[go: up one dir, main page]

CN104465376B - Transistor and forming method thereof - Google Patents

Transistor and forming method thereof Download PDF

Info

Publication number
CN104465376B
CN104465376B CN201310425291.4A CN201310425291A CN104465376B CN 104465376 B CN104465376 B CN 104465376B CN 201310425291 A CN201310425291 A CN 201310425291A CN 104465376 B CN104465376 B CN 104465376B
Authority
CN
China
Prior art keywords
layer
forming
sidewall
gate
gate structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310425291.4A
Other languages
Chinese (zh)
Other versions
CN104465376A (en
Inventor
刘金华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201310425291.4A priority Critical patent/CN104465376B/en
Publication of CN104465376A publication Critical patent/CN104465376A/en
Application granted granted Critical
Publication of CN104465376B publication Critical patent/CN104465376B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/015Manufacture or treatment removing at least parts of gate spacers, e.g. disposable spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/021Manufacture or treatment using multiple gate spacer layers, e.g. bilayered sidewall spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/258Source or drain electrodes for field-effect devices characterised by the relative positions of the source or drain electrodes with respect to the gate electrode
    • H10D64/259Source or drain electrodes being self-aligned with the gate electrode and having bottom surfaces higher than the interface between the channel and the gate dielectric

Landscapes

  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种晶体管及其形成方法,所述晶体管的形成方法包括:提供半导体衬底;在半导体衬底表面形成栅极结构,所述栅极结构顶部具有掩膜层;在所述栅极结构和掩膜层两侧侧壁表面第一侧墙和第二侧墙;在所述栅极结构两侧的半导体衬底表面形成半导体材料层,所述半导体材料层的表面低于栅极结构的表面;对半导体材料层进行离子注入,形成源漏区;去除第二侧墙,在源漏区和栅极第一侧墙之间形成凹槽;对凹槽底部的半导体衬底进行轻掺杂离子注入,形成轻掺杂区;去除栅极结构顶部的掩膜层,暴露出栅极结构的顶部表面;在源漏区、轻掺杂区表面形成金属硅化物层。上述方法可以降低晶体管的源漏区电阻,提高晶体管的性能。

A transistor and its forming method, the forming method of the transistor includes: providing a semiconductor substrate; forming a gate structure on the surface of the semiconductor substrate, the top of the gate structure has a mask layer; The first sidewall and the second sidewall on the sidewall surfaces on both sides of the film layer; a semiconductor material layer is formed on the surface of the semiconductor substrate on both sides of the gate structure, and the surface of the semiconductor material layer is lower than the surface of the gate structure; Ion implantation is performed on the semiconductor material layer to form source and drain regions; the second sidewall is removed to form a groove between the source and drain region and the first sidewall of the gate; lightly doped ion implantation is performed on the semiconductor substrate at the bottom of the groove , forming a lightly doped region; removing the mask layer on the top of the gate structure to expose the top surface of the gate structure; forming a metal silicide layer on the surface of the source drain region and the lightly doped region. The above method can reduce the resistance of the source and drain regions of the transistor and improve the performance of the transistor.

Description

晶体管及其形成方法Transistors and methods of forming them

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种晶体管及其形成方法。The invention relates to the technical field of semiconductors, in particular to a transistor and a forming method thereof.

背景技术Background technique

随着半导体技术的不断发展,集成电路集成化程度越来越高,器件的尺寸也不断减小。然而器件尺寸的不断减小导致器件的性能也受到很大的影响。例如,短沟道效应、功耗大、寄生电容大等问题。With the continuous development of semiconductor technology, the degree of integration of integrated circuits is getting higher and higher, and the size of devices is also decreasing. However, the continuous reduction of device size has greatly affected the performance of the device. For example, problems such as short channel effect, large power consumption, and large parasitic capacitance.

现有技术在SOI(绝缘底上硅)衬底上形成半导体器件,在SOI衬底上形成晶体管,可以减小晶体管内的寄生电容,提高运行速度,并且所述晶体管具有更低的功耗。In the prior art, semiconductor devices are formed on SOI (silicon-on-insulator) substrates, and transistors are formed on SOI substrates, which can reduce the parasitic capacitance in the transistors, increase the operating speed, and the transistors have lower power consumption.

但是由于SOI衬底的顶层硅层的厚度较薄,在所述SOI衬底上直接形成的晶体管的源漏区的厚度较薄,具有较高的串联电阻,所以,现有技术一般在晶体管的栅极结构两侧的衬底上外延形成一定厚度的硅层,再在所述硅层内形成抬高的源漏区,并且在所述源漏区表面形成金属硅化物层,从而提高源漏区的厚度,降低源漏区的电阻。However, since the thickness of the top silicon layer of the SOI substrate is relatively thin, the thickness of the source-drain region of the transistor directly formed on the SOI substrate is relatively thin and has a high series resistance. A silicon layer with a certain thickness is epitaxially formed on the substrate on both sides of the gate structure, and then a raised source and drain region is formed in the silicon layer, and a metal silicide layer is formed on the surface of the source and drain region, thereby improving the source and drain region. The thickness of the region reduces the resistance of the source and drain regions.

但是所述晶体管的源漏区的串联电阻还需要进一步的降低。However, the series resistance of the source-drain region of the transistor needs to be further reduced.

发明内容Contents of the invention

本发明解决的问题是提供一种晶体管及其的形成方法,降低晶体管的源漏区的串联电阻。The problem to be solved by the present invention is to provide a transistor and its forming method to reduce the series resistance of the source and drain regions of the transistor.

为解决上述问题,本发明提供一种晶体管的形成方法,包括:提供半导体衬底;在所述半导体衬底表面形成栅极结构,所述栅极结构顶部具有掩膜层;在所述栅极结构和掩膜层两侧侧壁表面形成侧墙结构,所述侧墙结构包括位于所述栅极结构和掩膜层两侧侧壁表面的第一侧墙和位于所述第一侧墙表面的第二侧墙;在所述栅极结构两侧的半导体衬底表面形成半导体材料层,所述半导体材料层的表面低于栅极结构的表面;对所述半导体材料层进行离子注入,形成源漏区;去除所述第二侧墙,在所述源漏区和栅极第一侧墙之间形成凹槽;对所述凹槽底部的半导体衬底进行轻掺杂离子注入,形成轻掺杂区;去除栅极结构顶部的掩膜层,暴露出栅极结构的顶部表面;在所述源漏区表面、凹槽底部的轻掺杂区表面形成金属硅化物层。In order to solve the above problems, the present invention provides a method for forming a transistor, comprising: providing a semiconductor substrate; forming a gate structure on the surface of the semiconductor substrate, and a mask layer is provided on the top of the gate structure; The structure and the sidewall surfaces on both sides of the mask layer form a sidewall structure, and the sidewall structure includes first sidewalls on the sidewall surfaces on both sides of the gate structure and the mask layer and a first sidewall on the first sidewall surface the second sidewall; form a semiconductor material layer on the surface of the semiconductor substrate on both sides of the gate structure, the surface of the semiconductor material layer is lower than the surface of the gate structure; perform ion implantation on the semiconductor material layer to form Source and drain regions; removing the second sidewall, forming a groove between the source and drain region and the first sidewall of the gate; performing lightly doped ion implantation on the semiconductor substrate at the bottom of the groove to form a light The doped region; removing the mask layer on the top of the gate structure to expose the top surface of the gate structure; forming a metal silicide layer on the surface of the source and drain regions and the surface of the lightly doped region at the bottom of the groove.

可选的,所述半导体衬底为绝缘体上硅。Optionally, the semiconductor substrate is silicon-on-insulator.

可选的,所述掩膜层的材料为氧化硅。Optionally, the material of the mask layer is silicon oxide.

可选的,所述第一侧墙与第二侧墙的材料不相同。Optionally, the materials of the first side wall and the second side wall are different.

可选的,所述第一侧墙的材料为氧化硅,所述第一侧墙的厚度大于 Optionally, the material of the first sidewall is silicon oxide, and the thickness of the first sidewall is greater than

可选的,所述第二侧墙的材料为氮化硅或氮氧化硅Optionally, the material of the second sidewall is silicon nitride or silicon oxynitride

可选的,所述半导体材料层的材料为硅、锗或硅锗。Optionally, the material of the semiconductor material layer is silicon, germanium or silicon germanium.

可选的,采用选择性外延工艺,形成所述半导体材料层。Optionally, the semiconductor material layer is formed by using a selective epitaxy process.

可选的,所述栅极结构包括位于半导体衬底表面的栅介质层和位于所述栅介质层表面的栅极,所述栅介质层的材料为氧化硅、所述栅极的材料为多晶硅。Optionally, the gate structure includes a gate dielectric layer located on the surface of the semiconductor substrate and a gate located on the surface of the gate dielectric layer, the material of the gate dielectric layer is silicon oxide, and the material of the gate is polysilicon .

可选的,还包括在栅极结构顶部也形成金属硅化物层。Optionally, a metal silicide layer is also formed on the top of the gate structure.

可选的,形成所述金属硅化物的方法包括:在所述源漏区、凹槽底部的轻掺杂区、第一侧墙以及栅极结构顶部的表面形成金属层;进行退火处理,在所述源漏区表面、凹槽底部的轻掺杂区表面以及栅极结构顶部表面形成金属硅化物层;去除剩余的金属层。Optionally, the method for forming the metal silicide includes: forming a metal layer on the surface of the source and drain regions, the lightly doped region at the bottom of the groove, the first sidewall, and the top of the gate structure; performing annealing treatment, A metal silicide layer is formed on the surface of the source and drain regions, the surface of the lightly doped region at the bottom of the groove, and the top surface of the gate structure; and the remaining metal layer is removed.

可选的,金属层的材料至少包括Ni、Ta、Ti、W、Co、Pt或Pd中的一种金属元素。Optionally, the material of the metal layer includes at least one metal element selected from Ni, Ta, Ti, W, Co, Pt or Pd.

可选的,所述凹槽底部的轻掺杂区完全转化为金属硅化物。Optionally, the lightly doped region at the bottom of the groove is completely transformed into metal silicide.

可选的,还包括:在所述金属硅化物层表面、第一侧墙表面形成介质层。Optionally, the method further includes: forming a dielectric layer on the surface of the metal silicide layer and the surface of the first sidewall.

可选的,所述介质层的材料为低K介质材料。Optionally, the material of the dielectric layer is a low-K dielectric material.

可选的,所述介质层的材料至少包括:碳化硅、碳氧化硅、有机硅氧烷聚合物、氟碳化合物中的一种。Optionally, the material of the dielectric layer includes at least one of: silicon carbide, silicon oxycarbide, organosiloxane polymer, and fluorocarbon.

本发明的技术方案还提供一种采用上述方法形成的晶体管,包括:半导体衬底;位于半导体衬底表面的栅极结构,所述栅极结构侧壁表面具有第一侧腔;位于所述栅极结构以及第一侧墙两侧的半导体衬底内的源漏区,所述源漏区与第一侧墙之间具有凹槽,所述源漏区的表面高于半导体衬底表面并且低于栅极结构表面;位于所述源漏区与第一侧墙之间的凹槽底部的半导体衬底内的轻掺杂区;位于所述源漏区表面、凹槽底部的轻掺杂区表面的金属硅化物层。The technical solution of the present invention also provides a transistor formed by the above method, including: a semiconductor substrate; a gate structure located on the surface of the semiconductor substrate, the sidewall surface of the gate structure has a first side cavity; The source and drain regions in the semiconductor substrate on both sides of the electrode structure and the first sidewall, there is a groove between the source and drain region and the first sidewall, the surface of the source and drain region is higher than the surface of the semiconductor substrate and lower On the surface of the gate structure; the lightly doped region in the semiconductor substrate at the bottom of the groove between the source and drain regions and the first sidewall; the lightly doped region on the surface of the source and drain regions and at the bottom of the groove Surface metal silicide layer.

可选的,所述凹槽底部的轻掺杂区的材料为金属硅化物。Optionally, the material of the lightly doped region at the bottom of the groove is metal silicide.

可选的,还包括位于栅极结构顶部的金属硅化物层。Optionally, a metal silicide layer on top of the gate structure is also included.

可选的,位于所述金属硅化物层表面、第一侧墙表面并填充满所述凹槽的介质层。Optionally, a dielectric layer located on the surface of the metal silicide layer and the surface of the first sidewall and filling the groove.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明的技术方案,在所述栅极结构两侧形成第一侧墙和第二侧墙;然后以所述栅极结构、第一侧墙、第二侧墙为掩膜,在所述栅极结构两侧形成抬高的源漏区;然后去除所述第二侧墙,在所述抬高的源漏区与第一侧墙之间形成凹槽,暴露出部分半导体衬底的表面;对所述凹槽底部的半导体衬底进行轻掺杂离子注入,形成轻掺杂区;在所述源漏区和轻掺杂区表面同时形成金属硅化物层,与现有技术只在源漏区表面形成金属硅化物层相比,可以进一步降低轻掺杂区的电阻,提高晶体管的性能。In the technical solution of the present invention, first sidewalls and second sidewalls are formed on both sides of the gate structure; then, using the gate structure, first sidewalls, and second sidewalls as masks, forming raised source and drain regions on both sides of the pole structure; then removing the second sidewall, forming a groove between the raised source and drain region and the first sidewall, exposing part of the surface of the semiconductor substrate; Lightly doped ion implantation is performed on the semiconductor substrate at the bottom of the groove to form a lightly doped region; a metal silicide layer is formed on the surface of the source and drain regions and the lightly doped region at the same time. Compared with forming a metal silicide layer on the surface of the region, it can further reduce the resistance of the lightly doped region and improve the performance of the transistor.

进一步,在形成所述金属硅化物层之后,在所述金属硅化物层表面以及凹槽内形成介质层。所述介质层的材料为低K介质材料,可以降低源漏区与栅极之间的寄生电容,提高晶体管的性能。Further, after forming the metal silicide layer, a dielectric layer is formed on the surface of the metal silicide layer and in the groove. The material of the dielectric layer is a low-K dielectric material, which can reduce the parasitic capacitance between the source drain region and the gate, and improve the performance of the transistor.

附图说明Description of drawings

图1是本发明的现有技术的晶体管的结构示意图。FIG. 1 is a schematic structural diagram of a transistor in the prior art of the present invention.

图2至图15是本发明的实施例的晶体管的形成过程的结构示意图。2 to 15 are structural schematic diagrams of the formation process of the transistor according to the embodiment of the present invention.

具体实施方式Detailed ways

如背景技术中所述,现有技术中晶体管的源漏区的串联电阻还有待进一步的降低。As mentioned in the background art, the series resistance of the source-drain region of the transistor in the prior art needs to be further reduced.

请参考图1,为在SOI衬底上形成的晶体管的结构示意图。Please refer to FIG. 1 , which is a schematic structural diagram of a transistor formed on an SOI substrate.

所述晶体管包括:底层硅层10、位于底层硅层表面的绝缘层11、位于所述绝缘层表面的顶层硅层内的抬高的源漏区12;位于所述顶层硅层表面的栅介质层21、位于所述栅介质层表面的栅极22、位于所述栅介质层21和栅极22两侧侧壁表面的第一侧墙23和所述第一侧墙23表面的第二侧墙24。所述晶体管还包括位于所述栅极22顶部以及源漏区12表面的金属硅化物层25。The transistor includes: a bottom silicon layer 10, an insulating layer 11 located on the surface of the bottom silicon layer, a raised source and drain region 12 located in the top silicon layer on the surface of the insulation layer; a gate dielectric located on the surface of the top silicon layer layer 21, the gate 22 located on the surface of the gate dielectric layer, the first spacer 23 located on the sidewall surfaces on both sides of the gate dielectric layer 21 and the gate 22, and the second side of the surface of the first spacer 23 wall 24. The transistor further includes a metal silicide layer 25 located on the top of the gate 22 and the surface of the source and drain regions 12 .

由于所述SOI衬底的顶层硅层较薄,在所述栅极结构两侧的顶层硅层表面形成硅层,从而形成抬高的源漏区12,可以提高源漏区12的厚度,降低源漏区12的串联电阻;在所述源漏区12表面形成金属硅化物层25同样可以降低所述源漏区12的串联电阻。Since the top silicon layer of the SOI substrate is relatively thin, a silicon layer is formed on the surface of the top silicon layer on both sides of the gate structure, thereby forming a raised source and drain region 12, which can increase the thickness of the source and drain region 12 and reduce the thickness of the source and drain region 12. The series resistance of the source-drain region 12 ; forming the metal silicide layer 25 on the surface of the source-drain region 12 can also reduce the series resistance of the source-drain region 12 .

但是,由于所述源漏区12还有一部分扩展区域(轻掺杂区)位于所述第一侧墙23、第二侧墙24、栅介质层21下方,所述扩展区域的厚度较薄,并且表面无法形成金属硅化物层,从而所述扩展区域仍然具有较高的电阻,会影响晶体管的性能。However, since the source-drain region 12 also has a part of the extension region (lightly doped region) located under the first sidewall 23, the second sidewall 24, and the gate dielectric layer 21, the thickness of the extension region is relatively thin, And the metal silicide layer cannot be formed on the surface, so the extended region still has a high resistance, which will affect the performance of the transistor.

本发明的实施例,在所述源漏区的扩展区域(轻掺杂区)的部分表面也形成金属硅化物层,进一步降低晶体管的源漏区的串联电阻。In the embodiment of the present invention, a metal silicide layer is also formed on part of the surface of the extension region (lightly doped region) of the source and drain regions, so as to further reduce the series resistance of the source and drain regions of the transistor.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

请参考图2,提供半导体衬底100。Referring to FIG. 2 , a semiconductor substrate 100 is provided.

所述半导体衬底100的材料包括硅、锗、锗化硅、砷化镓等半导体材料,所述半导体衬底100可以是体材料也可以是复合结构如绝缘体上硅。本领域的技术人员可以根据半导体衬底100上形成的半导体器件选择所述半导体衬底100的类型,因此所述半导体衬底的类型不应限制本发明的保护范围。The material of the semiconductor substrate 100 includes silicon, germanium, silicon germanium, gallium arsenide and other semiconductor materials, and the semiconductor substrate 100 may be a bulk material or a composite structure such as silicon-on-insulator. Those skilled in the art can select the type of the semiconductor substrate 100 according to the semiconductor devices formed on the semiconductor substrate 100 , so the type of the semiconductor substrate should not limit the protection scope of the present invention.

本实施例中,所述半导体衬底100的为绝缘体上硅(SOI)衬底,所述半导体衬底100包括底层硅层101、位于底层硅层表面的绝缘层102、位于绝缘层102表面的顶层硅层103。In this embodiment, the semiconductor substrate 100 is a silicon-on-insulator (SOI) substrate, and the semiconductor substrate 100 includes an underlying silicon layer 101, an insulating layer 102 located on the surface of the underlying silicon layer, and an insulating layer 102 located on the surface of the insulating layer 102. top silicon layer 103 .

在所述绝缘体上硅(SOI)衬底上形成晶体管,可以降低晶体管的寄生电容,提高晶体管的开关速率,降低晶体管的功耗。Forming the transistor on the silicon-on-insulator (SOI) substrate can reduce the parasitic capacitance of the transistor, increase the switching rate of the transistor, and reduce the power consumption of the transistor.

请参考图3,在所述半导体衬底100表面形成栅介质材料层201、位于所述栅介质层材料层201表面的栅极材料层202,以及位于所述栅极材料层202表面的掩膜材料层300。Referring to FIG. 3, a gate dielectric material layer 201, a gate material layer 202 located on the surface of the gate dielectric material layer 201, and a mask located on the surface of the gate material layer 202 are formed on the surface of the semiconductor substrate 100. material layer 300 .

采用沉积工艺形成所述栅介质材料层201,所述沉积工艺为化学气相沉积或原子层沉积工艺,所述栅介质材料层201的厚度为1nm到100nm。The gate dielectric material layer 201 is formed by a deposition process, the deposition process is chemical vapor deposition or atomic layer deposition process, and the thickness of the gate dielectric material layer 201 is 1 nm to 100 nm.

采用沉积工艺形成所述栅极材料层202,所述栅极材料层的厚度为10nm~200nm。The gate material layer 202 is formed by a deposition process, and the thickness of the gate material layer is 10 nm˜200 nm.

本实施例中,所述栅介质材料层201的材料为氧化硅或氮氧化硅,所述栅极材料层202的材料为多晶硅。In this embodiment, the material of the gate dielectric material layer 201 is silicon oxide or silicon oxynitride, and the material of the gate material layer 202 is polysilicon.

所述掩膜材料层300的材料为氧化硅或氮化硅,所述掩膜材料层300的厚度为1nm~200nm,后续对所述掩膜材料层300进行图形化,形成刻蚀栅极材料层202和栅介质材料层201的掩膜。The material of the mask material layer 300 is silicon oxide or silicon nitride, and the thickness of the mask material layer 300 is 1 nm to 200 nm. The mask material layer 300 is subsequently patterned to form an etched gate material layer 202 and the mask of gate dielectric material layer 201.

请参考图4,刻蚀所述掩膜材料层300(请参考图3)形成掩膜层301;以所述掩膜层301为掩膜刻蚀所述栅极材料层202(请参考图3)和栅介质材料层201(请参考图3),形成栅极212和栅介质层211。Please refer to FIG. 4, etch the mask material layer 300 (please refer to FIG. 3) to form a mask layer 301; use the mask layer 301 as a mask to etch the gate material layer 202 (please refer to FIG. 3 ) and a gate dielectric material layer 201 (please refer to FIG. 3 ), forming a gate 212 and a gate dielectric layer 211 .

形成所述掩膜层301的方法包括:在上述掩膜材料层300表面形成光刻胶层;对上述光刻胶层进行显影曝光,形成图形化光刻胶层,所述图形化光刻胶层定义出后续形成的栅极结构的位置和尺寸;以所述图形化光刻胶层为掩膜,刻蚀所述掩膜材料层300(请参考图3),形成掩膜层301。所述掩膜层301作为后续刻蚀栅极材料层202(请参考图3)和栅介质材料层201(请参考图3)的掩膜。The method for forming the mask layer 301 includes: forming a photoresist layer on the surface of the mask material layer 300; developing and exposing the photoresist layer to form a patterned photoresist layer, and the patterned photoresist layer The layer defines the position and size of the subsequently formed gate structure; using the patterned photoresist layer as a mask, the mask material layer 300 (please refer to FIG. 3 ) is etched to form a mask layer 301 . The mask layer 301 serves as a mask for subsequent etching of the gate material layer 202 (please refer to FIG. 3 ) and the gate dielectric material layer 201 (please refer to FIG. 3 ).

采用干法刻蚀工艺刻蚀所述栅极材料层202(请参考图3)和栅介质材料层201(请参考图3),分别形成栅极212和栅介质层211,所述栅极212和栅介质层211构成晶体管的栅极结构。The gate material layer 202 (please refer to FIG. 3 ) and the gate dielectric material layer 201 (please refer to FIG. 3 ) are etched by a dry etching process to form the gate 212 and the gate dielectric layer 211 respectively. The gate 212 and the gate dielectric layer 211 constitute the gate structure of the transistor.

请参考图5,在所述栅介质层211、栅极212、掩膜层301侧壁表面以及顶层硅层103表面形成第一侧墙材料层302。Referring to FIG. 5 , a first sidewall material layer 302 is formed on the gate dielectric layer 211 , the gate electrode 212 , the sidewall surfaces of the mask layer 301 and the top silicon layer 103 .

可以采用氧化工艺或沉积工艺形成所述第一侧墙材料层302。本实施例中,所述第一侧墙材料层302的材料为氧化硅,采用热氧化工艺形成所述第一侧墙材料层302,所述第一侧墙材料层302的厚度大于 The first sidewall material layer 302 may be formed by an oxidation process or a deposition process. In this embodiment, the material of the first side wall material layer 302 is silicon oxide, and the first side wall material layer 302 is formed by a thermal oxidation process, and the thickness of the first side wall material layer 302 is greater than

所述第一侧墙材料层302后续用于形成第一侧墙,所述第一侧墙一方面可以作为栅极结构两侧的隔离结构,还可以修复所述栅极212在刻蚀过程中受到的损伤。The first sidewall material layer 302 is subsequently used to form the first sidewall, the first sidewall can be used as an isolation structure on both sides of the gate structure, and can also repair the gate 212 during the etching process. the damage received.

在本发明的其他实施例中,所述第一侧墙材料层302的材料还可以是氮化硅或氮氧化硅。In other embodiments of the present invention, the material of the first sidewall material layer 302 may also be silicon nitride or silicon oxynitride.

请参考图6,在所述第一侧墙材料层302、掩膜层301表面形成第二侧墙材料层303。Referring to FIG. 6 , a second sidewall material layer 303 is formed on the surfaces of the first sidewall material layer 302 and the mask layer 301 .

所述第二侧墙材料层303可以采用化学气相沉积工艺形成,本实施例中所述第二侧墙材料层303的材料为氮化硅。The second sidewall material layer 303 can be formed by a chemical vapor deposition process, and the material of the second sidewall material layer 303 in this embodiment is silicon nitride.

后续刻蚀所述第二侧墙材料层303形成第二侧墙,所述第二侧墙作为形成离子注入形成源漏区的掩膜。The second sidewall material layer 303 is subsequently etched to form a second sidewall, and the second sidewall serves as a mask for ion implantation to form source and drain regions.

所述第二侧墙的厚度为1nm~200nm。The thickness of the second side wall is 1 nm˜200 nm.

请参考图7,刻蚀所述第二侧墙材料层302(请参考图6)和第一侧墙材料层301,分别形成第二侧墙313和第一侧墙312。Referring to FIG. 7 , the second sidewall material layer 302 (please refer to FIG. 6 ) and the first sidewall material layer 301 are etched to form the second sidewall 313 and the first sidewall 312 respectively.

采用无掩膜刻蚀工艺去除位于掩膜层301顶部和部分顶层硅层103表面的第一侧墙材料层302和第二侧墙材料层303,形成第二侧墙313和第一侧墙312。The first sidewall material layer 302 and the second sidewall material layer 303 located on the top of the mask layer 301 and part of the surface of the top silicon layer 103 are removed by a maskless etching process to form the second sidewall 313 and the first sidewall 312 .

所述第一侧墙312覆盖掩膜层301、栅极212、栅介质层211的侧壁表面以及部分顶层硅层103,所述第二侧墙313位于所述第一侧墙312表面。The first sidewall 312 covers the mask layer 301 , the gate 212 , the sidewall surfaces of the gate dielectric layer 211 and part of the top silicon layer 103 , and the second sidewall 313 is located on the surface of the first sidewall 312 .

所述第一侧墙313作为后续离子注入形成源漏区的掩膜,用于限定源漏区与栅极之间的距离。The first sidewall 313 serves as a mask for subsequent ion implantation to form source and drain regions, and is used to limit the distance between the source and drain regions and the gate.

请参考图8,在所述栅极212、第一侧墙312和第二侧墙313两侧的顶层硅层103表面形成半导体材料层400。Referring to FIG. 8 , a semiconductor material layer 400 is formed on the surface of the top silicon layer 103 on both sides of the gate 212 , the first sidewall 312 and the second sidewall 313 .

采用选择性外延工艺,形成所述半导体材料层400。本实施例中,所述半导体材料层400的材料为硅,在本发明的其他所述例中,所述半导体材料层400的材料还可以是SiGe、Ge等半导体材料。采用选择性外延工艺可以较好的控制所述半导体材料的生长速率以及厚度,使最终形成的所述半导体材料层400的表面低于栅极212的表面。The semiconductor material layer 400 is formed by using a selective epitaxy process. In this embodiment, the material of the semiconductor material layer 400 is silicon, and in other examples of the present invention, the material of the semiconductor material layer 400 may also be semiconductor materials such as SiGe and Ge. The growth rate and thickness of the semiconductor material can be better controlled by using the selective epitaxy process, so that the surface of the finally formed semiconductor material layer 400 is lower than the surface of the gate 212 .

所述半导体材料层400用于提高栅极212两侧的半导体层的厚度,后续在所述半导体材料层400及其下方的顶层硅层103内形成源漏区。所述半导体材料层400提高了源漏区的厚度,从而可以降低形成的源漏区的串联电阻。The semiconductor material layer 400 is used to increase the thickness of the semiconductor layers on both sides of the gate 212 , and subsequently form source and drain regions in the semiconductor material layer 400 and the top silicon layer 103 below it. The semiconductor material layer 400 increases the thickness of the source and drain regions, thereby reducing the series resistance of the formed source and drain regions.

请参考图9,对所述半导体材料层400及其下方的顶层硅层103进行重掺杂离子注入,形成源漏区401。Referring to FIG. 9 , heavily doped ion implantation is performed on the semiconductor material layer 400 and the top silicon layer 103 below to form source and drain regions 401 .

以所述掩膜层301、第一侧墙312、第二侧墙313为掩膜,对所述半导体材料层400(请参考图8)以及位于所述半导体材料层400(请参考图8)正下方的部分顶层硅层103进行重掺杂离子注入形成源漏区401。Using the mask layer 301, the first sidewall 312, and the second sidewall 313 as a mask, the semiconductor material layer 400 (please refer to FIG. 8 ) and the semiconductor material layer 400 (please refer to FIG. 8 ) A portion of the top silicon layer 103 directly below is implanted with heavily doped ions to form source and drain regions 401 .

所述重掺杂离子注入的类型与待形成的晶体管的类型相同。The type of the heavily doped ion implantation is the same as that of the transistor to be formed.

请参考图10,去除所述第二侧墙313(请参考图9),形成凹槽314。Referring to FIG. 10 , the second side wall 313 (please refer to FIG. 9 ) is removed to form a groove 314 .

本实施例中,采用湿法刻蚀工艺去除第二侧墙313(请参考图9),所述湿法刻蚀的刻蚀溶液为磷酸溶液。在本发明的其他实施例中,也可以采用干法刻蚀工艺去除所述第二侧墙313。In this embodiment, a wet etching process is used to remove the second sidewall 313 (please refer to FIG. 9 ), and the etching solution of the wet etching is a phosphoric acid solution. In other embodiments of the present invention, the second sidewall 313 may also be removed by a dry etching process.

所述凹槽314暴露出部分位于源漏区401与栅极212之间的顶层硅层103表面的部分第二测墙312。The groove 314 exposes part of the second measuring wall 312 on the surface of the top silicon layer 103 between the source and drain regions 401 and the gate 212 .

请参考图11,对所述凹槽314凹槽底部的部分顶层硅层103内进行轻掺杂离子注入,形成轻掺杂区402。Referring to FIG. 11 , lightly doped ions are implanted into part of the top silicon layer 103 at the bottom of the groove 314 to form a lightly doped region 402 .

所述轻掺杂离子注入的离子类型与待形成的晶体管的类型相同。由于离子扩散作用,部分轻掺杂区402位于栅介质层211的下方。The ion type of the lightly doped ion implantation is the same as that of the transistor to be formed. Due to ion diffusion, part of the lightly doped region 402 is located under the gate dielectric layer 211 .

形成所述轻掺杂区402可以改善晶体管的短沟道效应。Forming the lightly doped region 402 can improve the short channel effect of the transistor.

请参考图12,去除所述凹槽314底部的部分第一侧墙312以及栅极212顶部的掩膜层301(请参考图11),暴露出轻掺杂区402的部分表面以及栅极212的顶部表面。Please refer to FIG. 12 , remove part of the first sidewall 312 at the bottom of the groove 314 and the mask layer 301 on the top of the gate 212 (please refer to FIG. 11 ), exposing part of the surface of the lightly doped region 402 and the gate 212 of the top surface.

去除所述轻掺杂区402表面的部分第一侧墙312和掩膜层301之后,暴露出轻掺杂区402以及栅极212的表面,便于后续在所述轻掺杂区402表面和栅极212顶部表面形成金属硅化物层。After removing part of the first sidewall 312 and the mask layer 301 on the surface of the lightly doped region 402, the surface of the lightly doped region 402 and the gate 212 are exposed, which is convenient for the follow-up on the surface of the lightly doped region 402 and the gate. A metal silicide layer is formed on the top surface of the electrode 212 .

请参考图13,在所述源漏区401、部分轻掺杂区402、第一侧墙312以及栅极212表面形成金属层500。Referring to FIG. 13 , a metal layer 500 is formed on the surface of the source-drain region 401 , part of the lightly doped region 402 , the first sidewall 312 and the gate 212 .

金属层500的材料至少包括Ni、Ta、Ti、W、Co、Pt或Pd中的一种金属元素。本实施例中,所述金属层500的材料为Ni。The material of the metal layer 500 includes at least one metal element of Ni, Ta, Ti, W, Co, Pt or Pd. In this embodiment, the material of the metal layer 500 is Ni.

可以采用蒸发或溅射工艺形成所述金属层500。The metal layer 500 may be formed by evaporation or sputtering.

请参考图14,在所述源漏区401表面、部分轻掺杂区402表面以及栅极212表面形成金属硅化物层501。Referring to FIG. 14 , a metal silicide layer 501 is formed on the surface of the source-drain region 401 , the surface of a part of the lightly doped region 402 and the surface of the gate 212 .

本实施例中,采用两步硅化工艺采用炉管或快速退火设备,在高纯的氮气环境中,低温快速退火,例如反应温度260℃,持续时间30秒,形成富镍相硅化物;随后,采用湿法刻蚀的方法,去除多余的Ni金属层;最后,采用高温快速退火,例如反应温度500℃,持续时间30秒,使富镍相硅化物发生相变,在所述源漏区401表面、部分轻掺杂区402表面以及栅极212表面形成金属硅化物层501。In this embodiment, a two-step silicidation process is adopted using a furnace tube or rapid annealing equipment, in a high-purity nitrogen environment, low-temperature rapid annealing, for example, the reaction temperature is 260 ° C, and the duration is 30 seconds to form a nickel-rich phase silicide; subsequently, Wet etching is used to remove the excess Ni metal layer; finally, high-temperature rapid annealing is used, for example, the reaction temperature is 500° C., and the duration is 30 seconds, so that the nickel-rich phase silicide undergoes a phase transition, and the source and drain regions 401 A metal silicide layer 501 is formed on the surface, the surface of part of the lightly doped region 402 and the surface of the gate 212 .

在本发明的其他实施例中,还可以采用一步硅化工艺:采用炉管或者快速退火设备,在高纯度的氮气环境下高温快速退火,直接形成镍硅化物。In other embodiments of the present invention, a one-step silicidation process may also be adopted: a furnace tube or rapid annealing equipment is used to perform high-temperature rapid annealing in a high-purity nitrogen environment to directly form nickel silicide.

由于金属只能和硅发生反应形成金属硅化物层,所述所述金属硅化物层501只能形成在所述源漏区401表面、部分轻掺杂区402表面以及栅极212表面。Since metal can only react with silicon to form a metal silicide layer, the metal silicide layer 501 can only be formed on the surface of the source and drain regions 401 , the surface of part of the lightly doped region 402 and the surface of the gate 212 .

形成所述金属硅化物层501之后,采用湿法刻蚀方法,去除多余的金属层材料。After the metal silicide layer 501 is formed, a wet etching method is used to remove excess metal layer material.

本实施例中,由于所述轻掺杂区402的厚度较薄,所述轻掺杂区402的硅与金属充分反应,完全转变为金属硅化物降低了所述轻掺杂区402的电阻。In this embodiment, since the thickness of the lightly doped region 402 is relatively thin, the silicon in the lightly doped region 402 fully reacts with the metal, and completely transforms into metal silicide to reduce the resistance of the lightly doped region 402 .

与现有技术相比,本实施例中,不仅在源漏区401表面形成金属硅化物层,还在轻掺杂区402表面形成金属硅化物层,进一步降低了电阻,避免由于轻掺杂区的厚度较薄,造成电阻较大的问题,从而可以提高晶体管的性能。Compared with the prior art, in this embodiment, not only a metal silicide layer is formed on the surface of the source and drain regions 401, but also a metal silicide layer is formed on the surface of the lightly doped region 402, which further reduces the resistance and avoids The thinner thickness causes the problem of larger resistance, which can improve the performance of the transistor.

请参考图15,在所述金属硅化物层501表面、第一侧墙312表面形成介质层600。Referring to FIG. 15 , a dielectric layer 600 is formed on the surface of the metal silicide layer 501 and the surface of the first spacer 312 .

所述介质层600填充满凹槽314(请参考图14)并覆盖所述源漏区401、部分轻掺杂区402、栅极212表面的金属硅化物层501。所述介质层600作为晶体管表面的层间介质层,后续可以在所述介质层600内形成金属插塞,连接晶体管的源漏区401和栅极212。The dielectric layer 600 fills the groove 314 (please refer to FIG. 14 ) and covers the source and drain regions 401 , part of the lightly doped region 402 , and the metal silicide layer 501 on the surface of the gate 212 . The dielectric layer 600 serves as an interlayer dielectric layer on the surface of the transistor, and metal plugs may be formed in the dielectric layer 600 to connect the source and drain regions 401 and the gate 212 of the transistor.

所述介质层600的材料为低K介质材料,至少包括碳化硅、碳氧化硅、有机硅氧烷聚合物、氟碳化合物中的一种。所述低K介质材料的K值较低,可以有效降低栅极211与源漏区401之间的寄生电容,提高晶体管的运行速率,提高晶体管的性能。本实施例中,所述介质层600的材料为碳化硅,采用化学气相沉积工艺形成所述介质层600。The material of the dielectric layer 600 is a low-K dielectric material, including at least one of silicon carbide, silicon oxycarbide, organosiloxane polymer, and fluorocarbon. The K value of the low-K dielectric material is relatively low, which can effectively reduce the parasitic capacitance between the gate 211 and the source-drain region 401, increase the operating speed of the transistor, and improve the performance of the transistor. In this embodiment, the material of the dielectric layer 600 is silicon carbide, and the dielectric layer 600 is formed by a chemical vapor deposition process.

本实施例还提供一种采用上述方法形成的晶体管。This embodiment also provides a transistor formed by the above method.

请参考图15,为所述晶体管的结构示意图。Please refer to FIG. 15 , which is a schematic structural diagram of the transistor.

所述晶体管包括:半导体衬底,本实施例中,所述半导体衬底为绝缘体上硅(SOI)衬底,所述半导体衬底包括底层硅层101、位于底层硅层表面的绝缘层102、位于绝缘层102表面的顶层硅层103;The transistor includes: a semiconductor substrate. In this embodiment, the semiconductor substrate is a silicon-on-insulator (SOI) substrate, and the semiconductor substrate includes an underlying silicon layer 101, an insulating layer 102 located on the surface of the underlying silicon layer, a top silicon layer 103 on the surface of the insulating layer 102;

位于半导体衬底的顶层硅层103表面的栅极结构,所述栅极结构包括栅介质层211和栅极212,所述栅极结构侧壁表面具有第一侧墙312;A gate structure located on the surface of the top silicon layer 103 of the semiconductor substrate, the gate structure includes a gate dielectric layer 211 and a gate 212, and the sidewall surface of the gate structure has a first sidewall 312;

位于所述栅极结构以及第一侧墙312两侧的半导体衬底内的源漏区401,所述源漏区401与第一侧墙312之间具有凹槽,所述源漏区401的表面高于半导体衬底的表面并且低于栅极结构表面;The source and drain regions 401 in the semiconductor substrate located on both sides of the gate structure and the first sidewall 312 have grooves between the source and drain regions 401 and the first sidewalls 312, and the source and drain regions 401 the surface is higher than the surface of the semiconductor substrate and lower than the surface of the gate structure;

位于所述源漏区401与第一侧墙312之间的凹槽底部的半导体衬底内的轻掺杂区402;a lightly doped region 402 in the semiconductor substrate at the bottom of the groove between the source and drain region 401 and the first sidewall 312;

位于所述源漏区401表面、凹槽底部的轻掺杂区402表面的金属硅化物层501。The metal silicide layer 501 is located on the surface of the source and drain regions 401 and the surface of the lightly doped region 402 at the bottom of the groove.

本实施例中,所述凹槽底部的轻掺杂区402的材料为金属硅化物,所述栅极结构顶部也具有金属硅化物层501。In this embodiment, the lightly doped region 402 at the bottom of the groove is made of metal silicide, and the top of the gate structure also has a metal silicide layer 501 .

本实施例中,所述晶体管还包括位于所述金属硅化物层501表面、第一侧墙312表面并填充满所述凹槽的介质层600,所述介质层的材料为低K介质材料,至少包括:碳化硅、碳氧化硅、有机硅氧烷聚合物、氟碳化合物中的一种。In this embodiment, the transistor further includes a dielectric layer 600 located on the surface of the metal silicide layer 501 and the surface of the first sidewall 312 and filling the groove, and the material of the dielectric layer is a low-K dielectric material. At least include: one of silicon carbide, silicon carbide, organosiloxane polymer, and fluorocarbon.

本实施例提供的晶体管的源漏区401和轻掺杂区402表面均形成有金属硅化物层,可以同时降低源漏区和轻掺杂区的电阻,提高晶体管的性能。并且,所述栅极结构和源漏区之间填充有低K介质层,可以降低所述栅极与源漏区之间的寄生电容,提高晶体管的运行速率,提高晶体管的性能。The surface of the source and drain regions 401 and the lightly doped region 402 of the transistor provided by this embodiment is formed with a metal silicide layer, which can reduce the resistance of the source and drain regions and the lightly doped region at the same time, and improve the performance of the transistor. Moreover, a low-K dielectric layer is filled between the gate structure and the source-drain region, which can reduce the parasitic capacitance between the gate and the source-drain region, increase the operating speed of the transistor, and improve the performance of the transistor.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (15)

1.一种晶体管的形成方法,其特征在于,包括:1. A method for forming a transistor, comprising: 提供半导体衬底,所述半导体衬底为绝缘体上硅;providing a semiconductor substrate, the semiconductor substrate being silicon-on-insulator; 在所述半导体衬底表面形成栅极结构,所述栅极结构顶部具有掩膜层;forming a gate structure on the surface of the semiconductor substrate, with a mask layer on top of the gate structure; 在所述栅极结构和掩膜层两侧侧壁表面形成第一侧墙和位于所述第一侧墙表面的第二侧墙;forming a first sidewall and a second sidewall on the surface of the first sidewall on the sidewall surfaces on both sides of the gate structure and the mask layer; 在所述栅极结构两侧的半导体衬底表面形成半导体材料层,所述半导体材料层的表面低于栅极结构的表面;Forming a semiconductor material layer on the surface of the semiconductor substrate on both sides of the gate structure, the surface of the semiconductor material layer is lower than the surface of the gate structure; 对所述半导体材料层进行离子注入,形成源漏区;performing ion implantation on the semiconductor material layer to form source and drain regions; 去除所述第二侧墙,在所述源漏区和第一侧墙之间形成凹槽;removing the second sidewall to form a groove between the source-drain region and the first sidewall; 对所述凹槽底部的半导体衬底进行轻掺杂离子注入,形成轻掺杂区;Performing lightly doped ion implantation to the semiconductor substrate at the bottom of the groove to form a lightly doped region; 去除凹槽底部的部分第一侧墙以及栅极结构顶部的掩膜层,暴露出轻掺杂区的部分表面以及栅极结构的顶部表面;removing part of the first sidewall at the bottom of the groove and the mask layer on the top of the gate structure, exposing part of the surface of the lightly doped region and the top surface of the gate structure; 在所述源漏区表面、凹槽底部的轻掺杂区表面形成金属硅化物层。A metal silicide layer is formed on the surface of the source and drain regions and the surface of the lightly doped region at the bottom of the groove. 2.根据权利要求1所述的晶体管的形成方法,其特征在于,所述掩膜层的材料为氧化硅。2. The method for forming a transistor according to claim 1, wherein the material of the mask layer is silicon oxide. 3.根据权利要求1所述的晶体管的形成方法,其特征在于,所述第一侧墙与第二侧墙的材料不相同。3 . The method for forming a transistor according to claim 1 , wherein the materials of the first sidewall and the second sidewall are different. 4 . 4.根据权利要求3所述的晶体管的形成方法,其特征在于,所述第一侧墙的材料为氧化硅,所述第一侧墙的厚度大于 4. The method for forming a transistor according to claim 3, wherein the material of the first sidewall is silicon oxide, and the thickness of the first sidewall is greater than 5.根据权利要求4所述的晶体管的形成方法,其特征在于,所述第二侧墙的材料为氮化硅或氮氧化硅。5 . The method for forming a transistor according to claim 4 , wherein the material of the second sidewall is silicon nitride or silicon oxynitride. 6.根据权利要求1所述的晶体管的形成方法,其特征在于,所述半导体材料层的材料为硅、锗或硅锗。6 . The method for forming a transistor according to claim 1 , wherein the material of the semiconductor material layer is silicon, germanium or silicon germanium. 7.根据权利要求6所述的晶体管的形成方法,其特征在于,采用选择性外延工艺,形成所述半导体材料层。7 . The method for forming a transistor according to claim 6 , wherein the semiconductor material layer is formed by using a selective epitaxy process. 8.根据权利要求1所述的晶体管的形成方法,其特征在于,所述栅极结构包括位于半导体衬底表面的栅介质层和位于所述栅介质层表面的栅极,所述栅介质层的材料为氧化硅、所述栅极的材料为多晶硅。8. The method for forming a transistor according to claim 1, wherein the gate structure comprises a gate dielectric layer located on the surface of the semiconductor substrate and a gate located on the surface of the gate dielectric layer, the gate dielectric layer The material of the gate is silicon oxide, and the material of the gate is polysilicon. 9.根据权利要求8所述的晶体管的形成方法,其特征在于,还包括在栅极结构顶部也形成金属硅化物层。9. The method for forming a transistor according to claim 8, further comprising forming a metal silicide layer on top of the gate structure. 10.根据权利要求9所述的晶体管的形成方法,其特征在于,形成所述金属硅化物的方法包括:在所述源漏区、凹槽底部的轻掺杂区、第一侧墙以及栅极结构顶部的表面形成金属层;进行退火处理,在所述源漏区表面、凹槽底部的轻掺杂区表面以及栅极结构顶部表面形成金属硅化物层;去除剩余的金属层。10. The method for forming a transistor according to claim 9, wherein the method for forming the metal silicide comprises: lightly doped regions at the bottom of the source and drain regions, groove bottoms, first sidewalls and gate forming a metal layer on the top surface of the pole structure; performing annealing treatment to form a metal silicide layer on the surface of the source and drain regions, the surface of the lightly doped region at the bottom of the groove, and the top surface of the gate structure; and removing the remaining metal layer. 11.根据权利要求10所述的晶体管的形成方法,其特征在于,金属层的材料至少包括Ni、Ta、Ti、W、Co、Pt或Pd中的一种金属元素。11. The method for forming a transistor according to claim 10, wherein the material of the metal layer includes at least one metal element of Ni, Ta, Ti, W, Co, Pt or Pd. 12.根据权利要求11所述的晶体管的形成方法,其特征在于,所述凹槽底部的轻掺杂区完全转化为金属硅化物。12 . The method for forming a transistor according to claim 11 , wherein the lightly doped region at the bottom of the groove is completely transformed into metal silicide. 13 . 13.根据权利要求1所述的晶体管的形成方法,其特征在于,还包括:在所述金属硅化物层表面、第一侧墙表面形成介质层。13. The method for forming a transistor according to claim 1, further comprising: forming a dielectric layer on the surface of the metal silicide layer and the surface of the first sidewall. 14.根据权利要求13所述的晶体管的形成方法,其特征在于,所述介质层的材料为低K介质材料。14. The method for forming a transistor according to claim 13, wherein the material of the dielectric layer is a low-K dielectric material. 15.根据权利要求14所述的晶体管的形成方法,其特征在于,所述介质层的材料至少包括:碳化硅、碳氧化硅、有机硅氧烷聚合物、氟碳化合物中的一种。15 . The method for forming a transistor according to claim 14 , wherein the material of the dielectric layer includes at least one of: silicon carbide, silicon oxycarbide, organosiloxane polymer, and fluorocarbon.
CN201310425291.4A 2013-09-17 2013-09-17 Transistor and forming method thereof Active CN104465376B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310425291.4A CN104465376B (en) 2013-09-17 2013-09-17 Transistor and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310425291.4A CN104465376B (en) 2013-09-17 2013-09-17 Transistor and forming method thereof

Publications (2)

Publication Number Publication Date
CN104465376A CN104465376A (en) 2015-03-25
CN104465376B true CN104465376B (en) 2018-03-30

Family

ID=52911241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310425291.4A Active CN104465376B (en) 2013-09-17 2013-09-17 Transistor and forming method thereof

Country Status (1)

Country Link
CN (1) CN104465376B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346730B (en) * 2016-05-05 2019-09-27 中芯国际集成电路制造(上海)有限公司 Improve the method for performance of semiconductor device
CN112928153B (en) * 2019-12-05 2023-07-04 中芯国际集成电路制造(天津)有限公司 Semiconductor structure and forming method thereof
CN113539809B (en) * 2021-07-19 2023-07-04 长鑫存储技术有限公司 Method for preparing semiconductor structure and semiconductor structure
CN113937005A (en) * 2021-12-16 2022-01-14 广州粤芯半导体技术有限公司 Method for manufacturing metal oxide semiconductor transistor
CN114975112A (en) * 2022-04-20 2022-08-30 上海华力微电子有限公司 A method of forming a semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248637B1 (en) * 1999-09-24 2001-06-19 Advanced Micro Devices, Inc. Process for manufacturing MOS Transistors having elevated source and drain regions
US6316303B1 (en) * 2000-01-11 2001-11-13 United Microelectronics Corp. Method of fabricating a MOS transistor having SEG silicon
US6429084B1 (en) * 2001-06-20 2002-08-06 International Business Machines Corporation MOS transistors with raised sources and drains

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812036B1 (en) * 2011-01-06 2017-12-26 삼성전자 주식회사 Semiconductor device including metal silicide layer and fabrication method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248637B1 (en) * 1999-09-24 2001-06-19 Advanced Micro Devices, Inc. Process for manufacturing MOS Transistors having elevated source and drain regions
US6316303B1 (en) * 2000-01-11 2001-11-13 United Microelectronics Corp. Method of fabricating a MOS transistor having SEG silicon
US6429084B1 (en) * 2001-06-20 2002-08-06 International Business Machines Corporation MOS transistors with raised sources and drains

Also Published As

Publication number Publication date
CN104465376A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN101728328B (en) Semiconductor device and method of fabricating a semiconductor device having a metal gate stack
JP5410666B2 (en) Semiconductor device
CN102222692B (en) Semiconductor device and method for manufacturing the same
CN202487541U (en) a semiconductor structure
CN103681337B (en) Fin formula field effect transistor and forming method thereof
CN107958873A (en) Fin field effect pipe and forming method thereof
CN105226022B (en) The forming method of semiconductor structure
CN104465376B (en) Transistor and forming method thereof
JP2007243188A (en) Method for forming silicon germanium conduction channel
US20160268384A1 (en) Method for preparing a nano-scale field-effect transistor
US20130187205A1 (en) Epitaxial replacement of a raised source/drain
CN110164767B (en) Semiconductor device and method of forming the same
WO2013067725A1 (en) Method for manufacturing semiconductor structure
US20210234035A1 (en) Transistor manufacturing method and gate-all-around device structure
CN103107072A (en) Manufacturing method of multi-grid field effect transistor component
CN102655094B (en) Semiconductor structure and manufacturing method thereof
CN102683210B (en) A kind of semiconductor structure and its manufacturing method
CN104022152B (en) Double grid p-channel MOSFET with compressive strain thin film strain source and preparation method
CN104347508B (en) Semiconductor structure and formation method thereof
CN104347507B (en) The forming method of semiconductor devices
TWI699829B (en) Method of forming semiconductor structure and method of forming a finfet structure
CN105990138A (en) Transistor and forming method thereof
CN117795660A (en) Template for nanoplate source drain formation with bottom dielectric
CN109887845B (en) Semiconductor device and method of forming the same
CN104465377B (en) Pmos transistor and forming method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant