EP2923391A1 - Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniques - Google Patents
Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniquesInfo
- Publication number
- EP2923391A1 EP2923391A1 EP13783858.7A EP13783858A EP2923391A1 EP 2923391 A1 EP2923391 A1 EP 2923391A1 EP 13783858 A EP13783858 A EP 13783858A EP 2923391 A1 EP2923391 A1 EP 2923391A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- organic
- materials
- formulation according
- solvent
- formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/008—Triarylamine dyes containing no other chromophores
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/10—Metal complexes of organic compounds not being dyes in uncomplexed form
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a formulation capable of producing electronic devices with improved performance in terms of operating voltage, efficiency and life. Likewise, the present invention relates to a process for the preparation of a formulation according to the invention, and to a process for the production of electronic devices using the formulation according to the invention. Furthermore, the present invention also relates to an electronic device which has been produced by the method according to the invention.
- OLEDs organic photovoltaic cells
- OLEDs organic thin film transistors
- TFTs organic thin film transistors
- Formulation or solution containing the organic functional compounds or organic semiconductor materials comprise at least one solvent.
- the formulation and also the subsequently printed layer are exposed to the ambient atmosphere for a short time window (t1).
- This time window depends on the printing method and may vary for a few minutes.
- oxygen and / or ozone may diffuse from the environment into the formulation or into the layer, which is detrimental to the organic functional materials and thus detrimental to the electronic device. It is therefore desirable to delay or even prevent the diffusion of oxygen and / or ozone into the formulation or into the layer.
- HTM hole transport materials
- HIM hole injection materials
- ETM electron transport materials
- Electron injection materials EIM
- HBM electron-blocking materials
- EBM electron-blocking materials
- ExBM exciton-blocking materials
- light-emitting materials host materials, organic metal complexes, organic dyes, and combinations thereof;
- a "nanocrystal” is understood to mean a substance whose size is in the nanometer range, ie a nanoparticle having a largely crystalline structure
- the size of the nanocrystals is preferably in the range from 1 to 300 nm.
- the nanocrystals are preferably semiconducting nanocrystals Suitable semiconductor materials for the nanocrystal are selected from
- Group II-VI elements such as CdSe, CdS, CdTe, ZnSe, ZnO, ZnS, ZnTe, HgS, HgSe, HgTe, and alloys thereof, e.g. CdZnSe; Group III-V, such as InAs, InP, GaAs, GaP, InN, GaN, InSb, GaSb, AIP, AlAs, AlSb, and alloys thereof, such as InAsP, CdSeTe, ZnCdSe, InGaAs, Group IV-VI, such as PbSe, PbTe, and PbS and
- Group II-VI such as InSe, InTe, InS, GaSe and
- Alloys thereof such as InGaSe, InSeS; Group IV semiconductors such as Si and Ge alloys thereof, and combinations thereof.
- the nanocrystal is a
- Quantum dot Quantum dot
- QDs quantum dots
- a nanoscopic structure made of a semiconductor material such as InGaAs, CdSe, ZnO or GalnP / InP their mobility in all three spatial directions are so limited that their energy can no longer be continuous, but only discrete values.
- Quantum dots behave in a similar way to atoms, but their shape, size, or number of electrons can be affected. Typically, their own atomic order is about 10 4 atoms. Due to the limited size of the QDs, especially the core-shell QDs, they show unique optical properties compared to the corresponding bulk materials.
- the emission spectrum is defined by a simple Gaussian peak corresponding to the band edge transition. The location of the emission peak is determined by the particle size as a direct result of the quantum confinement effect. Other electronic and optical properties are used by Al. L. Efros and M. Rosen in Annu. Rev. Mater. Be. 2000. 30: 475-521.
- the QD of the invention has a "core / shell” or core / shell structure as reported by X. Peng, et al., J. Am. Chem. Soc., Voll 19: 7019-7029 (1997).
- quantum dots are substantially mono-disperse in size.
- a QD has at least one region or characteristic dimension with a dimension of less than about 300 nm and greater than about 1 nm.
- the term mono-dispersive means that the size distribution is within +/- 10% of the stated value. So is z.
- the QD comprises semiconducting materials selected from the group II-VI semiconductors, their alloys, and core / shell structures thereof.
- Embodiments are group II-VI semiconductors CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, alloys thereof, combinations thereof and core / shell, core multi-layered layer structures thereof.
- nanorods in the present invention a lengthened particle having a size in the range of
- Nanometers The ratio of the length to the width of the particle is preferably in the range from 2 to 20.
- nanorods are colloidal.
- the nanocrystals comprise the ligands that are conjugated, cooperated or associated on their surface.
- Suitable ligands for this are well known in the art. Examples thereof are disclosed, for example, in US 10 / 656,910 and US 60 / 578,236. The use of such ligands increases the solubility or miscibility of the QDs in various solvents and matrix materials. Further preferred
- Ligands are those with a "head-body-tail” structure, as in US 2007/0034833 A1 discloses, wherein further preferably the "body” has an electron or hole transport function, as in
- these aryiamines and heterocycles lead to a HOMO in the polymer of greater than -5.8 eV (at vacuum level), more preferably greater than -5.5 eV.
- ETMs and EIMs are materials that have electron-transporting or electron-injecting properties.
- HBMs are materials that block the formation of holes or prevent their transport. HBMs are often included in devices with phosphorescent emitters between the light emitting layer and the electron transport layer.
- Irppz (Ir (ppz) 3 fac-Tris (1-phenylpyrazolato-N, C 2 ) iridium (III)) is also used for this purpose.
- Suitable HBMs are still available
- WO 00/70655 A2 WO 01/41512 and WO 01/93642 A1.
- triazine derivatives spiro-oligophenylenes and ketones or phosphine oxides.
- EBMs are materials that block or block the transport of electrons.
- ExBMs are materials that prevent or block the transport or formation of excitons.
- transition metal complexes such as Ir (ppz) 3 (US 2003-0175553) and AIQ 3 are advantageously used.
- Carbazole compounds e.g., TCTA
- heterocycles e.g., BCP
- tetraazasilane derivatives e.g., TCTA
- a light-emitting material is a material that preferably emits light in the visible region.
- the light-emitting material preferably has an emission maximum between 380 nm and 750 nm.
- the light-emitting material is preferably a phosphorescent or fluorescent emitter compound.
- a fluorescent emitter compound in the sense of this invention is a compound which exhibits luminescence from an excited singlet state at room temperature.
- all luminescent compounds which have no Heavy atoms, ie no atoms with an atomic number greater than 36, are considered to be fluorescent compounds.
- Preferred emitter emitter compounds are selected from the class of monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines, styrylphosphines, styryl ethers and arylamines.
- a monostyrylamine is meant a compound containing a substituted or unsubstituted styryl group and at least one, preferably aromatic, amine.
- a distyrylamine is understood as meaning a compound which contains two substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
- a tristyrylamine is understood to mean a compound which has three
- tetrastyrylamine is meant a compound which is four substituted or unsubstituted
- the styryl groups are particularly preferred stilbenes, which may also be further substituted.
- Corresponding phosphines and ethers are defined in analogy to the amines.
- An arylamine or an aromatic amine in the context of this invention is understood as meaning a compound which contains three substituted or unsubstituted aromatic or heteroaromatic ring systems bonded directly to the nitrogen. At least one of these aromatic or heteroaromatic ring systems is preferably a fused ring system, preferably having at least 14 aromatic ring atoms.
- Preferred examples of these are aromatic anthracene amines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic
- aromatic anthracenamine is understood as meaning a compound in which a diarylamino group is bonded directly to an anthracene group, preferably in the 9-position.
- aromatic anthracenediamine is meant a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 2,6 or 9,10 position.
- Aromatic Pyrenamine, Pyrendiamine, Chrysenamine and Chrysendiamines are defined analogously thereto, the diarylamino groups on the pyrene preferably being bonded in the 1-position or in the 1,6-position.
- fluorescent emitter compounds are selected from indenofluorenamines or diamines, benzoindenofluorenamines or diamines, and dibenzoindenofluorenamines or diamines.
- emitter emitter compounds are selected from derivatives of naphthalene, anthracene, tetracene, benzanthracene, benzphenanthrene, fluorene, fluoranthene, periflanthene, indenoperylene, phenanthrene, perylene, pyrene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, fluorene , Spirofluorene, rubrene, coumarin, pyran, oxazole, benzoxazole, benzothiazole, benzimidazole,
- Position substituted anthracenes such as e.g. 9,10-diphenylanthracene and 9, 0-bis (phenylethynyl) anthracene.
- 1,4-bis (9'-ethynylanthracenyl) benzene is a preferred dopant.
- derivatives of rubrene, coumarin, rhodamine, quinacridone, e.g. DMQA ( ⁇ , ⁇ '-dimethylquinacridone), dicyano-methylene pyran, e.g.
- DCM 4- (dicyanoethylene) -6- (4-dimethyl-aminostyryl-2-methyl) -4H-pyran), thiopyran, polymethine, pyrylium and thiapyrylium salts, periflanthene and indenoperylene.
- Blue fluorescence emitters are preferably polyaromatics, e.g. 9,10-di (2-naphthylanthracene) and other anthracene derivatives, derivatives of
- Tetracene, xanthene, perylene e.g. 2,5,8,11-tetra-f-butyl-perylene,
- Phenylene e.g. 4,4 '- (bis (9-ethyl-3-carbazovinylene) -1, 1'-biphenyl, fluorene, fluoranthene, arylpyrene, arylenevinylene, bis (azinyl) imine-boron
- a phosphorescent emitter compound is generally understood to mean a compound which exhibits luminescence from an excited state with a higher spin multiplicity, ie a spin state> 1, for example from an excited triplet state (triplet emitter), from an MLCT mixed state or a quintet Condition (quintet emitter).
- Particularly suitable as phosphorescent emitter compounds are compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic numbers> 38 and ⁇ 84, particularly preferably> 56 and ⁇ 80.
- phosphorescence emitter compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, in particular compounds containing iridium, platinum or copper.
- Examples of the emitters described above can be found in the applications WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 2005/033244.
- organic metal complexes metal-ligand coordination compounds wherein the ligand is an organic compound.
- metal complexes includes all compounds which are known to a person skilled in the art in organic electronic compounds
- Particularly preferred organic electronic devices contain as phosphorescent emitter compounds at least one metal complex of the formulas (1) to (4), 013 003269
- DCy is the same or different at each occurrence, a cyclic one
- CCy is the same or different at each occurrence a cyclic
- A is the same or different at each occurrence as a mononionic, bidentate chelating ligand, preferably a diketonate ligand;
- R 1 is the same or different at each occurrence
- Examples of the emitters described above can be found in applications WO 2000/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 2005/033244,
- WO 2010/102709 are taken.
- all phosphorescent complexes used in the prior art for phosphorescent OLEDs and as known to those skilled in the art of organic electroluminescence are suitable, and those skilled in the art may use other phosphorescent complexes without inventive step.
- a host material is preferably a material used as a matrix for a light-emitting compound.
- Suitable host materials for fluorescent emitters are materials of various substance classes.
- Particularly preferred host materials for fluorescent emitters are selected from the classes of oligoarylenes containing anthracene, benzanthracene and / or pyrene or atropisomers of these compounds.
- an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
- Other preferred compounds are
- TNB 4,4'-bis [N- (1-naphthyl) -N- (2-naphthyl) - , amino] biphenyl.
- Metal oxinoid complexes such as LiQ or AlQ 3 can be used as co-hosts.
- CBP ⁇ , ⁇ -biscarbazolylbiphenyl
- carbazole derivatives azacarbazoles, ketones, phosphine oxides, sulfoxides and sulfones, oligophenylenes, aromatic amines, bipolar matrix materials, silanes, 9,9- Diarylfluorene derivatives, azaboroles or boronic esters, triazine derivatives, indolocarbazole derivatives, indenocarbazole derivatives, diazaphospholene derivatives, triazole derivatives, oxazoles and oxazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, distyrylpyrazine derivatives, thiopyranedioxide derivatives Derivatives, phenylenediamine derivatives, tertiary aromatic amines, sty
- Formulation are ketones, phosphine oxides, sulfoxides and sulfones, e.g. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, z. B. CBP (N, N-bis-carbazolylbiphenyl), m-CBP or in WO 2005/039246,
- bipolar matrix materials e.g. B. according to
- WO 2010/054730 triazine derivatives, z. B. according to WO 2010/015306, WO 2007/063754 or WO 2008/056746, zinc complexes, for. B. according to EP 652273 or WO 2009/062578, Dibenzofuranderivate, z. B. according to WO 2009/148015, or bridged carbazole derivatives, for. B. according to
- a plurality of different matrix materials as a mixture, in particular at least one electron-conducting matrix material and at least one hole-conducting matrix material.
- a preferred combination is, for example, the use of an aromatic ketone, a triazine derivative or a phosphine oxide derivative with a triarylamine derivative or a carbazole derivative or a fluorene derivative as a mixed matrix for the invention
- Metal complex Also preferred is the use of a mixture of a charge-transporting matrix material and an electrically inert matrix material, which is not or not significantly involved in charge transport, such. As described in WO 2010/108579.
- “Dyes” are compounds that absorb part of the visible white light, and color absorption is usually based on many conjugated double bonds and aromatic bases in the dyeing process Energy again and indeed either by radiation of a different wavelength, through
- the preferred metal complex dye is a polypyridyl complex of transition metals, preferably ruthenium, osmium and copper.
- the metal complex dye will have the general structure ML 2 (X) 2 wherein L is preferably selected from a 2,2'-bipyridyl-4,4'-dicarboxylic acid, M is a transition metal preferably from Ru, Os, Fe, V and Cu are selected, and X is selected from the groups comprising a halide, cyanide, thiocyanate, acetylacetonate, thiacarbamate or water
- Substituent is selected.
- metal complex dyes are disclosed, for example, in J. Phys. Chem. C (2009), 113, 2966-2973, US 2009/000658, WO 2009/107100, WO 2009/098643, US 6245988, WO 2010/055471, JP 2010084003, EP 1622178, WO 9850393,
- the functional organic material in the formulation of the invention is a hole transporting material, a light emitting material, a host material, an electron transporting material, or a combination thereof. Particularly preferred is a combination of a light-emitting material and a host material.
- the formulation of the invention may be in the form of a solution, emulsion or dispersion.
- An emulsion is a finely divided mixture of two normally immiscible liquids without visible segregation.
- the emulsion may also be a mini- or nano-emulsion, which is understood to mean emulsions that are thermodynamically stable. These emulsions are optically transparent and form without the otherwise required for the production of emulsions high energy input.
- co-surfactants or co-solvents are used to prepare a microemulsion or nanoemulsion.
- Emulsions of two Solvents are used in particular when the substances to be dissolved have a better solubility therein.
- a dispersion is understood to mean a heterogeneous mixture of at least two substances which do not dissolve or barely dissolve or chemically bond with one another. As a rule, these are colloids.
- the nanocrystal or the functional organic material (dispersed phase) is distributed as finely as possible in the solvent (dispersion medium).
- the inert gas used to supersaturate the solvent of the formulation of the invention is preferably N 2) a noble gas, CO 2 or a combination thereof.
- noble gas is preferably
- the content of inorganic nonmetallic impurities in the solvent is less than 500 ppm, more preferably 300 ppm, even more preferably 200 ppm, and most preferably 100 ppm.
- Inorganic, non-metallic impurities are understood as meaning all inorganic compounds which contain no metals. This means in particular halogens or halides according to the invention.
- the content of metallic impurities in the solvent is preferably less than 500 ppm, more preferably 300 ppm, even more preferably 200 ppm, and most preferably 100 ppm, wherein a metal atom is to be counted as one particle.
- the content of O 2 and H 2 O taken together in the solvent is preferably less than 500 ppm, more preferably less than 300 ppm, even more preferably less than 100 ppm, more preferably less than 50 ppm, and most preferably less than 20 ppm.
- the purity of the solvent is preferably at least 99.8% by weight, more preferably 99.9% by weight.
- the purity of the solvent can be determined by HPLC-MS analysis.
- the at least one solvent used in the formulation according to the invention is preferably from the group
- aromatic or heteroaromatic hydrocarbon compounds selected from optionally substituted aromatic or heteroaromatic hydrocarbon compounds, dialkylformamides, aliphatic linear, branched or heteroaliphatic cyclic hydrocarbons and mixtures thereof.
- Suitable organic solvents may be dichloromethane, trichloromethane, monochlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, mesitylene, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methyl ethyl ketone, 1, 2-dichloroethane, 1, 1, 1-trichloroethane, 1, 1, 2,2-tetrachloroethane, ethyl acetate, n butyl acetate, dimethylacetamide, tetralin, decalin, indane, cyclohexanone, dimethylformamide (DMF), dimethylsulfoxide (DMSO), propylene carbonate, dichloromethane (DCM), tetrahydrofuran (THF), ethyl acetate, acetone,
- the optionally substituted aromatic or heteroaromatic hydrocarbon compound is preferably selected from the group consisting of toluene, xylene, anisole and other phenol ethers, pyridine, pyrazine, N, N-di-Gi-2-alkylaniline, chlorobenzene, dichlorobenzene, trichlorobenzene, and derivatives thereof consists.
- Dialkylformamides are compounds which are substituted on the amide nitrogen with two alkyl groups, methyl and ethyl being preferred as alkyl groups. Examples are dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide (DMAC) and their
- aliphatic linear, branched or cyclic hydrocarbons the following are preferred: cyclohexanone, propylene carbonate, dichloromethane (DCM), tetrahydrofuran (THF), ethyl acetate, acetone, acetonitrile, formic acid, n-butanol, isopropanol, n-propano, Acetic acid, ethanol, methanol, pyrrolidones and their derivatives.
- the solvent used in the formulation according to the invention is preferably freed from impurities as far as possible before use. This can be done by recrystallization at low
- the liberation of the solvent from dissolved gaseous molecules such as oxygen or water is preferably conducted by passing inert gas through the solvent. In this way, it also leads to saturation or supersaturation of the solvent with the inert gas.
- the inert gases mentioned above are preferably used.
- “supersaturated” is understood to mean that at least 90% of the dissolved gases, more preferably at least 95%, and most preferably at least 99%, are inert gases in the solvent, and preferably also at least 95% of the gas uptake capacity of inert gas in the solvent. more preferably at least 99% is exhausted.
- the saturated or supersaturated solvents or formulation can be produced under inert gas atmosphere with high pressure, such as by pressing.
- HS-GC headspace gas chromatography
- GC gas chromatography
- the sample is here optionally vaporized via an injector and applied to a chromatographic separation column.
- a chromatographic separation column For the direct introduction of the sample into the gas chromatograph, slight volatility and, at the temperatures prevailing in the GC, stability of the sample components
- the chromatographic column represents the so-called.
- the mobile phase is provided by an inert gas flowing through the column.
- the output of the column is connected to a suitable detector which registers the substances and, via calibration with appropriate standards
- Quantification of the analytes in the sample allows.
- An easy way to separate volatile components from the non-volatile or difficult-to-volatile matrix is the so-called headspace or steam room technique.
- the sample is in an analysis vessel which is closed by a septum.
- a volatiles equilibrium is established between the gas space and the sample, which depends on the type and concentration of the analytes.
- a gas-tight syringe becomes an aliquot of the vapor space above the sample
- Calibration standards can be achieved by saturating the sample with the gas to be determined and by completely degassing the sample Produce solutions under controlled conditions. The knowledge of the solubility under given conditions must be given in this approach.
- the signal obtained for the sample to be analyzed is compared with the signals of the calibration standards described above. Another possibility arises when it is assumed that at elevated temperatures, the solubility of the gases in the liquid to be analyzed approaches zero. In this case the sample is brought into thermal equilibrium at elevated temperatures (eg 80-120 ° C) and the gas space is analyzed.
- the signal obtained can be compared with the signal of a known gas mixture. Ideally, here is a mixture of the analyte gas in for those expected in the sample
- the present invention also relates to a process for the preparation of a formulation according to the invention in which, in a first step, the nanocrystal or the functional organic material is dissolved in a solvent and degassed in a second step with the inert gas. Between these steps is preferably stirred until a clear solution, mini- or nano-emulsion is obtained. In order to free the solution of any undissolved impurities, it can be filtered through a filter before or after the fumigation.
- the present invention also relates to a process for producing an organic electronic device using a formulation of the invention.
- Formulations are preferably used to thin
- Layers for example by surface coating method (eg spin-coating) or by printing processes (eg ink jet printing).
- the formulation according to the invention are particularly suitable for the production of films or coatings, in particular for the production of structured coatings, for example by thermal or light-induced crosslinking of crosslinkable groups.
- the present invention also relates to an organic electronic device produced by the method of the invention.
- the organic electronic device is preferably made of
- OLED organic or polymeric organic electroluminescent devices
- OFET organic field effect transistors
- OIC organic integrated circuits
- OFT organic thin film transistors
- OLET organic light emitting transistors
- OSC organic solar cells
- O-lasers organic laser diodes
- OFQD organic field quench devices
- LECs organic plasmon-emitting devices
- OCV organic photovoltaic
- OPC organic photoreceptor
- the electronic device may have further layers, for example an intermediate layer between the anode and a light-emitting layer.
- the electronic device according to the invention preferably contains an anode and a cathode in addition to the layer which has been produced from the formulation according to the invention.
- the cathode may be composed of various materials as used in the prior art. Examples of particularly suitable cathode materials are generally low work function metals, followed by a layer of aluminum or a layer of silver. Examples include cesium, barium, calcium, ytterbium and samarium, each followed by a layer of aluminum or silver. Also suitable is an alloy of magnesium and silver.
- the anode high workfunction materials are preferred.
- the anode has a potential greater than 4.5 eV. Vacuum up.
- metals with high redox potential are suitable, such as Ag, Pt or Au.
- metal / metal oxide electrons z. B. AI / Ni / ⁇ , AI / PtO x
- at least one of the electrodes must be transparent to either the
- Irradiation of the organic material or the extraction of light (OLED / PLED, O-LASER) to allow.
- a preferred construction uses a transparent anode.
- Preferred anode materials here are conductive mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Preference is furthermore given to conductive, doped organic materials, in particular conductive doped polymers.
- Embodiments of the present invention are to be considered. For these features, independent protection may be desired in addition to or as an alternative to any presently claimed invention.
- the teaching on technical action disclosed with the present invention can be abstracted and combined with other examples. The invention is explained in more detail by the following examples without wishing to restrict them thereby.
- H1 and H2 are host materials and were synthesized according to WO 2009/124627 and DE 102008064200.2.
- TR1 is a red-phosphorescent emitter, which was synthesized according to DE 102009041414.2.
- EML Emit Layers
- compositions are dissolved in 10 mL of toluene (purity 99.90%), using toluene of purity 99.50% for solution 6 and stirring until the solution is clear.
- the solution is filtered using a filter Millipore Millex LS, hydrophobicity PTFE 5.0 ⁇ .
- the solutions are then degassed with various noble gas.
- the resulting OLEDs are characterized according to standard methods. The following properties are measured: UIL characteristic, electroluminescence spectrum, color coordinates, efficiency, operating T EP2013 / 003269
- the organic electroluminescent devices with formulations according to the invention show markedly improved performance in terms of operating voltage, efficiency and service life.
- OLEDs 2 to 4 also show a comparable performance with OLED 5, in which the EML was applied in the glove box. It may be because the noble gas in the solvent of the formulation used prevents the diffusion of oxygen into the EML.
- OLED 6 and OLED 7 show that a further improvement in performance can be achieved by using a higher purity solvent.
- Residence time in air or the use of other co-matrices or other emitters in the same or a different concentration can be achieved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13783858.7A EP2923391A1 (fr) | 2012-11-20 | 2013-10-30 | Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniques |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12007813 | 2012-11-20 | ||
PCT/EP2013/003269 WO2014079532A1 (fr) | 2012-11-20 | 2013-10-30 | Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniques |
EP13783858.7A EP2923391A1 (fr) | 2012-11-20 | 2013-10-30 | Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniques |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2923391A1 true EP2923391A1 (fr) | 2015-09-30 |
Family
ID=47351346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13783858.7A Ceased EP2923391A1 (fr) | 2012-11-20 | 2013-10-30 | Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniques |
Country Status (6)
Country | Link |
---|---|
US (1) | US9695354B2 (fr) |
EP (1) | EP2923391A1 (fr) |
JP (1) | JP6407877B2 (fr) |
KR (1) | KR102105810B1 (fr) |
CN (1) | CN104756273B (fr) |
WO (1) | WO2014079532A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015110751A (ja) * | 2013-10-31 | 2015-06-18 | 住友化学株式会社 | 組成物およびそれを用いた発光素子 |
DE102015115549A1 (de) * | 2015-09-15 | 2017-03-16 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Leitfähige Nanokomposite |
CN105219163B (zh) * | 2015-10-16 | 2020-02-07 | Tcl集团股份有限公司 | 一种喷墨打印用的量子点油墨及制备方法与量子点发光层 |
CN105315792B (zh) * | 2015-11-18 | 2020-01-10 | Tcl集团股份有限公司 | 量子点油墨及其制备方法、量子点发光二极管 |
JP6844621B2 (ja) * | 2016-07-11 | 2021-03-17 | コニカミノルタ株式会社 | 塗布液、その製造方法、電子デバイス作製用インク、電子デバイス、有機エレクトロルミネッセンス素子、及び光電変換素子 |
JP6834533B2 (ja) * | 2017-01-27 | 2021-02-24 | 住友化学株式会社 | 有機電界発光素子用液状組成物の製造方法 |
CN110546780B (zh) * | 2017-04-12 | 2022-04-29 | 柯尼卡美能达株式会社 | 涂布液、涂布液的制造方法、涂布膜和有机电致发光元件 |
CN107221837B (zh) * | 2017-05-24 | 2019-04-05 | 北京大学 | 一种水滴法胶质量子点微盘的制备方法 |
WO2019017424A1 (fr) * | 2017-07-21 | 2019-01-24 | Dic株式会社 | Composition d'encre, son procédé de production, couche de conversion de lumière et filtre couleur |
WO2019017423A1 (fr) * | 2017-07-21 | 2019-01-24 | Dic株式会社 | Composition d'encre, son procédé de production, couche de conversion de lumière et filtre de couleur |
JP2019116525A (ja) * | 2017-12-26 | 2019-07-18 | 東洋インキScホールディングス株式会社 | 量子ドットを含有するインキ組成物、それを用いたインクジェットインキ、およびそれらの用途 |
KR102611215B1 (ko) * | 2018-03-12 | 2023-12-06 | 삼성전자주식회사 | 전계 발광 소자, 및 표시 장치 |
CN111089911B (zh) * | 2018-10-24 | 2022-09-27 | 江苏和成显示科技有限公司 | 光电显示材料中残留溶剂的检测方法 |
JP7036240B2 (ja) * | 2021-01-25 | 2022-03-15 | 住友化学株式会社 | 有機電界発光素子用液状組成物の製造方法 |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4654312A (en) | 1984-05-14 | 1987-03-31 | Becton, Dickinson And Company | Lysing agent for analysis of peripheral blood cells |
EP0525070B1 (fr) | 1990-04-17 | 1995-12-20 | Ecole Polytechnique Federale De Lausanne | Cellules photovoltaiques |
FR2673183B1 (fr) | 1991-02-21 | 1996-09-27 | Asulab Sa | Complexes mono, bis ou tris (2,2'-bipyridine substituee) d'un metal choisi parmi le fer, le ruthenium, l'osmium ou le vanadium et leurs procedes de preparation . |
GB9217811D0 (en) | 1992-08-21 | 1992-10-07 | Graetzel Michael | Organic compounds |
JPH07133483A (ja) | 1993-11-09 | 1995-05-23 | Shinko Electric Ind Co Ltd | El素子用有機発光材料及びel素子 |
DE59510315D1 (de) | 1994-04-07 | 2002-09-19 | Covion Organic Semiconductors | Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien |
AU697111B2 (en) | 1994-05-02 | 1998-09-24 | Ecole Polytechnique Federale De Lausanne | Phosphonated polypyridyl compounds and their complexes |
JP4298799B2 (ja) | 1997-05-07 | 2009-07-22 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ | 金属複合体光増感剤および光起電力セル |
CN1298061C (zh) | 1998-12-28 | 2007-01-31 | 出光兴产株式会社 | 有机场致发光装置和选择该装置用有机材料的方法 |
DE60031729T2 (de) | 1999-05-13 | 2007-09-06 | The Trustees Of Princeton University | Lichtemittierende, organische, auf elektrophosphoreszenz basierende anordnung mit sehr hoher quantenausbeute |
KR100840637B1 (ko) | 1999-12-01 | 2008-06-24 | 더 트러스티즈 오브 프린스턴 유니버시티 | 유기 led용 인광성 도펀트로서 l2mx 형태의 착물 |
US6660410B2 (en) | 2000-03-27 | 2003-12-09 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence element |
US6645645B1 (en) | 2000-05-30 | 2003-11-11 | The Trustees Of Princeton University | Phosphorescent organic light emitting devices |
US20020121638A1 (en) | 2000-06-30 | 2002-09-05 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
WO2002015645A1 (fr) | 2000-08-11 | 2002-02-21 | The Trustees Of Princeton University | Composes organometalliques et electrophosphorescence organique presentant un deplacement d'emission |
JP4154139B2 (ja) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | 発光素子 |
JP4154140B2 (ja) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | 金属配位化合物 |
JP4154138B2 (ja) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | 発光素子、表示装置及び金属配位化合物 |
US6863997B2 (en) | 2001-12-28 | 2005-03-08 | The Trustees Of Princeton University | White light emitting OLEDs from combined monomer and aggregate emission |
ITRM20020411A1 (it) | 2002-08-01 | 2004-02-02 | Univ Roma La Sapienza | Derivati dello spirobifluorene, loro preparazione e loro uso. |
US7572393B2 (en) | 2002-09-05 | 2009-08-11 | Nanosys Inc. | Organic species that facilitate charge transfer to or from nanostructures |
US6949206B2 (en) * | 2002-09-05 | 2005-09-27 | Nanosys, Inc. | Organic species that facilitate charge transfer to or from nanostructures |
JP4411851B2 (ja) | 2003-03-19 | 2010-02-10 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子 |
US7345301B2 (en) | 2003-04-15 | 2008-03-18 | Merck Patent Gmbh | Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures |
WO2004095891A1 (fr) | 2003-04-23 | 2004-11-04 | Konica Minolta Holdings, Inc. | Materiau pour dispositif electroluminescent organique, dispositif electroluminescent organique, dispositif d'eclairage et affichage |
JP2005041982A (ja) * | 2003-05-29 | 2005-02-17 | Seiko Epson Corp | 発光材料、発光材料の精製方法および層形成方法 |
JP4281442B2 (ja) | 2003-05-29 | 2009-06-17 | セイコーエプソン株式会社 | 正孔輸送材料 |
DE10338550A1 (de) | 2003-08-19 | 2005-03-31 | Basf Ag | Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs) |
DE10345572A1 (de) | 2003-09-29 | 2005-05-19 | Covion Organic Semiconductors Gmbh | Metallkomplexe |
US7795801B2 (en) | 2003-09-30 | 2010-09-14 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator, display and compound |
US7645397B2 (en) | 2004-01-15 | 2010-01-12 | Nanosys, Inc. | Nanocrystal doped matrixes |
DE102004007777A1 (de) * | 2004-02-18 | 2005-09-08 | Covion Organic Semiconductors Gmbh | Lösungen organischer Halbleiter |
DE102004008304A1 (de) * | 2004-02-20 | 2005-09-08 | Covion Organic Semiconductors Gmbh | Organische elektronische Vorrichtungen |
US7790890B2 (en) | 2004-03-31 | 2010-09-07 | Konica Minolta Holdings, Inc. | Organic electroluminescence element material, organic electroluminescence element, display device and illumination device |
JP4195411B2 (ja) * | 2004-04-12 | 2008-12-10 | セイコーエプソン株式会社 | 有機エレクトロルミネッセンス装置の製造方法 |
DE102004023277A1 (de) | 2004-05-11 | 2005-12-01 | Covion Organic Semiconductors Gmbh | Neue Materialmischungen für die Elektrolumineszenz |
US7598388B2 (en) | 2004-05-18 | 2009-10-06 | The University Of Southern California | Carbene containing metal complexes as OLEDs |
JP4862248B2 (ja) | 2004-06-04 | 2012-01-25 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
ITRM20040352A1 (it) | 2004-07-15 | 2004-10-15 | Univ Roma La Sapienza | Derivati oligomerici dello spirobifluorene, loro preparazione e loro uso. |
EP1622178A1 (fr) | 2004-07-29 | 2006-02-01 | Ecole Polytechnique Federale De Lausanne (Epfl) | Ligands 2,2 -bipyridine, colorant sensibilisateur et pile solaire sensibilisee par un colorant |
US7794600B1 (en) * | 2004-08-27 | 2010-09-14 | Nanosys, Inc. | Purification of nanocrystal solutions by chromatography |
EP1805823A2 (fr) | 2004-10-12 | 2007-07-11 | Nanosys, Inc. | Procedes en couches organiques completement integrees destines a la fabrication de materiel electronique en plastique se basant sur des polymeres conducteurs et sur des nanofils semi-conducteurs |
JP4538646B2 (ja) * | 2004-11-22 | 2010-09-08 | 独立行政法人産業技術総合研究所 | 高効率蛍光体の製造方法 |
JP2006307052A (ja) * | 2005-04-28 | 2006-11-09 | Nippon Shokubai Co Ltd | 共重合体およびエレクトロルミネッセンス素子 |
US8674141B2 (en) | 2005-05-03 | 2014-03-18 | Merck Patent Gmbh | Organic electroluminescent device and boric acid and borinic acid derivatives used therein |
WO2007063754A1 (fr) | 2005-12-01 | 2007-06-07 | Nippon Steel Chemical Co., Ltd. | Compose pour element electroluminescent organique et element electroluminescent organique |
US7709105B2 (en) | 2005-12-14 | 2010-05-04 | Global Oled Technology Llc | Electroluminescent host material |
DE102006025777A1 (de) | 2006-05-31 | 2007-12-06 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
WO2010014198A1 (fr) | 2008-07-28 | 2010-02-04 | Qd Vision, Inc. | Nanoparticules comprenant un ligand multifonctionnel et procédé correspondant |
CN101511834B (zh) | 2006-11-09 | 2013-03-27 | 新日铁化学株式会社 | 有机场致发光元件用化合物及有机场致发光元件 |
DE102007002714A1 (de) | 2007-01-18 | 2008-07-31 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
US8540899B2 (en) * | 2007-02-07 | 2013-09-24 | Esionic Es, Inc. | Liquid composite compositions using non-volatile liquids and nanoparticles and uses thereof |
US20100155749A1 (en) | 2007-03-19 | 2010-06-24 | Nanosys, Inc. | Light-emitting diode (led) devices comprising nanocrystals |
JP5710255B2 (ja) | 2007-09-12 | 2015-04-30 | キユーデイー・ビジヨン・インコーポレーテツド | 官能化ナノ粒子および方法 |
DE102007053771A1 (de) | 2007-11-12 | 2009-05-14 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtungen |
US7862908B2 (en) | 2007-11-26 | 2011-01-04 | National Tsing Hua University | Conjugated compounds containing hydroindoloacridine structural elements, and their use |
US8221905B2 (en) | 2007-12-28 | 2012-07-17 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emitting diodes |
CN101240117B (zh) | 2008-02-04 | 2010-11-10 | 中国科学院长春应用化学研究所 | 纯有机染料和由其制备的染料敏化太阳能电池 |
CN101235214B (zh) | 2008-02-27 | 2012-07-04 | 中国科学院长春应用化学研究所 | 有机钌染料及染料敏化太阳能电池 |
CN105870345B (zh) | 2008-04-03 | 2019-01-01 | 三星研究美国股份有限公司 | 包括量子点的发光器件 |
DE102008017591A1 (de) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
CN102056911B (zh) | 2008-06-05 | 2015-07-22 | 出光兴产株式会社 | 卤素化合物、多环系化合物及使用其的有机电致发光元件 |
DE102008027005A1 (de) | 2008-06-05 | 2009-12-10 | Merck Patent Gmbh | Organische elektronische Vorrichtung enthaltend Metallkomplexe |
DE102008033943A1 (de) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008036247A1 (de) | 2008-08-04 | 2010-02-11 | Merck Patent Gmbh | Elektronische Vorrichtungen enthaltend Metallkomplexe |
DE102008036982A1 (de) | 2008-08-08 | 2010-02-11 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102008048336A1 (de) | 2008-09-22 | 2010-03-25 | Merck Patent Gmbh | Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen |
JP5281863B2 (ja) | 2008-09-30 | 2013-09-04 | Jsr株式会社 | 色素、色素増感太陽電池及びその製造方法 |
DE102008054141A1 (de) * | 2008-10-31 | 2010-05-06 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
KR101506919B1 (ko) | 2008-10-31 | 2015-03-30 | 롬엔드하스전자재료코리아유한회사 | 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자 |
DE102008056688A1 (de) | 2008-11-11 | 2010-05-12 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
US20110265876A1 (en) | 2008-11-11 | 2011-11-03 | Universität Ulm | Novel anchoring ligands for sensitizers of dye-sensitized photovoltaic devices |
US8865321B2 (en) | 2008-11-11 | 2014-10-21 | Merck Patent Gmbh | Organic electroluminescent devices |
DE102008057050B4 (de) | 2008-11-13 | 2021-06-02 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008057051B4 (de) * | 2008-11-13 | 2021-06-17 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008064200A1 (de) | 2008-12-22 | 2010-07-01 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102009007038A1 (de) | 2009-02-02 | 2010-08-05 | Merck Patent Gmbh | Metallkomplexe |
DE102009011223A1 (de) | 2009-03-02 | 2010-09-23 | Merck Patent Gmbh | Metallkomplexe |
DE102009013041A1 (de) | 2009-03-13 | 2010-09-16 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009014513A1 (de) | 2009-03-23 | 2010-09-30 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
KR20100114757A (ko) | 2009-04-16 | 2010-10-26 | (주)탑나노시스 | 발광 표시 장치 |
DE102009023155A1 (de) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009031021A1 (de) | 2009-06-30 | 2011-01-05 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
JP5499890B2 (ja) * | 2009-08-05 | 2014-05-21 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、及びその製造方法 |
WO2011020098A1 (fr) | 2009-08-14 | 2011-02-17 | Qd Vision, Inc. | Dispositifs d'éclairage, composant optique pour un dispositif d'éclairage et procédés associés |
DE102009041414A1 (de) | 2009-09-16 | 2011-03-17 | Merck Patent Gmbh | Metallkomplexe |
KR101728575B1 (ko) | 2009-10-07 | 2017-04-19 | 큐디 비젼, 인크. | 양자점을 포함하는 소자 |
DE102009048791A1 (de) | 2009-10-08 | 2011-04-14 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
KR101312238B1 (ko) | 2009-10-30 | 2013-09-26 | 나노시스, 인크. | 나노결정들을 포함하는 발광 다이오드 (led) 디바이스 |
JP5897472B2 (ja) | 2009-12-22 | 2016-03-30 | メルク パテント ゲーエムベーハー | エレクトロルミネセンス機能性界面活性剤 |
EP2517278B1 (fr) | 2009-12-22 | 2019-07-17 | Merck Patent GmbH | Formulations électroluminescentes |
EP2517275B1 (fr) | 2009-12-22 | 2018-11-07 | Merck Patent GmbH | Formulations comprenant des matériaux fonctionnels à phases séparées |
DE102011008463B4 (de) * | 2010-01-15 | 2022-01-13 | Sumitomo Chemical Co., Ltd. | Verfahren zur Herstellung einer flüssigen Zusammensetzung für eine organische Halbleitervorrichtung |
DE102010005697A1 (de) | 2010-01-25 | 2011-07-28 | Merck Patent GmbH, 64293 | Verbindungen für elektronische Vorrichtungen |
US10190043B2 (en) | 2010-05-27 | 2019-01-29 | Merck Patent Gmbh | Compositions comprising quantum dots |
EP2599142A1 (fr) | 2010-07-26 | 2013-06-05 | Merck Patent GmbH | Nanocristaux utilisés dans des dispositifs |
JP5760779B2 (ja) * | 2010-08-06 | 2015-08-12 | 株式会社リコー | 発光素子及び表示装置 |
US20120113671A1 (en) | 2010-08-11 | 2012-05-10 | Sridhar Sadasivan | Quantum dot based lighting |
EP2638321B1 (fr) | 2010-11-10 | 2019-05-08 | Nanosys, Inc. | Films constitués de points quantiques, dispositifs d'éclairage et procédés d'éclairage |
WO2012099653A2 (fr) | 2010-12-08 | 2012-07-26 | Qd Vision, Inc. | Nanocristaux semi-conducteurs et procédés de préparation associés |
WO2012112899A1 (fr) * | 2011-02-17 | 2012-08-23 | Vanderbilt University | Amélioration du rendement quantique de l'émission de lumière dans les nanocristaux à large spectre, traités |
FR2989906B1 (fr) * | 2012-04-26 | 2014-11-28 | Commissariat Energie Atomique | Procede de depot de nanoparticules sur un substrat d'oxyde metallique nanostructure |
US9425365B2 (en) * | 2012-08-20 | 2016-08-23 | Pacific Light Technologies Corp. | Lighting device having highly luminescent quantum dots |
KR102143741B1 (ko) * | 2012-12-05 | 2020-08-12 | 메르크 파텐트 게엠베하 | 산소 이온 펌프를 갖는 전자 디바이스 |
-
2013
- 2013-10-30 EP EP13783858.7A patent/EP2923391A1/fr not_active Ceased
- 2013-10-30 US US14/442,760 patent/US9695354B2/en active Active
- 2013-10-30 JP JP2015543333A patent/JP6407877B2/ja active Active
- 2013-10-30 KR KR1020157016410A patent/KR102105810B1/ko active Active
- 2013-10-30 CN CN201380055017.0A patent/CN104756273B/zh active Active
- 2013-10-30 WO PCT/EP2013/003269 patent/WO2014079532A1/fr active Application Filing
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2014079532A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP6407877B2 (ja) | 2018-10-17 |
US9695354B2 (en) | 2017-07-04 |
CN104756273B (zh) | 2017-10-24 |
CN104756273A (zh) | 2015-07-01 |
JP2016501430A (ja) | 2016-01-18 |
US20150299562A1 (en) | 2015-10-22 |
KR102105810B1 (ko) | 2020-04-29 |
KR20150087378A (ko) | 2015-07-29 |
WO2014079532A1 (fr) | 2014-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014079532A1 (fr) | Formulation dans un solvant de haute pureté pour la fabrication de dispositifs électroniques | |
EP3246373B1 (fr) | Molécules organiques destinées à être utilisées en tant qu'émetteurs | |
EP2652082B1 (fr) | Dispositif électroluminescent organique | |
EP3538623B1 (fr) | Composés pourvus d'un groupe accepteur et d'un groupe donneur | |
EP3210248B1 (fr) | Matériaux pour dispositifs électroniques | |
EP2335301B1 (fr) | Dispositif emetteur de rayonnement | |
EP3137458A1 (fr) | Matériaux pour dispositifs électroniques | |
WO2016102039A1 (fr) | Composés hétérocycliques à structures de dibenzazépine | |
EP3221294A1 (fr) | Composés hétérocycliques à utiliser dans des dispositifs électroniques | |
DE202019005923U1 (de) | Elektrolumineszierende Vorrichtungen | |
DE202019005924U1 (de) | Elektrolumineszierende Vorrichtungen | |
WO2018138039A1 (fr) | Dérivés de carbazole | |
WO2022207678A1 (fr) | Dispositif électroluminescent organique | |
EP3235020B1 (fr) | Matériaux hôtes ambipolaires pour des composants optoélectroniques | |
DE102010009193B4 (de) | Zusammensetzung enthaltend Fluor-Fluor Assoziate, Verfahren zu deren Herstellung, deren Verwendung sowie organische elektronische Vorrichtung diese enthaltend | |
WO2018166932A1 (fr) | Composés ayant de structures arylamine | |
WO2017016667A1 (fr) | Composés à structures fluorène | |
WO2018114883A1 (fr) | Mélanges comprenant au moins deux composés organo-fonctionnels | |
EP3036241B1 (fr) | Complexes métalliques | |
DE102018107166B4 (de) | Organische Moleküle, insbesondere für die Verwendung in optoelektronischen Vorrichtungen | |
DE102017122471B3 (de) | Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen | |
EP3645523B1 (fr) | Molécules organiques destinées en particulier à être utilisées dans des dispositifs optoélectroniques | |
DE102018114290B3 (de) | Organische Moleküle, insbesondere zur Verwendung in optoelektronischen Vorrichtungen | |
DE102019106388A1 (de) | Organische moleküle für optoelektronische vorrichtungen | |
WO2020064582A1 (fr) | Procédé de production de granulat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150323 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200420 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MERCK PATENT GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20220529 |