제조 방법 |
US7699482B2 (en) | 2002-09-25 | 2010-04-20 | Fujifilm Corporation | Light-emitting element |
JP4220305B2 (ja) | 2003-05-22 | 2009-02-04 | 三星エスディアイ株式会社 | 有機エレクトロルミネセンス素子 |
JP4425571B2 (ja) | 2003-06-11 | 2010-03-03 | 株式会社半導体エネルギー研究所 | 発光装置及び素子基板 |
US7430355B2 (en) | 2003-12-08 | 2008-09-30 | University Of Cincinnati | Light emissive signage devices based on lightwave coupling |
WO2005089098A2 (en) | 2004-01-14 | 2005-09-29 | The Regents Of The University Of California | Ultra broadband mirror using subwavelength grating |
WO2006011734A1 (en) | 2004-07-24 | 2006-02-02 | Young Rak Do | Led device comprising thin-film phosphor having two dimensional nano periodic structures |
US20060039433A1 (en) | 2004-08-20 | 2006-02-23 | Simpson John T | Silicon nanocrystal/erbium doped waveguide (SNEW) laser |
US7447246B2 (en) | 2004-10-27 | 2008-11-04 | Jian-Jun He | Q-modulated semiconductor laser |
US8134291B2 (en) | 2005-01-07 | 2012-03-13 | Samsung Mobile Display Co., Ltd. | Electroluminescent device and method for preparing the same |
US8128272B2 (en) * | 2005-06-07 | 2012-03-06 | Oree, Inc. | Illumination apparatus |
JP4971672B2 (ja) * | 2005-09-09 | 2012-07-11 | パナソニック株式会社 | 発光装置 |
JP2007080996A (ja) | 2005-09-13 | 2007-03-29 | Sony Corp | GaN系半導体発光素子及びその製造方法 |
WO2007034827A1 (ja) | 2005-09-22 | 2007-03-29 | Sharp Kabushiki Kaisha | 導光体、表示装置用基板および表示装置 |
US20070103931A1 (en) | 2005-11-09 | 2007-05-10 | Kun-Chui Lee | Assembly device for a sidelight light source module and liquid crystal panel |
KR101184957B1 (ko) | 2006-02-10 | 2012-10-02 | 미쓰비시 가가꾸 가부시키가이샤 | 형광체 및 그 제조 방법, 형광체 함유 조성물, 발광 장치, 그리고 화상 표시 장치 및 조명 장치 |
JP4934331B2 (ja) | 2006-03-06 | 2012-05-16 | ハリソン東芝ライティング株式会社 | 面状発光デバイス |
KR101030659B1 (ko) | 2006-03-10 | 2011-04-20 | 파나소닉 전공 주식회사 | 발광 소자 |
US20080069497A1 (en) * | 2006-09-15 | 2008-03-20 | Yann Tissot | Optical waveguide tap monitor |
US7745843B2 (en) | 2006-09-26 | 2010-06-29 | Stanley Electric Co., Ltd. | Semiconductor light emitting device |
TW200822403A (en) * | 2006-10-12 | 2008-05-16 | Matsushita Electric Ind Co Ltd | Light-emitting device and method for manufacturing the same |
JP4765905B2 (ja) | 2006-11-17 | 2011-09-07 | 日亜化学工業株式会社 | 面状発光装置及びその製造方法 |
US7868542B2 (en) | 2007-02-09 | 2011-01-11 | Canon Kabushiki Kaisha | Light-emitting apparatus having periodic structure and sandwiched optical waveguide |
KR100862532B1 (ko) | 2007-03-13 | 2008-10-09 | 삼성전기주식회사 | 발광 다이오드 패키지 제조방법 |
US7781779B2 (en) | 2007-05-08 | 2010-08-24 | Luminus Devices, Inc. | Light emitting devices including wavelength converting material |
KR20090002835A (ko) | 2007-07-04 | 2009-01-09 | 엘지전자 주식회사 | 질화물계 발광 소자 및 그 제조방법 |
WO2009054160A1 (ja) | 2007-10-23 | 2009-04-30 | Sharp Kabushiki Kaisha | バックライト装置、及び表示装置 |
US8619363B1 (en) | 2007-11-06 | 2013-12-31 | Fusion Optix, Inc. | Light redirecting element comprising a forward diffracting region and a scattering region |
JP5219493B2 (ja) | 2007-11-14 | 2013-06-26 | キヤノン株式会社 | 発光素子及びそれを用いた発光装置 |
EP3045965B1 (en) | 2008-02-07 | 2020-05-27 | Mitsubishi Chemical Corporation | Red emitting fluoride phosphor activated by mn4+ |
JP2010015874A (ja) | 2008-07-04 | 2010-01-21 | Kyoto Institute Of Technology | 有機光学デバイス、その製造方法、及び増幅又は狭線化した光を発する方法 |
JP5010549B2 (ja) * | 2008-07-25 | 2012-08-29 | 株式会社東芝 | 液晶表示装置 |
WO2010010634A1 (ja) | 2008-07-25 | 2010-01-28 | 国立大学法人東京工業大学 | 有機el素子及びその製造方法 |
JP2010237311A (ja) | 2009-03-30 | 2010-10-21 | Sanyo Electric Co Ltd | 投写型映像表示装置 |
JP2010097178A (ja) | 2008-09-22 | 2010-04-30 | Mitsubishi Electric Corp | 光源ユニット、及び画像表示装置 |
JP2010199357A (ja) | 2009-02-26 | 2010-09-09 | Nichia Corp | 発光装置及びその製造方法 |
JP2010210824A (ja) * | 2009-03-09 | 2010-09-24 | Seiko Epson Corp | 光学素子及び照明装置 |
JP5212947B2 (ja) | 2009-03-26 | 2013-06-19 | パナソニック株式会社 | アンビエント照明システム |
TW201041190A (en) | 2009-05-01 | 2010-11-16 | Univ Nat Taiwan Science Tech | Polarized white light emitting diode (LED) |
WO2011040528A1 (ja) | 2009-09-30 | 2011-04-07 | 日本電気株式会社 | 光学素子、光源装置及び投射型表示装置 |
KR20110049578A (ko) | 2009-11-05 | 2011-05-12 | 삼성모바일디스플레이주식회사 | 유기 전계 발광 표시장치 |
KR100969100B1 (ko) | 2010-02-12 | 2010-07-09 | 엘지이노텍 주식회사 | 발광소자, 발광소자의 제조방법 및 발광소자 패키지 |
KR101874649B1 (ko) | 2010-04-22 | 2018-07-04 | 이데미쓰 고산 가부시키가이샤 | 유기 일렉트로 루미네선스 소자 및 조명 장치 |
EP2621730B1 (en) * | 2010-09-29 | 2019-09-18 | Basf Se | Security element |
US9086619B2 (en) | 2010-10-15 | 2015-07-21 | Nec Corporation | Optical device for projection display device having plasmons excited with fluorescence |
JP5672949B2 (ja) | 2010-10-25 | 2015-02-18 | セイコーエプソン株式会社 | 光源装置及びプロジェクター |
JP2012099362A (ja) * | 2010-11-02 | 2012-05-24 | Toshiba Corp | 発光装置 |
JP2012109334A (ja) | 2010-11-16 | 2012-06-07 | Toyota Central R&D Labs Inc | 発光装置 |
JP2012109400A (ja) | 2010-11-17 | 2012-06-07 | Sharp Corp | 発光素子、発光装置および発光素子の製造方法 |
WO2012108384A1 (ja) | 2011-02-10 | 2012-08-16 | シャープ株式会社 | 蛍光体基板、およびこれを用いた表示装置、照明装置 |
JP2012182376A (ja) | 2011-03-02 | 2012-09-20 | Stanley Electric Co Ltd | 波長変換部材および光源装置 |
US20140022818A1 (en) * | 2011-04-07 | 2014-01-23 | Nec Corporation | Optical element, illumination device, and projection display device |
US9541694B2 (en) * | 2011-04-28 | 2017-01-10 | L.E.S.S. Ltd | Waveguide apparatus for illumination systems |
CN103503178B (zh) | 2011-07-12 | 2015-04-29 | 松下电器产业株式会社 | 光学元件以及利用了该光学元件的半导体发光装置 |
JP5832210B2 (ja) | 2011-09-16 | 2015-12-16 | キヤノン株式会社 | 有機el素子 |
WO2013084442A1 (ja) | 2011-12-07 | 2013-06-13 | パナソニック株式会社 | シート及び発光装置 |
KR101289844B1 (ko) | 2012-01-18 | 2013-07-26 | 한국전자통신연구원 | 유기 발광 소자 |
JP2015092434A (ja) | 2012-02-24 | 2015-05-14 | シャープ株式会社 | バックライトユニット及び液晶表示装置 |
JP2013183020A (ja) * | 2012-03-01 | 2013-09-12 | Toshiba Corp | 半導体発光装置およびその製造方法 |
DE112013002508B4 (de) | 2012-05-16 | 2020-09-24 | Panasonic Intellectual Property Management Co., Ltd. | Wellenlängen-Umwandlungselement, Verfahren zu seiner Herstellung und LED-Element und Laserlicht emittierendes Halbleiterbauteil, die das Wellenlängen-Umwandlungselement verwenden |
TWI457663B (zh) * | 2012-05-16 | 2014-10-21 | 友達光電股份有限公司 | 背光模組 |
WO2014024218A1 (ja) | 2012-08-06 | 2014-02-13 | パナソニック株式会社 | 蛍光体光学素子、その製造方法及び光源装置 |
JP2014082401A (ja) | 2012-10-18 | 2014-05-08 | Ushio Inc | 蛍光光源装置 |
JP2014092645A (ja) | 2012-11-02 | 2014-05-19 | Dainippon Printing Co Ltd | 偽造防止構造並びにそれを有するラベル、転写箔及び偽造防止用紙 |
KR20140089014A (ko) | 2012-12-31 | 2014-07-14 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
CN104969370A (zh) | 2013-02-04 | 2015-10-07 | 优志旺电机株式会社 | 荧光光源装置 |
CN104103722B (zh) | 2013-04-15 | 2017-03-01 | 展晶科技(深圳)有限公司 | 发光二极管晶粒及其制造方法 |
JP6111960B2 (ja) | 2013-09-30 | 2017-04-12 | ウシオ電機株式会社 | 蛍光光源装置 |
WO2015118426A2 (en) | 2014-02-06 | 2015-08-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, lighting device, and electronic appliance |
US9618697B2 (en) | 2014-02-28 | 2017-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Light directional angle control for light-emitting device and light-emitting apparatus |
CN105940506A (zh) * | 2014-02-28 | 2016-09-14 | 松下知识产权经营株式会社 | 发光器件以及发光装置 |
US9518215B2 (en) | 2014-02-28 | 2016-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device and light-emitting apparatus |
JP2016033645A (ja) * | 2014-02-28 | 2016-03-10 | パナソニックIpマネジメント株式会社 | 発光素子および発光装置 |
US9515239B2 (en) | 2014-02-28 | 2016-12-06 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device and light-emitting apparatus |
WO2015129223A1 (ja) * | 2014-02-28 | 2015-09-03 | パナソニックIpマネジメント株式会社 | 発光装置 |
CN105940494A (zh) * | 2014-02-28 | 2016-09-14 | 松下知识产权经营株式会社 | 发光器件以及发光装置 |
CN105940508B (zh) * | 2014-02-28 | 2019-01-11 | 松下知识产权经营株式会社 | 发光器件以及发光装置 |
JP2016034014A (ja) * | 2014-02-28 | 2016-03-10 | パナソニックIpマネジメント株式会社 | 発光素子および発光装置 |
WO2015133999A1 (en) | 2014-03-04 | 2015-09-11 | Empire Technology Development Llc | Backlight units and methods of making the same |
US10182702B2 (en) | 2015-03-13 | 2019-01-22 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
JP2016171228A (ja) | 2015-03-13 | 2016-09-23 | パナソニックIpマネジメント株式会社 | 発光素子、発光装置および検知装置 |
US10031276B2 (en) | 2015-03-13 | 2018-07-24 | Panasonic Intellectual Property Management Co., Ltd. | Display apparatus including photoluminescent layer |
-
2015
- 2015-02-20 WO PCT/JP2015/000815 patent/WO2015129224A1/ja active Application Filing
- 2015-02-20 CN CN201580006200.0A patent/CN105940510B/zh active Active
- 2015-02-20 JP JP2015031963A patent/JP2016034017A/ja active Pending
-
2016
- 2016-07-20 US US15/214,837 patent/US9890912B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2015129224A1 (ja) | 2015-09-03 |
US9890912B2 (en) | 2018-02-13 |
US20160327219A1 (en) | 2016-11-10 |
CN105940510A (zh) | 2016-09-14 |
CN105940510B (zh) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9518215B2 (en) | Light-emitting device and light-emitting apparatus | |
US9618697B2 (en) | Light directional angle control for light-emitting device and light-emitting apparatus | |
JP2016034017A (ja) | 発光装置 | |
US9515239B2 (en) | Light-emitting device and light-emitting apparatus | |
US9880336B2 (en) | Light-emitting device including photoluminescent layer | |
JP2016034015A (ja) | 発光装置 | |
JP2016171228A (ja) | 発光素子、発光装置および検知装置 | |
JP6748898B2 (ja) | 発光素子および発光装置 | |
JP2016034013A (ja) | 発光素子および発光装置 | |
JP2017040818A (ja) | 発光素子 | |
JP2016034014A (ja) | 発光素子および発光装置 | |
US20160327706A1 (en) | Light-emitting device including photoluminescent layer | |
CN106486574B (zh) | 具备光致发光层的发光元件 | |
CN106252496B (zh) | 发光装置 | |
JP2016033664A (ja) | 発光素子 | |
JP2016021072A (ja) | 発光素子 | |
JP2015179657A (ja) | 発光素子および発光装置 |