CN111785622B - Annealing process, device and metal contact layer forming method for forming metal silicide - Google Patents
Annealing process, device and metal contact layer forming method for forming metal silicide Download PDFInfo
- Publication number
- CN111785622B CN111785622B CN202010679523.9A CN202010679523A CN111785622B CN 111785622 B CN111785622 B CN 111785622B CN 202010679523 A CN202010679523 A CN 202010679523A CN 111785622 B CN111785622 B CN 111785622B
- Authority
- CN
- China
- Prior art keywords
- wafer
- heat source
- annealing process
- switch
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 153
- 239000002184 metal Substances 0.000 title claims abstract description 153
- 238000000137 annealing Methods 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 125
- 229910021332 silicide Inorganic materials 0.000 title claims abstract description 52
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000007664 blowing Methods 0.000 claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 230000002093 peripheral effect Effects 0.000 claims description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 20
- 229920005591 polysilicon Polymers 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052734 helium Inorganic materials 0.000 claims description 12
- 239000001307 helium Substances 0.000 claims description 12
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 claims description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 80
- 238000010438 heat treatment Methods 0.000 description 13
- 239000011241 protective layer Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005224 laser annealing Methods 0.000 description 3
- 229910019044 CoSix Inorganic materials 0.000 description 2
- 229910008486 TiSix Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- AIOWANYIHSOXQY-UHFFFAOYSA-N cobalt silicon Chemical compound [Si].[Co] AIOWANYIHSOXQY-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28518—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6219—Fin field-effect transistors [FinFET] characterised by the source or drain electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/517—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Automation & Control Theory (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体集成电路技术,尤其涉及一种金属硅化物的退火工艺。The present invention relates to semiconductor integrated circuit technology, in particular to an annealing process of metal silicide.
背景技术Background technique
随着半导体技术的不断发展,MOS器件特征尺寸不断地减小,源极漏极之间的距离也越来越短,短沟道效应越来越严重,传统的平面器件(如硅MOSFET)的尺寸持续按比例缩小将变得越来越困难。集成电路技术发展到20nm及以下技术节点时,FinFET(Fin Field-Effect Transistor,鳍式场效应晶体管)应运而生,其是一种立体型器件,相对于平面式晶体管,鳍式场效应晶体管(FinFET)具有立体式沟道结构,具有更好的导通电流和关断电流特性,也能改善短沟道效应(SCE),并其与传统CMOS工艺兼容,而被广泛应用。With the continuous development of semiconductor technology, the feature size of MOS devices is continuously reduced, the distance between source and drain is getting shorter and shorter, and the short channel effect is becoming more and more serious. Continued scaling down will become increasingly difficult. When integrated circuit technology develops to 20nm and below technology nodes, FinFET (Fin Field-Effect Transistor, fin field effect transistor) emerges as the times require, which is a three-dimensional device. Compared with planar transistors, fin field effect transistors ( FinFET) has a three-dimensional channel structure, has better on-current and off-current characteristics, can also improve the short channel effect (SCE), and is compatible with traditional CMOS processes, and is widely used.
鳍式场效应晶体管通常包括鳍体,鳍体由形成于半导体衬底上的纳米条或纳米片组成。同一半导体衬底上的鳍体平行排列且各鳍体之间隔离有介质层。栅极结构覆盖在部分长度的鳍体的顶部表面和侧面,被栅极结构覆盖的鳍体的表面用于形成沟道,也即在鳍体的顶部表面和两个侧面都具有沟道。通常栅极结构包括叠加而成的栅介质层和栅导电材料层。源区和漏区形成在栅极结构两侧的鳍体中。A fin field effect transistor generally includes a fin body, which consists of nano-stripes or nano-sheets formed on a semiconductor substrate. The fin bodies on the same semiconductor substrate are arranged in parallel, and a dielectric layer is isolated between the fin bodies. The gate structure covers the top surface and the side surfaces of the partial length of the fin body, and the surface of the fin body covered by the gate structure is used to form a channel, that is, the channel is formed on the top surface and both sides of the fin body. Generally, the gate structure includes a gate dielectric layer and a gate conductive material layer which are stacked. Source and drain regions are formed in the fin bodies on both sides of the gate structure.
在鳍式场效应晶体管的金属栅极和源/漏极形成之后,通常在衬底的有源区内形成一层金属层,如金属钛(Ti),然后进行退火工艺使金属层的金属与衬底(如硅衬底)发生反应生成金属硅化物而形成金属接触层。在14nm及以下技术工艺中,金属硅化物与Si/SiGe衬底之间的接触电阻对器件内阻和寄生外阻的影响越来越大。对于镍作为金属层的,由于金属镍比较活泼,在高温热退火时容易产生在28nm中Ni piping和spiking缺陷。在14nm制程中,金属钛由于其较好的热稳定性而被广泛应用为金属层。栅极以及源/漏极沉积金属钛层工艺和退火工艺共同影响晶圆片内电阻片内均匀度。首先金属钛层沉积时均匀度一般较差;其次目前的退火工艺一般为高温激光退火(Laser Annealing),其是一种微秒级退火工艺,其利用激光光束快速地在硅片表面进行扫描,从而达到硅片上某一微分区域的快速退火的作用,激光退火使晶圆面内的受热一般比较均匀,由于金属钛层沉积时均匀度一般较差,则形成的金属硅化物的电阻片内均匀度也较差,影响器件性能,继而影响器件良率。After the metal gate and source/drain of the fin field effect transistor are formed, a metal layer, such as metal titanium (Ti), is usually formed in the active area of the substrate, and then an annealing process is performed to make the metal of the metal layer and the metal layer. A substrate (eg, a silicon substrate) reacts to form a metal silicide to form a metal contact layer. In the technology process of 14nm and below, the contact resistance between the metal silicide and the Si/SiGe substrate has an increasing influence on the internal resistance and parasitic external resistance of the device. For nickel as the metal layer, Ni piping and spiking defects at 28nm are easily generated during high temperature thermal annealing due to the active metal nickel. In the 14nm process, titanium metal is widely used as a metal layer due to its better thermal stability. The gate and source/drain deposition metal titanium layer process and annealing process together affect the intra-wafer resistance intra-chip uniformity. Firstly, the uniformity of the metal titanium layer is generally poor during deposition; secondly, the current annealing process is generally high-temperature laser annealing (Laser Annealing), which is a microsecond-level annealing process that uses a laser beam to quickly scan the surface of the silicon wafer. So as to achieve the effect of rapid annealing of a certain differential area on the silicon wafer. Laser annealing makes the heating in the wafer surface generally more uniform. Uniformity is also poor, affecting device performance, which in turn affects device yield.
发明内容SUMMARY OF THE INVENTION
本发明提供的形成金属硅化物的退火工艺,包括:S1:提供一晶圆,晶圆上包括形成的栅极结构及位于栅极结构两侧的源极和漏极,并在栅极结构、源极和漏极上形成有金属层;S2:将晶圆置于一退火装置中,该退火装置包括多个热源和一开关单元,多个热源置于晶圆的至少一侧,并覆盖晶圆的至少一侧的表面及晶圆周侧的区域,开关单元连接每一热源;以及S3:获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺。The annealing process for forming a metal silicide provided by the present invention includes: S1: providing a wafer, the wafer includes a gate structure formed and a source electrode and a drain electrode located on both sides of the gate structure, and the gate structure, A metal layer is formed on the source electrode and the drain electrode; S2: the wafer is placed in an annealing device, the annealing device includes a plurality of heat sources and a switch unit, and the plurality of heat sources are placed on at least one side of the wafer and cover the wafer. On the surface of at least one side of the circle and the area on the peripheral side of the wafer, the switch unit is connected to each heat source; and S3: obtain the thickness distribution data of the metal layer formed in the wafer surface, and calculate the thickness distribution data of each heat source according to the thickness distribution data of the metal layer. The target temperature, the switch unit controls each heat source to work at its target temperature according to the target temperature of each heat source to perform an annealing process on the wafer.
更进一步的,在晶圆的两侧均设置多个热源。Furthermore, multiple heat sources are arranged on both sides of the wafer.
更进一步的,退火装置还包括开关控制装置,开关控制装置包括一输入端和至少一输出端,输入端接收每一热源的目标温度信号,根据每一热源的目标温度信号得到开关单元中每一开关的控制信号,并通过其输出端输出开关控制信号至开关单元中的每一个开关器件,以控制每一开关器件的导通程度,进而控制与该开关器件连接的热源的温度。Further, the annealing device also includes a switch control device, the switch control device includes an input end and at least one output end, the input end receives the target temperature signal of each heat source, and obtains each of the switch units according to the target temperature signal of each heat source. The control signal of the switch is outputted to each switching device in the switching unit through its output terminal to control the degree of conduction of each switching device, thereby controlling the temperature of the heat source connected to the switching device.
更进一步的,所述退火工艺为等温退火工艺、尖峰退火工艺或等温退火工艺和尖峰退火工艺的结合。Further, the annealing process is an isothermal annealing process, a spike annealing process, or a combination of the isothermal annealing process and the spike annealing process.
更进一步的,退火工艺中,热源的目标温度区间为450℃至700℃之间,其升温速率为30℃/s至200℃/s之间;气体流量包括氮气和氦气,氮气和氦气的总流量在15slm至250slm之间;退火工艺中的吹气方式为顶部吹气、边缘吹气或顶部吹气和边缘吹气的结合;退火工艺的退火时间为1s至30s之间;晶圆转速为50r/min至100r/min之间;氧气(O2)含量小于等于10ppm。Furthermore, in the annealing process, the target temperature range of the heat source is between 450°C and 700°C, and the heating rate is between 30°C/s and 200°C/s; the gas flow includes nitrogen and helium, and nitrogen and helium. The total flow rate of the annealing process is between 15slm and 250slm; the blowing method in the annealing process is top blowing, edge blowing or a combination of top blowing and edge blowing; the annealing time of the annealing process is between 1s and 30s; The rotation speed is between 50r/min and 100r/min; the oxygen (O 2 ) content is less than or equal to 10ppm.
本发明提供的形成金属硅化物的退火装置,包括:多个热源,置于晶圆的至少一侧,并覆盖晶圆的至少一侧的表面及晶圆周侧的区域;开关单元,连接每一热源;以及开关控制装置,包括一输入端和至少一输出端,输入端接收每一热源的目标温度信号,开关控制装置根据每一热源的目标温度信号得到开关单元中每一开关的控制信号,并通过其输出端输出开关控制信号至开关单元中的每一个开关器件,以控制每一开关器件的导通程度,进而控制与该开关器件连接的热源的温度,其中每一热源的目标温度信号与晶圆面内与该热源对应的点的金属层的厚度有关。The annealing device for forming metal silicide provided by the present invention includes: a plurality of heat sources, which are placed on at least one side of the wafer and cover the surface of at least one side of the wafer and the area on the peripheral side of the wafer; a switch unit is connected to each a heat source; and a switch control device, comprising an input end and at least one output end, the input end receives the target temperature signal of each heat source, the switch control device obtains the control signal of each switch in the switch unit according to the target temperature signal of each heat source, and output a switch control signal to each switch device in the switch unit through its output terminal to control the degree of conduction of each switch device, and then control the temperature of the heat source connected to the switch device, wherein the target temperature signal of each heat source It is related to the thickness of the metal layer at the point in the wafer plane corresponding to the heat source.
更进一步的,在晶圆的两侧均设置了多个热源。Furthermore, multiple heat sources are arranged on both sides of the wafer.
更进一步的,任一侧的多个热源在晶圆表面和周侧均匀排列。Furthermore, the multiple heat sources on either side are evenly arranged on the wafer surface and the perimeter.
更进一步的,热源为发热灯。Further, the heat source is a heating lamp.
本发明提供的FinFet器件金属接触层形成方法,包括:S1:提供一晶圆,在晶圆上形成多个鳍体,各鳍体平行排列;S2:形成多条多晶硅栅,所述多晶硅栅覆盖鳍体的部分的顶部表面和侧面,所述多晶硅栅覆盖的鳍体的区域用于形成沟道区,源极区域和漏极区域位于多晶硅栅的两侧;S3:在鳍体上形成源极区域和漏极区域,在源极区域和漏极区域上外延形成金属硅化物;S4:去除多晶硅栅,在多晶硅栅的去除区域形成金属栅;S5:离子注入在金属硅化物上形成非晶层以形成源极和漏极;S6:在金属栅、源极和漏极上形成金属层;S7:将晶圆置于一退火装置中,该退火装置包括多个热源和一开关单元,多个热源置于晶圆的至少一侧,并覆盖晶圆的至少一侧的表面及晶圆周侧的区域,开关单元连接每一热源;以及S8:获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺。The method for forming a metal contact layer of a FinFet device provided by the present invention includes: S1: providing a wafer, forming a plurality of fin bodies on the wafer, and each fin body is arranged in parallel; S2: forming a plurality of polysilicon gates, the polysilicon gates cover The top surface and side surface of the part of the fin body, the area of the fin body covered by the polysilicon gate is used to form a channel region, and the source region and the drain region are located on both sides of the polysilicon gate; S3: forming a source electrode on the fin body region and drain region, epitaxially form metal silicide on the source region and drain region; S4: remove the polysilicon gate, form a metal gate in the removed region of the polysilicon gate; S5: ion implantation forms an amorphous layer on the metal silicide to form a source electrode and a drain electrode; S6: forming a metal layer on the metal gate, source electrode and drain electrode; S7: placing the wafer in an annealing device, the annealing device includes a plurality of heat sources and a switching unit, a plurality of The heat source is placed on at least one side of the wafer, and covers the surface of at least one side of the wafer and the area on the peripheral side of the wafer, and the switch unit is connected to each heat source; and S8: Obtain thickness distribution data of the metal layer formed in the wafer surface and calculating the target temperature of each heat source according to the thickness distribution data of the metal layer, and the switch unit controls each heat source to work at its target temperature according to the target temperature of each heat source to anneal the wafer.
更进一步的,金属层为钛金属层或钴金属层。Further, the metal layer is a titanium metal layer or a cobalt metal layer.
更进一步的,在S3中外延形成的金属硅化物为硅锗或硅磷的金属硅化物。Furthermore, the metal silicide epitaxially formed in S3 is a metal silicide of silicon germanium or silicon phosphorus.
更进一步的,在晶圆的两侧均设置多个热源。Furthermore, multiple heat sources are arranged on both sides of the wafer.
更进一步的,退火装置还包括开关控制装置,开关控制装置包括一输入端和至少一输出端,输入端接收每一热源的目标温度信号,根据每一热源的目标温度信号得到开关单元中每一开关的控制信号,并通过其输出端输出开关控制信号至开关单元中的每一个开关器件,以控制每一开关器件的导通程度,进而控制与该开关器件连接的热源的温度。Further, the annealing device also includes a switch control device, the switch control device includes an input end and at least one output end, the input end receives the target temperature signal of each heat source, and obtains each of the switch units according to the target temperature signal of each heat source. The control signal of the switch is outputted to each switching device in the switching unit through its output terminal to control the degree of conduction of each switching device, thereby controlling the temperature of the heat source connected to the switching device.
更进一步的,所述退火工艺为等温退火工艺、尖峰退火工艺或等温退火工艺和尖峰退火工艺的结合。Further, the annealing process is an isothermal annealing process, a spike annealing process, or a combination of the isothermal annealing process and the spike annealing process.
更进一步的,退火工艺中,热源的目标温度区间为450℃至700℃之间,其升温速率为30℃/s至200℃/s之间;气体流量包括氮气和氦气,氮气和氦气的总流量在15slm至250slm之间;退火工艺中的吹气方式为顶部吹气、边缘吹气或顶部吹气和边缘吹气的结合;退火工艺的退火时间为1s至30s之间;晶圆转速为50r/min至100r/min之间;氧气(O2)含量小于等于10ppm。Furthermore, in the annealing process, the target temperature range of the heat source is between 450°C and 700°C, and the heating rate is between 30°C/s and 200°C/s; the gas flow includes nitrogen and helium, and nitrogen and helium. The total flow rate of the annealing process is between 15slm and 250slm; the blowing method in the annealing process is top blowing, edge blowing or a combination of top blowing and edge blowing; the annealing time of the annealing process is between 1s and 30s; The rotation speed is between 50r/min and 100r/min; the oxygen (O 2 ) content is less than or equal to 10ppm.
在作为半导体器件的栅极、源极和漏极上的金属接触层的金属硅化物的形成过程中的退火工艺中,在晶圆的至少一侧设置多个热源,多个热源覆盖晶圆表面及晶圆周侧的区域,并设置开关单元,用于控制每个热源的温度,首先获得晶圆面内形成的金属层的厚度分布数据,然后根据金属层的厚度分布数据计算每一热源的目标温度,并使开关单元控制每一热源工作在其目标温度以对晶圆进行退火工艺,而使形成的金属硅化物的厚度在晶圆面内及电阻片内均匀度好,而提高接触电阻的均匀度,进而提高器件性能,继而提高器件良率。During the annealing process during the formation of the metal silicide as the metal contact layer on the gate, source and drain of the semiconductor device, a plurality of heat sources are provided on at least one side of the wafer, and the plurality of heat sources cover the surface of the wafer and the area on the peripheral side of the wafer, and set a switch unit to control the temperature of each heat source, first obtain the thickness distribution data of the metal layer formed in the wafer surface, and then calculate the target of each heat source according to the thickness distribution data of the metal layer temperature, and make the switch unit control each heat source to work at its target temperature to anneal the wafer, so that the thickness of the formed metal silicide has a good uniformity in the wafer surface and the resistor sheet, and improves the contact resistance. uniformity, thereby improving device performance and thus improving device yield.
附图说明Description of drawings
图1为本发明一实施例的晶圆上半导体器件的局部结构示意图。FIG. 1 is a schematic diagram of a partial structure of a semiconductor device on a wafer according to an embodiment of the present invention.
图2为本发明一实施例的在晶圆上形成金属硅化物而进行退火工艺的装置的侧视示意图。2 is a schematic side view of an apparatus for forming metal silicide on a wafer and performing an annealing process according to an embodiment of the present invention.
图中主要组件附图标记说明如下:The main components in the figure are described with reference numerals as follows:
200、退火装置;100、晶圆;210、220、开关单元;230、开关控制装置。200, an annealing device; 100, a wafer; 210, 220, a switch unit; 230, a switch control device.
具体实施方式Detailed ways
下面将结合附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
本发明一实施例中,在于提供一种形成金属硅化物的退火工艺,包括:S1:提供一晶圆,晶圆上包括形成的栅极结构及位于栅极结构两侧的源极和漏极,并在栅极结构、源极和漏极上形成有金属层;S2:将晶圆置于一退火装置中,该退火装置包括多个热源和一开关单元,多个热源置于晶圆的至少一侧,并覆盖晶圆的至少一侧的表面及晶圆周侧的区域,开关单元连接每一热源;S3:获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺。In an embodiment of the present invention, an annealing process for forming metal silicide is provided, including: S1: providing a wafer, the wafer includes a gate structure formed on the wafer, and a source electrode and a drain electrode located on both sides of the gate structure. , and a metal layer is formed on the gate structure, the source electrode and the drain electrode; S2: the wafer is placed in an annealing device, the annealing device includes a plurality of heat sources and a switch unit, and the plurality of heat sources are placed on the wafer At least one side, and covers at least one surface of the wafer and the area on the peripheral side of the wafer, and the switch unit is connected to each heat source; S3: Obtain the thickness distribution data of the metal layer formed in the wafer surface, according to the thickness distribution of the metal layer The data calculates the target temperature of each heat source, and the switch unit controls each heat source to work at its target temperature according to the target temperature of each heat source to perform an annealing process on the wafer.
请参阅图1和图2,图1为本发明一实施例的晶圆上半导体器件的局部结构示意图,图2为本发明一实施例的在晶圆上形成金属硅化物而进行退火工艺的装置的侧视示意图。具体的,在S1中,如图1所示,提供一晶圆100,晶圆100上包括形成的栅极结构110及位于栅极结构110两侧的源极121和漏极122,并在栅极结构110、源极121和漏极122上形成有金属层(图中未示出),在一实施例中,金属层的厚度在30埃米至150埃米之间,在一实施例中,还在金属层上形成一层保护层,保护层的厚度在40埃米至100埃米之间,如金属层是钛,其保护层可为氮化钛;在S2中,如图2所示,将晶圆100置于一退火装置200中,退火装置200包括多个热源,如图2所示的沿晶圆100表面设置的编号为1-56的56个热源,如图2所示的实施例中在晶圆100的两侧均设置了多个热源,但本发明不限于两侧均设置多个热源,只其中一侧设置多个热源亦可,也即在晶圆100的至少一侧设置多个热源;并如图2所示,晶圆任一侧的多个热源覆盖晶圆表面及晶圆周侧的区域,也即任一侧的多个热源不仅覆盖晶圆表面,还延伸到晶圆之外的区域,即覆盖晶圆周侧的区域。如图2所示,以晶圆上侧为例,编号为8-20的13个热源覆盖了晶圆的上表面,编号1-7的7个热源覆盖晶圆上表面左侧的周侧的区域,编号21-26的6个热源覆盖晶圆上表面右侧的周侧的区域,且编号1-26的26个热源从左至右依次排列,晶圆下侧的编号35-48的14个热源覆盖了晶圆的下表面,编号29-34的6个热源覆盖晶圆下表面左侧的周侧的区域,编号49-54的6个热源覆盖晶圆下表面右侧的周侧的区域,且编号29-54的26个热源从左至右依次排列。在一实施例中,置于晶圆上侧的多个热源与置于晶圆下侧的多个热源一一对称设置。在一实施例中,置于晶圆上侧的多个热源与置于晶圆下侧的多个热源一一交错设置,如置于晶圆下侧的29号热源位于置于晶圆上侧的1号和2号热源之间,置于晶圆上侧的2号热源位于置于晶圆下侧的29号和30号热源之间,也即一一交错设置。如图2所示,退火装置200还包括开关单元,以晶圆上侧为例,开关单元210连接位于晶圆100上侧的1-26号热源,具体的开关单元210包括1-13号开关器件,1号开关器件连接13和14号热源,2号开关器件连接12和15号热源,依次类推,13号开关器件连接1和26号热源;对于晶圆下侧,开关单元220连接位于晶圆100下侧的29-54号热源,具体的开关单元220包括15-27号开关器件,15号开关器件连接41和42号热源,16号开关器件连接40和43热源,依次类推,27号开关器件连接29和54号热源,如此,开关单元连接每一热源。在本发明一实施例中,任一侧的多个热源在晶圆表面和周侧均匀排列。在本发明一实施例中,热源为发热灯,如灯管或灯泡;S3:获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺,由于一般形成的金属层的厚度的均匀度较差,为使后续形成的金属硅化物的厚度一致,若获得晶圆某一处的金属层的厚度较厚,则可设置其附件的热源的温度较高,以使该点以较高的温度进行退火工艺,而若获得晶圆某一处的金属层的厚度较薄,则可设置其附近的热源的温度较低,以使该点以较低的温度进行退火工艺,如此实现晶圆上各点的退火温度的单独控制,而使晶圆面内通过退火工艺形成厚度均匀度高的金属硅化物层,以弥补之前金属层形成工艺形成的金属层厚度均匀度差的问题,而使形成的金属硅化物(如图1中标号140所示)的厚度在晶圆面内及电阻片内均匀度好,而提高接触电阻的均匀度,进而提高器件性能,继而提高器件良率。更具体的,在一实施例中,退火装置还包括开关控制装置230,开关控制装置230包括一输入端和至少一输出端,输入端接收每一热源的目标温度信号,根据每一热源的目标温度信号得到开关单元210和220中每一开关的控制信号,并通过其输出端输出开关控制信号至开关单元210和220中的每一个开关器件,以控制每一开关器件的导通程度,进而控制与该开关器件连接的热源的温度。在一实施例中,开关单元中每一开关器件为IGBT,本发明对开关器件的类型不限定,只要其能根据开关信号控制其导通程度即可。Please refer to FIGS. 1 and 2. FIG. 1 is a schematic diagram of a partial structure of a semiconductor device on a wafer according to an embodiment of the present invention, and FIG. 2 is an apparatus for forming metal silicide on a wafer and performing an annealing process according to an embodiment of the present invention. Schematic side view. Specifically, in S1 , as shown in FIG. 1 , a
在一实施例中,在晶圆上侧还设置有27号和28号热源,其由14号开关器件控制,27号和28号热源设置在与1-26号热源的排列方向垂直的方向上的晶圆的两侧。同样的,在一实施例中,也可在晶圆上侧还设置有55号和56号热源,其由28号开关器件控制,55号和56号热源设置在与29-54号热源的排列方向垂直的方向上的晶圆的两侧。In one embodiment, the upper side of the wafer is also provided with No. 27 and No. 28 heat sources, which are controlled by No. 14 switching devices, and the No. 27 and No. 28 heat sources are arranged in a direction perpendicular to the arrangement direction of No. 1-26 heat sources. both sides of the wafer. Similarly, in one embodiment, heat sources No. 55 and No. 56 may also be provided on the upper side of the wafer, which are controlled by the switching device No. 28, and the heat sources No. 55 and No. 56 are arranged in an arrangement with the heat sources No. 29-54. The directions are perpendicular to the sides of the wafer.
在一实施例中,较佳的,所述退火工艺采用双面加热的退火工艺,也即在晶圆的两侧均设置多个热源,如此可进一步提高接触电阻的均匀度。In one embodiment, preferably, the annealing process adopts a double-sided heating annealing process, that is, multiple heat sources are arranged on both sides of the wafer, so that the uniformity of the contact resistance can be further improved.
在一实施例中,所述退火工艺为等温退火工艺、尖峰退火工艺或等温退火工艺和尖峰退火工艺的结合。在一实施例中,退火工艺中,热源的目标温度区间为450℃至700℃之间,其升温速率为30℃/s至200℃/s之间。在一实施例中,退火工艺中,气体流量包括氮气和氦气,氮气和氦气的总流量在15slm至250slm之间。在一实施例中,退火工艺中的吹气方式为顶部吹气、边缘吹气或顶部吹气和边缘吹气的结合。在一实施例中,退火工艺的退火时间为1s至30s之间。在一实施例中,退火工艺中,晶圆转速为50r/min至100r/min之间,在一实施例中,退火工艺中,氧气(O2)含量小于等于10ppm。In one embodiment, the annealing process is an isothermal annealing process, a spike annealing process, or a combination of the isothermal annealing process and the spike annealing process. In one embodiment, in the annealing process, the target temperature range of the heat source is between 450°C and 700°C, and the heating rate thereof is between 30°C/s and 200°C/s. In one embodiment, in the annealing process, the gas flow includes nitrogen and helium, and the total flow of nitrogen and helium is between 15 slm and 250 slm. In one embodiment, the blowing method in the annealing process is top blowing, edge blowing, or a combination of top blowing and edge blowing. In one embodiment, the annealing time of the annealing process is between 1 s and 30 s. In one embodiment, in the annealing process, the wafer rotation speed is between 50 r/min and 100 r/min. In one embodiment, in the annealing process, the oxygen (O 2 ) content is less than or equal to 10 ppm.
在一实施例中,金属层为钛(Ti)金属层或钴(Co)金属层,对应的形成的金属硅化物为富金属相钛化硅(TiSix)或富金属相钴化硅(CoSix)。In one embodiment, the metal layer is a titanium (Ti) metal layer or a cobalt (Co) metal layer, and the corresponding formed metal silicide is a metal-rich phase titanium silicon (TiSix) or a metal-rich phase cobalt silicon (CoSix) .
请参阅图2,本发明还提供一种形成金属硅化物的退火装置,包括:多个热源,置于晶圆100的至少一侧,并覆盖晶圆的至少一侧的表面及晶圆周侧的区域;开关单元(如210或220),连接每一热源;开关控制装置230,包括一输入端和至少一输出端,输入端接收每一热源的目标温度信号,开关控制装置230根据每一热源的目标温度信号得到开关单元(如210或220)中每一开关的控制信号,并通过其输出端输出开关控制信号至开关单元(如210或220)中的每一个开关器件,以控制每一开关器件的导通程度,进而控制与该开关器件连接的热源的温度,其中每一热源的目标温度信号与晶圆面内与该热源对应的点的金属层的厚度有关。而使开关单元(如210或220)控制每一热源工作在其目标温度以对晶圆进行退火工艺。Referring to FIG. 2 , the present invention also provides an annealing apparatus for forming metal silicide, comprising: a plurality of heat sources placed on at least one side of the
如图2所示的退火装置200,包括多个热源,如编号为1-56的56个热源。如图2所示的实施例中在晶圆100的两侧均设置了多个热源,但本发明不限于两侧均设置多个热源,只其中一侧设置多个热源亦可,也即在晶圆100的至少一侧设置多个热源;并如图2所示,晶圆任一侧的多个热源覆盖晶圆表面及晶圆周侧的区域,也即任一侧的多个热源不仅覆盖晶圆表面,还延伸到晶圆之外的区域,即覆盖晶圆周侧的区域。如图2所示,以晶圆上侧为例,编号为8-20的13个热源覆盖了晶圆的上表面,编号1-7的7个热源覆盖晶圆上表面左侧的周侧的区域,编号21-26的6个热源覆盖晶圆上表面右侧的周侧的区域,且编号1-26的26个热源从左至右依次排列,晶圆下侧的编号35-48的14个热源覆盖了晶圆的下表面,编号29-34的6个热源覆盖晶圆下表面左侧的周侧的区域,编号49-54的6个热源覆盖晶圆下表面右侧的周侧的区域,且编号29-54的26个热源从左至右依次排列。在一实施例中,置于晶圆上侧的多个热源与置于晶圆下侧的多个热源一一对称设置。在一实施例中,置于晶圆上侧的多个热源与置于晶圆下侧的多个热源一一交错设置,如置于晶圆下侧的29号热源位于置于晶圆上侧的1号和2号热源之间,置于晶圆上侧的2号热源位于置于晶圆下侧的29号和30号热源之间,也即一一交错设置。更具体的,如图2所示,对于晶圆上侧,开关单元210连接位于晶圆100上侧的1-26号热源,具体的开关单元210包括1-13号开关器件,1号开关器件连接13和14号热源,2号开关器件连接12和15号热源,依次类推,13号开关器件连接1和26号热源;对于晶圆下侧,开关单元220连接位于晶圆100下侧的29-54号热源,具体的开关单元210包括15-27号开关器件,15号开关器件连接41和42号热源,16号开关器件连接40和43热源,依次类推,27号开关器件连接29和54号热源,如此,开关单元连接每一热源。在本发明一实施例中,任一侧的多个热源在晶圆表面和周侧均匀排列。在本发明一实施例中,热源为发热灯,如灯管或灯泡。在工作过程中,首先,如图1所示,在晶圆100上的栅极结构110及位于栅极结构110两侧的源极121和漏极122上形成有金属层(图中未示出),然后获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,即每一热源的目标温度信号与晶圆面内与该热源对应的点的金属层的厚度有关,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺,由于一般形成的金属层的厚度的均匀度较差,为使后续形成的金属硅化物的厚度一致,若获得晶圆某一处的金属层的厚度较厚,则可设置其附件的热源的温度较高(如开关控制装置控制热源对应的开关器件的驱动电流较大,以使其较充分的导通,而使热源的温度较高),以使该点以较高的温度进行退火工艺,而若获得晶圆某一处的金属层的厚度较薄,则可设置其附近的热源的温度较低(如开关控制装置控制热源对应的开关器件的驱动电流较小,而使热源的温度较低),以使该点以较低的温度进行退火工艺,如此实现晶圆上各点的退火温度的单独控制,而使晶圆面内通过退火工艺形成厚度均匀度高的金属硅化物层,以弥补之前金属层形成工艺形成的金属层厚度均匀度差的问题,而使形成的金属硅化物(如图1中标号140所示)的厚度在晶圆面内及电阻片内均匀度好,而提高接触电阻的均匀度,进而提高器件性能,继而提高器件良率。The
在一实施例中,开关单元中每一开关器件为IGBT,本发明对开关器件的类型不限定,只要其能根据开关信号控制其导通程度即可。In one embodiment, each switching device in the switching unit is an IGBT. The present invention does not limit the type of the switching device, as long as it can control its degree of conduction according to the switching signal.
在一实施例中,在晶圆上侧还设置有27号和28号热源,其由14号开关器件控制,27号和28号热源设置在与1-26号热源的排列方向垂直的方向上的晶圆的两侧。同样的,在一实施例中,也可在晶圆上侧还设置有55号和56号热源,其由28号开关器件控制,55号和56号热源设置在与29-54号热源的排列方向垂直的方向上的晶圆的两侧。In one embodiment, the upper side of the wafer is also provided with No. 27 and No. 28 heat sources, which are controlled by No. 14 switching devices, and the No. 27 and No. 28 heat sources are arranged in a direction perpendicular to the arrangement direction of No. 1-26 heat sources. both sides of the wafer. Similarly, in one embodiment, heat sources No. 55 and No. 56 may also be provided on the upper side of the wafer, which are controlled by the switching device No. 28, and the heat sources No. 55 and No. 56 are arranged in an arrangement with the heat sources No. 29-54. The directions are perpendicular to the sides of the wafer.
在一实施例中,较佳的,所述退火工艺采用双面加热的退火工艺,也即在晶圆的两侧均设置多个热源,如此可进一步提高接触电阻的均匀度。In one embodiment, preferably, the annealing process adopts a double-sided heating annealing process, that is, multiple heat sources are arranged on both sides of the wafer, so that the uniformity of the contact resistance can be further improved.
在一实施例中,较佳的,所述退火工艺采用双面加热的退火工艺,也即在晶圆的两侧均设置多个热源,其工作原理和设置方式与上述其中一侧的热源相似,如此可进一步提高接触电阻的均匀度。In one embodiment, preferably, the annealing process adopts a double-sided heating annealing process, that is, multiple heat sources are arranged on both sides of the wafer, and the working principle and setting method are similar to the above-mentioned heat sources on one side. , which can further improve the uniformity of contact resistance.
在一实施例中,热源的目标温度区间为450℃至700℃之间,其升温速率为30℃/s至200℃/s之间。In one embodiment, the target temperature range of the heat source is between 450°C and 700°C, and the heating rate thereof is between 30°C/s and 200°C/s.
本发明还提供一种FinFet器件金属接触层形成方法,包括:S1:提供一晶圆,在晶圆上形成多个鳍体,各鳍体平行排列;S2:形成多条多晶硅栅,所述多晶硅栅覆盖鳍体的部分的顶部表面和侧面,所述多晶硅栅覆盖的鳍体的区域用于形成沟道区,源极区域和漏极区域位于多晶硅栅的两侧;S3:在鳍体上形成源极区域和漏极区域,在源极区域和漏极区域上外延形成金属硅化物;S4:去除多晶硅栅,在多晶硅栅的去除区域形成金属栅;S5:离子注入在金属硅化物上形成非晶层以形成源极和漏极;S5:去除多晶硅栅,在多晶硅栅的去除区域形成金属栅;S6:在金属栅、源极和漏极上形成金属层;S7:将晶圆置于一退火装置中,该退火装置包括多个热源和一开关单元,多个热源置于晶圆的至少一侧,并覆盖晶圆的至少一侧的表面及晶圆周侧的区域,开关单元连接每一热源;以及S8:获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺。The present invention also provides a method for forming a metal contact layer of a FinFet device, including: S1: providing a wafer, forming a plurality of fin bodies on the wafer, and each fin body is arranged in parallel; S2: forming a plurality of polysilicon gates, the polysilicon The gate covers the top surface and the side surface of the part of the fin body, the area of the fin body covered by the polysilicon gate is used to form a channel region, and the source region and the drain region are located on both sides of the polysilicon gate; S3: formed on the fin body Source region and drain region, epitaxially form metal silicide on the source region and drain region; S4: remove the polysilicon gate, and form a metal gate in the removed region of the polysilicon gate; S5: ion implantation forms a non-metal silicide on the metal silicide. S5: remove the polysilicon gate and form a metal gate in the removed area of the polysilicon gate; S6: form a metal layer on the metal gate, source and drain; S7: place the wafer on a In the annealing device, the annealing device includes a plurality of heat sources and a switch unit, the plurality of heat sources are placed on at least one side of the wafer, and cover the surface of at least one side of the wafer and the area on the peripheral side of the wafer, and the switch unit is connected to each heat source; and S8: obtaining thickness distribution data of the metal layer formed in the wafer surface, calculating a target temperature of each heat source according to the thickness distribution data of the metal layer, and the switch unit controls each heat source to work at its target temperature according to the target temperature of each heat source Target temperature to anneal the wafer.
请参阅图1和图2。具体的,经过S1至S6,如图1所示,在晶圆100上包括形成的栅极结构110及位于栅极结构110两侧的源极121和漏极122,并在栅极结构110、源极121和漏极122上形成有金属层(图中未示出),在一实施例中,金属层的厚度在30埃米至150埃米之间,在一实施例中,还在金属层上形成一层保护层,保护层的厚度在40埃米至100埃米之间,如金属层是钛,其保护层可为氮化钛;在S7中,如图2所示,将晶圆100置于一退火装置200中,退火装置200包括多个热源,如图2所示的沿晶圆100表面设置的编号为1-56的56个热源,如图2所示的实施例中在晶圆100的两侧均设置了多个热源,但本发明不限于两侧均设置多个热源,只其中一侧设置多个热源亦可,也即在晶圆100的至少一侧设置多个热源;并如图2所示,晶圆任一侧的多个热源覆盖晶圆表面及晶圆周侧的区域,也即任一侧的多个热源不仅覆盖晶圆表面,还延伸到晶圆之外的区域,即覆盖晶圆周侧的区域。如图2所示,以晶圆上侧为例,编号为8-20的13个热源覆盖了晶圆的上表面,编号1-7的7个热源覆盖晶圆上表面左侧的周侧的区域,编号21-26的6个热源覆盖晶圆上表面右侧的周侧的区域,且编号1-26的26个热源从左至右依次排列,晶圆下侧的编号35-48的14个热源覆盖了晶圆的下表面,编号29-34的6个热源覆盖晶圆下表面左侧的周侧的区域,编号49-54的6个热源覆盖晶圆下表面右侧的周侧的区域,且编号29-54的26个热源从左至右依次排列。在一实施例中,置于晶圆上侧的多个热源与置于晶圆下侧的多个热源一一对称设置。在一实施例中,置于晶圆上侧的多个热源与置于晶圆下侧的多个热源一一交错设置,如置于晶圆下侧的29号热源位于置于晶圆上侧的1号和2号热源之间,置于晶圆上侧的2号热源位于置于晶圆下侧的29号和30号热源之间,也即一一交错设置。如图2所示,退火装置200还包括开关单元,以晶圆上侧为例,开关单元210连接位于晶圆100上侧的1-26号热源,具体的开关单元210包括1-13号开关器件,1号开关器件连接13和14号热源,2号开关器件连接12和15号热源,依次类推,13号开关器件连接1和26号热源;对于晶圆下侧,开关单元220连接位于晶圆100下侧的29-54号热源,具体的开关单元210包括15-27号开关器件,15号开关器件连接41和42号热源,16号开关器件连接40和43热源,依次类推,27号开关器件连接29和54号热源,如此,开关单元连接每一热源。在本发明一实施例中,任一侧的多个热源在晶圆表面和周侧均匀排列。在本发明一实施例中,热源为发热灯,如灯管或灯泡;S8:获得晶圆面内形成的金属层的厚度分布数据,根据金属层的厚度分布数据计算每一热源的目标温度,开关单元根据每一热源的目标温度控制每一热源工作在其目标温度以对晶圆进行退火工艺,由于一般形成的金属层的厚度的均匀度较差,为使后续形成的金属硅化物的厚度一致,若获得晶圆某一处的金属层的厚度较厚,则可设置其附件的热源的温度较高,以使该点以较高的温度进行退火工艺,而若获得晶圆某一处的金属层的厚度较薄,则可设置其附近的热源的温度较低,以使该点以较低的温度进行退火工艺,如此实现晶圆上各点的退火温度的单独控制,而使晶圆面内通过退火工艺形成厚度均匀度高的金属硅化物层,以弥补之前金属层形成工艺形成的金属层厚度均匀度差的问题,而使形成的金属硅化物(如图1中标号140所示)的厚度在晶圆面内及电阻片内均匀度好,而提高接触电阻的均匀度,进而提高器件性能,继而提高器件良率。更具体的,在一实施例中,退火装置还包括开关控制装置230,开关控制装置230包括一输入端和至少一输出端,输入端接收每一热源的目标温度信号,根据每一热源的目标温度信号得到开关单元210和220中每一开关的控制信号,并通过其输出端输出开关控制信号至开关单元210和220中的每一个开关器件,以控制每一开关器件的导通程度,进而控制与该开关器件连接的热源的温度。在一实施例中,开关单元中每一开关器件为IGBT,本发明对开关器件的类型不限定,只要其能根据开关信号控制其导通程度即可。See Figure 1 and Figure 2. Specifically, after S1 to S6, as shown in FIG. 1, the
在一实施例中,在晶圆上侧还设置有27号和28号热源,其由14号开关器件控制,27号和28号热源设置在与1-26号热源的排列方向垂直的方向上的晶圆的两侧。同样的,在一实施例中,也可在晶圆上侧还设置有55号和56号热源,其由28号开关器件控制,55号和56号热源设置在与29-54号热源的排列方向垂直的方向上的晶圆的两侧。In one embodiment, the upper side of the wafer is also provided with No. 27 and No. 28 heat sources, which are controlled by No. 14 switching devices, and the No. 27 and No. 28 heat sources are arranged in a direction perpendicular to the arrangement direction of No. 1-26 heat sources. both sides of the wafer. Similarly, in one embodiment, heat sources No. 55 and No. 56 may also be provided on the upper side of the wafer, which are controlled by the switching device No. 28, and the heat sources No. 55 and No. 56 are arranged in an arrangement with the heat sources No. 29-54. The directions are perpendicular to the sides of the wafer.
在一实施例中,较佳的,所述退火工艺采用双面加热的退火工艺,也即在晶圆的两侧均设置多个热源,如此可进一步提高接触电阻的均匀度。In one embodiment, preferably, the annealing process adopts a double-sided heating annealing process, that is, multiple heat sources are arranged on both sides of the wafer, so that the uniformity of the contact resistance can be further improved.
在一实施例中,所述退火工艺为等温退火工艺、尖峰退火工艺或等温退火工艺和尖峰退火工艺的结合。在一实施例中,退火工艺中,热源的目标温度区间为450℃至700℃之间,其升温速率为30℃/s至200℃/s之间。在一实施例中,退火工艺中,气体流量包括氮气和氦气,氮气和氦气的总流量在15slm至250slm之间。在一实施例中,退火工艺中的吹气方式为顶部吹气、边缘吹气或顶部吹气和边缘吹气的结合。在一实施例中,退火工艺的退火时间为1s至30s之间。在一实施例中,退火工艺中,晶圆转速为50r/min至100r/min之间,在一实施例中,退火工艺中,氧气(O2)含量小于等于10ppm。In one embodiment, the annealing process is an isothermal annealing process, a spike annealing process, or a combination of the isothermal annealing process and the spike annealing process. In one embodiment, in the annealing process, the target temperature range of the heat source is between 450°C and 700°C, and the heating rate is between 30°C/s and 200°C/s. In one embodiment, in the annealing process, the gas flow includes nitrogen and helium, and the total flow of nitrogen and helium is between 15 slm and 250 slm. In one embodiment, the blowing method in the annealing process is top blowing, edge blowing, or a combination of top blowing and edge blowing. In one embodiment, the annealing time of the annealing process is between 1 s and 30 s. In one embodiment, in the annealing process, the wafer rotation speed is between 50 r/min and 100 r/min. In one embodiment, in the annealing process, the oxygen (O 2 ) content is less than or equal to 10 ppm.
在一实施例中,金属层为钛(Ti)金属层或钴(Co)金属层,对应的形成的金属硅化物为富金属相钛化硅(TiSix)或富金属相钴化硅(CoSix)。In one embodiment, the metal layer is a titanium (Ti) metal layer or a cobalt (Co) metal layer, and the corresponding formed metal silicide is a metal-rich phase titanium silicon (TiSix) or a metal-rich phase cobalt silicon (CoSix) .
在一实施例中,在S3中外延形成的金属硅化物为硅锗或硅磷的金属硅化物。锗硅的金属硅化物形成的外延层,用于提高PMOS管的沟道区的空穴迁移率,PMOS管的源区和漏区形成于所述源漏嵌入式外延层中。硅磷的金属硅化物形成的外延层,用于提高NMOS管的沟道区的电子迁移率,NMOS管的源区和漏区形成于所述源漏嵌入式外延层中。In one embodiment, the metal silicide epitaxially formed in S3 is silicon germanium or silicon phosphorus metal silicide. The epitaxial layer formed by metal silicide of silicon germanium is used to improve the hole mobility of the channel region of the PMOS transistor, and the source region and the drain region of the PMOS transistor are formed in the source-drain embedded epitaxial layer. The epitaxial layer formed of silicon phosphorus metal silicide is used to improve the electron mobility of the channel region of the NMOS transistor, and the source region and the drain region of the NMOS transistor are formed in the source-drain embedded epitaxial layer.
如上所述,在作为半导体器件的栅极、源极和漏极上的金属接触层的金属硅化物的形成过程中的退火工艺中,在晶圆的至少一侧设置多个热源,多个热源覆盖晶圆表面及晶圆周侧的区域,并设置开关单元,用于控制每个热源的温度,首先获得晶圆面内形成的金属层的厚度分布数据,然后根据金属层的厚度分布数据计算每一热源的目标温度,并使开关单元控制每一热源工作在其目标温度以对晶圆进行退火工艺,而使形成的金属硅化物的厚度在晶圆面内及电阻片内均匀度好,而提高接触电阻的均匀度,进而提高器件性能,继而提高器件良率。As described above, in the annealing process during the formation of the metal silicide as the metal contact layer on the gate, source and drain of the semiconductor device, a plurality of heat sources are provided on at least one side of the wafer, the plurality of heat sources Covering the area on the wafer surface and the peripheral side of the wafer, and setting a switch unit to control the temperature of each heat source, first obtain the thickness distribution data of the metal layer formed in the wafer surface, and then calculate each A target temperature of a heat source, and the switch unit controls each heat source to work at its target temperature to perform an annealing process on the wafer, so that the thickness of the formed metal silicide has a good uniformity in the wafer surface and the resistor sheet, and Improve the uniformity of the contact resistance, thereby improving the device performance, thereby improving the device yield.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010679523.9A CN111785622B (en) | 2020-07-15 | 2020-07-15 | Annealing process, device and metal contact layer forming method for forming metal silicide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010679523.9A CN111785622B (en) | 2020-07-15 | 2020-07-15 | Annealing process, device and metal contact layer forming method for forming metal silicide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111785622A CN111785622A (en) | 2020-10-16 |
CN111785622B true CN111785622B (en) | 2022-10-21 |
Family
ID=72768873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010679523.9A Active CN111785622B (en) | 2020-07-15 | 2020-07-15 | Annealing process, device and metal contact layer forming method for forming metal silicide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785622B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902129A (en) * | 1997-04-07 | 1999-05-11 | Lsi Logic Corporation | Process for forming improved cobalt silicide layer on integrated circuit structure using two capping layers |
EP0936664A2 (en) * | 1998-02-13 | 1999-08-18 | Sharp Kabushiki Kaisha | Partial silicidation method to form shallow source/drain junctions |
US6787464B1 (en) * | 2002-07-02 | 2004-09-07 | Advanced Micro Devices, Inc. | Method of forming silicide layers over a plurality of semiconductor devices |
CN101211781A (en) * | 2006-12-28 | 2008-07-02 | 中芯国际集成电路制造(上海)有限公司 | Self-aligning metal silicide preparation method |
CN102117744A (en) * | 2010-01-05 | 2011-07-06 | 无锡华润上华半导体有限公司 | Method for forming self-aligned metallic silicide |
US20130069124A1 (en) * | 2011-09-20 | 2013-03-21 | International Business Machines Corporation | Mosfet integrated circuit with uniformly thin silicide layer and methods for its manufacture |
CN111128704A (en) * | 2019-12-26 | 2020-05-08 | 华虹半导体(无锡)有限公司 | Method for manufacturing metal silicide |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57133630A (en) * | 1981-02-12 | 1982-08-18 | Sony Corp | Formation of metal silicide |
JPH10242081A (en) * | 1996-12-26 | 1998-09-11 | Sony Corp | Manufacture of semiconductor device |
KR100591119B1 (en) * | 2003-08-07 | 2006-06-19 | 동부일렉트로닉스 주식회사 | Silicide Formation Method of Semiconductor Device |
JP2007059691A (en) * | 2005-08-25 | 2007-03-08 | Matsushita Electric Ind Co Ltd | Semiconductor device manufacturing method and semiconductor device |
KR20100073218A (en) * | 2008-12-23 | 2010-07-01 | 주식회사 동부하이텍 | Method for fabricating a semiconductor device |
US20130049124A1 (en) * | 2011-08-31 | 2013-02-28 | Globalfoundries Inc. | Mosfet integrated circuit with improved silicide thickness uniformity and methods for its manufacture |
JP5774532B2 (en) * | 2012-03-28 | 2015-09-09 | 東京エレクトロン株式会社 | Continuous processing system, continuous processing method, and program |
CN103377894B (en) * | 2012-04-20 | 2016-09-21 | 中国科学院微电子研究所 | Method for manufacturing metal silicide |
CN109698141A (en) * | 2018-12-27 | 2019-04-30 | 上海华力集成电路制造有限公司 | A method of promoting gate oxide thickness uniformity |
-
2020
- 2020-07-15 CN CN202010679523.9A patent/CN111785622B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902129A (en) * | 1997-04-07 | 1999-05-11 | Lsi Logic Corporation | Process for forming improved cobalt silicide layer on integrated circuit structure using two capping layers |
EP0936664A2 (en) * | 1998-02-13 | 1999-08-18 | Sharp Kabushiki Kaisha | Partial silicidation method to form shallow source/drain junctions |
US6787464B1 (en) * | 2002-07-02 | 2004-09-07 | Advanced Micro Devices, Inc. | Method of forming silicide layers over a plurality of semiconductor devices |
CN101211781A (en) * | 2006-12-28 | 2008-07-02 | 中芯国际集成电路制造(上海)有限公司 | Self-aligning metal silicide preparation method |
CN102117744A (en) * | 2010-01-05 | 2011-07-06 | 无锡华润上华半导体有限公司 | Method for forming self-aligned metallic silicide |
US20130069124A1 (en) * | 2011-09-20 | 2013-03-21 | International Business Machines Corporation | Mosfet integrated circuit with uniformly thin silicide layer and methods for its manufacture |
CN111128704A (en) * | 2019-12-26 | 2020-05-08 | 华虹半导体(无锡)有限公司 | Method for manufacturing metal silicide |
Also Published As
Publication number | Publication date |
---|---|
CN111785622A (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9893182B2 (en) | FinFET and method for forming the same | |
WO2014134925A1 (en) | Polysilicon thin-film transistor and preparation method therefor, and array substrate | |
CN105938800A (en) | Thin film transistor manufacture method and array substrate manufacture method | |
JP2024102121A (en) | HORIZONTAL GATE-ALL-AROUND (hGAA) NANO-WIRE AND NANO-SLAB TRANSISTORS | |
CN111785622B (en) | Annealing process, device and metal contact layer forming method for forming metal silicide | |
CN104157690B (en) | Strain NLDMOS device with groove structure and manufacturing method thereof | |
CN104465376B (en) | Transistor and forming method thereof | |
CN107230632B (en) | Dual-gate graphene field effect transistor and manufacturing method thereof | |
CN104576732A (en) | FinFET parasitic lateral double-diffused semiconductor device | |
CN104347508B (en) | Semiconductor structure and formation method thereof | |
CN107887447B (en) | A kind of manufacturing method of MOS type device | |
US20070259503A1 (en) | Method of fabricating a semiconductor device | |
JP2006054462A (en) | Salicide process and semiconductor device manufacturing method using the same | |
CN117795660A (en) | Template for nanoplate source drain formation with bottom dielectric | |
JP2018006412A (en) | Semiconductor device | |
CN107658336B (en) | N-type tunneling field effect transistor | |
KR100914973B1 (en) | Method for forming semiconductor device | |
CN107611123B (en) | Direct band gap GeSn complementary TFET | |
CN111403284B (en) | Stress Engineering Optimization of Fin Field Effect Transistor and Its Fabrication Method | |
JP4090531B2 (en) | Semiconductor device and manufacturing method thereof | |
CN102150255A (en) | Method for phase transition of amorphous material | |
CN101071823A (en) | Semiconductor element and its manufacturing method | |
KR20100079760A (en) | Semiconductor transistor, and method for fabricating thereof | |
JP2847745B2 (en) | Thin film transistor | |
CN108428628B (en) | Manufacturing method capable of reducing grid resistance of power MOS device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |