[go: up one dir, main page]

CN107611123B - Direct Bandgap GeSn Complementary TFET - Google Patents

Direct Bandgap GeSn Complementary TFET Download PDF

Info

Publication number
CN107611123B
CN107611123B CN201710687778.8A CN201710687778A CN107611123B CN 107611123 B CN107611123 B CN 107611123B CN 201710687778 A CN201710687778 A CN 201710687778A CN 107611123 B CN107611123 B CN 107611123B
Authority
CN
China
Prior art keywords
layer
electrode
source region
gesn
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710687778.8A
Other languages
Chinese (zh)
Other versions
CN107611123A (en
Inventor
张捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sijing Electronics Co ltd
Original Assignee
Hefei Sijing Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Sijing Electronic Co Ltd filed Critical Hefei Sijing Electronic Co Ltd
Priority to CN201710687778.8A priority Critical patent/CN107611123B/en
Publication of CN107611123A publication Critical patent/CN107611123A/en
Application granted granted Critical
Publication of CN107611123B publication Critical patent/CN107611123B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种直接带隙GeSn互补型TFET,包括:Si衬底101;Ge外延层102,设置于衬底101上表面;GeSn层103,设置于Ge外延层102上表面;P型基底104、N型基底105,设置于GeSn层103内;第一源区106、第一漏区107,设置于P型基底104内并位于两侧位置处;第二源区108、第二漏区109,设置于N型基底105内并位于两侧位置处;第一源区电极110,设置于第一源区106上表面;第一漏区电极111,设置于第一漏区107上表面;第二源区电极112,设置于第二源区108上表面;第二漏区电极113,设置于第二漏区109上表面。本发明采用晶化Ge层为Ge外延层,可有效降低Ge外延层的位错密度、表面粗糙度、界面缺陷,提升Ge外延层的质量从而得到更高质量的GeSn外延层,为高性能TFET的制备提供物质基础。

The present invention relates to a direct bandgap GeSn complementary TFET, comprising: a Si substrate 101; a Ge epitaxial layer 102 arranged on the upper surface of the substrate 101; a GeSn layer 103 arranged on the upper surface of the Ge epitaxial layer 102; a P-type substrate 104 , N-type substrate 105, disposed in GeSn layer 103; first source region 106, first drain region 107, disposed in P-type substrate 104 and located at both sides; second source region 108, second drain region 109 , arranged in the N-type substrate 105 and located on both sides; the first source region electrode 110 is arranged on the upper surface of the first source region 106; the first drain region electrode 111 is arranged on the upper surface of the first drain region 107; The second source region electrode 112 is disposed on the upper surface of the second source region 108 ; the second drain region electrode 113 is disposed on the upper surface of the second drain region 109 . The present invention uses the crystallized Ge layer as the Ge epitaxial layer, which can effectively reduce the dislocation density, surface roughness, and interface defects of the Ge epitaxial layer, and improve the quality of the Ge epitaxial layer to obtain a higher-quality GeSn epitaxial layer, which is a high-performance TFET. The preparation provides the material basis.

Description

直接带隙GeSn互补型TFETDirect Bandgap GeSn Complementary TFET

技术领域technical field

本发明涉及集成电路技术领域,特别涉及一种直接带隙GeSn互补型TFET。The invention relates to the technical field of integrated circuits, in particular to a direct bandgap GeSn complementary TFET.

背景技术Background technique

半导体行业是现代科技的象征,伴随着近几十年现代科技行业日新月异的进步,以集成电路为主的半导体行业市场规模也不断增长,现在已经成为了全球经济的重要支柱行业之一。随着半导体器件特征尺寸的不断减小,尤其是进入纳米尺寸之后,器件中的短沟效应等负面效应对器件泄露电流、亚阈特性、开态/关态电流等性能的影响越来越突出,电路速度和功耗的矛盾也将愈加严重。The semiconductor industry is a symbol of modern technology. With the rapid progress of the modern technology industry in recent decades, the market size of the semiconductor industry dominated by integrated circuits has also continued to grow. Now it has become one of the important pillar industries of the global economy. With the continuous reduction of the feature size of semiconductor devices, especially after entering the nanometer size, the impact of negative effects such as short channel effect in the device on the performance of the device leakage current, sub-threshold characteristics, on-state/off-state current, etc. is becoming more and more prominent. , the contradiction between circuit speed and power consumption will become more and more serious.

针对这一问题,目前已提出较为有效的办法是可以通过采用低亚阈值摆幅的新型器件隧穿场效应晶体管取代传统的MOSFET来减小短沟道效应的影响。隧穿场效应晶体管(tunneling field effect transistor,简称TFET)是一种PIN结构的晶体管,它基于载流子的量子隧穿效应工作,并且可以通过器件优化,使得隧穿晶体管的亚阈值摆幅在室温里降到60mV/dec以下。利用互补型TFET代替传统CMOS,可以进一步缩小电路尺寸,降低电压,减小功耗。Aiming at this problem, it has been proposed that a more effective method is to reduce the influence of the short channel effect by replacing the traditional MOSFET with a new type of device with a low subthreshold swing, the tunneling field effect transistor. Tunneling field effect transistor (Tunneling field effect transistor, referred to as TFET) is a PIN structure transistor, it works based on the quantum tunneling effect of carriers, and can be optimized through device, so that the subthreshold swing of the tunneling transistor is in It drops below 60mV/dec at room temperature. Using complementary TFETs instead of traditional CMOS can further reduce circuit size, lower voltage, and reduce power consumption.

但是由于隧穿晶体管的开态电流较小,使其电路性能不足,限制了隧穿晶体管的应用。However, due to the small on-state current of the tunneling transistor, its circuit performance is insufficient, which limits the application of the tunneling transistor.

发明内容Contents of the invention

因此,为解决现有技术存在的技术缺陷和不足,本发明提出一种直接带隙GeSn互补型TFET。Therefore, in order to solve the technical defects and deficiencies existing in the prior art, the present invention proposes a direct bandgap GeSn complementary TFET.

具体地,本发明一个实施例提出的一种直接带隙GeSn互补型 TFET100,包括:Specifically, a direct bandgap GeSn complementary TFET 100 proposed by an embodiment of the present invention includes:

Si衬底101;Si substrate 101;

Ge外延层102,设置于所述衬底101上表面;Ge epitaxial layer 102, disposed on the upper surface of the substrate 101;

GeSn层103,设置于所述Ge外延层102上表面;GeSn layer 103, disposed on the upper surface of the Ge epitaxial layer 102;

P型基底104、N型基底105,设置于所述GeSn层103内;A P-type substrate 104 and an N-type substrate 105 are disposed in the GeSn layer 103;

第一源区106、第一漏区107,设置于所述P型基底104内并位于两侧位置处;The first source region 106 and the first drain region 107 are arranged in the P-type substrate 104 and located on both sides;

第二源区108、第二漏区109,设置于所述N型基底105内并位于两侧位置处;The second source region 108 and the second drain region 109 are arranged in the N-type substrate 105 and located on both sides;

第一源区电极110,设置于所述第一源区106上表面;a first source region electrode 110, disposed on the upper surface of the first source region 106;

第一漏区电极111,设置于所述第一漏区107上表面;The first drain region electrode 111 is disposed on the upper surface of the first drain region 107;

第二源区电极112,设置于所述第二源区108上表面;a second source region electrode 112 disposed on the upper surface of the second source region 108;

第二漏区电极113,设置于所述第二漏区109上表面。The second drain region electrode 113 is disposed on the upper surface of the second drain region 109 .

在本发明的一个实施例中,所述Si衬底101为N型单晶硅且其掺杂浓度为5×1018cm-3In one embodiment of the present invention, the Si substrate 101 is N-type single crystal silicon with a doping concentration of 5×10 18 cm −3 .

在本发明的一个实施例中,所述Ge外延层102为晶化Ge层。In one embodiment of the present invention, the Ge epitaxial layer 102 is a crystallized Ge layer.

在本发明的一个实施例中,所述Ge外延层102为N型掺杂且其厚度为200~300nm。In one embodiment of the present invention, the Ge epitaxial layer 102 is N-type doped and has a thickness of 200-300 nm.

在本发明的一个实施例中,所述GeSn层103为N型掺杂且其厚度为140~160nm。In one embodiment of the present invention, the GeSn layer 103 is N-type doped and has a thickness of 140-160 nm.

在本发明的一个实施例中,所述第一源区电极110、所述第一漏区电极111、所述第二源区电极112及所述第二漏区电极113的厚度均为20~30nm。In one embodiment of the present invention, the thicknesses of the first source region electrode 110, the first drain region electrode 111, the second source region electrode 112 and the second drain region electrode 113 are all 20- 30nm.

在本发明的一个实施例中,所述直接带隙GeSn互补型TFET10 还包括第一栅介质层114、第一栅极材料层115、第二栅介质层116 及第二栅极材料层117;其中,In one embodiment of the present invention, the direct bandgap GeSn complementary TFET10 further includes a first gate dielectric layer 114, a first gate material layer 115, a second gate dielectric layer 116, and a second gate material layer 117; in,

所述第一栅介质层114,设置于所述P型基底104上表面中间位置处;The first gate dielectric layer 114 is disposed in the middle of the upper surface of the P-type substrate 104;

所述第一栅极材料层115,设置于所述第一栅介质层114上表面;The first gate material layer 115 is disposed on the upper surface of the first gate dielectric layer 114;

所述第二栅介质层116,设置于所述N型基底105上表面中间位置处;The second gate dielectric layer 116 is disposed in the middle of the upper surface of the N-type substrate 105;

所述第二栅极材料层117,设置于所述第二栅介质层116上表面。The second gate material layer 117 is disposed on the upper surface of the second gate dielectric layer 116 .

在本发明的一个实施例中,所述直接带隙GeSn互补型TFET10 还包括侧墙118,所述侧墙118设置于所述第一栅介质层114、所述第一栅极材料层115、所述第二栅介质层116及所述第二栅极材料层117的两侧位置处。In one embodiment of the present invention, the direct bandgap GeSn complementary TFET 10 further includes sidewalls 118, and the sidewalls 118 are arranged on the first gate dielectric layer 114, the first gate material layer 115, Positions on both sides of the second gate dielectric layer 116 and the second gate material layer 117 .

在本发明的一个实施例中,所述直接带隙GeSn互补型TFET10 还包括隔离层119,所述隔离层119设置于所述直接带隙GeSn互补型TFET10内部两侧及中间位置处。In one embodiment of the present invention, the direct bandgap GeSn complementary TFET 10 further includes an isolation layer 119 , and the isolation layer 119 is disposed on both sides and in the middle of the direct bandgap GeSn complementary TFET 10 .

在本发明的一个实施例中,所述直接带隙GeSn互补型TFET10 还包括钝化层120与介质层121;其中,In one embodiment of the present invention, the direct bandgap GeSn complementary TFET10 further includes a passivation layer 120 and a dielectric layer 121; wherein,

所述钝化层120覆盖于所述第一源区电极110、所述第一漏区电极111、所述第二源区电极112及所述第二漏区电极113上表面;The passivation layer 120 covers the upper surfaces of the first source electrode 110 , the first drain electrode 111 , the second source electrode 112 and the second drain electrode 113 ;

所述介质层110填充于所述钝化层109与所述第一源区电极 110、所述第一漏区电极111、所述第二源区电极112、所述第二漏区电极113及所述隔离层119形成的空间位置处。The dielectric layer 110 is filled in the passivation layer 109 and the first source electrode 110, the first drain electrode 111, the second source electrode 112, the second drain electrode 113 and The spatial position where the isolation layer 119 is formed.

在上述实施例中,Ge外延层为晶化Ge层,是采用激光再晶化 (Laser Re-Crystallization,简称LRC)工艺,即一种热致相变结晶的方法,通过连续激光热处理,使Si衬底上Ge外延层熔化再结晶,横向释放Ge外延层的位错缺陷,不仅可获得高质量的Ge外延层,还可以克服常规两步法工艺存在的问题,为高质量直接带隙窄禁带GeSn材料的生长提供了必要基础,从而成为直接带隙GeSn互补型TFET器件制备的有利技术条件。In the above-mentioned embodiment, the Ge epitaxial layer is a crystallized Ge layer, which adopts a laser recrystallization (Laser Re-Crystallization, LRC for short) process, that is, a method of thermally induced phase change crystallization. Through continuous laser heat treatment, the Si The Ge epitaxial layer on the substrate is melted and recrystallized, and the dislocation defects of the Ge epitaxial layer are released laterally. Not only can a high-quality Ge epitaxial layer be obtained, but also the problems existing in the conventional two-step process can be overcome. The growth of the material with GeSn provides the necessary foundation, and thus becomes the favorable technical condition for the preparation of the direct bandgap GeSn complementary TFET device.

通过以下参考附图的详细说明,本发明的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本发明的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。Other aspects and features of the present invention will become apparent from the following detailed description with reference to the accompanying drawings. It should be understood, however, that the drawings are designed for purposes of illustration only and not as a limitation of the scope of the invention since reference should be made to the appended claims. It should also be understood that, unless otherwise indicated, the drawings are not necessarily drawn to scale and are merely intended to conceptually illustrate the structures and processes described herein.

附图说明Description of drawings

下面将结合附图,对本发明的具体实施方式进行详细的说明。The specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings.

图1为本发明实施例提供的一种直接带隙GeSn互补型TFET的结构示意图;Fig. 1 is a schematic structural diagram of a direct bandgap GeSn complementary TFET provided by an embodiment of the present invention;

图2为本发明实施例提供的一种激光辅助再晶化工艺的示意图;2 is a schematic diagram of a laser-assisted recrystallization process provided by an embodiment of the present invention;

图3为本发明实施例提供的另一种直接带隙GeSn互补型TFET 的结构示意图;3 is a schematic structural diagram of another direct bandgap GeSn complementary TFET provided by an embodiment of the present invention;

图4a-图4y为本发明实施例提供的一种直接带隙GeSn互补型 TFET的工艺示意图。Fig. 4a-Fig. 4y are process schematic diagrams of a direct bandgap GeSn complementary TFET provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.

实施例一Embodiment one

请参见图1,图1为本发明实施例提供的一种直接带隙GeSn互补型TFET100的结构示意图,包括:Please refer to FIG. 1. FIG. 1 is a schematic structural diagram of a direct bandgap GeSn complementary TFET 100 provided by an embodiment of the present invention, including:

Si衬底101;Si substrate 101;

Ge外延层102,设置于所述衬底101上表面;Ge epitaxial layer 102, disposed on the upper surface of the substrate 101;

GeSn层103,设置于所述Ge外延层102上表面;GeSn layer 103, disposed on the upper surface of the Ge epitaxial layer 102;

P型基底104、N型基底105,设置于所述GeSn层103内;A P-type substrate 104 and an N-type substrate 105 are disposed in the GeSn layer 103;

第一源区106、第一漏区107,设置于所述P型基底104内并位于两侧位置处;The first source region 106 and the first drain region 107 are arranged in the P-type substrate 104 and located on both sides;

第二源区108、第二漏区109,设置于所述N型基底105内并位于两侧位置处;The second source region 108 and the second drain region 109 are arranged in the N-type substrate 105 and located on both sides;

第一源区电极110,设置于所述第一源区106上表面;a first source region electrode 110, disposed on the upper surface of the first source region 106;

第一漏区电极111,设置于所述第一漏区107上表面;The first drain region electrode 111 is disposed on the upper surface of the first drain region 107;

第二源区电极112,设置于所述第二源区108上表面;a second source region electrode 112 disposed on the upper surface of the second source region 108;

第二漏区电极113,设置于所述第二漏区109上表面。The second drain region electrode 113 is disposed on the upper surface of the second drain region 109 .

进一步地,在上述实施例的基础上,所述Si衬底101为N型单晶硅且其掺杂浓度为5×1018cm-3Further, on the basis of the above embodiments, the Si substrate 101 is N-type single crystal silicon with a doping concentration of 5×10 18 cm −3 .

进一步地,在上述实施例的基础上,所述Ge外延层102为晶化 Ge层。其中,采用激光再晶化(Laser Re-Crystallization,简称 LRC工艺),即一种热致相变结晶的方法,通过连续激光热处理,使 Si衬底上Ge外延层熔化再结晶形成所述晶化Ge层,横向释放Ge 外延层的位错缺陷,不仅可获得高质量的Ge外延层,还可以克服常规两步法工艺存在的问题,为高质量直接带隙窄禁带GeSn材料的生长提供了必要基础,从而成为直接带隙GeSn互补型TFET器件制备的有利技术条件。Further, on the basis of the above embodiments, the Ge epitaxial layer 102 is a crystallized Ge layer. Among them, laser recrystallization (Laser Re-Crystallization, referred to as LRC process), that is, a method of thermally induced phase change crystallization, is used to melt and recrystallize the Ge epitaxial layer on the Si substrate through continuous laser heat treatment to form the crystallization Ge layer, releasing the dislocation defects of the Ge epitaxial layer laterally, not only can obtain high-quality Ge epitaxial layer, but also can overcome the problems existing in the conventional two-step process, and provide a great opportunity for the growth of high-quality direct bandgap narrow-bandgap GeSn materials. The necessary basis, thus becoming the favorable technical conditions for the preparation of direct bandgap GeSn complementary TFET devices.

进一步地,在上述实施例的基础上,所述Ge外延层102为N型掺杂且其厚度为200~300nm。Further, on the basis of the above embodiments, the Ge epitaxial layer 102 is N-type doped and has a thickness of 200-300 nm.

进一步地,在上述实施例的基础上,所述GeSn层103为N型掺杂且其厚度为140~160nm。Further, on the basis of the above embodiments, the GeSn layer 103 is N-type doped and has a thickness of 140-160 nm.

进一步地,在上述实施例的基础上,所述第一源区电极110、所述第一漏区电极111、所述第二源区电极112及所述第二漏区电极113的厚度均为20~30nm。Further, on the basis of the above embodiments, the thicknesses of the first source region electrode 110, the first drain region electrode 111, the second source region electrode 112 and the second drain region electrode 113 are all 20-30nm.

进一步地,在上述实施例的基础上,所述直接带隙GeSn互补型 TFET10还包括第一栅介质层114、第一栅极材料层115、第二栅介质层116及第二栅极材料层117;其中,Further, on the basis of the above embodiments, the direct bandgap GeSn complementary TFET 10 further includes a first gate dielectric layer 114, a first gate material layer 115, a second gate dielectric layer 116 and a second gate material layer 117; of which,

所述第一栅介质层114,设置于所述P型基底104上表面中间位置处;The first gate dielectric layer 114 is disposed in the middle of the upper surface of the P-type substrate 104;

所述第一栅极材料层115,设置于所述第一栅介质层114上表面;The first gate material layer 115 is disposed on the upper surface of the first gate dielectric layer 114;

所述第二栅介质层116,设置于所述N型基底105上表面中间位置处;The second gate dielectric layer 116 is disposed in the middle of the upper surface of the N-type substrate 105;

所述第二栅极材料层117,设置于所述第二栅介质层116上表面。The second gate material layer 117 is disposed on the upper surface of the second gate dielectric layer 116 .

进一步地,在上述实施例的基础上,请参见图3,图3为本发明实施例提供的另一种直接带隙GeSn互补型TFET的结构示意图,所述直接带隙GeSn互补型TFET10还包括侧墙118,所述侧墙118 设置于所述第一栅介质层114、所述第一栅极材料层115、所述第二栅介质层116及所述第二栅极材料层117的两侧位置处。Further, on the basis of the above embodiments, please refer to FIG. 3 . FIG. 3 is a schematic structural diagram of another direct bandgap GeSn complementary TFET provided by an embodiment of the present invention. The direct bandgap GeSn complementary TFET10 also includes sidewalls 118, the sidewalls 118 are arranged on both sides of the first gate dielectric layer 114, the first gate material layer 115, the second gate dielectric layer 116 and the second gate material layer 117 side position.

进一步地,在上述实施例的基础上,请再次参见图3,所述直接带隙GeSn互补型TFET10还包括隔离层119,所述隔离层119设置于所述直接带隙GeSn互补型TFET10内部两侧及中间位置处。Further, on the basis of the above embodiment, please refer to FIG. 3 again, the direct bandgap GeSn complementary TFET10 further includes an isolation layer 119, and the isolation layer 119 is arranged on two sides inside the direct bandgap GeSn complementary TFET10. side and middle positions.

进一步地,在上述实施例的基础上,请再次参见图3,所述直接带隙GeSn互补型TFET10还包括钝化层120与介质层121;其中,Further, on the basis of the above embodiments, please refer to FIG. 3 again, the direct bandgap GeSn complementary TFET 10 further includes a passivation layer 120 and a dielectric layer 121; wherein,

所述钝化层120覆盖于所述第一源区电极110、所述第一漏区电极111、所述第二源区电极112及所述第二漏区电极113上表面;The passivation layer 120 covers the upper surfaces of the first source electrode 110 , the first drain electrode 111 , the second source electrode 112 and the second drain electrode 113 ;

所述介质层110填充于所述钝化层109与所述第一源区电极 110、所述第一漏区电极111、所述第二源区电极112、所述第二漏区电极113及所述隔离层119形成的空间位置处。The dielectric layer 110 is filled in the passivation layer 109 and the first source electrode 110, the first drain electrode 111, the second source electrode 112, the second drain electrode 113 and The spatial position where the isolation layer 119 is formed.

本发明的有益效果具体为:The beneficial effects of the present invention are specifically:

1、本发明采用晶化Ge层为Ge外延层,可有效降低Ge外延层的位错密度、表面粗糙度、界面缺陷,提升Ge外延层的质量从而得到更高质量的GeSn外延层,为高性能TFET的制备提供物质基础;1. The present invention uses the crystallized Ge layer as the Ge epitaxial layer, which can effectively reduce the dislocation density, surface roughness, and interface defects of the Ge epitaxial layer, and improve the quality of the Ge epitaxial layer to obtain a higher-quality GeSn epitaxial layer, which is high The preparation of performance TFET provides the material basis;

2、本发明提供的基于LRC工艺的直接带隙GeSn互补型TFET,较于传统CMOS器件,该结构亚阈效应小,可以解决短沟效应;相对于传统Si材料,GeSn材料的载流子迁移率提高了数倍,而且通过对Sn组分的调节使间接带隙材料转化为直接带隙材料,增加载流子隧穿几率,从而提高了TFET器件的电流驱动与频率特性。2. The direct bandgap GeSn complementary TFET based on the LRC process provided by the present invention, compared with traditional CMOS devices, has a smaller subthreshold effect and can solve the short channel effect; compared with traditional Si materials, the carrier migration of GeSn materials The efficiency is increased several times, and the indirect bandgap material is converted into a direct bandgap material by adjusting the Sn composition, which increases the carrier tunneling probability, thereby improving the current drive and frequency characteristics of the TFET device.

实施例二Embodiment two

请参见图4a-图4y,图4a-图4y为本发明实施例提供的一种直接带隙GeSn互补型TFET的工艺示意图。在上述实施例的基础上,本实施例将较为详细地对本发明的工艺流程进行介绍。该方法包括:Please refer to FIG. 4a-FIG. 4y. FIG. 4a-FIG. 4y are process schematic diagrams of a direct bandgap GeSn complementary TFET provided by an embodiment of the present invention. On the basis of the above embodiments, this embodiment will introduce the process flow of the present invention in more detail. The method includes:

S101、衬底选取。如图4a所示,选取掺杂浓度为5×1018cm-3的N型单晶硅(Si)衬底片001为初始材料001;S101. Substrate selection. As shown in Figure 4a, an N-type single crystal silicon (Si) substrate 001 with a doping concentration of 5×10 18 cm -3 is selected as the initial material 001;

S102、Ge外延层生长。如图4b所示,在500℃~600℃温度下,利用CVD工艺在所述Si衬底材料001表面生长200~300nm N型轻掺杂的Ge外延层002;S102, Ge epitaxial layer growth. As shown in Figure 4b, at a temperature of 500°C-600°C, a 200-300nm N-type lightly doped Ge epitaxial layer 002 is grown on the surface of the Si substrate material 001 by using a CVD process;

S103、保护层的制备。如图4b所示,利用CVD工艺在Ge外延层002表面上淀积100~150nm SiO2层003;S103, preparation of a protective layer. As shown in Figure 4b, a 100-150nm SiO 2 layer 003 is deposited on the surface of the Ge epitaxial layer 002 by using a CVD process;

S104、Ge外延层的晶化及保护层刻蚀。如图4c-4d所示,将包括Si衬底材料001、Ge外延层002及SiO2层003的整个衬底材料加热至700℃,连续采用激光再晶化工艺晶化所述整个衬底材料,其中,激光波长为808nm,激光光斑尺寸10mm×1mm,激光功率为1.5kW/cm2,激光移动速度为25mm/s,自然冷却所述整个衬底材料,利用干法刻蚀工艺刻蚀SiO2层003,得到由直接外延的Ge材料002 再晶化后形成的高质量Ge外延层材料004;S104, crystallization of the Ge epitaxial layer and etching of the protective layer. As shown in Figures 4c-4d, the entire substrate material including Si substrate material 001, Ge epitaxial layer 002 and SiO2 layer 003 is heated to 700°C, and the entire substrate material is continuously crystallized by laser recrystallization process , where the laser wavelength is 808nm, the laser spot size is 10mm×1mm, the laser power is 1.5kW/cm 2 , and the laser moving speed is 25mm/s. The entire substrate material is naturally cooled, and SiO is etched by a dry etching process. 2 layers 003, to obtain high-quality Ge epitaxial layer material 004 formed by recrystallization of direct epitaxial Ge material 002;

S105、GeSn层生长。如图4e所示,在H2氛围中将温度降到350℃以下,SnCl4和GeH4分别作为Sn和Ge源。GeH4/SnCl4气体流量比为 6.14~6.18(由Ge/Sn组分决定,此处我们生长的是x=0.86的GexSn1-x的GeSn材料)。生长140~160nm厚的N型轻掺杂的GeSn区域005。其中GeSn区域005的厚度还可以选择146nm。S105, GeSn layer growth. As shown in Fig. 4e, the temperature was lowered below 350 °C in H2 atmosphere with SnCl4 and GeH4 as Sn and Ge sources, respectively. The gas flow ratio of GeH 4 /SnCl 4 is 6.14˜6.18 (determined by Ge/Sn composition, here we are growing GeSn material of Ge x Sn 1-x with x=0.86). An N-type lightly doped GeSn region 005 with a thickness of 140-160 nm is grown. The thickness of the GeSn region 005 can also be selected to be 146nm.

S106、浅槽隔离。如图4f所示,GeSn区域005制备浅槽隔离结构,形成的是沟槽隔离006;S106 , shallow trench isolation. As shown in Figure 4f, a shallow trench isolation structure is prepared in the GeSn region 005, and a trench isolation 006 is formed;

S107、P阱形成。如图4g-4h所示:S107, forming a P well. As shown in Figure 4g-4h:

S1071、在GeSn区域005、沟槽隔离006表面淀积一层光刻胶007,掩膜曝光光刻出P阱区域;S1071, deposit a layer of photoresist 007 on the surface of the GeSn region 005 and the trench isolation 006, and expose the P well region by photolithography through mask exposure;

S1072、用离子注入的方法在P阱区域内形成P阱008作为 N型隧穿晶体管的基底区域;S1072, forming a P well 008 in the P well region by ion implantation as the base region of the N-type tunneling transistor;

S1073、去除光刻胶007;S1073, removing the photoresist 007;

S1074、退火。在600~1000℃的H2环境中加热,以修复离子注入造成的Si表面晶体损伤。S1074, annealing. Heating in H2 environment at 600-1000°C to repair Si surface crystal damage caused by ion implantation.

S108、淀积绝缘层与导电层。如图4i所示,淀积等效氧化层厚度(EOT,equivalentoxide thickness)为1nm的高k栅介质层 009、栅极材料层010与氮化硅保护层011。S108 , depositing an insulating layer and a conductive layer. As shown in FIG. 4i, a high-k gate dielectric layer 009, a gate material layer 010 and a silicon nitride protection layer 011 are deposited with an equivalent oxide thickness (EOT, equivalent oxide thickness) of 1 nm.

其中,较薄的栅介质厚度保证了栅电极对隧穿结的控制能力,同时应用高k介质,显著提高该器件的驱动电流,亚阈值摆幅等电学特性。Among them, the thinner gate dielectric thickness ensures the control ability of the gate electrode to the tunnel junction, and at the same time, the high-k dielectric is used to significantly improve the electrical characteristics of the device such as drive current and sub-threshold swing.

S109、栅层叠区光刻。如图4j-4l所示:S109, photolithography of the gate stack region. As shown in Figure 4j-4l:

S1091、淀积光刻胶012,掩膜曝光光刻出栅层叠区的图形;S1091, depositing photoresist 012, and exposing the mask to photolithography to form the pattern of the gate lamination region;

S1092、分别刻蚀掉高k栅介质层009、栅极材料层010与氮化硅保护层011,直到露出GeSn区域005,形成N型TFET与P型 TFET的栅极;S1092, respectively etching away the high-k gate dielectric layer 009, the gate material layer 010 and the silicon nitride protection layer 011 until the GeSn region 005 is exposed, forming the gates of the N-type TFET and the P-type TFET;

S1093、去除光刻胶012和氮化硅保护层011;S1093, removing the photoresist 012 and the silicon nitride protection layer 011;

S110、源漏区定义。如图4m-4t所示:S110, defining source and drain regions. As shown in Figure 4m-4t:

S1101、淀积光刻胶013;光刻出P型TFET源区的注入图形;离子注入剂量为3×1019cm-2的P+,形成N型掺杂的源区014;去除光刻胶013;S1101. Deposit photoresist 013; photoetch the implanted pattern of the P-type TFET source region; implant P+ with an ion dose of 3×10 19 cm -2 to form N-type doped source region 014; remove photoresist 013 ;

S1102、淀积光刻胶015;光刻出N型TFET漏区的注入图形;离子注入剂量为2×1018cm-2的P+形成N型掺杂的漏区016;去除光刻胶015;S1102, depositing photoresist 015; photoetching the implanted pattern of the N-type TFET drain region; implanting P+ with an ion dose of 2×10 18 cm -2 to form an N-type doped drain region 016; removing the photoresist 015;

S1103、淀积形成光刻胶017;光刻出P型TFET漏区的注入图形;离子注入剂量为5×1018cm-2的BF2+形成P型掺杂的漏区018;去除光刻胶017;S1103. Deposit and form photoresist 017; photoetch the implant pattern of P-type TFET drain region; ion implant dose of 5×10 18 cm -2 BF 2+ to form P-type doped drain region 018; remove photolithography Glue 017;

S1104、淀积形成光刻胶019;光刻出N型TFET源区的注入图形;离子注入剂量为1×1019cm-2的BF2+形成P型掺杂的源区020;去除光刻胶019。S1104. Deposit and form photoresist 019; photoetch the implanted pattern of the N-type TFET source region; implant BF 2+ with an ion dose of 1×10 19 cm -2 to form the P-type doped source region 020; remove the photolithography Glue 019.

S111、源漏区的活化。源漏区在400℃的温度下快速退火5min 激活杂质。S111, activating the source and drain regions. The source and drain regions are rapidly annealed at a temperature of 400° C. for 5 minutes to activate impurities.

S112、侧墙的形成。如图4u-4v所述,淀积一层二氧化硅薄膜 021,再淀积光刻胶022,经过刻蚀形成N型TFET栅极与P型TFET 的栅极侧墙023,去除光刻胶022与二氧化硅薄膜021。S112, forming side walls. As shown in Figure 4u-4v, deposit a layer of silicon dioxide film 021, then deposit photoresist 022, form N-type TFET gate and P-type TFET gate sidewall 023 after etching, and remove photoresist 022 and 021 with silicon dioxide film.

S113、淀积金属电极:S113, depositing metal electrodes:

S1131、淀积介质层。如图4w所示,利用CVD工艺淀积 20~30nm的BPSG形成介质层024,以防止移动离子扩散到栅极而损害器件性能。S1131, depositing a dielectric layer. As shown in FIG. 4w, a dielectric layer 024 is formed by depositing 20-30nm of BPSG by CVD process, so as to prevent mobile ions from diffusing to the gate and damage device performance.

S1132、刻蚀接触孔。用硝酸和氢氟酸刻蚀BPSG形成源漏接触孔;S1132 , etching a contact hole. Etch BPSG with nitric acid and hydrofluoric acid to form source and drain contact holes;

S1133、形成接触电极。如图4x所示:蒸发淀积10~20nm 的接触金属025,并选择刻蚀去指定区域接触金属,利用化学机械抛光(CMP)进行平坦化处理。S1133, forming a contact electrode. As shown in FIG. 4x: contact metal 025 of 10-20nm is evaporated and deposited, and the contact metal is selectively etched to a designated area, and planarized by chemical mechanical polishing (CMP).

S1134、钝化。如图4y所示:利用CVD工艺淀积20~30nm 的氮化硅026,用于钝化电介质。S1134, passivation. As shown in FIG. 4y : 20-30nm silicon nitride 026 is deposited by CVD process for passivating the dielectric.

综上所述,本文中应用了具体个例对本发明实施例提供的一种直接带隙GeSn互补型TFET的结构及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。In summary, this paper uses specific examples to illustrate the structure and implementation of a direct bandgap GeSn complementary TFET provided by the embodiment of the present invention. The description of the above embodiment is only used to help understand the method of the present invention and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. The scope of protection of the present invention should be based on the appended claims.

Claims (9)

1. A direct bandgap GeSn complementary TFET (100), comprising:
a Si substrate (101);
a Ge epitaxial layer (102) arranged on the upper surface of the substrate (101); the Ge epitaxial layer is a crystallized Ge layer, the crystallized Ge layer is processed by adopting a continuous laser recrystallization process, the laser wavelength is 808nm, the laser spot size is 10mm multiplied by 1mm, and the laser power is 1.5kW/cm2The laser moving speed is 25mm/s, and the heating temperature is 700 ℃;
a GeSn layer (103) arranged on the upper surface of the Ge epitaxial layer (102);
a P-type substrate (104) and an N-type substrate (105) which are arranged in the GeSn layer (103);
the first source region (106) and the first drain region (107) are arranged in the P-type substrate (104) and located at two sides;
the second source region (108) and the second drain region (109) are arranged in the N-type substrate (105) and located at two sides;
a first source region electrode (110) disposed on an upper surface of the first source region (106);
a first drain region electrode (111) provided on an upper surface of the first drain region (107);
a second source region electrode (112) disposed on an upper surface of the second source region (108);
and a second drain electrode (113) disposed on an upper surface of the second drain region (109).
2. The complementary TFET (100) according to claim 1, wherein the Si substrate (101) is N-type monocrystalline silicon and has a doping concentration of 5 x 1018cm-3
3. The complementary TFET (100) of claim 1, wherein the Ge epilayer (102) is N-doped and has a thickness of 200 ~ 300 nm.
4. The complementary TFET (100) according to claim 1, wherein the GeSn layer (103) is N-doped and has a thickness of 140 ~ 160 nm.
5. The complementary TFET (100) of claim 1, wherein the first source electrode (110), the first drain electrode (111), the second source electrode (112), and the second drain electrode (113) are each 20 ~ 30nm thick.
6. The complementary TFET (100) of claim 5, further comprising a first gate dielectric layer (114), a first gate material layer (115), a second gate dielectric layer (116), and a second gate material layer (117); wherein,
the first gate dielectric layer (114) is arranged in the middle of the upper surface of the P-type substrate (104);
the first grid electrode material layer (115) is arranged on the upper surface of the first grid electrode dielectric layer (114);
the second gate dielectric layer (116) is arranged in the middle of the upper surface of the N-type substrate (105);
the second gate material layer (117) is arranged on the upper surface of the second gate dielectric layer (116).
7. The complementary TFET (100) according to claim 6, further comprising spacers (118), wherein the spacers (118) are disposed at two sides of the first gate dielectric layer (114), the first gate material layer (115), the second gate dielectric layer (116) and the second gate material layer (117).
8. The complementary TFET (100) of claim 1, further comprising an isolation layer (119), the isolation layer (119) disposed between the P-type substrate (104) and the N-type substrate (105).
9. The complementary TFET (100) of claim 8, further comprising a passivation layer (120) and a dielectric layer (121); wherein,
the passivation layer (120) covers the upper surfaces of the first source region electrode (110), the first drain region electrode (111), the second source region electrode (112) and the second drain region electrode (113);
the dielectric layer (110) is filled in the space positions formed by the passivation layer (109), the first source region electrode (110), the first drain region electrode (111), the second source region electrode (112), the second drain region electrode (113) and the isolation layer (119).
CN201710687778.8A 2017-08-11 2017-08-11 Direct Bandgap GeSn Complementary TFET Active CN107611123B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710687778.8A CN107611123B (en) 2017-08-11 2017-08-11 Direct Bandgap GeSn Complementary TFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710687778.8A CN107611123B (en) 2017-08-11 2017-08-11 Direct Bandgap GeSn Complementary TFET

Publications (2)

Publication Number Publication Date
CN107611123A CN107611123A (en) 2018-01-19
CN107611123B true CN107611123B (en) 2019-12-24

Family

ID=61065205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710687778.8A Active CN107611123B (en) 2017-08-11 2017-08-11 Direct Bandgap GeSn Complementary TFET

Country Status (1)

Country Link
CN (1) CN107611123B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664165A (en) * 2012-05-18 2012-09-12 北京大学 Method for manufacturing complementary tunneling field effect transistor (TFET) based on standard complementary metal oxide semiconductor integrated circuit (CMOS IC) process
CN104465657A (en) * 2013-09-22 2015-03-25 中芯国际集成电路制造(上海)有限公司 Complementary tfet and manufacturing method thereof
CN207542246U (en) * 2017-08-11 2018-06-26 西安科锐盛创新科技有限公司 Complementary type TFET

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268256A1 (en) * 2015-03-13 2016-09-15 Qualcomm Incorporated Complementary metal-oxide semiconductor (cmos) transistor and tunnel field-effect transistor (tfet) on a single substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664165A (en) * 2012-05-18 2012-09-12 北京大学 Method for manufacturing complementary tunneling field effect transistor (TFET) based on standard complementary metal oxide semiconductor integrated circuit (CMOS IC) process
CN104465657A (en) * 2013-09-22 2015-03-25 中芯国际集成电路制造(上海)有限公司 Complementary tfet and manufacturing method thereof
CN207542246U (en) * 2017-08-11 2018-06-26 西安科锐盛创新科技有限公司 Complementary type TFET

Also Published As

Publication number Publication date
CN107611123A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
JP3543946B2 (en) Field effect transistor and method of manufacturing the same
JP4777987B2 (en) Semiconductor transistor having components made of different materials and method of forming the same
TWI543269B (en) Method for manufacturing semiconductor device by stress memory technology
US9246006B2 (en) Recrystallization of source and drain blocks from above
CN108122976B (en) Semiconductor structure and method of forming the same, and SRAM
CN105826190B (en) N-type fin field effect transistor and method for forming same
CN102664192B (en) Self-adaptive composite mechanism tunneling field effect transistor (TFET) and preparation method thereof
US20160079400A1 (en) A junction-modulated tunneling field effect transistor and a fabrication method thereof
CN102074583A (en) Low power consumption composite source structure MOS (Metal Oxide for and preparation method thereof
US9356124B2 (en) Method for fabricating multi-gate structure device with source and drain having quasi-SOI structure
CN105702582A (en) Formation method of transistor
CN108538911B (en) Optimized L-type Tunneling Field Effect Transistor and its Fabrication Method
KR20210075164A (en) Transistor Fabrication Method and Gate All-Around Device Structure
JP2005229096A (en) Thin film transistor having LDD structure and manufacturing method thereof
CN104752213A (en) Semiconductor structure forming method
CN104347508B (en) Semiconductor structure and formation method thereof
CN107611123B (en) Direct Bandgap GeSn Complementary TFET
CN110176402A (en) A kind of shallow Doped ions method for implanting of FDSOI PMOS
CN105990138A (en) Transistor and forming method thereof
CN107658336B (en) N-type tunneling field effect transistor
CN104681436A (en) Forming method of PMOS (P-channel metal oxide semiconductor) transistor
CN107658338A (en) P-type TFET devices
KR101714613B1 (en) Semiconductor device and manufacturing method thereof
CN108493240B (en) Z-type heterojunction tunneling field effect transistor with lightly doped drain structure and preparation method thereof
CN207233737U (en) A kind of GeSn tunneling field-effect transistors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191129

Address after: Room 516, building A3, innovation industrial park, No. 800, Wangjiang West Road, hi tech Zone, Hefei City, Anhui Province 230000

Applicant after: Hefei Sijing Electronic Co.,Ltd.

Address before: 710065, No. 7, No. 15, high tech Road, Xi'an hi tech Zone, Shaanxi, China, -A009

Applicant before: XI'AN CREATION KEJI Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Building 9, Zhiyuan Industrial Park, Huaihe West Road, Jiangnan Industrial Concentration Zone, Guichi District, Chizhou City, Anhui Province 247100

Patentee after: Anhui Sijing Electronics Co.,Ltd.

Country or region after: China

Address before: Room 516, A3 / F, innovation industrial park, 800 Wangjiang West Road, high tech Zone, Hefei, Anhui 230000

Patentee before: Hefei Sijing Electronic Co.,Ltd.

Country or region before: China