EP3565925A1 - Procédé de revêtement de matériaux textiles - Google Patents
Procédé de revêtement de matériaux textilesInfo
- Publication number
- EP3565925A1 EP3565925A1 EP18700795.0A EP18700795A EP3565925A1 EP 3565925 A1 EP3565925 A1 EP 3565925A1 EP 18700795 A EP18700795 A EP 18700795A EP 3565925 A1 EP3565925 A1 EP 3565925A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tmos
- textile material
- organosilicon precursor
- tetramethoxysilane
- trimethoxysilane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004753 textile Substances 0.000 title claims abstract description 131
- 239000000463 material Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000000576 coating method Methods 0.000 title claims abstract description 26
- 239000011248 coating agent Substances 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 200
- 239000002243 precursor Substances 0.000 claims abstract description 52
- 239000008199 coating composition Substances 0.000 claims abstract description 35
- 239000003054 catalyst Substances 0.000 claims abstract description 28
- 239000002253 acid Substances 0.000 claims abstract description 26
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 20
- 238000001035 drying Methods 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 120
- 239000004744 fabric Substances 0.000 claims description 80
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical group CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 65
- 238000005470 impregnation Methods 0.000 claims description 37
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000000835 fiber Substances 0.000 claims description 24
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 22
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 20
- 238000001179 sorption measurement Methods 0.000 claims description 20
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 claims description 18
- 230000001681 protective effect Effects 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 14
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 14
- -1 zirconium alkoxide Chemical class 0.000 claims description 14
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000000499 gel Substances 0.000 description 74
- 238000009472 formulation Methods 0.000 description 50
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 50
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- 238000001914 filtration Methods 0.000 description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 34
- 239000011521 glass Substances 0.000 description 29
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 27
- 229960001047 methyl salicylate Drugs 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000007789 gas Substances 0.000 description 22
- 229910021642 ultra pure water Inorganic materials 0.000 description 21
- 239000012498 ultrapure water Substances 0.000 description 21
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 20
- 230000035699 permeability Effects 0.000 description 20
- 239000011148 porous material Substances 0.000 description 17
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 230000008021 deposition Effects 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 238000001878 scanning electron micrograph Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 239000001384 succinic acid Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000005553 drilling Methods 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003344 environmental pollutant Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 231100000719 pollutant Toxicity 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 230000001699 photocatalysis Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000004626 scanning electron microscopy Methods 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 229920000297 Rayon Polymers 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229920002994 synthetic fiber Polymers 0.000 description 5
- 239000002341 toxic gas Substances 0.000 description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- 238000003775 Density Functional Theory Methods 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 4
- 239000004951 kermel Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 239000012703 sol-gel precursor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000012209 synthetic fiber Substances 0.000 description 4
- 231100000167 toxic agent Toxicity 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920000784 Nomex Polymers 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000004763 nomex Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 239000003440 toxic substance Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000000721 bacterilogical effect Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 2
- 229960001860 salicylate Drugs 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- YBBQAMGSUBVSCT-UHFFFAOYSA-N 4-ethoxy-2-(2-ethoxy-2-oxoethyl)-2-hydroxy-4-oxobutanoic acid;propan-1-ol;zirconium Chemical compound [Zr].CCCO.CCCO.CCOC(=O)CC(O)(C(O)=O)CC(=O)OCC.CCOC(=O)CC(O)(C(O)=O)CC(=O)OCC YBBQAMGSUBVSCT-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 101001126084 Homo sapiens Piwi-like protein 2 Proteins 0.000 description 1
- 206010053317 Hydrophobia Diseases 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 229920002821 Modacrylic Polymers 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 102100029365 Piwi-like protein 2 Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- GYMWQLRSSDFGEQ-ADRAWKNSSA-N [(3e,8r,9s,10r,13s,14s,17r)-13-ethyl-17-ethynyl-3-hydroxyimino-1,2,6,7,8,9,10,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-yl] acetate;(8r,9s,13s,14s,17r)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.O/N=C/1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(OC(C)=O)C#C)[C@@H]4[C@@H]3CCC2=C\1 GYMWQLRSSDFGEQ-ADRAWKNSSA-N 0.000 description 1
- DVSHRJHVSAEVGT-UHFFFAOYSA-N [SiH4].C(CCCCCCCCCCCCCCC)[Si](OC)(OC)OC Chemical compound [SiH4].C(CCCCCCCCCCCCCCC)[Si](OC)(OC)OC DVSHRJHVSAEVGT-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- BJRNKVDFDLYUGJ-RMPHRYRLSA-N hydroquinone O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-RMPHRYRLSA-N 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical group O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- BJRNKVDFDLYUGJ-UHFFFAOYSA-N p-hydroxyphenyl beta-D-alloside Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 201000003549 spinocerebellar ataxia type 20 Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- MHSKRLJMQQNJNC-UHFFFAOYSA-N terephthalamide Chemical compound NC(=O)C1=CC=C(C(N)=O)C=C1 MHSKRLJMQQNJNC-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 239000010918 textile wastewater Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000003253 viricidal effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D5/00—Composition of materials for coverings or clothing affording protection against harmful chemical agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
- D06M11/74—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/50—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/50—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
- D06M13/503—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms without bond between a carbon atom and a metal or a boron, silicon, selenium or tellurium atom
- D06M13/507—Organic silicon compounds without carbon-silicon bond
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/50—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
- D06M13/51—Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
- D06M13/513—Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/08—Processes in which the treating agent is applied in powder or granular form
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
- D06M2101/36—Aromatic polyamides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/10—Repellency against liquids
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/10—Repellency against liquids
- D06M2200/11—Oleophobic properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/10—Repellency against liquids
- D06M2200/12—Hydrophobic properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2400/00—Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
- D06M2400/02—Treating compositions in the form of solgel or aerogel
Definitions
- the invention relates to a novel process for coating textile materials for the preparation of coated textiles having gas barrier properties.
- activated carbon is a poor trap for small, polar toxic molecules and must be impregnated with various appropriate chemicals to compensate for this inefficiency.
- Activated carbon is found in various forms of mixed media with textiles: textiles impregnated with activated carbon and pressed, or activated carbon bonded to the fabric. In these cases, it becomes difficult to wash the garment without losing the initial properties of the garment. To obtain good protection against chemical risks, a large amount of activated charcoal is necessary, which increases the weight of the garment.
- outfits using materials permeable to air and water vapor have been developed. These outfits use a set of textile materials with several layers.
- NBC nuclear, bacteriological, chemical
- military protective clothing consists of two layers with the following features and functions. The outer layer whose main functions are to ensure the robustness of the resistance (resistance to abrasion and tearing) and to guarantee the non-penetration of war toxicants in liquid form.
- Non-penetration of war toxicants in liquid form corresponds to water repellency (hydrophobicity / oleophobia).
- This function is obtained by surface treatment of the outer fabric with a fluorinated resin.
- the inner layer provides the function of filtration of toxic gases. This function is obtained from activated carbon in different forms.
- the state of the art highlights several inventions compared to the inner layer (filtration function) NBC military protective clothing. Activated carbon can be found in different forms.
- the patent application EP 1468732 A2 describes a monolayer of activated carbon which is bonded to a textile material lined inside. These activated carbon beads preferably have a specific surface area of 900 to 1200 m 2 / g.
- activated carbon beads (0.1 to 0.4 mm) are embedded in a textile (woven or not) by mixing them with hot melt fibers, non-thermofusible fibers, a dispersing agent and some water. The whole is heated between 80 and 150 ° C and compressed.
- the targeted applications concern filtration: gas masks, protective clothing, air filters.
- the patent US6844122 describes a method for printing particles, activated carbon or silica in particular, on a support which may be a textile (woven, non-woven, yarn, etc.). Many applications are mentioned concerning filtration and protection (chemical, bacterial, fire, etc.).
- the patent application FR 2868956 A1 describes an activated carbon mesh whose adsorption properties are characterized by a preferential surface area of about 800 to 1200 m 2 / g and a preferred percentage of microporosity of 80% to 100%.
- the activated carbon is in the form of polyurethane foam impregnated with activated carbon.
- the polyurethane foam layer is impregnated with activated carbon and then compressed and laminated on a fabric.
- the patent application US20110114095 A1 describes a metal impregnated active carbon fabric for obtaining antiviral and virucidal properties.
- This textile is an active carbon fabric impregnated with metal such as silver or copper known to be antibacterial and their derivatives (oxides, ions, nanoparticles).
- Patent Application WO 2015163969 A2 describes an active carbon fabric containing nanoparticles of metal oxides for gas filters or liquid purification.
- the specific surface of the activated carbon fabric is given between 100 and 2000 m 2 / g.
- the average pore diameter of the activated carbon is between 0.3 and 3 nm and represents 30 to 50% of the overall porosity.
- An activated carbon fiber texture having a bactericidal activity is described in the patent application FR 2819420 A1. This activity is due to a treatment with an adjuvant active against the effects of biological agents such as silver salts, quaternary ammonium salts, copper salts, organophosphorus compounds and mixtures thereof.
- the BET surface area of the activated texture is generally of the order of 1000 to 1200 m 2 / g approximately.
- the patent application relates more to the properties of the fabric (weight, composition, weave, mechanical properties) than to the sol-gel formulations per se. It is only mentioned that a hydrophobic coating is obtained thanks to a mixture of organosilanes containing a biogenous or nanoparticles based on silver ions, or a hydrophobic / antibacterial mixed coating. The durability of the coating is also an important property of the textiles used for protective clothing against civilian or military chemical toxins. It also reflects the grip of the sol-gel on the textile.
- the adhesion of the sol-gel is easily increased by the chemical condensation of silanol groups with the hydroxyl groups of the textile surface: the very nature of the sol-gel is sufficient to allow the adhesion of it to certain types of textile fibers (J. Colloid Interf Sci 2005, 289, 249-261, Silane adsorption to cellulose fibers: Hydrolysis and condensation reactions, M. CB Salon, M. Abdelmouleh, S. Boufi, MN Belgacem, A. Gandini).
- FR2984343A1 reports that the attachment of the sol-gel formulation to the fabric can be carried out by incorporation of polycarboxylic acid and a catalyst (sodium hypophosphite).
- the role of the polycarboxylic acid is to promote the bridging between the material and hydrolysed silica precursors.
- the role of the catalyst is to ensure the grafting of the polycarboxylic acid on the material by catalyzing the formation of an anhydrous acid intermediate from the polycarboxylic acid (formation of an ester function with the free alcohol functional groups. the surface of the support). These two chemical compounds are therefore intended to improve the chemical grip of the polycondensed chains.
- the durability of the coating is affirmed improved, particularly with respect to abrasion and washes. The tests in relation to the durability to the washings and to the abrasion resistance are reported for the only given embodiment using a sol-gel formulation from the hydrophobic hexadecyltrimethoxysilane silane.
- the surface condition of the sol-gel is described as smooth with organic solvents while the same sol-gel prepared in water leads to crack-forming coatings (J. Sol-Gel Sci.Technol 2005, 34, 103-109, Hydrophobic Silica Sol Coatings on Textiles - The Influence of Solvent and Sol Concentration, B. Mahltig, F. Audenaert, H. Bôttcher). According to Mahltig et al., This effect occurs mainly for synthetic fibers which are relatively hydrophobic. A certain amount of a less polar solvent than water improves the wetting of these materials and thus improves the resulting coating. The article by Mahltig et al. reports the influence of the solvent and the dilution of the sol-gel.
- Advantex process is complex and involves several steps: the first corresponds to the reaction between three precursors silicés, a functionalized alkoxysilane, a cyclic siloxane and a siloxane methylated and hydrogenated in the presence of catalysts to obtain a mixed methylated and methylhydrogenated polysiloxane (product A).
- the second step corresponds to the reaction of the latter with an allylic derivative (C3H5R) carrying a function in the presence of a catalyst (Pt) for the conversion of the SiH groups of the compound A into Si-C2H4R carrying the R function.
- the reactions take place in organic solvents, and in particular in alcohols, which must be partially removed under partial vacuum at 150 ° C. Variants of this protocol are proposed, depending on the siloxanes and siliceous precursors used.
- the targeted applications are the decontamination of water, particularly wastewater containing dyes (Youji Li et al., Activated carbon supported Ti0 2 -photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor, Journal of Environmental Science 2010, 22 (8) 1290-1296, KY Foo et al., Decontamination of textile wastewater via TiO2 / activated carbon composite materials, Advances in colloid and interface science 159 (2010) 130-143), degradation of Rhodamine B (Meltem Asiltiirk et al., TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities, Chemical Engineering Journal 180 (2012) 354-363), as well as the decomposition of NH 3 or formaldehyde (Hongmei Hou, Hisashi Miyafuji, Haruo Kawamoto, Supercritically treated Ti0 2 -activated carbon composites for cleaning ammonia , Journal of wood science 53 (2006) 533-538, Biao Huang et
- activated carbon in the form of particles is modified by impregnation of a sol-gel solution containing amino functions in order to improve its adsorption capacities, in particular C0 2 contained in the air .
- the patent application CN103334298 describes a textile composed of activated carbon fibers (0.1-1 mm) coated with silica (airgel - 5-30 wt). The fibers are immersed in a sol-gel solution before being dried. Many properties are claimed: mechanical performance, adsorption, anti-fire properties, anti-virus, lightness.
- the targeted applications concern high-protection clothing, particularly for the biochemistry sector, firefighters and military equipment.
- activated carbon is a material very widely used in the field of filtration where it is often associated with textiles.
- the methods for combining these two materials are quite varied.
- active carbon particles are fixed to a textile by means of glue, however this has the disadvantage of clogging part of the pores of the activated carbon and reducing the filtration performance.
- the activated carbon is trapped in a nonwoven or foam.
- the remaining solutions in the state The art is to produce an active carbon fabric, either by weaving active carbon fibers or by performing heat treatment on a fabric of natural or synthetic fibers.
- they have a significant disadvantage, since the resulting textiles have a low mechanical strength and are therefore relatively fragile.
- activated carbon has been in recent years combined with soils-gels. It is used in most cases to increase the photocatalysis yield of Ti0 2 . Work associating activated carbon with a sol-gel based on silicon is more rare. Activated carbon can simply play the role of support before being removed by carbonization, and is not present in the final product obtained.
- two patent applications describe the coating of activated carbon (particles or fibers) with a sol-gel material based on silicon, with applications in the field of filtration or high-protection clothing.
- none of these solutions are aimed at the filtration of toxic compounds, the CN104801279 patent for the trapping of C0 2 and the patent CN103334298 for thermal insulation in the case of clothing for firefighters and military.
- An object of the invention is therefore to provide a method of manufacturing a coated fabric simple and effective to achieve these performances.
- a sol-gel material is a material obtained by a sol-gel process consisting of using, as precursors, metal alkoxides of formula M (OR) x R ' n .
- the alkoxy groups (OR) are hydrolyzed to silanol groups (Si-OH). The latter condense to form siloxane bonds (Si-O-Si-).
- Small particles of size generally smaller than 1 ⁇ are formed, which aggregate and form clusters that remain in suspension without precipitating, forming a soil. The increase of the clusters and their condensation increases the viscosity of the medium which gels.
- a porous solid material is obtained by drying the gel, with the expulsion of the solvent outside the formed polymer network (syneresis).
- An object of the invention therefore relates to a method of coating a textile material, said method comprising the following steps: a) incorporating active carbon in powder form into a coating composition comprising an aqueous solvent and at least one organosilicon precursor, in which the organosilicon precursor represents 5 to 50% by volume relative to the aqueous solvent and organosilicon precursor assembly,
- the coating composition is free of polycarboxylic acid and catalyst.
- the textiles obtained with the process according to the invention make it possible to filter polar and apolar toxic gases.
- the incorporation of a polycarboxylic acid modifies the sol-gel making it unsuitable for an application in gas filtration, in particular polar.
- the textiles obtained with the process according to the invention make it possible to filter polar and apolar toxic gases.
- the incorporation of a polycarboxylic acid modifies the sol-gel making it unsuitable for application in gas filtration, in particular polar.
- the coating composition is further free of catalyst.
- the coating composition according to the invention also does not require the presence of a catalyst for the formation of an anhydrous acid intermediate from the acid.
- polycarboxylic such as phosphorus catalysts such as sodium hypophosphite.
- the coating composition is especially free of such a catalyst.
- catalyst within the meaning of the invention also includes acids, in particular mineral acids, such as hydrochloric acid, and monocarboxylic acids.
- the coating composition is further free of surfactant.
- the textile material impregnated according to the invention is flexible, lightweight, breathable, water-repellent, and has polar and nonpolar toxic gas barrier properties.
- the textile material used can be of any type. It may for example be a fabric, a nonwoven, such as a felt, or a knit, preferably a fabric or a nonwoven such as a felt.
- the textile material comprises fibers comprising hydrolysable functions, such as hydroxyl functions.
- An example of such a fiber is cellulose present in natural fibers such as cotton or artificial fibers such as viscose. Preferably, it is viscose fibers.
- Fibers comprising hydrolysable functions may be used alone, mixed with one another and / or in blends with other synthetic fibers such as polyamide, polyamide / imide, polymethaphenylene terephthalamide, polyparaphenylene terephthalamide fibers, acrylic, modacrylic, polyesterterephthalate, oxidized polyacrylonitrile.
- the textile material is a material based on an intimate mixture of viscose and synthetic fibers, preferably polyamide fibers, especially aromatic polyamide. Examples of such a fabric are Kermel® / Lenzing FR® 50: 50 and Conex® / Lenzing FR® 50:50.
- the textile material is a nonwoven, especially a felt. An example of such a felt is that of Duflot Industries in Nomex®.
- the aqueous solvent used in the coating composition may be water or a mixture of water and an organic solvent, in particular polar, protic or aprotic solvent.
- This organic solvent may for example be chosen from C1 to C4 linear aliphatic alcohols, in particular methanol, ethanol and propan-1-ol.
- the organic solvent is ethanol.
- the aqueous solvent advantageously contains 50% to 100% by volume of water.
- the aqueous solvent advantageously represents 50 to 92% by volume, preferably 55 to 80% by volume and more preferably still 60 to 70% by volume of the coating composition.
- the organosilicon precursor used in the coating composition may be a single organosilicon precursor or a mixture of organosilicon precursors. It is advantageously chosen from tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), methyl trimethoxysilane (MTM), methyl triethoxysilane (MTE), phenyltrimethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), a fluoroalkyltrimethoxysilane, a fluoroalkyltriethoxysilane, a chloroalkylmethoxysilane, a chloroalkylethoxysilane, an aminopropyltriethoxysilane, glycidyloxypropyl) trimethoxysilane (GPTMOS) and mixtures thereof, preferably from tetramethoxysilane (TMOS), methyltrimethoxysilane (
- the organosilicon precursor is chosen from tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), methyl trimethoxysilane (MTM), methyl triethoxysilane (MTE), phenyltriethoxysilane (PhTMOS) and phenyltriethoxysilane (PhTEOS), a fluoroalkyltrimethoxysilane, a fluoroalkyltriethoxysilane, an aminopropyltriethoxysilane, (3-glycidyloxypropyl) trimethoxysilane (GPTMOS) and mixtures thereof, preferably from tetramethoxysilane (TMOS), methyl trimethoxysilane (MTM), phenyltriethoxysilane (PhTMOS), a fluoroalkyltrimethoxysilane, an aminopropyltriethoxysilane; (3
- the organosilicon precursor is tetramethoxysilane.
- the organosilicon precursor is a mixture of tetramethoxysilane and a precursor chosen from methyl trimethoxysilane (MTM), methyl triethoxysilane (MTE), phenyltriethoxysilane (PhTMOS), phenyltriethoxysilane (PhTEOS), a fluoroalkyltrimethoxysilane, a fluoroalkyltriethoxysilane, a chloroalkylmethoxysilane, a chloroalkylethoxysilane, an aminopropyltriethoxysilane, (3-glycidyloxypropyl) trimethoxysilane (GPTMOS) and their mixtures, preferably from methyltrimethoxysilane (MTM), phenyltrimethoxysilane (PhTMOS), a fluoroalkyl
- the mixture contains neither chloroalkylmethoxysilane nor chloroalkylethoxysilane.
- Preferred organosilicon precursor mixtures include mixtures of tetramethoxysilane (TMOS) with methyl trimethoxysilane (MTM), with aminopropyl triethoxysilane (APTES), with 1H, 1H, 2H, 2H-perfluoroheptadecyltrimethoxysilane (17FTMOS), and with aminopropyl triethoxysilane (APTES) and 1H, 1H, 2H, 2H-perfluoroheptadecyltriethoxysilane (17FTOS).
- TMOS tetramethoxysilane
- MTM methyl trimethoxysilane
- APTES aminopropyl triethoxysilane
- APTES aminopropyl triethoxysilane
- the molar proportions of tetramethoxysilane (TMOS) / other organosilicon precursor (s) may be varied between 100/0 and 50/50, preferably between 90/10 and 75/25.
- the organosilicon precursor advantageously represents 5 to 50% by volume, relative to the aqueous solvent and organosilicon precursor assembly. If the aqueous solvent is water, the organosilicon precursor preferably represents 8 to 35% by volume relative to the aqueous solvent and organosilicon precursor assembly.
- the precursor can represent up to 50% by volume relative to the aqueous solvent group and organosilicon precursor.
- the activated carbon used for the present invention may be of plant or animal origin. The skilled person will choose according to the properties, including filtration, sought. Thus, it is possible to use different forms of activated carbon, such as for example beads, powder, granules or fibers.
- the activated carbon can be mixed at different concentrations with the coating composition (sol-gel composition) to modulate the amount of activated carbon deposited on the textiles after impregnation.
- the incorporation of the active carbon into the sol-gel solution can be from the beginning of the reaction until the impregnation of the textile material. It can for example be added at the same time as the sol-gel precursors.
- the coating composition is directly applied to the textile material. This strategy directly uses the functionality of the organosilicon precursors used for the barrier function for the attachment of the sol-gel to the textile, especially via hydroxyl functions on the surface.
- the process according to the invention comprises, before step b), a step of applying a pre-coating composition comprising an organic solvent and a zirconium alkoxide, said pre-coating composition. coating being free of polycarboxylic acid. Due to the absence of polycarboxylic acid, the pre-coating composition according to the invention also does not require the presence of a catalyst for the formation of an anhydrous acid intermediate from polycarboxylic acid. such as phosphorus catalysts such as sodium hypophosphite. Thus, the pre-coating composition is advantageously free of such a catalyst.
- the Zr + has a high coordination number (+7) which favors the attachment to the textile material via the complexing with the functionalities coming from the textile.
- the zirconium alkoxide may be selected from tetra - "- propyl zirconate (CAS 23519-77-9), tetra -" - butyl zirconate (CAS 1071-76-7), tetra - wo - propyl zirconate (CAS 14717-56).
- TPOZ tetrateri-butyl zirconate (2081-12-1), bis (diethyl citrato) -dipropyl zirconate (CAS 308847-92-9), bis (2,2,6,6-tetramethyl-3,5) -heptanedionate) -di-wo-propyl zirconate (CAS 204522-78-1), preferably tetra-"-propyl zirconate (TPOZ).
- the textile material is impregnated by padding with the coating composition containing activated carbon.
- the padding comprises a step of impregnating the textile material in the soil followed by a pressure-forming step which makes it possible to evacuate the excess soil.
- this technique provides a uniform distribution of soil and better soil impregnation in the fabric.
- the scanning electron microscopy images show that the application of the coating composition according to the invention by padding results in a sheathing of the textile fibers.
- dipping coating results in a non-homogeneous and essentially surface deposition because it consists of soaking the textile material in the coating solution followed by the exit of the textile material vertically.
- Step b) impregnating the textile material by padding can be performed once or repeated several times.
- the process according to the invention may thus comprise several, especially 1 to 3, successive cycles of impregnation of the textile material by padding.
- the textile material used in step b) of the process according to the invention is dried prior to impregnation with the coating composition in order to remove surface water.
- This drying is particularly advantageous in the case of textile materials incorporating cellulosic fibers such as cotton or viscose.
- the textile material is dried at a temperature of 80 to 180 ° C, preferably 100 to 150 ° C, more preferably about 120 ° C.
- the drying time is advantageously a few minutes, for example from 2 to 10 minutes, in particular from 2 to 5 minutes.
- Another object of the invention is a coating composition
- a coating composition comprising an aqueous solvent, an organosilicon precursor and activated carbon in powder form as described above.
- the invention also relates to an impregnated textile material obtained by the coating method according to the invention described above. It is therefore a textile material impregnated with a sol-gel material and activated carbon in the form of powder. All the precisions and embodiments described above for the nature of the textile material, the sol-gel material and the activated carbon are also valid for the textile material impregnated according to the invention.
- the impregnated textile material according to the invention is especially characterized in that it has a specific surface area S BET (determined from the adsorption isotherms using the Brunauer model, Emmet and Teller (BET)) of between 600 ⁇ 50 and 950 ⁇ 80 in particular between 700 ⁇ 60 and 940 ⁇ 80 m 2 .g -1 .
- the porosity of the impregnated textile material according to the invention was determined from the adsorption isotherms using the Density Functional Theory (DFT) model.
- the proportion of micropores ( ⁇ 20 ⁇ ) is preferably greater than 40%, and even more preferably greater than 50%.
- the proportion of mesopores (20 ⁇ - 500 ⁇ ) is preferably less than 60%, and even more preferably less than 50%.
- the textile material is preferably free of macropores (> 500 ⁇ ).
- the basis weight of the sol-gel material may vary from 10 to 435 g / m 2 , preferably from 20 to 400 g / m 2 , more preferably from 30 to 300 g / m 2 .
- the impregnated textile material according to the invention has a particular application for gas filtration, especially for personal protective equipment such as clothing, especially against chemical toxins, but also for textiles to protect the respiratory tract (masks ), textiles that absorb unwanted odors such as frying or tobacco, such as consumable filters.
- the invention therefore also relates to a filter, in particular a gas filter, comprising the textile material according to the invention.
- a particular object of the invention is personal protective equipment comprising the textile material according to the invention.
- This personal protective equipment may for example be an integral suit, pants, jacket, gloves, hoods, socks, masks. Thanks to the functional properties, in particular of filtration of polar and apolar toxic gases of the textile material according to the invention, the personal protective equipment is particularly adapted to the NBC risks (nuclear, bacteriological, chemical).
- the personal protective equipment is NBC personal protective equipment.
- Figure 1 SEM images of the fabric A before impregnation.
- Figure 2 SEM images of the cloth B before impregnation.
- Figure 3 SEM images of the fabric C before impregnation.
- Figure 4 SEM images of the fabric A with impregnation of a sol-gel solution containing 40 g / 1 of activated carbon (Di).
- Figure 5 SEM images of the fabric A with impregnation of a sol-gel solution containing 100 g / 1 of activated carbon (D 2 ).
- Figure 6 SEM images of the fabric A with impregnation of a sol-gel solution containing 100 g / 1 of activated carbon (D 'i).
- Figure 7 SEM images of the fabric A with impregnation of a sol-gel solution containing 100 g / 1 of activated carbon (D ' 2 ).
- Figure 8 SEM images of the cloth B with impregnation of a sol-gel solution containing 100 g / 1 of activated carbon (D 2 ).
- Figure 9 SEM images of the fabric C with impregnation of a sol-gel solution containing 100 g / 1 of activated carbon (D 2 ).
- Figure 10 Photographs of the fabric A: (A) before impregnation, (B) after impregnation with the formula Ai, (C) back after impregnation with the formula Ai.
- Figure 13 Photos of the fabric C: (A) before impregnation, (B) after impregnation with the formula D 2 , (C) back after impregnation with the formula D 2 .
- Figure 14 (A) Diagrammatic view of the components of the fabric drop measuring tool; (B) Schematic diagram of the measurement of the fabric drop.
- Figure 15 (A) Photo of the initial tissue in the tissue drop measuring tool; (B) Photo of the impregnated fabric of the formula D 2 '.
- Figure 16 Comparison of standard methyl salicylate piercing curves with a deposit of 20 g / m 2 on the fabric A with the formulas D 2 (strategy I) and D 2 '(strategy II).
- FIG. 17 Comparison of normalized toluene piercing curves with a deposit of 20 g / m 2 on fabric A with formulas D 2 (strategy I), D 2 '(strategy II), E 2 (strategy I) and E 2 '(strategy II).
- Tetramethoxysilane (CAS No. 681-84-5) (TMOS, Acros Organics, 99%);
- Methyl trimethoxysilane (CAS No. 1185-55-3) (MTM, Sigma-Aldrich, 98%);
- Aminopropyl triethoxysilane (CAS No. 919-30-2) (APTES, Acros Organics, 99%);
- Ethanol (CAS RN: 64-17-5) (Merck, Uvasol for spectroscopy);
- Acetonitrile (CAS No. 75-05-8) (Merck, Lichrosolv gradient grade for liquid chromatography); Succinic acid (CAS No. 110-15-6) (Sigma-Aldrich, Reagent Plus> 99.0%);
- Dynamic viscosity 3.5 cP (mPa.s)
- the deposit of this formula on textile indicates a surface density of 29 g / m 2 .
- the deposit of this formula on textile indicates a mass per unit area of 22 g / m 2 .
- Ci Formulation In a hermetically sealed glass vial, 0.267 g of succinic acid and 0.284 g of sodium hypophosphite are mixed in 18.02 mL of ultrapure water and 18.02 mL of ethanol. The mixture is stirred at mark 4 of the IKA WERKE RO10 power stirring plate (about 500 rpm) and at room temperature (20-22 ° C) until the polyacid and catalyst are dissolved. Then 1.643 g of activated charcoal, 4.800 ml of TMOS and 0.226 ml of APTES are added to the initial mixture.
- 0.296 g of succinic acid and 0.314 g of sodium hypophosphite are mixed in 19.97 ml of ultrapure water and 19.97 ml of ethanol.
- the mixture is stirred at mark 4 of the IKA WERKE RO10 power multi-stirrer plate (approx. 500 rpm) and at room temperature (20-22 ° C) until dissolution of the polyacid and catalyst.
- 4.545 g of activated charcoal, 5,000 ml of TMOS and 0.502 ml of APTES are added to the initial mixture.
- Dynamic viscosity 12.4 cP (mPa.s)
- the deposit of this formula on textile indicates a mass per unit area of 42 g / m 2 .
- the deposit of this formula on textile indicates a weight per unit area of 30 g / m 2 .
- the deposit of this formula on textile indicates a mass per unit area of 44 g / m 2 .
- the deposit of this formula on textile indicates a mass per unit area of 31 g / m 2 .
- the deposit of this formula on textile indicates a mass per unit area of 40 g / m 2 .
- TMOS are added to a volume of 52.56 mL of ultra pure water. The mixture is stirred at room temperature (20-22 ° C) at mark 4 of the IKA WERKE RO10 power stirring plate (about 500 rpm).
- Dynamic viscosity 3.1 cP (mPa.s)
- the deposit of this formula on textile indicates a surface density of 21 g / m 2 .
- the deposit of this formula on textile indicates a weight per unit area of 36 g / m 2 .
- a hermetically sealed glass vial 1.816 g of activated charcoal is mixed with 19.97 ml of ultra pure water.
- a second sealed glass vial 19.97 mL of ethanol, 5,000 mL of TMOS and 0.502 mL of APTES are mixed.
- the contents of the second vial are then poured into the first vial and the mixture is stirred at room temperature (20-22 ° C) at mark 4 of the IKA WERKE RO10 power multiple stirring plate (about 500 rpm).
- the deposit of this formula on textile indicates a mass per unit area of 28 g / m 2 .
- a sealed glass vial 4.541 g of activated charcoal is mixed with a volume of 19.97 ml of ultrapure water.
- a second sealed glass vial 19.97 mL of ethanol, 5,000 mL of TMOS and 0.502 mL of APTES are mixed.
- the contents of the second vial are then poured into the first vial and the mixture is stirred at room temperature (20-22 ° C) at mark 4 of the IKA WERKE RO10 power multiple stirring plate (about 500 rpm).
- Dynamic viscosity 10-12 cP (mPa.s)
- the deposit of this formula on textile indicates a mass per unit area of 33 g / m 2 .
- a sealed glass vial 1.129 g of activated charcoal is mixed with a volume of 12.24 mL of ultrapure water.
- 12.24 mL of ethanol, 0.482 mL of 17FTMOS, 3,000 mL of TMOS and 0.154 mL of APTES are mixed.
- the contents of the second vial are then poured into the first vial and the mixture is stirred at room temperature (20-22 ° C) at mark 4 of the IKA WERKE RO10 power multiple stirring plate (about 500 rpm).
- the deposit of this formula on textile indicates a mass per unit area of 17 g / m 2 .
- Formulation E 2 In a hermetically sealed glass vial, 2.813 g of activated charcoal is mixed with 12.24 ml of ultra pure water. In a second hermetically sealed glass vial, 12.24 mL of ethanol, 0.482 mL of 17FTMOS, 3,000 mL of TMOS and 0.154 mL of APTES are mixed. The contents of the second vial are then poured into the first vial and the mixture is stirred at room temperature (20-22 ° C) at mark 4 of the IKA WERKE RO10 power multiple stirring plate (about 500 rpm).
- the deposit of this formula on textile indicates a basis weight of 35 g / m 2 .
- the deposit of this formula on textile indicates a weight per unit area of 19 g / m 2 .
- the deposit of this formula on textile indicates a mass per unit area of 26 g / m 2 .
- the attachment strategy according to FR 2984343 A1 is carried out with the addition of succinic acid and sodium hypophosphite;
- the one-step attachment strategy II is the direct bonding with the silicic precursors used
- Example 2 Properties of the Impregnated Fabrics of Example 1 ⁇ Scanning Electron Microscopy
- Scanning Electron Microscopy is a powerful technique for observing surface topography. It is based mainly on the detection of secondary electrons emerging from the surface under the impact of a very fine primary electron brush which scans the observed surface and allows images with a separating power often less than 5 nm to be obtained and a great depth of field.
- the instrument makes it possible to form an almost parallel brush, very thin (up to a few nanometers), electrons strongly accelerated by adjustable tensions from 0.1 to 30 keV, to focus on the area to be examined and to scan it. gradually.
- Suitable detectors are capable of collecting significant signals when scanning the surface and forming various significant images. Images of the tissue samples were made with Zeiss "Ultra 55" SEM.
- the samples are observed directly without any particular deposit (metal, carbon).
- a low accelerating voltage of 3 keV and the detector InLens (backscattered and secondary electron detector) allow the observation of the samples and avoid a too large load phenomenon due to the nature of the tissues.
- SEM images of cloth samples B and C impregnated with formulation D 2 also show that the sol-gel coats the activated carbon particles and fixes them to the fibers forming a continuous sheath (FIGS. 8 and 9). ). The particles are more spaced apart in the case of the felt while clusters are visible in the case of the open fabric Conex® / Lenzing (cloth B).
- the air permeability is lowered after deposition but remains suitable.
- the structure of the impregnated textile plays a preponderant role on the permeability since, for the same formula deposited, the fabric C (felt) is eight times more permeable than the fabric A (fabric Kermel® / Lenzing) , yet with a deposit ten times larger.
- Sol-gel deposition with activated carbon is uniform and changes the appearance of textiles, whatever their structure ( Figures 10, 11, 12, 13).
- the sol-gel formula has no impact on the visual appearance of textiles after deposition, unlike its active carbon content: the higher the concentration, the more the color will tend towards black.
- the flexibility of the textiles before / after deposition is evaluated by a drop angle measurement.
- FIG 14A The flexibility of the textiles before / after impregnation was evaluated with the flexibility measuring tool shown in Figure 14A.
- This tool 1 consists of two parts, a lower part 2 serving as a support for the fabric T and an upper part 3 which fits on the lower part to block the fabric T.
- Figure 14B shows the schematic diagram for the measurement .
- a picture is taken in profile, then, in the profile picture, Angle formed between the fabric and the vertical is measured using a protractor to evaluate the falling fabric.
- This tool allows comparison of samples with a reference (tissue without sol-gel) as shown in the photos shown in Figure 15.
- textiles are more rigid after filing. These measurements also show that the flexibility of textiles can vary with soil-gel formulas (precursors) and their concentration of activated carbon.
- textiles impregnated with the formulations according to strategy II are generally more flexible than those impregnated with the formulations according to strategy I.
- the precursors used for the formation of the sol-gel may be chosen in order to bring water-repellent properties.
- formulations containing fluorinated precursors such as the formulas E 5 F F 2 and l5 ⁇ possible to obtain hydrophobic tissue.
- the hydrophobic properties of tissues impregnated with formulations E, E 2, F, F 2, and E ⁇ ' 2 were determined by contact angle measurements with the DataPhysics "OC A 15EC” goniometer and the "SCA20" software in dynamic mode with the acquisition of 4 measurements per second for 1 min to determine the stability of the drop of water ( ⁇ ) on the fabric
- Table 7 summarizes the average contact angles over 2 or 3 measurements at tO Table 6
- the fabrics impregnated with each sol-gel formulation were exposed to gaseous mixtures containing methyl salicylate or toluene to test the efficiency of entrapment as a function of the porosity properties of the sol-gel materials and the intrapore polarity. Drilling curves under gaseous flow were established for each pollutant.
- a test bench was installed in the laboratory. For this, a Porometer 3G porometer, 37 mm sample holder, Quantachrome was used. This porometer makes it possible to test a fabric with a diameter of 37 mm (cut made with a punch-piece). The seal is provided by O-rings. Thus, the flow of gas passes through all the tested fabric.
- the tissue test bench consists of two 4-way valves upstream and downstream of the sample holder for measuring the flow of gas on either side of the sample holder. The tests showed that there is no (or little) loss of load in the presence of the tested fabric.
- the pollutant contents are measured in the gas stream after the sample holder using a PID (Photolonization Detector) detector to obtain the pollutant piercing curve.
- PID Photolonization Detector
- Tissue permeability is tested using two pollutants: toluene and methyl salicylate. Each pollutant has an exposure mode of its own. These modes are described below.
- Toluene permeability test For toluene exposure tests, this pollutant is obtained from a bottle calibrated at 100 ppm (the flowmeter used is in the range: 0-100 mL / min) and then diluted in water. dry nitrogen (the flowmeter used is in the range: 0-1 L / min). The diluted gas stream is contacted with the tested tissue. An initial toluene content of 3-4 ppm is used for permeability tests.
- Methyl salicylate permeability test For methyl salicylate exposure tests, the vapors of this pollutant are generated by bubbling dry nitrogen (the flow meter used is in the range: 0-1 L / min). The gas stream enriched with methyl salicylate is brought into contact with the tested fabric. A thermostat / cryostat to regulate the temperature of the bubbler containing methyl salicylate (coil) is used to ensure the reproducibility of the exposure tests. The bubbler containing methyl salicylate is thus regulated at 20 ° C. Using a dry nitrogen flow rate of 300 mL / min, an initial content of 55-60 ppm of methyl salicylate is obtained.
- Methyl salicylate permeability tests consist of measuring the salicylate content (in ppm) as a function of time. This line is called a piercing curve whose shape in "S" is more or less marked.
- the comparison of standard methyl salicylate piercing curves with a deposition of 20 g / m 2 for the initial tissue, the formula D 2 (strategy I) and the formula D ' 2 (strategy II) is presented in Figure 16.
- the first method to evaluate filtration is to break down the drilling curve and analyze the total trapping times.
- the total trapping times are determined for a content of methyl salicylate at 0 ppm (t @ 0 ppm), a methyl salicylate content of less than 1 ppm (t ⁇ 1 ppm), less than 5 ppm (t ⁇ 5 ppm). ) and less than 20 ppm (t ⁇ 20 ppm). These total trapping times are the characteristic times of the decomposition method.
- the second method to evaluate filtration is to model the drilling curve with a sigmoid function following the Hill model described below.
- This model derived from enzymatic catalysis, models strictly positive data according to a sigmoid ("S" shaped curve), which corresponds well to the drilling curves obtained by exposure of tissues impregnated with sol-gel to methyl salicylate.
- the characteristic time of the method of modeling the drilling curve is: ty 2 .
- the slope of the curve can be calculated. For this, two points are necessary: A (t A , T A ) and B (t B , T B ). The calculation of the coordinates and the slope are recalled in the table below.
- toluene permeability tests consist in measuring the toluene content (in ppm) as a function of time. This line is called a piercing curve whose shape in "S" is more or less marked.
- the comparison of normalized toluene piercing curves with a deposition of 20 g / m 2 for the initial tissue, the formula D 2 (strategy I) and the formula D ' 2 (strategy II) is presented in Figure 16.
- the data mining methods are the same as for methyl salicylate.
- the attachment strategies I and II are compared in Tables 10 and 11 below for the trapping efficiency of toluene.
- EXAMPLE 4 Porosity of sol-gel materials with activated carbon
- the porosity of the sol-gel materials was determined from the establishment of nitrogen adsorption isotherms (specific surface area, pore volume, pore size distribution). .
- the intrapore polarity is revealed by the ability of the material to more effectively trap methyl salicylate compared to toluene.
- Nitrogen adsorption consists of the physisorption of nitrogen on the surface of a solid: it is a reversible phenomenon (adsorption / desorption).
- Nitrogen adsorption a volumetric technique: a volume of gas of known temperature and pressure is sent to the sample previously degassed and maintained at the temperature of the liquid nitrogen. An adsorption isotherm corresponding to the volume of adsorbed gas as a function of the nitrogen partial pressure is established.
- BET Brunauer, Emmett and Teller model
- DFT density functional theory
- sol-gel with activated carbon does have a high porosity
- the presence of the sol-gel thus does not obstruct the pores of the activated carbon.
- a higher concentration of activated carbon in the same sol-gel formulation results in a higher adsorption surface area and a higher pore volume.
- the sol-gel formulations according to strategy II have a greater porosity (adsorption surface area and pore volume) than those according to strategy I. For filtration applications, strategy II appears again to be the most suitable.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1750141A FR3061724B1 (fr) | 2017-01-06 | 2017-01-06 | Procede de revetement de materiaux textiles |
PCT/FR2018/050031 WO2018127672A1 (fr) | 2017-01-06 | 2018-01-08 | Procédé de revêtement de matériaux textiles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3565925A1 true EP3565925A1 (fr) | 2019-11-13 |
EP3565925B1 EP3565925B1 (fr) | 2021-11-10 |
Family
ID=59152961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18700795.0A Active EP3565925B1 (fr) | 2017-01-06 | 2018-01-08 | Procédé de revêtement de matériaux textiles |
Country Status (5)
Country | Link |
---|---|
US (1) | US11608589B2 (fr) |
EP (1) | EP3565925B1 (fr) |
CN (1) | CN110475927B (fr) |
FR (1) | FR3061724B1 (fr) |
WO (1) | WO2018127672A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110820321A (zh) * | 2019-11-20 | 2020-02-21 | 中山国安火炬科技发展有限公司 | 一种涤纶纤维整理剂及制备方法和纤维整理方法 |
WO2021125257A1 (fr) * | 2019-12-20 | 2021-06-24 | 三菱マテリアル電子化成株式会社 | Filtre à air et son procédé de production |
JP6923697B1 (ja) * | 2020-03-23 | 2021-08-25 | 三菱マテリアル電子化成株式会社 | エアフィルタ及びその製造方法 |
JP6923724B1 (ja) * | 2020-08-04 | 2021-08-25 | 三菱マテリアル電子化成株式会社 | エアフィルタ及びその製造方法 |
JP6923630B2 (ja) * | 2019-12-20 | 2021-08-25 | 三菱マテリアル電子化成株式会社 | エアフィルタ |
JP7417469B2 (ja) * | 2020-05-14 | 2024-01-18 | 三菱マテリアル電子化成株式会社 | エアフィルタ及びその製造方法 |
US11427714B2 (en) * | 2020-11-02 | 2022-08-30 | Innovative HVAC Products LLC | Antifouling coating and device for a condensate drain pipe and associated methods |
TWI838837B (zh) * | 2022-08-29 | 2024-04-11 | 昱德國際貿易有限公司 | 精油磁扣套組 |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2596154A (en) * | 1949-08-09 | 1952-05-13 | Us Agriculture | Padder, mangle, or squeeze rolls for improved extraction and impregnation of textile fibers, yarns, and fabrics |
BE523008A (fr) * | 1952-09-23 | |||
FR2678172B1 (fr) | 1991-06-26 | 1993-10-01 | Boye Manufacture Vetements Paul | Materiau pour vetement de protection nucleaire, biologique et chimique. |
JP2000119956A (ja) * | 1998-10-09 | 2000-04-25 | Toray Ind Inc | 防汚性繊維構造物 |
US6475581B2 (en) * | 1999-12-21 | 2002-11-05 | E.I. Du Pont De Nemours And Company | Clay coatings for thermoplastic polymeric resins or films |
FR2819420A1 (fr) | 2001-01-12 | 2002-07-19 | Manuf De Vetements Paul Boye | Application d'une texture activee en fibres de carbone a la protection contre les effets des agents biologiques, et produit de protection |
AU2002367776A1 (en) | 2001-06-26 | 2003-11-03 | Traptek Llc | Imprinting methods for coating a textile with solid particles |
EP1441831A4 (fr) * | 2001-10-19 | 2005-10-26 | Innovative Constr & Build Mat | Materiau de filtration d'air anti-pathogenes et dispositifs de traitement d'air offrant une protection contre les microorganismes infectieux en suspension dans l'air |
DE10208277A1 (de) * | 2002-02-26 | 2003-09-04 | Creavis Tech & Innovation Gmbh | Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung |
US6822135B2 (en) | 2002-07-26 | 2004-11-23 | Kimberly-Clark Worldwide, Inc. | Fluid storage material including particles secured with a crosslinkable binder composition and method of making same |
DE10318053B4 (de) | 2003-04-17 | 2008-08-14 | BLüCHER GMBH | Adsorptionsfiltermaterial mit hoher Adsorptionskapazität und geringem Durchbruchverhalten und dessen Verwendung |
ES2245875B1 (es) | 2004-03-26 | 2006-11-16 | Joaquin Espuelas Peñalva | Proceso de fabricacion y filtro de tejido no tejido y/o de laminas o estructuras inyectadas filtrantes obtenidos por dicho proceso para la filtracion y eliminacion de la legionella pneumofila. |
FR2868956B1 (fr) | 2004-04-20 | 2007-06-01 | Philippe Boye | Materiau comportant des mailles de carbone active, procede de production et article nbc fabrique a partir dudit materiau |
JP2006056007A (ja) * | 2004-08-17 | 2006-03-02 | Dainippon Printing Co Ltd | ガスバリア性積層フィルムおよびそれを使用した積層材 |
CN1632215A (zh) | 2004-11-03 | 2005-06-29 | 东华大学 | 产生负离子的溶胶-凝胶整理无纺布、制备方法及其用途 |
JP4716773B2 (ja) * | 2005-04-06 | 2011-07-06 | 富士フイルム株式会社 | ガスバリアフィルムとそれを用いた有機デバイス |
CN101160169B (zh) * | 2005-04-07 | 2013-04-17 | Pur水纯化产品公司 | 包含微孔和中孔碳颗粒混合物的水过滤材料以及具有所述过滤材料的水过滤器 |
DE102005027789A1 (de) | 2005-06-15 | 2006-12-21 | Nano-X Gmbh | Alkalistabile Sol-Gel-Beschichtung |
DE202005013330U1 (de) * | 2005-06-28 | 2006-11-09 | BLüCHER GMBH | Trägermaterial mit katalytisch aktiven Polymerpartikeln |
DE102005031711A1 (de) | 2005-07-05 | 2007-06-06 | Rent-A-Scientist Gmbh | Vor mikrobiellem Befall geschützte Textilien |
US7897255B2 (en) | 2007-09-06 | 2011-03-01 | GE02 Technologies, Inc. | Porous washcoat-bonded fiber substrate |
DE102007054627A1 (de) | 2007-11-15 | 2009-05-20 | Cht R. Beitlich Gmbh | Wasserverträgliche Sole zur Beschichtung verschiedener Substrate |
US20090223411A1 (en) * | 2008-03-06 | 2009-09-10 | Higgins Thomas L | Organosilane-nonionic-water stable quaternary ammonium compositions and methods |
TW200951269A (en) * | 2008-06-10 | 2009-12-16 | ming-xian Yan | Processing method of spray-coating bamboo charcoal powder to polypropylene nonwoven |
CN101318660B (zh) | 2008-07-12 | 2010-08-18 | 太原理工大学 | 一种空心二氧化硅球的制备方法 |
DE202008016598U1 (de) | 2008-12-15 | 2009-03-05 | Neubauer, Norbert | Zu tragende textile Hemden, Pullover, Socken, Handschuhe, T-Shirts oder Hosen, beinhaltend Wirkstoffschichten mit einer sich allmählich freisetzenden Wirkstoffdeponie aus Repellentien und Insektiziden |
US20110011409A1 (en) | 2009-07-17 | 2011-01-20 | Garrick Atkins | Titspamm |
CN101711886B (zh) | 2009-09-05 | 2015-04-15 | 魏靖东 | 活性炭空气净化板 |
CA2776031C (fr) * | 2009-09-30 | 2018-09-18 | Nbc Meshtec, Inc. | Masque |
EP2501441A4 (fr) | 2009-11-17 | 2015-11-04 | Calgon Carbon Corp | Composants antiviraux de tissu de charbon actif imprégné de métal |
CN101787654B (zh) | 2010-01-26 | 2012-03-21 | 浙江大学 | 一种重金属离子富集纤维素材料的制备方法,及重金属离子的吸附方法 |
CN102371125A (zh) | 2011-10-26 | 2012-03-14 | 天津市宝钜净化设备工程有限公司 | 无纺布、织布支撑超/微滤膜及制备、管状复合过滤膜 |
FR2984343B1 (fr) | 2011-12-20 | 2013-12-20 | Inst Francais Textile & Habillement | Procede d'obtention par voie sol-gel d'un revetement fonctionnel durable pour supports, notamment textiles, et revetement ainsi obtenu |
CN102529254B (zh) | 2012-03-06 | 2016-03-02 | 无锡顶好新材料科学研究有限公司 | 一种阻燃活性炭布及其制备方法 |
SK288298B6 (sk) | 2012-11-15 | 2015-08-04 | Technická Univerzita V Košiciach, Fakulta Výrobných | Aktuátor s paralelne zapojenými umelými svalmi |
SK6700Y1 (sk) | 2013-04-15 | 2014-03-04 | Vutch Chemitex Spol S R O | Multifunkčná textília s maskovacou potlačou, hydrofóbnou, samočistiacou a antimikrobiálnou nanoúpravou |
CN103334298B (zh) | 2013-06-08 | 2015-09-02 | 蓝星环境工程有限公司 | 一种活性碳纤维复合材料及其制备方法 |
EP3102731A4 (fr) | 2014-02-05 | 2017-11-01 | Calgon Carbon Corporation | Matière textile au charbon actif améliorée par des nanoparticules |
CN203776206U (zh) | 2014-03-29 | 2014-08-20 | 镇江新元素医药科技有限公司 | 一种过滤pm2.5的口罩 |
CN104492165B (zh) | 2014-12-19 | 2016-04-27 | 四川创越炭材料有限公司 | 一种球形活性炭复合织物的制备方法 |
CN104801279A (zh) | 2015-04-13 | 2015-07-29 | 运城学院 | 溶胶凝胶法改性活性炭粒子的方法 |
-
2017
- 2017-01-06 FR FR1750141A patent/FR3061724B1/fr not_active Expired - Fee Related
-
2018
- 2018-01-08 US US16/476,162 patent/US11608589B2/en active Active
- 2018-01-08 EP EP18700795.0A patent/EP3565925B1/fr active Active
- 2018-01-08 CN CN201880007955.6A patent/CN110475927B/zh active Active
- 2018-01-08 WO PCT/FR2018/050031 patent/WO2018127672A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
FR3061724A1 (fr) | 2018-07-13 |
EP3565925B1 (fr) | 2021-11-10 |
US20190352841A1 (en) | 2019-11-21 |
CN110475927A (zh) | 2019-11-19 |
FR3061724B1 (fr) | 2021-07-16 |
WO2018127672A1 (fr) | 2018-07-12 |
CN110475927B (zh) | 2022-09-02 |
US11608589B2 (en) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3565925B1 (fr) | Procédé de revêtement de matériaux textiles | |
Gu et al. | Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation | |
JP5792738B2 (ja) | 多孔質粒子を表面処理する方法 | |
Yang et al. | Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation | |
KR102278739B1 (ko) | Zif를 이용한 화학작용제 흡착제 및 이의 활용 | |
WO2018127671A1 (fr) | Procede de preparation de materiaux hybrides coeur-coquille | |
EP3526391B1 (fr) | Procédé de revêtement solgel de materiaux textiles | |
WO2011001036A1 (fr) | Matière imperméable aux liquides | |
Ahmad et al. | Superoleophilic cotton fabric decorated with hydrophobic Zn/Zr MOF nanoflowers for efficient self-cleaning, UV-blocking, and oil–water separation | |
JP2019042707A (ja) | 油水分離フィルター | |
JP2014516903A (ja) | マスキング粉末を有する多孔質粒子、並びに、その作製及び使用方法 | |
Singh | Surface engineering using PDMS and functionalized nanoparticles for superhydrophobic coatings: Selective liquid repellence and tackling COVID-19 | |
TWI425132B (zh) | Feathers and feathers filled with them | |
Li et al. | Playing with chlorine-based post-modification strategies for manufacturing silica nanofibrous membranes acting as stable hydrophobic separation barriers | |
Liu et al. | One-step facile fabrication of Mg (OH) 2/PVA/ZnO membrane with superior stability and oil-water separation | |
Janhom | Effect of consecutive SiCl4 and hydrophobic molecule modification of cotton cloth for fresh oils and used oils removal | |
Handajani et al. | Preparation hydrophobic fabric coated by TiO2 and hexadecyltrimethoxysilane | |
Rahman et al. | Lignin-treated-trichloromethylsilane sorbent for oil spill cleanup | |
JP5008359B2 (ja) | 光触媒担持繊維不織布 | |
CA3106068A1 (fr) | Couvercle anti-odeur | |
FR3133142A1 (fr) | Membrane à haute teneur en solide poreux | |
Djeziri et al. | Elimination of Organophosphorus Pesticides from Wastewater on Fiber Cotton Waste: Kinetic Models Approach | |
Bao et al. | Bio-inspired fabrication of multifunctional cotton fabric with durable flame retardancy and superhydrophobicity for oil-water separation application | |
EP4326938A1 (fr) | Procédé de revêtement de matériaux textiles | |
WO2023172782A9 (fr) | Biosynthèse de composites de cellulose bactérienne à structure organométallique hiérarchique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190628 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES Owner name: EUROPROTECT FRANCE SA Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS Owner name: SAFRAN ELECTRONICS & DEFENSE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201001 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CHARTON, PHILIPPE Inventor name: TIRARD, FRANCK Inventor name: GRINENVAL, EVA Inventor name: CHATARD, SEBASTIEN Inventor name: TRAN-THI, THU-HOA |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20210713 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1446196 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018026409 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602018026409 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1446196 Country of ref document: AT Kind code of ref document: T Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220211 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018026409 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
26N | No opposition filed |
Effective date: 20220811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220108 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240115 Year of fee payment: 7 Ref country code: GB Payment date: 20240119 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241224 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241115 Year of fee payment: 8 |