[go: up one dir, main page]

CN103907194A - 用于高性能射频应用的传输线 - Google Patents

用于高性能射频应用的传输线 Download PDF

Info

Publication number
CN103907194A
CN103907194A CN201280053027.6A CN201280053027A CN103907194A CN 103907194 A CN103907194 A CN 103907194A CN 201280053027 A CN201280053027 A CN 201280053027A CN 103907194 A CN103907194 A CN 103907194A
Authority
CN
China
Prior art keywords
layer
diffusion impervious
thickness
transmission line
impervious layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280053027.6A
Other languages
English (en)
Other versions
CN103907194B (zh
Inventor
S.L.佩蒂-威克斯
G.张
H.B.莫迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skyworks Solutions Inc
Conexant Systems LLC
Original Assignee
Conexant Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conexant Systems LLC filed Critical Conexant Systems LLC
Publication of CN103907194A publication Critical patent/CN103907194A/zh
Application granted granted Critical
Publication of CN103907194B publication Critical patent/CN103907194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48155Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48157Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48159Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13051Heterojunction bipolar transistor [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/142HF devices
    • H01L2924/1421RF devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0341Intermediate metal, e.g. before reinforcing of conductors by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本公开涉及一种用于高性能射频(RF)应用的传输线。一种这样的传输线可以包括配置用于接收RF信号的接合层、阻挡层、扩散阻挡层和紧邻扩散阻挡层的导电层。所述扩散阻挡层可以具有允许所接收的RF信号穿透扩散阻挡层到达导电层的厚度。在某些实施例中,扩散阻挡层可以是镍。在这些实施例的一些中,传输线可以包括金接合层、钯阻挡层和镍扩散阻挡层。

Description

用于高性能射频应用的传输线
相关申请的交叉引用
本申请根据35U.S.C.§119(e)要求2011年9月2日提交的、名为“DIFFUSION BARRIER LAYER FOR USE IN A RADIO FREQUENCYTRANSMISSION LINE”的美国临时专利申请No.61/530,915,2011年9月6日提交的、名为“DIFFUSION BARRIER LAYER FOR USE IN A RADIOFREQUENCY TRANSMISSION LINE”的美国临时专利申请No.61/531,553,以及2011年11月18日提交的、名为“FINISH PLANTING FOR HIGHPERFORMANCE RADIO FREQUENCY APPLICATIONS”的美国临时专利申请No.61/561,742的权益。这些申请中每一个的公开通过引用整体合并于此。
技术领域
公开的技术涉及一种用于高性能射频应用的传输线。
背景技术
传输线可以实施于多种环境中,例如封装基板或印刷电路板(PCB)。多层层压(laminate)PCB或封装基板被广泛用于射频(RF)应用。
例如功率放大器、低噪声放大器(LNA)、混频器、压控振荡器(VCO)、滤波器、开关和整个收发机的RF电路已经使用半导体工艺来实现。然而,在RF模块(例如包括功率放大器、开关和/或滤波器的RF前端模块)中,由于不同块以不同的半导体工艺来实现,单芯片集成可能不实际。例如,功率放大器可以通过GaAs制程形成,而相关的控制和/或偏置电路可以通过CMOS制程形成。
长传输线和/或片上(on-chip)结构件(passives)会消耗大的芯片面积。因此,多芯片模块(MCM)和/或系统级封装(SiP)组装工艺可以被用来在RF模块中获得低成本、小尺寸和/或高性能。层压工艺可以被用于MCM组装,在所述MCM组装中传输线在层压基板上实施。这样的传输线中的传导损失对于MCM中的任意元件的性能会有重大的影响。因此,层压镀工艺会重大地影响影响RF性能。
层压工艺的成本可以被用于性能和/或组装需要的选择材料驱动。使用金(Au)引线接合将RF电路元件连结到传输线的RF SiP可以使用各种不同的精加工镀层,诸如较低损耗、较昂贵的NiAu(例如由于更厚的Au)或较高损耗、不太昂贵的NiPdAu。因此,存在对用于RF传输线的效能成本合算的、高性能工艺的需要。
发明内容
在权利要求中描述的每一项创新具有数个方面,其中没有任何单个方面单独对其所希望的属性负责。在不限定本发明的范围的情况下,现在将简短讨论一些突出的特征。
本公开的一个方面是被配置为在射频(RF)电路中使用的射频(RF)传输线。RF传输线包括接合层、阻挡层和扩散阻挡层,以及导电层。接合层具有接合表面并被配置用于接收RF信号。阻挡层被配置用于防止污染物进入接合层。阻挡层紧邻接合层。扩散阻挡层被配置用于防止污染物进入接合层。扩散阻挡层紧邻阻挡层。扩散阻挡层具有允许接收的RF信号穿透扩散阻挡层到达紧邻扩散阻挡层的导电层的厚度。
在一些实现中,接合层、阻挡层和扩散阻挡层可以实现在精加工镀层中。
根据某些实现,接合层可以包括金。
在各种实现中,接合表面可以被配置用于引线接合。
根据一些实现,阻挡层可以包括钯。
根据某些实现,扩散阻挡层可以包括镍。在一些实现中,扩散阻挡层的厚度可以在从大约0.04um到大于0.7um的范围内。根据一些实现,扩散阻挡层的厚度不大于约0.5um。根据各种实现,扩散阻挡层的厚度可以不大于约0.35um。根据某些实现,扩散阻挡层的厚度可以不大于约0.75um。在一些实现中,扩散阻挡层的厚度可以小于镍在大约0.45GHz的频率处的透入深度。
依照一些实现,扩散阻挡层的厚度可以小于扩散阻挡层在大约0.45GHz的频率处的透入深度。
根据一些实施例,导电层可以包括铜、铝或银中的一种或多种。例如,在某些实现中,导电层可以包括铜。
在各种实现中,基本上所有接收的RF信号可以在导电层中传播。
根据某些实现,接合层可以是金,阻挡层可以是钯,以及扩散阻挡层可以是镍。在这些实现中的一些中,扩散阻挡层的厚度可以在从大约0.04um到大约0.7um的范围内。根据一些实现,扩散阻挡层的厚度可以不大于约0.5um。根据某些实现,扩散阻挡层的厚度不大于约0.35um。根据一些实现,扩散阻挡层的厚度可以不大于约0.75um。
本公开的另一方面是被配置用于在RF传输线中使用的扩散阻挡层。扩散阻挡层包括一种材料并具有厚度。扩散阻挡层的厚度足够小,以便允许RF信号穿透扩散阻挡层。
在某些实现中,所述材料包括镍。根据这些实现中的一些,扩散阻挡层的厚度可以在大约0.04um到大约0.7um的范围内。根据一些实现,扩散阻挡层的厚度可以不大于约0.5um。根据一些实现,扩散阻挡层的厚度可以不大于约0.35um。根据某些实现,扩散阻挡层的厚度可以不大于约0.75um。在各种实现中,扩散阻挡层的厚度可以小于镍在大约0.45GHz的频率处的透入深度。
依照一些实现,扩散阻挡层的厚度可以小于所述材料在大约0.45GHz的频率处的透入深度。
根据一些实现,基本上所有穿透扩散阻挡层的RF信号可以在紧邻扩散阻挡层的导电层中行进。
在各种实现中,所述材料和/或扩散阻挡层的厚度可以防止污染物穿过扩散阻挡层。
本公开的另一方面是包括传输线、天线和电池的移动设备。RF传输线包括接合层、阻挡层、扩散阻挡层,以及导电层。接合层具有接合表面。阻挡层紧邻接合层。扩散阻挡层紧邻阻挡层。导电层紧邻扩散阻挡层。阻挡层和扩散阻挡层被配置为防止来自导电层的导电材料进入接合层。扩散阻挡层具有足够小的厚度,以便允许RF信号穿透扩散阻挡层并在导电层中传播。天线耦合到传输线,并被配置用于传输RF输出信号。传输线被配置用于延长电池放电的时间量。
根据某些实现,移动设备可以包括具有耦合到传输线的输出的功率放大器。在这些实现的一些中,功率放大器的输出可以经由引线接合耦合到传输线。依照各种实现,传输线可以被配置用于将RF信号从功率放大器传输到RF开关。根据一些实现,传输线可以被配置用于将RF信号从功率放大器传输到滤波器。
根据一些实现,移动设备可以包括具有耦合到传输线的输出的滤波器。在一些实现中,传输线可以被配置用于将RF信号从滤波器传输到RF开关。依照各种实现,传输线可以被配置用于将RF信号从滤波器传输到天线。
根据一些实现,移动设备可以包括具有耦合到传输线的输出的RF开关。在某些实现中,传输线被配置用于将RF信号从RF开关传输到天线。依照各种实现,传输线可以被配置用于将RF信号从RF开关传输到滤波器。
根据某些实现,扩散阻挡层可以包括镍。在这些实现的一些中,扩散阻挡层的厚度可以在从大约0.04um到大约0.7um的范围内。在一些实现中,扩散阻挡层的厚度可以不大于约0.5um。在一些实现中,扩散阻挡层的厚度可以不大于约0.35um。在某些实施例中,扩散阻挡层的厚度可以不大于约0.75um。在各种实现中,扩散阻挡层的厚度可以小于镍在大约0.45GHz的频率处的透入深度。
在一些实现中,扩散阻挡层的厚度可以小于材料在大约0.45GHz的频率处的透入深度。
依照某些实现,基本上所有RF信号可以在传输线的导电层中行进。
根据一些实现,接合层、阻挡层和扩散阻挡层可以在精加工镀层中实施。
本公开的另一方面是包括基板的层压板。所述基板包括被配置用于传输RF信号的传输线。传输线具有接合层、阻挡层、扩散阻挡层和导电层。接合层具有被配置用于与和导电层分离的导体接合的接合表面。阻挡层被配置用于防止污染物进入接合层。扩散阻挡层包括材料并且具有从而防止污染物穿过扩散阻挡层并且在导电层和接合层之间扩散的厚度。扩散阻挡层的厚度足够小以便允许来自导体的RF信号穿透到达导电层。
根据某些实现,扩散阻挡层可以是镍。在这些实现的一些中,扩散阻挡层可以具有小于镍在大约0.45GHz的频率的透入深度的厚度。
在一些实现中,接合层可以包括金,阻挡层可以包括钯,扩散阻挡层可以包括镍。在这些实现的一些中,扩散阻挡层的厚度可以小于约0.75um。
本公开的另一方面是包括基板、第一RF部件和第二RF部件的模块。基板包括导体和传输线。传输线具有接合层、阻挡层、扩散阻挡层和导电层。接合层具有配置用于与导体接合的接合表面。阻挡层和扩散阻挡层被配置用于防止污染物进入接合层。扩散阻挡层的厚度足够小从而允许来自导体的RF信号穿透到达导电层。第一RF部件耦合到基板并被配置用于产生RF信号。第二RF部件耦合到基板并被配置用于经由传输线从第一RF部件接收RF信号。
在某些实现中,基板是层压基板。根据这些实现中的一些,基板可以包括精加工镀层,该精加工镀层包括接合层、阻挡层和扩散阻挡层。
根据一些实现,扩散阻挡层可以包括镍。在一些实现中,扩散阻挡层的厚度可以不大于约0.7um。在一些实现中,所述厚度可以不大于约0.35um。在某些实现中,扩散阻挡层的厚度可以不大于约0.75um。在各种实现中,扩散阻挡层的厚度可以小于镍在大约0.45GHz的频率处的透入深度。依照某些实现,导电层可以包括铜。
在一些实现中,扩散阻挡层的厚度可以小于材料在大约0.45GHz的频率处的透入深度。
依照各种实现,接合层可以被配置用于引线接合并且导体可以经由引线接合被电耦合到接合层。
根据某些实现,基本上所有RF信号可以在导电层内从第一RF部件传播到第二RF部件。
在各种实现中,第一RF部件可以包括功率放大器。根据这些实现中的一些,第二RF部件可以包括滤波器和/或RF开关。
在一些实现中,第一RF部件可以包括RF开关。根据这些实现中的一些,第二RF部件可以包括功率放大器和/或滤波器。
在某些实现中,第一RF部件可以包括滤波器。根据这些实现中的一些,第二RF部件包括功率放大器和/或RF开关。
依照一些实现,阻挡层可以位于接合层和扩散阻挡层之间。
然而本公开的另一方面是包括导电层和在该导电层上的精加工镀层的RF传输线。精加工镀层包括金层、紧邻金层的钯层、和紧邻钯层的镍层。镍层具有允许在金层所接收的RF信号穿透镍层并在导电层中传播的厚度。
在某些实现中,金层被配置用于引线接合。
在一些实现中,镍层的厚度可以在从大约0.04um到大约0.7um的范围内。根据一些实现,镍层的厚度可以不大于约0.5um。根据某些实现,镍层的厚度可以不大于约0.35um。根据一些实施例,镍层的厚度可以不大于约0.75um。
依照某些实现,镍层的厚度可以小于镍在大约0.45GHz的频率处的透入深度。
根据一些实现,导电层可以包括铜、铝或银中的一种或多种。例如,导电层可以包括铜。
根据一些实现,基本上所有RF信号可以在导电层中传播。
为了总结本公开,此处已经描述了本发明的某些方面、优点和新颖特征。应当理解,依照本发明的任何特定实施例,并非必然可以实现所有这些优点。由此,本发明可以以下述方式实现或执行:实现或优化如在此示教的一个优点或一组优点,而不必获得可能如在此示教或建议的其它优点。
附图说明
图1A图解示出根据一些实施例的传输线的横截面。
图1B示意性图解示出图1的示例传输线。
图2A图解示出到图1的传输线的引线接合的示例。
图2B图解示出包括图1的传输线的基板的示例。
图2C图解示出包括多个图2B的基板的阵列的示例。
图3是包括图1的传输线的示例模块的示意性框图。
图4A-4D是图解示出图1的传输线和在图3的模块中实现的其他传输线之间的关系的图。
图5是经由图1的传输线彼此耦合的两个射频(RF)组件的示意性框图。
图6A-6F是可以经由图1的传输线彼此电耦合的各种示例RF组件的示意性框图。
图7是包括图1的传输线的示例移动设备的示意性框图。
具体实施方式
在此提供的标题仅仅为了方便,并且并非必然影响要求保护的发明的范围和含义。
一般地描述,本公开的方面涉及包括扩散阻挡层的射频(RF)传输线。扩散阻挡层可以包括一种材料并具有从而防止污染物扩散和穿过扩散阻挡层的厚度。扩散阻挡层的厚度可以足够小,从而RF信号穿透扩散阻挡层并在导电层中传播。例如,扩散阻挡层的厚度在RF范围内的频率(例如在从大约0.45GHz到20GHz的范围内选择的频率)处可以小于材料的透入深度(skin depth)。在一些实现中,扩散阻挡层可以是镍。根据这些实现中的一些,镍扩散阻挡层可以具有从大约0.04um到0.5um的范围选择的厚度。RF传输线还可以包括接合层、防止污染物进入接合层的阻挡层和RF信号在其中传播的导电层。
可以实施本公开中描述的主题的具体实施以实现尤其是以下潜在优点中的一个或多个。使用在此描述的系统、装置和方法中的一个或多个特征,例如包括功率放大器的系统和/或被配置用于发送和/或接收射频(RF)信号的系统的电子系统可以更加有效和/或消耗更少功率地被操作。替代地或附加地,在这样的系统中的RF信号的信号质量可以被改善。在一些实现中,用于实现传输线的金的量可以被减少而不显著地降低电子性能。实际上,根据某些实现,模拟数据和实验数据指出用在传输线上的金的量可以被减少且电子性能可以被改善。
传输线可以实现在封装基板或印刷电路板(PCB)上,所述封装基板或印刷电路板可以包括多层层压。多层层压PCB或封装基板在RF行业广泛使用。大多数RF块,例如低噪声放大器(LNA)、混频器、压控振荡器(VCO)、滤波器、开关和整个收发机可以使用半导体工艺来实现。
然而,在RF模块(例如包括功率放大器、开关、滤波器等或其任意组合的RF前端模块)中,由于不同的块以不同的半导体工艺来实现,单芯片集成可能是不实际的。例如,功率放大器可以通过GaAs制程形成,而相关的控制和/或偏置电路可以通过CMOS制程形成。电磁相互作用会降低块的电子性能,这可以导致系统的电子性能规格的不合格。在多于一个芯片中实现RF模块的一个原因是诸如长传输线、电感器、平衡不平衡变换器、变压器等或其任意组合的片上结构件可以具有低Q-因子和/或可以消耗较大的芯片面积。因此,多芯片模块(MCM)和/或系统级封装(SiP)组装工艺可以被用来在RF模块中获得低成本、小尺寸和/或高性能。
出于成本效率和/或导体性能的考虑,层压工艺可以被用于MCM组装。层压工艺可以包括铜以用于传输线。由于铜的物理属性,使用铜来传播电子信号可以是所期望的。高Q传输线、电感器、变压器等或其任意组合可以在层压基板上实现。例如,功率放大器、输出匹配网络、谐波滤波器、耦合器等或其任意组合可以耦合到层压基板。传导损失对于这些元件的性能会有重大的影响。因此,层压镀工艺会重大地影响RF损失。
层压材料(laminate)的外层上的铜迹线在不希望到外部部件的相互连接的区域中可以覆盖阻焊层(solder mask)、氧化物或其他适当的材料。这些互连可以包括部件的焊点(solder joint)和/或到管芯(die)的引线接合连接。在保留可焊性和可引线接合性的区域,铜迹线可以覆盖有机保焊膜(OSP)或精加工镀层(finish plating)。精加工镀层的冶金和/或金属层的厚度可以取决于诸如焊接表面和/或引线接合表面的暴露区域的功能。惰性、无氧化物表面可以保持可焊性和/或可引线接合性。
这种用于精加工镀层的冶金术典型地包括扩散阻挡(diffusion barrier)以防止铜扩散到镀层表面和随后的由于暴露于空气的氧化和/或组装期间升高的温度。取决于所使用的化学性质,扩散阻挡可以是例如电镀镍(Ni)或化学Ni(P)。传统的,建立具有大约2.5um到大约8um厚度的镍,作为层压基板在MCM和/或SiP组装期间遭遇热偏差(thermal excursion)期间维持可焊性的足够厚的扩散阻挡层。对于金(Au)引线接合,可以使用电解或化学(electroless)金来形成具有从大约0.4um到0.9um的范围内选择的厚度的金接合层。然而,镍之上的更薄的沉金(immersion Au)层通常在大量的组装操作中不提供可靠的金引线接合表面。化学镍/化学钯(Pd)/沉金变得可用于焊接和引线接合,包括金引线接合。由于金厚度的减小,这可以是效能成本合算的精加工。化学镍/化学钯/沉金在暴露(精加工镀的)区域可能增大传导损失,尤其在较高频率处。
电解或化学NiAu或NiPdAu镀工艺当前用于层压基板。不考虑更多损失的电特性,化学NiPdAu已经被成功地实施。一些RF模块仍然使用电解或化学NiAu,不考虑由于更厚的金导致的更高的成本,其对于模块性能具有较低的损失,尤其在较高频率处(例如,在大约1.9GHz或更高频率处)。
传输线
图1A图解示出根据一些实施例的传输线1的横截面。图1A中示出的横截面可以代表一些或所有传输线1的横截面。传输线1可以包括接合层2、阻挡层4、扩散阻挡层6和导电层8。传输线1可以在RF电路中实现并且被配置用于传输RF信号。传输线1可以实现在层压基板上。根据一些实现,接合层2、阻挡层4和扩散阻挡层6可以被考虑为精加工镀层,并且导电层8可以考虑为导线。在一些实现中,传输线1可以至少是大约5um、10um、15um、20um、25um、50um、75um、100um、250um或500um长。
在某些实现中,传输线1可以包括金接合层、钯阻挡层、镍扩散阻挡层和铜导电层。例如,在这些实现中的一些中,传输线1可以包括具有大约0.1um厚度的金接合层,具有大约0.1um厚度的钯阻挡层,具有从大约0.04um到0.5um的范围内选择的厚度的镍扩散阻挡层,以及具有大约20um厚度的铜导电层。传输线1的精加工镀层可以通过铜导电层之上的化学镀镍、镍之上化学镀钯、和钯之上的金的沉镀来形成。用于形成这样的传输线的精加工镀层的其它合适的处理和/或子处理可以替代性地实施。例如,镍扩散阻挡层可以电镀在铜导电层之上。
尽管传输线1在某些实现中包括金接合层、钯阻挡层、镍扩散阻挡层和铜导电层,但应该理解其它材料可以替代地使用以实现传输线1的一层或多层。
传输线1的接合层2可以具有被配置用于焊接和/或引线接合的接合表面。接合层2可以被配置用于在接合表面接收RF信号。根据一些实现,管芯的管脚可以接合到接合层2的接合表面。例如,功率放大器管芯的输出可以接合到接合层2的接合表面并经由传输线1被传送到一个或多个RF部件,例如滤波器和/或RF开关。接合层2可以包括金。在一些实现中,金接合层的厚度可以从大约0.05um到0.15um的范围内选择。根据某些实现,金接合层的厚度可以是的约0.1um。
传输线1的阻挡层4可以防止污染物进入接合层2。阻挡层4可以紧邻接合层2。在图1A的方向上,接合层2布置在阻挡层4之上。在一些实现中,阻挡层4的主要表面可以直接接触接合层2的主要表面,例如如图1A所示。如图1A图解示出的,阻挡层4可以在接合层2和扩散阻挡层6之间。阻挡层4可以包括钯。在一些实现中,钯阻挡层的厚度可以从大约0.03um到0.15um的范围内选择。根据某些实现,钯阻挡层的厚度可以是大约0.1um。
传输线1的扩散阻挡层6可以被配置用于防止污染物进入接合层2和/或阻挡层4。例如,在一些实现中,扩散阻挡层6可以防止来自铜导电层的铜扩散到金接合层。扩散阻挡层6可以对于导电层8提供粘合表面。根据某些实现,扩散阻挡层6的粘合表面可以粘合到铜导电层。
扩散阻挡层6可以有足够小的厚度,从而允许RF信号在导电层8中传播。例如,扩散阻挡层6的厚度可以小于扩散阻挡层6在RF范围内的频率处(例如在从大约0.9GHz到20GHz的范围选择的频率处)的透入深度。这可以允许RF信号穿透扩散阻挡层6。利用一种材料的、并且具有小于该材料在RF范围内的希望的频率处的透入深度的厚度的扩散阻挡层6,基本上所有RF信号应该可以在传输线1的导电层8中行进(假设RF信号也穿透接合层2和阻挡层4)。为了RF信号穿透接合层2,接合层2的厚度可以小于形成接合层2的材料在RF范围内的希望的频率处的透入深度。类似地,为了RF信号穿透阻挡层4,阻挡层4的厚度可以小于形成阻挡层4的材料在RF范围内的希望的频率处的透入深度。
扩散阻挡层6可以位于接合层2和导电层8之间。在图1A的方向中,阻挡层4布置在扩散阻挡层6之上并且扩散阻挡层6布置在导电层8之上。在一些实现中,扩散阻挡层6的主要表面可以直接接触阻挡层4和/或导电层8的主要表面,例如如图1A所示。
扩散阻挡层6可以包括镍。在一些实现中,扩散阻挡层6可以是镍。镍扩散阻挡层也可以防止来自导电层的铜扩散到金接合层。镍阻挡层的厚度可以小于镍在RF范围内的频率处的透入深度。例如,镍的厚度可以小于镍在从大约0.45GHz到20GHz的范围选择的频率处的透入深度。这可以允许RF信号穿透扩散阻挡层6到达导电层8。根据一些实现,镍扩散层的厚度可以小于镍在大约0.3GHz,0.35GHz,0.4GHz,0.45GHz,0.5GHz,0.6GHz,0.7GHz,0.8GHz,0.9GHz,1GHz,2GHz,5GHz,6GHz,10GHz,12GHz,15GHz或20GHz处的透入深度。当使用可替代材料来代替镍用于扩散阻挡层时,该扩散阻挡层的厚度可以小于可替代材料在大约0.3GHz,0.35GHz,0.4GHz,0.45GHz,0.5GHz,0.6GHz,0.7GHz,0.8GHz,0.9GHz,1GHz,2GHz,5GHz,6GHz,10GHz,12GHz,15GHz或20GHz处的透入深度。
在一些实现中,镍扩散阻挡层的厚度可以是小于约2um,1.75um,1.5um,1.25um,1um,0.95um,0.9um,0.85um,0.8um,0.75um,0.7um,0.65um,0.6um,0.55um,0.5um,0.45um,0.4um,0.35um,0.3um,0.25um,0.2um,0.15um,0.1um,0.09um,0.05um或0.04um。在某些实现中,镍扩散阻挡层的厚度可以从以下范围之一选择:约0.04um到0.7um,约0.05um到0.7um,约0.1um到0.7um,约0.2um到0.7um,约0.04um到0.5um,约0.05um到0.5um,约0.09um到0.5um,约0.04um到0.16um,约0.05um到0.15um,约0.1um到0.75um,约0.2um到0.5um,约0.14um到0.23um,约0.09um到0.21um,约0.04um到0.2um,约0.05um到0.5um,约0.15um到0.5um,或约0.1um到0.2um。作为一个示例,镍扩散阻挡层的厚度可以是约0.1um。在所有这些图解示出的实现中,镍扩散阻挡层具有非零的厚度。
RF信号可以在传输线1的导电层8中传播。例如,RF信号可以穿透接合层2、阻挡层4和扩散阻挡层6以便在导电层8传播。基本上所有RF信号可以在传输线1的导电层8中传播。导电层8可以粘合到扩散阻挡层6的粘合表面。导电层8可以包括任何合适的材料用于沿着传输线1传播RF信号。例如,导电层可以包括铜、铝、银等或其任意组合。在某些实现中,导电层8可以是铜。根据某些实现,导电层8的厚度可以从约10um到50um的范围选择。在这些实现中的一些中,导电层的厚度可以从约15um到30um的范围选择。
图1B示意性图解示出图1A的传输线的示例。根据某些实现,传输线1可以包括多于一条传输线1用于将RF信号从一个节点传输到另一个节点。例如,图1B图解示出的多条传输线1可以共同实现图3的传输线1。图1B中的多条传输线1用作从第一节点RFIN向第二节点RFOUT传送RF信号的媒介。一条或多条传输线1可以具有耦合到电轨,诸如电源(例如VCC)或地的一端。如图解所示的,传输线1可以经由电容器C1、C2或C3耦合到地。
透入深度计算
如之前提到的,传输线1的扩散阻挡层6可以包括一种材料,并且具有足够小、以便允许RF信号在导电层中传播的厚度。因此,扩散阻挡层6可以具有小于所述材料在所希望的频率处的透入深度的厚度。透入深度可以通过等式1表示。
δ = 2 ρ ( 2 πf ) ( μ 0 μ r )   (等式1)
在等式1中,δ可以表示以米为单位的透入深度,μ0可以表示具有值为4π×10-7亨/米(约为1.2566370614×10-6亨/米)的自由空间的磁导性(也称为真空磁导性或磁常数),μr可以表示媒介的相对磁导性,ρ可以表示以Ω·m为单位的媒介的电阻率(其可以等于媒介的电导率的倒数),和f可以表示以Hz为单位的传播经过媒介的电流的频率。
下面的表1包括三种传输线的各个层的镀层厚度。表1中的数据对应于具有NiAu精加工镀层的传输线和两种具有有着不同的镍层厚度的NiPdAu精加工镀层的不同传输线。一种具有NiPdAu精加工镀层的传输线有5um的镍厚度,另一种具有NiPdAu精加工镀层的传输线有0.1um的镍厚度。5um的镍厚度处于传统使用的可接受的镍厚度范围(例如从2.5um到8um)之内。在对应于表1中的数据的所有三种传输线中,导电层是铜。具有NiPdAu精加工镀层的传输线可以具有如图1A所示的横截面。具有NiAu精加工镀层的传输线可以具有类似图1A的横截面,而没有阻挡层4,在其中金层接合层直接在镍扩散阻挡层之上并且镍层直接在铜导电层之上。
NiPdAu(um) 薄“Ni”-NiPdAu(um) NiAu(um)
21 21 21
5 0.1 5
0.09 0.09 ---
0.1 0.1 0.4
表1-镀层厚度
这三种传输线的透入深度可以使用等式1和下面的表2中包括的材料属性来计算。镍的相对磁导性可以取决于用来形成镍层的处理而变化。例如,在化学镍处理中的磷的含量可以影响镍的相对磁导性。表2中列出的镍磁导性的范围可以捕获镍磁导性的典型范围。
电阻率,ρ(μΩ-cm) μr
1.673 1
8.707 100-600
10.62 1
2.44 1
表2-材料属性
下面的表3中示出铜、镍、钯和金在RF范围内的六个不同频率处的计算的透入深度。
Figure BDA0000497484840000131
表3-计算的透入深度
表3中示出的数据指出,具有0.45GHz、0.9GHz、1.9GHz、5GHz、12GHz或20GHz的频率的信号的大多数应该在具有NiAu精加工镀层的传输线的镍中行进。因为金的厚度(即0.4um)小于金的透入深度(即在0.45GHz为3.70um,在0.9GHz为2.62um,在1.9GHz为1.8um,在5GHz为1.11um,在12GHz为0.72um,在20GHz为0.56um)且镍的厚度(即5um)大于镍的透入深度(即在0.45GHz为0.29-0.7um,在0.9GHz为0.2-0.5um,在1.9GHz为0.14-0.34um,在5GHz为0.09-0.21um,在12GHz为0.06-0.14um,在20GHz为0.04-0.11um),处于0.45GHz、0.9GHz、1.9GHz、5GHz、12GHz和20GHz的信号应该在金层和镍层两者中行进。由于镍的厚度大于在从大约0.45GHz到20GHz的频率范围中的透入深度,在这一频率范围中的信号不应该穿透镍层。因为在更高频率处透入深度应该更小,在大于20GHz的频率处的信号也不应该穿透镍层。由于金在具有NiAu精加工镀层的传输线中(即0.4um)比在具有有着5um的镍厚度的NiPdAu精加工镀层的传输线中(即0.1um)更厚,因此相较于具有5um镍的NiPdAu传输线,在NiAu传输线中和镍相比相对更多的信号在金中传导,使得NiAu传输线相对损耗较少。
表3中示出的数据还指出,具有0.45GHz、0.9GHz、1.9GHz、5GHz、12GHz或20GHz的频率的信号的大多数应该在具有有着5um的镍厚度的NiPdAu精加工镀层的传输线的镍中传行进。因为金的厚度(即0.1um)和钯的厚度(即0.09um)都小于它们各种的透入深度(即对于金在0.45GHz为3.70um,在0.9GHz为2.62um,在1.9GHz为1.8um,在5GHz为1.11um,在12GHz为0.72um,在20GHz为0.56um,对于钯在0.45GHz为7.73um,在0.9GHz为5.47um,在1.9GHz为3.76um,在5GHz为2.32um,在12GHz为1.50um,在20GHz为1.16um)并且镍的厚度(即5um)大于镍的透入深度(即在0.45GHz为0.29-0.7um,在0.9GHz为0.2-0.5um,在1.9GHz为0.14-0.34um,在5GHz为0.09-0.21um,在12GHz为0.06-0.14um,在20GHz为0.04-0.11um),处于0.45GHz、0.9GHz、1.9GHz、5GHz、12GHz或20GHz的信号的大部分应该在镍中行进。由于镍的厚度大于在从0.45GHz到20GHz的频率范围中的透入深度,这一频率范围中信号不应该穿透镍层。因为在更高频率处透入深度应该更小,在大于20GHz的频率处的信号也不应该穿透镍层。因此,通过金接合表面电耦合到具有5um镍厚度的NiPdAu传输线的RF信号的大多数应该在镍中传播。
相反,表3中示出的数据指出,具有0.45GHz、0.9GHz、1.9GHz、5GHz、12GHz或20GHz的频率的信号的大多数应该在具有有着0.1um的镍厚度的NiPdAu精加工镀层的传输线的铜中行进。因为金、钯和镍每一个的厚度都小于它们各自的透入深度,处于0.45GHz、0.9GHz、1.9GHz、5GHz、12GHz或20GHz的信号的大多数应该穿透铜。由于在更高频率的透入深度更小,在高于20GHz的频率处的信号也应该穿透到铜。因此,经由金接合表面电耦合到具有0.1um镍厚度的NiPdAu传输线的RF信号的大多数应该在铜中传播。
如表2中示出的,铜的电阻率大约是镍的电阻率的五分之一。因此,当传输信号处于0.45GHz或更高的频率时,具有有着0.1um的镍厚度的NiPdAu精加工镀层的传输线应该具有对应于表1和3中的数据的、三种传输线中最小的电阻损耗。表3中的数据还指出,具有20GHz的频率的信号可以穿透具有小于0.11um的厚度的镍,具有12GHz的频率的信号可以穿透具有小于0.14um的厚度的镍,具有5GHz的频率的信号可以穿透具有小于0.2um的厚度的镍,具有1.9GHz的频率的信号可以穿透具有小于0.34um的厚度的镍,具有0.9GHz的频率的信号可以穿透具有小于0.5um的厚度的镍,和具有0.45GHz的频率的信号可以穿透具有小于0.7um的厚度的镍。因此,假设金和钯的厚度小于在信号的各个频率的透入深度,这些信号在具有有着0.1um的镍厚度的NiPdAu精加工镀层的传输线中应该在铜中传播。基于等式1以及表1和2中的数据,具有高达大约22GHz的频率的信号应该能够穿透具有大约0.1um的厚度的镍。
引线接合
在一些实现中,传输线1可以经由引线接合电耦合到管芯的管脚。诸如导线的导体可以提供RF信号到传输线1。图2A图解示出到图1A的传输线的引线接合的示例。如图2A图解示出的,传输线1可以包括在基板22上。管芯24也可以耦合到基板22。导线10可以将传输线1的接合层2的接合表面电连接到管芯24。这样,传输线1可以在接合层2的接合表面接收RF信号。导线10可以包括球形接合(ball bond)11、管颈(neck)12、跨径(span)13、根部(heel)14、针脚接合(stitch bond)15(或可替代的楔形接合),或其任意组合。
一些引线接合规范规定导线10应该有不会经历特定故障的最小的拉拔强度。例如,在一些应用中,引线接合规范规定导线在热暴露(例如在175℃回流或烘烤12小时)之后应该有至少3g的拉拔强度并且没有针脚解除(stitchlift)故障模式。
对于20um厚的金和20um厚的Cu导线收集实验数据。金导线在三种不同的传输线中测试:具有NiAu精加工镀层的传输线和两种具有有着不同的镍层厚度(5um和0.1um)的NiPdAu精加工镀层的不同传输线。Cu导线也在三种不同的传输线中测试:具有NiAu精加工镀层的传输线和两种具有有着不同的镍层厚度(5um和0.1um)的NiPdAu精加工镀层的不同传输线。精加工镀层对应于表1中对于NiAu和NiPdAu示出的值。实验的样本条件包括引线接合之前的标准组装处理(表面安装附连和等离子体)和极端热暴露,以测试穿过镍扩散阻挡层影响可引线接合性(表面安装附连和烘烤和等离子体)的Cu扩散。用于标准组装处理的实验数据指出所有金导线在热暴露之后取决于导线直径应该超过3-4g的拉拔强度规范。用于标准组装处理的实验数据还指出大多数Cu导线应该超过3-4g的拉拔强度规范,尽管处理参数没有被优化。所有对于极端热暴露测试的导线拉拔满足或超过3g的拉拔强度规范并且没有针脚解除(stitch lift)故障模式。因此,实验数据确认了具有有着0.1um的镍厚度的NiPdAu精加工镀层的可引线接合性对于MCM的可用性。
基板和阵列
图2B图解示出了包括图1的传输线1的基板22的示例。基板22可以包括一个或多个传输线1。基板22可以包括在此描述的基板特征的任意组合。例如,基板22可以是包括NiPdAu精加工镀层的层压基板。
多个基板22可以在同一时间用相同的处理设备来制造。图2C图解示出了包括图2B的多个基板22的阵列23的示例。在一些实现中,阵列23可以是层压板,其包括具有被配置用于传输RF信号的传输线1的基板22。尽管图2C所示的阵列23包括二十五个基板22,阵列23在其它实现中可以包括任意合适数量的基板22。传输线1可以以例如包括在此描述的精加工镀层工艺的特征的任意组合的处理在多个基板22上形成。然后各个基板22在形成传输线1之后可以例如通过激光切割、金刚石锯或任意其它合适的方法彼此分离。
镀层工艺
具有0.1um的镍厚度的NiPdAu镀层工艺可以降低成本。这一镀层工艺也可以改善RF性能或具有最小的RF性能影响。如同之前讨论的数据和计算所指出的,在具有0.1um的镍厚度的NiPdAu镀层中,在保持可焊性和/或可引线接合性的同时,在金、钯和镍中行进的RF信号的量可以被减少并且在层压板上的例如铜层的导电层中的RF能量可以被增加和/或最大化。其它实验数据指出没有精加工镀层(所有信号在铜层中行进)提供最低的介入损耗。
NiPdAu的镀层工艺的一个示例是化学NiPdAu。对于化学NiPdAu,如同之前讨论的计算和数据所指出的,如果镍层比信号的频率处的透入深度厚,则RF信号不能穿透镍层。如果镍厚度被减小到小于镍的透入深度(例如,到大约0.1um),则RF信号可以穿透镍、钯和金镀层。结果,RF信号能量的主要部分应该在铜层中。相比较于金、钯和镍,铜有低得多的RF损失。在具有有着0.1um的镍厚度的NiPdAu精加工镀层的传输线中的RF可以小于在相比较的具有电解NiAu和/或化学NiAu精加工镀层的传输中的RF损失。因此,可以通过使用具有有着0.1um的镍厚度的NiPdAu精加工镀层来改善总体电性能。在一些实现中,输出匹配网络损失可以在1.9GHz从大约0.8dB减少到0.5dB,这可以将PA功率附加效率提高约3%。这可以转化为包括具有0.1um的镍厚度的NiPdAu精加工镀层的产品的重大的成品率改善和/或竞争力的增强。
对于输出匹配网络中两种不同的阻抗(6欧姆和4欧姆)收集实验数据,用于RF损失特征化。对于6欧姆的输出匹配网络,实验数据指出损失被改善了约0.2dB。对于4欧姆的输出匹配网络,实验数据指出损失被改善了约0.3dB。包括具有0.1um的镍厚度的化学NiPdAu精加工镀层的传输线比相比较的具有有着5um的镍厚度的标准化学NiPdAu传输线或化学NiAu传输线具有更低的损失。
模块
图3是可以包括图1A的传输线1的模块20的示意性块图。模块20在一些实现中可以被称为多芯片模块和/或功率放大器模块。模块20可以包括基板22(例如,封装基板)、管芯24(例如,功率放大器管芯)、匹配网络25等,或其任意组合。尽管未图解示出,模块20在一些实现中可以包括一个或多个其它管芯和/或一个或多个耦合到基板22的电路元件。一个或多个其它管芯可以包括,例如,控制器管芯,其可以包括功率放大器偏置电路和/或直流-直流(DC-DC)转换器。安装在封装基板上的示例电路元件可以包括例如电感器、电容器、阻抗匹配网络等,或其任意组合。
模块20可以包括多个管芯和/或安装在模块20的基板22之上和/或耦合到模块20的基板22的其它部件。在一些实现中,基板22可以是多层基板,配置用于支持管芯和/或部件并且当模块20被安装在例如手机板的电路板上时提供到外部电路的电连通性。基板22可以包括具有精加工镀层的层压板,包括例如在此描述的层压板和/或精加工镀层的特征的任意组合。基板22可以经由包括在此描述的传输线的特征的任意组合的传输线1在部件之间提供电连通性。例如,如图解所示的,传输线1可以将功率放大器管芯24电连接到输出匹配网络25。
功率放大器管芯24可以在模块20的输入管脚RF—IN接收RF信号。功率放大器管芯24可以包括一个或多个放大器,包括例如被配置用于放大RF信号的多级功率放大器。功率放大器管芯24可以包括输入匹配网络30、第一级功率放大器32(其可以被称为驱动器放大器(DA))、级间匹配网络34、第二级功率放大器36(其可以被称为输出放大器(OA))、被配置用于偏置第一级功率放大器32的第一级偏置电路38、被配置用于偏置第二级功率放大器36的第二级偏置电路40,或其任意组合。功率放大器可以包括第一级功率放大器32和第二级功率放大器36。RF输入信号可以经由输入匹配网络30被提供给第一级功率放大器32。第一级功率放大器32可以放大RF输入并经由级间匹配网络34提供放大的RF输入到第二级功率放大器36。第二级功率放大器36可以产生放大的RF输出信号。
放大的RF输出信号可以经由输出匹配网络25提供到功率放大器管芯24的输出管脚RF_OUT。在此描述的任意传输线1可以被实现用来将功率放大器的输出(例如,由第二级功率放大器36产生的放大的RF输出信号)和/或功率放大器管芯24的输出耦合到其它部件。因此,在此描述的扩散阻挡层6的特征的任意组合也可以在功率放大器的输出和/或功率放大器管芯24的输出上实现。匹配网络25可以在模块20上提供以协助降低信号反射和/或其它信号变形。功率放大器管芯24可以是任意合适的管芯。在一些实现中,功率放大器管芯24是砷化镓(GaAs)管芯。在一些实现中,GaAs管芯具有使用异质结双极晶体管(HBT)制程形成的晶体管。
模块20还可以包括一个或多个供电管脚,其可以电连接到例如功率放大器管芯24。所述一个或多个供电管脚可以提供电源电压到功率放大器,例如VSUPPLY1和VSUPPLY2,其在一些实现中可以有不同的电压电平。模块20可以包括电路元件,例如电感器,其可以例如通过多芯片模块上的迹线来形成。所述电感器可以作为扼流电感器来工作,并且可以布置在电源电压和功率放大器管芯24之间。在一些实现中,电感器被安装在表面。另外,电路元件可以包括与电感器并联电连接的电容器,并且该电容器被配置用于在接近于在管脚RF_IN上接收的信号的频率的频率处谐振。在一些实现中,电容器可以包括安装在表面上的电容器。
模块20可以被修改以包括更多或更少的部件,包括例如额外的功率放大器管芯、电容器和/或电感器。例如,模块20可以包括一个或多个额外的匹配网络25。作为另一个示例,模块20可以包括额外的功率放大器管芯,以及被配置为作为布置在模块20的额外的功率放大器管芯和供电管脚之间的并联LC电路工作的额外的电容器和电感器。例如在其中独立的电源被提供给布置在功率放大器管芯20上的输入级的实现和/或在其中模块20在多个频带上工作的实现中,运行模块20可以被配置为具有附加的管脚。
模块20可以具有低电压正偏压电源大约3.2V到4.2V的,其具有良好的线性、高效率(例如,在28.5dBm,PAE大约为40%)、大的动态范围、小型和薄型封装(例如,3mm×3mm×0.9mm带有10-焊盘的偏置)、断电控制(power down control)、支持低集电极电压运行、数码使能、不需要参考电压、CMOS兼容控制信号、集成的定向耦合器,或其任意的组合。
在一些实现中,模块20是功率放大器模块,其是完全匹配10-焊盘表面安装模块,并被开发用于宽带码分多址(WCDMA)应用。这一小和高效的模块可以将全部1920-1980MHz带宽覆盖范围打包到单个紧凑封装中。由于贯穿整个功率范围获得的高效率,模块20可以对于移动电话传递期望的通话时优点。模块20可以以高功率附加效率满足高速下行链路分组接入(HSDPA)、高速上行链路分组接入(HSUPA)、和长期演进(LTE)数据传输的迫切的频谱线性需求。定向耦合器可以被集成到模块20中并且因此可以消除对于外部耦合器的需要。
管芯24可以是在包括模块20的所有有源电路的单个砷化镓(GaAs)单片微波集成电路(MMIC)中包含的功率放大器管芯。所述MMIC可以包括板上偏置电路,以及输入匹配网络30和级间匹配网络34。输出匹配网络25可以具有与在模块20的封装内的管芯24分离地实现的50欧姆的负载,以增大和/或优化效率和功率性能。
模块20可以以GaAs异质结双极晶体管(HBT)BiFET制程来制造,其在保持高效率和好的线性的同时提供所有正电压DC供电操作。至模块20的主要偏置可以从任意三-单元Ni-Cd电池、单个-单元Li-离子电池、或其它具有在从大约3.2到4.2V的范围选择的输出的合适的电池直接地或经由中间部件来提供。在一些实现中不需要参考电压。可以通过将使能电压设置到零伏特来完成断电。根据一些实施例,不需要外部电源侧开关,因为全部主电压从电池供应时典型的“断开”泄漏是几微安。
模块数据
图4A-4D是图解示出图1A中的传输线和在图3的模块中实现的其它传输线之间的关系的图。功能上与参考图3图解示出和描述的模块20类似的模块,用参考上表1-3描述的三种传输线来测试。NiAu传输线具有5.5um的镍厚度。两种NiPdAu传输线精加工镀层分别具有不同的镍厚度6um和0.1um。测试的传输线包括具有大约25um的厚度的铜导电层。另外,所测试的传输线具有参考上表1-3所描述的层厚度和其它属性。
如图4A-4D的图所示,具有NiPdAu精加工镀层和0.1um的镍厚度的传输线在通过质量因数(FOM)测量时具有三种传输线测试中最好的性能。另外,下面的表4中包括的数据指出,对于具有有着0.1um的镍厚度的NiPdAu精加工镀层的传输线和具有有着6um的镍厚度的NiPdAu精加工镀层的传输线,成品率是相当的。
精加工镀层 成品率
NiAu(5.5um镍) 99.36%
NiPdAu(6um镍) 96.86%
NiPdAu(0.1um镍) 98.90%
表4-不同的精加工镀层的成品率
功率放大器可以基于度量数目来评价,所述度量例如邻信道功率比(ACPR)、功率附加效率(PAE)、质量因数(FOM)等,或其任意组合。ACPR是一种评估功率放大器的线性度的度量。PAE是一种评估功率放大器的功率效率的度量。比如,较低的PAE可以降低例如包括功率放大器的移动电话的电子设备的电池寿命。FOM是用于特征化功率放大器的整体质量的一种方法。
图4A和4B分别是用于对应于三种传输线的高功率、高频率操作的模块20的功率放大器的ACPR和PAE的图。表5总结了来自图4A和4B的一些数据。
Figure BDA0000497484840000201
表5-FOM高功率、高频率
图4C和4D分别是用于对应于三种传输线的高功率、低频率操作的模块20的功率放大器的ACPR和PAE的图。表6总结了来自图4C和4D的一些数据。
Figure BDA0000497484840000211
表6-FOM高功率、低频率
表5和6中的数据指出,具有有着0.1um的厚度的镍的NiPdAu精加工镀层的传输线在测试的传输线中具有最好的FOM。表5中的数据指出,具有有着0.1um的厚度的镍的NiPdAu精加工镀层的传输线的平均FOM比作为比较的具有NiAu镀层的传输线的平均FOM好0.35,比作为比较的具有有着6um的镍厚度的NiPdAu镀层的传输线的平均FOM好2.42。表6中的数据指出,具有有着0.1um的厚度的镍的NiPdAu精加工镀层的传输线的平均FOM比作为比较的具有NiAu镀层的传输线的平均FOM好2.27,比作为比较的具有有着6um的镍厚度的NiPdAu镀层的传输线的平均FOM好1.34。
表7总结了对于测试的三种传输线模块20的高功率静态集电极电流IQCC的数据。所述数据指出包括每一种传输线的模块具有类似的DC性能。
表7-DC性能
表8总结了对应于测试的三种传输线的模块20中的功率放大器的高功率、高频率增益的数据。表8中的数据指出,模块中利用具有有着0.1um的厚度的镍的NiPdAu精加工镀层的传输线的功率放大器具有最低介入损耗,因为这些功率放大器具有最高的平均增益。
精加工镀层 n= 平均增益 Delta增益
NiAu(5.5um镍) 469 28.65 ---
NiPdAu(6um镍) 492 28.47 -0.18
NiPdAu(0.1um镍) 451 28.77 0.12
表8-增益/介入损耗
通过RF传输线耦合的示例部件
图5是经由图1A的传输线1彼此耦合的两种射频(RF)部件的示意性方块图。图6A-6F是可以经由图1A的传输线1彼此电耦合的多种部件的示意性方块图。所图解示出的部件可以耦合到如结合图3所描述的包括例如在此描述的基板的特征的任意组合的基板22。作为一个示例,基板22可以具有精加工镀层。替代地或附加地,各种部件可以包括在移动设备中,例如参考图7描述的移动设备101。
如图5所示,传输线1可以将第一RF部件52电耦合到第二RF部件54。第一RF部件52可以包括任意合适的电路元件,所述电路元件配置用于传输RF信号、接收RF信号、处理RF信号、调整RF信号等,或其任意组合。类似地,第二RF部件54可以包括任意合适的电路元件,所述电路元件配置用于传输RF信号、接收RF信号、处理RF信号、调整RF信号等,或其任意组合。RF部件的非限定性示例包括功率放大器、RF开关、滤波器和天线。
如图6A和6B图解示出的,功率放大器105可以具有电耦合到包括在基板22上的传输线1的输出。例如,功率放大器105的输出可以引线接合到传输线1。在图6A中示出的实现中,传输线1被配置用于将功率放大器105的输出传送到RF开关56。RF开关56可以是被配置用于当其接通时传递RF信号和当其断开时阻断RF信号的任意合适的开关。在图6B中所示的实现中,传输线1被配置用于将功率放大器105的输出传输到滤波器58。滤波器58可以是被配置用于滤波RF信号的任意合适的滤波器。例如,滤波器58可以是低通滤波器、带通滤波器或高通滤波器。
如图6C和6D中图解示出的,RF开关56可以具有电耦合到包括在基板22上的传输线1的输出。例如,RF开关56的输出可以引线接合到传输线1。在图6C中所示的实现中,传输线1被配置用于将RF开关56的输出传输到天线104。在图6D中所示的实现中,传输线1被配置用于将RF开关56的输出传输到滤波器58。
如图6E和6F中图解示出的,滤波器58可以具有电耦合到包括在基板22上的传输线1的输出。例如,滤波器58的输出可以引线接合到传输线1。在图6E中所示的实现中,传输线1被配置用于将滤波器58的输出传输到RF开关56。在图6F所示的实现中,传输线1被配置用于将滤波器58的输出传输到天线104。
移动设备
在此描述的任意系统、方法和装置可以在各种电子设备中实施,所述电子设备例如移动设备,其也可以被称为无线设备。图7是包括图1A的传输线的示例移动设备101的示意性方块图。移动设备101的示例包括(但不限于)蜂窝电话(例如,智能电话)、膝上型电脑、平板电脑、个人数字助理(PDA)、电子书阅读器和便携式数字媒体播放器。例如,移动设备101可以是多频带和/或多模设备,诸如被配置用于使用例如全球移动通信系统(GSM)、码分多址(CDMA)、3G、4G和/或长期演进(LTE)进行通信的多频带/多模移动电话。
在某些实施例中,移动设备101可以包括切换部件102、收发机部件103、天线104、功率放大器105、控制部件106、计算机可读取介质107、处理器108、电池109和供电控制块110中的一个或多个。此处描述的任意传输线1可以在移动设备101中的各个位置处实施。例如,如图7中图解说明的,传输线1可以将功率放大器105的输出电连接到切换部件102和/或将切换部件102电连接到天线104。
收发机部件103可以产生RF信号以经由天线104传输。此外,收发机部件103可以从天线104接收输入RF信号。
应该理解,与RF信号的传输和接收相关联的各种功能可以通过在图7中集体地表示为收发机103的一个或多个部件来实现。例如,单个部件可以被配置用于提供传输和接收功能两者。在另一个示例中,传输和接收功能可以通过分开的部件来提供。
类似地,应该理解,与RF信号的传输和接收相关联的各个功能可以通过在图7中集体地表示为天线104的一个或多个部件来实现。例如,单个天线可以被配置用于提供传输和接收功能两者。在另一个示例中,传输和接收功能可以通过分开的天线来提供。在再一个示例中,与移动设备101相关联的不同频带可以由不同的天线来提供。
在图7中,来自收发机103的一个或多个输出信号被描述为经由一条或多条传输路径被提供给天线104。在所示示例中,不同的传输路径可以代表与不同频带和/或不同功率输出相关联的输出路径。例如,所示的两个示例功率放大器105可以代表与不同功率输出配置(例如低功率输出和高功率输出)相关联的放大器,和/或与不同频带相关联的放大器。
在图7中,来自天线104的一个或多个检测到的信号被描述为经由一条或多条接收路径被提供给收发机103。在所示示例中,不同的接收路径可以代表与不同频带相关联的路径。例如,所示的四条示例路径可以代表一些移动设备101配备的四频带能力。
为了有助于在接收和传输路径之间的切换,切换部件102可以被配置用于将天线104电连接到所选择的传输或接收路径。因此,切换部件102可以提供多种与移动设备101的操作相关联的切换功能。在某些实施例中,切换部件102可以包括多个开关,其被配置用于提供与例如不同频带之间的切换、不同功率模式之间的切换、传输和接收模式之间的切换或其一些组合相关联的功能。切换部件102还可以被配置用于提供额外的功能,包括信号滤波。例如,切换部件102可以包括一个或多个双工器。
移动设备101可以包括一个或多个功率放大器105。RF功率放大器可以用于升高具有相对低功率的RF信号的功率。其后,升压的RF的信号可以被用于各种目的,包括驱动发射机的天线。功率放大器105可以包括在例如移动电话的电子设备之内,以放大RF信号用于传输。例如,在具有用于在3G和/或4G通信标准下进行通讯的架构的移动电话中,功率放大器可以用于放大RF信号。可以期望管理RF信号的放大,因为期望的传输功率电平可以取决于用户距离基站和/或移动环境有多远。也可以应用功率放大器以帮助随着时间调整RF信号的功率电平,从而防止在分配的接收时隙期间来自传输的信号干扰。功率放大器模块可以包括一个或多个功率放大器。
图7示出在某些实施例中,可以提供控制部件106,且这样的部件可以包括配置用于提供与切换部件102、功率放大器105、供电控制110和/或其它操作部件相关联的各种控制功能的电路。
在某些实施例中,处理器108可以被配置用于有助于实现在此描述的各种功能。与在此描述的任意部件的操作相关联的计算机程序指令可以被存储到计算机可读存储器107中,其可以指引处理器108,从而存储在计算机可读存储器中的指令产生包括执行在此描述的移动设备、模块等的各种操作特征的指令的制品。
图解示出的移动设备101还包括供电控制块110,其可以被用于向一个或多个功率放大器105提供电力供应。例如,供电控制块110可以包括一个DC-DC转换器。然而,在某些实施例中,供电控制块110可以包括其它块,诸如,例如被配置用于基于要放大的RF信号的包络来改变提供给功率放大器105的供应电压的包络跟踪器。
供电控制块110可以被电连接到电池109,并且供电控制块110可以被配置用于基于DC-DC转换器的输出电压来改变提供给功率放大器105的电压。电池109可以是用于在移动设备101中使用的任何适合的电池,包括,例如锂离子电池。利用用于传输路径的、包括由例如镍的材料制成的且具有小于所述材料在RF范围内的频率处的透入深度的厚度的扩散阻挡层的传输线1,可以降低电池109的功率消耗和/或改善信号质量,从而改善移动设备101的性能。
应用
上述实施例中的一些提供了与包括功率放大器的模块和/或电子设备(例如移动电话)有关的示例。然而,这些实施例的原理和优点可以被用于有高性能RF传输线需要的任何其它系统或装置。
实施本公开的一个或多个方面的系统可以在各种电子设备中实现。所述电子设备的示例可以包括(但是不限于)消费者电子产品、消费者电子产品的部件、电子测试设备等。更具体地说,被配置用于实现本公开的一个或多个方面的电子设备可以包括(但是不限于)RF传输设备、具有功率放大器的任意便携式设备、移动电话(例如,智能手机)、电话、基站、飞蜂窝(femtocell)、雷达、被配置用于根据WiFi和/或蓝牙标准进行通讯的设备、电视机、计算机显示器、计算机、手持计算机、平板计算机、膝上型计算机、个人数字助理(PDA)、微波炉、冰箱、汽车、立体声系统、DVD播放器、CD播放器、VCR、MP3播放器、收音机、摄像机、照相机、数码照相机、便携存储器芯片、洗衣机、干衣机,洗衣机/干衣机、复印机、传真机、扫描仪、多功能外设、腕表、钟等等。消费者电子产品的部件可以包括具有RF传输线的多芯片模块、功率放大器模块、包含有RF传输线的集成电路、包含有RF传输线的基板等,或其任意的组合。此外,电子设备的其它示例还可以包括(但是不限于)存储器芯片、存储器模块、光网络或其它通讯网络的电路、以及盘驱动器电路。此外,电子设备可以包括未完成的产品。
结论
除非上下文清楚地另外要求,贯穿说明书和权利要求,词语“包括”和“包含”等应解释为包含性的含义,而非排他性或穷举性的含义;也就是说,解释为“包括,但不限于”的含义。如这里通常使用的,词语“耦合”、“连接”等指两个或多个元件可以直接连接或通过一个或多个中间元件连接。此外,当在本申请中使用时,词语“这里”、“上面”、“下面”和类似意思的词语应指代本申请整体,而非本申请的任何特定部分。如上下文允许,上面的具体实施方式中的、使用单数或复数的词语也可以分别包括复数或单数。词语“或”参考两个或多个项的列表时,该词语覆盖该词语的全部下列解释:列表中的任何项,列表中的全部项以及列表中的项的任何组合。此处提供的所有数值意图包括测量误差内的类似值。
此外,除非另有具体说明,或如使用的在上下文内另有理解,这里使用的条件语言,例如尤其是“可以”、“能够”、“可能”、“等”、“例如”、“诸如”等通常意图传达某些实施例包括而其他实施例不包括某些特征、元件和/或状态。因此,不论是否有作者输入或提示,这种条件语言通常不意图暗示特征、元件和/或状态以任何方式为一个或多个实施例所需,或一个或多个实施例必须包括用于决定这些特征、元件和/或状态是否包括在任何特定实施例中或要在任何特定实施例中进行的逻辑。
实施例的上面的详细描述不意图是穷举性的或将本发明限制为上面公开的精确形式。虽然为了说明的目的在上面描述了本发明的具体实施例和示例,例如,虽然以给定顺序呈现处理或方框,替换实施例可以以不同顺序进行具有动作的例程,或采用具有方框的系统,并且可以删除、移动、添加、细分、组合和/或修改一些处理或方框。可以以各种不同方式实现这些处理或方框中的每一个。此外,虽然处理或方框有时被示出为串行进行,可替换地,这些处理或方框可以并行进行,或可以在不同时间进行。
这里提供的本发明的教导可以应用于其他系统,不一定是上面描述的系统。可以结合上面描述的各种实施例的元件和动作以提供进一步的实施例。
虽然已描述了本发明的某些实施例,但是这些实施例仅通过示例呈现,并且不意图限制本公开的范围。例如,如相关领域中的技术人员将认识到的,各种等价修改可能在本发明的范围内。此外,上面描述的各个实施例的元素和动作可以被组合以提供更多的实施例。实际上,这里描述的方法、系统、装置和制品可以以各种其他形式实施;此外,可以做出这里描述的方法、系统、装置和制品的形式的各种省略、替代和改变,而不背离本公开的精神。所附权利要求及其等效物意图覆盖将落入本公开的范围和精神内的这种形式或修改。

Claims (78)

1.一种模块,包括:
基板,包含导体和传输线,所述传输线具有接合层、阻挡层、扩散阻挡层和导电层,所述接合层具有配置用于与所述导体接合的接合表面,所述阻挡层和扩散阻挡层配置用于防止污染物进入所述接合层,所述扩散阻挡层具有足够小的厚度,以便允许来自所述导体的RF信号穿透到达导电层;
耦合到所述基板的第一RF部件,该第一RF部件配置为产生RF信号;以及
耦合到所述基板的第二RF部件,该第二RF部件配置为经由所述传输线从第一部件接收RF信号。
2.根据权利要求1所述的模块,其中所述基板是层压基板。
3.根据权利要求2所述的模块,其中所述基板包含精加工镀层,该精加工镀层包含所述接合层、所述阻挡层和所述扩散阻挡层。
4.根据权利要求1所述的模块,其中所述扩散阻挡层包含镍。
5.根据权利要求4所述的模块,其中所述扩散阻挡层的厚度不大于大约0.5um。
6.根据权利要求4所述的模块,其中所述扩散阻挡层的厚度不大于大约0.35um。
7.根据权利要求4所述的模块,其中所述扩散阻挡层的厚度不大于大约0.75um。
8.根据权利要求4所述的模块,其中所述扩散阻挡层的厚度小于镍在大约0.45GHz的频率处的透入深度。
9.根据权利要求4所述的模块,其中所述导电层包含铜。
10.根据权利要求1所述的模块,其中所述扩散阻挡层的厚度小于形成扩散阻挡层的材料在大约0.45GHz的频率处的透入深度。
11.根据权利要求1所述的模块,其中所述接合层被配置用于引线接合并且所述导体经由引线接合电耦合到所述接合层。
12.根据权利要求1所述的模块,其中基本上所有RF信号在导电层内从第一RF部件传播到第二RF部件。
13.根据权利要求1所述的模块,其中所述第一RF部件包含功率放大器。
14.根据权利要求13所述的模块,其中所述第二RF部件包含滤波器或RF开关中的至少一个。
15.根据权利要求1所述的模块,其中所述第一RF部件包含RF开关。
16.根据权利要求15所述的模块,其中所述第二RF部件包含功率放大器或滤波器中的至少一个。
17.根据权利要求1所述的模块,其中所述第一RF部件包含滤波器。
18.根据权利要求17所述的模块,其中所述第二RF部件包含功率放大器或RF开关中的至少一个。
19.根据权利要求1所述的模块,其中所述阻挡层位于接合层和扩散阻挡层之间。
20.一种配置为在RF电路中使用的射频(RF)传输线,所述RF传输线包括:
具有接合表面的接合层,该结合层被配置为接收RF信号;
紧邻接合层的阻挡层;
紧邻阻挡层的扩散阻挡层,所述扩散阻挡层和阻挡层被配置为防止污染物进入接合层;以及
紧邻扩散阻挡层的导电层,所述扩散阻挡层具有允许所接收的RF信号穿透扩散阻挡层到达导电层的厚度。
21.根据权利要求20所述的RF传输线,其中所述接合层、阻挡层和扩散阻挡层包含在精加工镀层中。
22.根据权利要求20所述的RF传输线,其中所述接合层包含金。
23.根据权利要求20所述的RF传输线,其中所述接合表面被配置用于引线接合。
24.根据权利要求20所述的RF传输线,其中所述阻挡层包含钯。
25.根据权利要求20所述的RF传输线,其中所述扩散阻挡层包含镍。
26.根据权利要求25所述的RF传输线,其中所述扩散阻挡层的厚度在从大约0.04um到大约0.7um的范围内。
27.根据权利要求25所述的RF传输线,其中所述扩散阻挡层的厚度不大于大约0.5um。
28.根据权利要求25所述的RF传输线,其中所述扩散阻挡层的厚度不大于大约0.35um。
29.根据权利要求25所述的RF传输线,其中所述扩散阻挡层的厚度不大于大约0.75um。
30.根据权利要求25所述的RF传输线,其中所述扩散阻挡层的厚度小于镍在大约0.45GHz的频率处的透入深度。
31.根据权利要求20所述的RF传输线,其中所述扩散阻挡的厚度小于扩散阻挡层在大约0.45GHz的频率处的透入深度。
32.根据权利要求20所述的RF传输线,其中所述导电层包含铜、铝或银的一种或多种。
33.根据权利要求20所述的RF传输线,其中所述导电层包含铜。
34.根据权利要求20所述的RF传输线,其中基本上所有接收的RF信号在导电层中传播。
35.根据权利要求20所述的RF传输线,其中所述接合层是金,阻挡层是钯,以及扩散阻挡层是镍。
36.根据权利要求35所述的RF传输线,其中所述扩散阻挡层的厚度在从大约0.04um到大约0.7um的范围内。
37.根据权利要求35所述的RF传输线,其中所述扩散阻挡层的厚度不大于约0.5um。
38.根据权利要求35所述的RF传输线,其中所述扩散阻挡层的厚度不大于大约0.35um。
39.根据权利要求35所述的RF传输线,其中所述扩散阻挡层的厚度不大于大约0.75um。
40.一种配置为在RF传输线中使用的扩散阻挡层,所述扩散阻挡层包括一种材料并且具有厚度,所述扩散阻挡层的厚度足够小,以便允许RF信号穿透扩散阻挡层。
41.根据权利要求40所述的扩散阻挡层,其中所述材料包含镍。
42.根据权利要求41所述的扩散阻挡层,其中所述扩散阻挡层的厚度在从大约0.04um到大约0.7um的范围内。
43.根据权利要求41所述的扩散阻挡层,其中所述扩散阻挡层的厚度不大于大约0.5um。
44.根据权利要求41所述的扩散阻挡层,其中所述扩散阻挡层的厚度不大于大约0.35um。
45.根据权利要求41所述的扩散阻挡层,其中所述扩散阻挡层的厚度不大于大约0.75um。
46.根据权利要求41所述的扩散阻挡层,其中所述扩散阻挡层的厚度小于镍在大约0.45GHz的频率处的透入深度。
47.根据权利要求40所述的扩散阻挡层,其中所述扩散阻挡层的厚度小于所述材料在大约0.45GHz的频率处的透入深度。
48.根据权利要求40所述的扩散阻挡层,其中基本上所有穿透扩散阻挡层的RF信号在紧邻扩散阻挡层的导电层中行进。
49.一种移动设备,包括:
传输线,该传输线包含具有接合表面的接合层、紧邻接合层的阻挡层、紧邻阻挡层的扩散阻挡层以及紧邻扩散阻挡层的导电层,所述阻挡层和扩散阻挡层配置用于防止来自导电层的导电材料进入接合层,所述扩散阻挡层具有足够小的厚度,以便允许RF信号穿透扩散阻挡层并在导电层中传播;
耦合至传输线的天线,所述天线被配置用于传输RF输出信号;和
电池,所述传输线被配置用于延长电池放电的时间量。
50.根据权利要求49所述的移动设备,进一步包含具有耦合到传输线的输出的功率放大器。
51.根据权利要求50所述的移动设备,其中所述功率放大器的输出经由引线接合耦合到传输线。
52.根据权利要求50所述的移动设备,其中所述传输线被配置为将RF信号从功率放大器传输到RF开关。
53.根据权利要求50所述的移动设备,其中所述传输线被配置为将RF信号从功率放大器传输到滤波器。
54.根据权利要求49所述的移动设备,进一步包含具有耦合到传输线的输出的滤波器。
55.根据权利要求54所述的移动设备,其中所述传输线被配置为将RF信号从滤波器传输到RF开关。
56.根据权利要求54所述的移动设备,其中所述传输线被配置为将RF信号从滤波器传输到天线。
57.根据权利要求49所述的移动设备,进一步包含具有耦合到传输线的输出的RF开关。
58.根据权利要求57所述的移动设备,其中所述传输线被配置为将RF信号从RF开关传输到天线。
59.根据权利要求57所述的移动设备,其中所述传输线被配置为将RF信号从RF开关传输到滤波器。
60.根据权利要求49所述的移动设备,其中所述扩散阻挡层包含镍。
61.根据权利要求60所述的移动设备,其中所述扩散阻挡层的厚度在从大约0.04um到大约0.7um的范围内。
62.根据权利要求60所述的移动设备,其中所述扩散阻挡层的厚度不大于大约0.5um。
63.根据权利要求60所述的移动设备,其中所述扩散阻挡层的厚度不大于大约0.35um。
64.根据权利要求60所述的移动设备,其中所述扩散阻挡层的厚度不大于大约0.75um。
65.根据权利要求60所述的移动设备,其中所述扩散阻挡层的厚度小于镍在大约0.45GHz的频率处的透入深度。
66.根据权利要求49所述的移动设备,其中所述扩散阻挡层的厚度小于形成扩散阻挡层的材料在大约0.45GHz的频率处的透入深度。
67.根据权利要求49所述的移动设备,其中基本上所有的RF信号在传输线的导电层中行进。
68.根据权利要求49所述的移动设备,其中所述接合层、阻挡层和扩散阻挡层包含在精加工镀层之中。
69.一种RF传输线,包括导电层和导电层上的精加工镀层,所述精加工镀层包含金层、紧邻金层的钯层以及紧邻钯层的镍层,所述镍层具有允许在金层接收的RF信号穿透镍层并在导电层中传播的厚度。
70.根据权利要求69所述的RF传输线,其中所述金层被配置用于引线接合。
71.根据权利要求69所述的RF传输线,其中所述镍层的厚度在从大约0.04um到大约0.7um的范围内。
72.根据权利要求69所述的RF传输线,其中所述镍层的厚度不大于大约0.5um。
73.根据权利要求69所述的RF传输线,其中所述镍层的厚度不大于大约0.35um。
74.根据权利要求69所述的RF传输线,其中所述镍层的厚度不大于大约0.75um。
75.根据权利要求69所述的RF传输线,其中所述镍层的厚度小于镍在大约0.45GHz的频率处的透入深度。
76.根据权利要求69所述的RF传输线,其中所述导电层包含铜、铝或银中的一种或多种。
77.根据权利要求69所述的RF传输线,其中所述导电层包含铜。
78.根据权利要求69所述的RF传输线,其中基本上所有RF信号在导电层中传播。
CN201280053027.6A 2011-09-02 2012-05-07 用于高性能射频应用的传输线 Active CN103907194B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161530915P 2011-09-02 2011-09-02
US61/530,915 2011-09-02
US201161531553P 2011-09-06 2011-09-06
US61/531,553 2011-09-06
US201161561742P 2011-11-18 2011-11-18
US61/561,742 2011-11-18
PCT/US2012/036836 WO2013032545A1 (en) 2011-09-02 2012-05-07 Transmission line for high performance radio frequency applications

Publications (2)

Publication Number Publication Date
CN103907194A true CN103907194A (zh) 2014-07-02
CN103907194B CN103907194B (zh) 2017-08-04

Family

ID=47752736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280053027.6A Active CN103907194B (zh) 2011-09-02 2012-05-07 用于高性能射频应用的传输线

Country Status (5)

Country Link
US (6) US9679869B2 (zh)
KR (1) KR101740102B1 (zh)
CN (1) CN103907194B (zh)
TW (2) TWI641298B (zh)
WO (1) WO2013032545A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041472B2 (en) 2012-06-14 2015-05-26 Skyworks Solutions, Inc. Power amplifier modules including related systems, devices, and methods
US11984423B2 (en) 2011-09-02 2024-05-14 Skyworks Solutions, Inc. Radio frequency transmission line with finish plating on conductive layer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526185B2 (en) * 2014-04-08 2016-12-20 Finisar Corporation Hybrid PCB with multi-unreinforced laminate
CN105375968B (zh) * 2014-08-17 2020-05-22 天工方案公司 进行2g放大的电路、方法和无线装置
US20160064351A1 (en) * 2014-08-30 2016-03-03 Skyworks Solutions, Inc. Wire bonding using elevated bumps for securing bonds
US9456490B2 (en) * 2014-08-30 2016-09-27 Skyworks Solutions, Inc. Signal path in radio-frequency module having laminate substrate
US9893684B2 (en) * 2015-02-15 2018-02-13 Skyworks Solutions, Inc. Radio-frequency power amplifiers driven by boost converter
JP2016149743A (ja) 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
WO2020123248A1 (en) * 2018-12-10 2020-06-18 The University Of Vermont And State Agriculture College On-chip antenna test circuit for high freqency commmunication and sensing systems
US11082021B2 (en) 2019-03-06 2021-08-03 Skyworks Solutions, Inc. Advanced gain shaping for envelope tracking power amplifiers
CN112153716B (zh) * 2019-09-24 2024-02-06 中兴通讯股份有限公司 一种传输路径选择方法及装置、存储介质
WO2021061851A1 (en) 2019-09-27 2021-04-01 Skyworks Solutions, Inc. Power amplifier bias modulation for low bandwidth envelope tracking
US11855595B2 (en) 2020-06-05 2023-12-26 Skyworks Solutions, Inc. Composite cascode power amplifiers for envelope tracking applications
US11482975B2 (en) 2020-06-05 2022-10-25 Skyworks Solutions, Inc. Power amplifiers with adaptive bias for envelope tracking applications
WO2024196400A1 (en) * 2023-03-20 2024-09-26 Microchip Technology Incorporated Interposer with lines having portions separated by barrier layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104207A1 (en) * 2003-07-01 2005-05-19 Dean Timothy B. Corrosion-resistant bond pad and integrated device
JP2007031826A (ja) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd 接続用端子、およびこれを有する半導体搭載用基板
CN1953175A (zh) * 2005-10-20 2007-04-25 松下电器产业株式会社 合成射频器件和用于制造该器件的方法
CN101595636A (zh) * 2007-01-30 2009-12-02 株式会社瑞萨科技 Rf放大装置
US20100178879A1 (en) * 2006-02-28 2010-07-15 Renesas Technology Corp. Rf power module

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721746A (en) 1971-10-01 1973-03-20 Motorola Inc Shielding techniques for r.f. circuitry
US4151637A (en) 1978-02-07 1979-05-01 Universal Instruments Corporation Dip component lead cut and clinch apparatus
US4241497A (en) 1979-01-11 1980-12-30 The Singer Company P.C. Board lead trimming method
US4245385A (en) 1979-07-09 1981-01-20 Universal Instruments Corporation Radial lead component insertion machine
US4447945A (en) 1980-05-01 1984-05-15 Contact Systems, Inc. Cut and clinch mechanism for use in electrical component assembly apparatus
GB8510621D0 (en) 1985-04-26 1985-06-05 Pickering Electronics Ltd Potted electronic components
FR2598258B1 (fr) 1986-04-30 1988-10-07 Aix Les Bains Composants Procede d'encapsulation de circuits integres.
JPS63185177A (ja) 1987-01-27 1988-07-30 Sony Corp 周波数変調回路
JPS63224358A (ja) 1987-03-13 1988-09-19 Toshiba Corp 高周波用パワ−増幅器
JPH01125856A (ja) 1987-11-11 1989-05-18 Hitachi Ltd 半導体装置
JP2667863B2 (ja) 1988-03-23 1997-10-27 株式会社日立製作所 バイポーラトランジスタの製造方法
JPH01264261A (ja) 1988-04-15 1989-10-20 Toshiba Corp ヘテロ接合バイポーラトランジスタ
JPH03165058A (ja) 1989-11-24 1991-07-17 Mitsubishi Electric Corp 半導体装置
US5049979A (en) 1990-06-18 1991-09-17 Microelectronics And Computer Technology Corporation Combined flat capacitor and tab integrated circuit chip and method
JPH0458596A (ja) 1990-06-28 1992-02-25 Nippon Telegr & Teleph Corp <Ntt> 電磁シールド方法
US5095285A (en) 1990-08-31 1992-03-10 Texas Instruments Incorporated Monolithically realizable harmonic trapping circuit
US5166772A (en) 1991-02-22 1992-11-24 Motorola, Inc. Transfer molded semiconductor device package with integral shield
US5266819A (en) 1991-05-13 1993-11-30 Rockwell International Corporation Self-aligned gallium arsenide/aluminum gallium arsenide collector-up heterojunction bipolar transistors capable of microwave applications and method
US5166864A (en) 1991-05-17 1992-11-24 Hughes Aircraft Company Protected circuit card assembly and process
GB9126616D0 (en) 1991-12-16 1992-02-12 Texas Instruments Ltd Improvements in or relating to amplifiers
AU3616593A (en) 1992-02-25 1993-09-13 Microunity Systems Engineering, Inc. Bipolar junction transistor exhibiting suppressed kirk effect
US5303412A (en) 1992-03-13 1994-04-12 Massachusetts Institute Of Technology Composite direct digital synthesizer
FR2693770B1 (fr) 1992-07-15 1994-10-14 Europ Propulsion Moteur à plasma à dérive fermée d'électrons.
US5268315A (en) 1992-09-04 1993-12-07 Tektronix, Inc. Implant-free heterojunction bioplar transistor integrated circuit process
US5378922A (en) 1992-09-30 1995-01-03 Rockwell International Corporation HBT with semiconductor ballasting
US5300895A (en) 1992-10-01 1994-04-05 Texas Instruments Incorporated Method for terminating harmonics of transistors
US5249728A (en) 1993-03-10 1993-10-05 Atmel Corporation Bumpless bonding process having multilayer metallization
US5355016A (en) 1993-05-03 1994-10-11 Motorola, Inc. Shielded EPROM package
JPH0746007A (ja) 1993-07-28 1995-02-14 Matsushita Electric Ind Co Ltd 電力用基板および高周波用電力増幅器
US5428508A (en) 1994-04-29 1995-06-27 Motorola, Inc. Method for providing electromagnetic shielding of an electrical circuit
US5445976A (en) 1994-08-09 1995-08-29 Texas Instruments Incorporated Method for producing bipolar transistor having reduced base-collector capacitance
US5521406A (en) 1994-08-31 1996-05-28 Texas Instruments Incorporated Integrated circuit with improved thermal impedance
US5581115A (en) 1994-10-07 1996-12-03 National Semiconductor Corporation Bipolar transistors using isolated selective doping to improve performance characteristics
JPH08222885A (ja) 1995-02-16 1996-08-30 Sumise Device:Kk パッケージの電磁遮蔽膜及びその成形方法
JP3368451B2 (ja) 1995-03-17 2003-01-20 富士通株式会社 回路基板の製造方法と回路検査装置
US6242842B1 (en) 1996-12-16 2001-06-05 Siemens Matsushita Components Gmbh & Co. Kg Electrical component, in particular saw component operating with surface acoustic waves, and a method for its production
JPH09213730A (ja) 1996-02-01 1997-08-15 Matsushita Electron Corp 高周波用モジュール基板およびそれを用いた高周波電力増幅モジュール
US5748042A (en) 1996-07-26 1998-05-05 Motorola, Inc. Method for altering a difference frequency signal and amplifier circuit thereof
US6108726A (en) 1996-09-13 2000-08-22 Advanced Micro Devices. Inc. Reducing the pin count within a switching element through the use of a multiplexer
SE511426C2 (sv) 1996-10-28 1999-09-27 Ericsson Telefon Ab L M Anordning och förfarande vid avskärmning av elektronik
US6150193A (en) 1996-10-31 2000-11-21 Amkor Technology, Inc. RF shielded device
US5834975A (en) 1997-03-12 1998-11-10 Rockwell Science Center, Llc Integrated variable gain power amplifier and method
US6448648B1 (en) 1997-03-27 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Metalization of electronic semiconductor devices
JP3462760B2 (ja) 1997-09-04 2003-11-05 三洋電機株式会社 分布定数回路、高周波回路、バイアス印加回路およびインピーダンス調整方法
US6028011A (en) * 1997-10-13 2000-02-22 Matsushita Electric Industrial Co., Ltd. Method of forming electric pad of semiconductor device and method of forming solder bump
US6566596B1 (en) 1997-12-29 2003-05-20 Intel Corporation Magnetic and electric shielding of on-board devices
US6350951B1 (en) 1997-12-29 2002-02-26 Intel Corporation Electric shielding of on-board devices
TW401724B (en) 1998-01-27 2000-08-11 Hitachi Cable Wiring board, semiconductor, electronic device, and circuit board for electronic parts
US6075995A (en) 1998-01-30 2000-06-13 Conexant Systems, Inc. Amplifier module with two power amplifiers for dual band cellular phones
US6759597B1 (en) 1998-02-02 2004-07-06 International Business Machines Corporation Wire bonding to dual metal covered pad surfaces
JP3594482B2 (ja) 1998-04-02 2004-12-02 三菱電機株式会社 ヘテロ接合バイポーラトランジスタ
KR20010106398A (ko) 1998-07-08 2001-11-29 가나이 쓰토무 고주파 전력 증폭기 모듈
US6586782B1 (en) 1998-07-30 2003-07-01 Skyworks Solutions, Inc. Transistor layout having a heat dissipative emitter
US6236071B1 (en) 1998-07-30 2001-05-22 Conexant Systems, Inc. Transistor having a novel layout and an emitter having more than one feed point
US6137693A (en) 1998-07-31 2000-10-24 Agilent Technologies Inc. High-frequency electronic package with arbitrarily-shaped interconnects and integral shielding
US6233440B1 (en) 1998-08-05 2001-05-15 Triquint Semiconductor, Inc. RF power amplifier with variable bias current
US6092281A (en) 1998-08-28 2000-07-25 Amkor Technology, Inc. Electromagnetic interference shield driver and method
AU2341900A (en) 1998-09-03 2000-04-10 Lockheed Martin Corporation Automated fuel tank assembly system and method
US6202294B1 (en) 1998-09-25 2001-03-20 Lucent Technologies Inc. EMI/RFI shield assembly cover removal tool
JP3888785B2 (ja) 1998-09-28 2007-03-07 三菱電機株式会社 高周波電力増幅器
JP3275851B2 (ja) 1998-10-13 2002-04-22 松下電器産業株式会社 高周波集積回路
US6885275B1 (en) 1998-11-12 2005-04-26 Broadcom Corporation Multi-track integrated spiral inductor
US6275687B1 (en) 1998-11-30 2001-08-14 Conexant Systems, Inc. Apparatus and method for implementing a low-noise amplifier and mixer
US6455354B1 (en) 1998-12-30 2002-09-24 Micron Technology, Inc. Method of fabricating tape attachment chip-on-board assemblies
US6201454B1 (en) * 1999-03-30 2001-03-13 The Whitaker Corporation Compensation structure for a bond wire at high frequency operation
JP2000307289A (ja) 1999-04-19 2000-11-02 Nec Corp 電子部品組立体
US6362089B1 (en) * 1999-04-19 2002-03-26 Motorola, Inc. Method for processing a semiconductor substrate having a copper surface disposed thereon and structure formed
US6563145B1 (en) 1999-04-19 2003-05-13 Chang Charles E Methods and apparatus for a composite collector double heterojunction bipolar transistor
US6194968B1 (en) 1999-05-10 2001-02-27 Tyco Electronics Logistics Ag Temperature and process compensating circuit and controller for an RF power amplifier
US7265618B1 (en) 2000-05-04 2007-09-04 Matsushita Electric Industrial Co., Ltd. RF power amplifier having high power-added efficiency
US6462436B1 (en) 1999-08-13 2002-10-08 Avaya Technology Corp. Economical packaging for EMI shields on PCB
JP2001127071A (ja) 1999-08-19 2001-05-11 Hitachi Ltd 半導体装置及びその製造方法
US6593658B2 (en) 1999-09-09 2003-07-15 Siliconware Precision Industries, Co., Ltd. Chip package capable of reducing moisture penetration
JP3859403B2 (ja) * 1999-09-22 2006-12-20 株式会社東芝 半導体装置及びその製造方法
US6534192B1 (en) 1999-09-24 2003-03-18 Lucent Technologies Inc. Multi-purpose finish for printed wiring boards and method of manufacture of such boards
FR2799337B1 (fr) * 1999-10-05 2002-01-11 St Microelectronics Sa Procede de realisation de connexions electriques sur la surface d'un boitier semi-conducteur a gouttes de connexion electrique
US20070176287A1 (en) 1999-11-05 2007-08-02 Crowley Sean T Thin integrated circuit device packages for improved radio frequency performance
JP2001177060A (ja) 1999-12-14 2001-06-29 Nec Corp モノリシック集積回路装置及びその製造方法
US6236274B1 (en) 2000-01-04 2001-05-22 Industrial Technology Research Institute Second harmonic terminations for high efficiency radio frequency dual-band power amplifier
US6601124B1 (en) 2000-02-14 2003-07-29 International Business Machines Corporation Universal interface for selectively coupling to a computer port type and method therefor
AU2001255693A1 (en) 2000-04-27 2001-11-12 En Jun Zhu Improved structure for a semiconductor device
US6956283B1 (en) 2000-05-16 2005-10-18 Peterson Kenneth A Encapsulants for protecting MEMS devices during post-packaging release etch
US6573599B1 (en) 2000-05-26 2003-06-03 Skyworks Solutions, Inc. Electrical contact for compound semiconductor device and method for forming same
TW455964B (en) 2000-07-18 2001-09-21 Siliconware Precision Industries Co Ltd Multi-chip module package structure with stacked chips
WO2002017333A1 (fr) 2000-08-18 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Cable protecteur, procede de fabrication d'un cable protecteur et dispositif d'eclairage a lampe a decharge comprenant un cable protecteur
US6757181B1 (en) 2000-08-22 2004-06-29 Skyworks Solutions, Inc. Molded shield structures and method for their fabrication
CN1168204C (zh) 2000-09-09 2004-09-22 王仲季 动态同步电压偏置功率放大器
US6858522B1 (en) 2000-09-28 2005-02-22 Skyworks Solutions, Inc. Electrical contact for compound semiconductor device and method for forming same
US6426881B1 (en) 2000-10-04 2002-07-30 Arthur A. Kurz Shielding arrangement for inter-component shielding in electronic devices
DE10152408A1 (de) 2000-10-25 2002-05-16 Matsushita Electric Ind Co Ltd System und Verfahren zur Bauteilmontage
US6750480B2 (en) 2000-11-27 2004-06-15 Kopin Corporation Bipolar transistor with lattice matched base layer
US6847060B2 (en) 2000-11-27 2005-01-25 Kopin Corporation Bipolar transistor with graded base layer
US7345327B2 (en) 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
US6577199B2 (en) 2000-12-07 2003-06-10 Ericsson, Inc. Harmonic matching network for a saturated amplifier
US6445069B1 (en) * 2001-01-22 2002-09-03 Flip Chip Technologies, L.L.C. Electroless Ni/Pd/Au metallization structure for copper interconnect substrate and method therefor
US7379475B2 (en) 2002-01-25 2008-05-27 Nvidia Corporation Communications processor
US7401163B2 (en) 2001-01-31 2008-07-15 Renesas Technology Corporation Data processing system and data processor
US6900383B2 (en) 2001-03-19 2005-05-31 Hewlett-Packard Development Company, L.P. Board-level EMI shield that adheres to and conforms with printed circuit board component and board surfaces
US7333778B2 (en) 2001-03-21 2008-02-19 Ericsson Inc. System and method for current-mode amplitude modulation
US6548364B2 (en) 2001-03-29 2003-04-15 Sharp Laboratories Of America, Inc. Self-aligned SiGe HBT BiCMOS on SOI substrate and method of fabricating the same
JP2002319589A (ja) 2001-04-20 2002-10-31 Hitachi Ltd 半導体装置およびこれを用いた電力増幅器
US6459104B1 (en) 2001-05-10 2002-10-01 Newport Fab Method for fabricating lateral PNP heterojunction bipolar transistor and related structure
WO2002096166A1 (en) 2001-05-18 2002-11-28 Corporation For National Research Initiatives Radio frequency microelectromechanical systems (mems) devices on low-temperature co-fired ceramic (ltcc) substrates
US6678513B2 (en) 2001-05-31 2004-01-13 Skyworks Solutions, Inc. Non-linear transistor circuits with thermal stability
US20030002271A1 (en) 2001-06-27 2003-01-02 Nokia Corporation Integrated EMC shield for integrated circuits and multiple chip modules
JP2003023239A (ja) 2001-07-05 2003-01-24 Sumitomo Electric Ind Ltd 回路基板とその製造方法及び高出力モジュール
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
JP2003051567A (ja) 2001-08-03 2003-02-21 Sony Corp 高周波モジュール用基板装置及びその製造方法、並びに高周波モジュール装置及びその製造方法
US6856007B2 (en) 2001-08-28 2005-02-15 Tessera, Inc. High-frequency chip packages
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
JP3507828B2 (ja) 2001-09-11 2004-03-15 シャープ株式会社 ヘテロ接合バイポーラトランジスタ及びその製造方法
US6750546B1 (en) 2001-11-05 2004-06-15 Skyworks Solutions, Inc. Flip-chip leadframe package
US6486549B1 (en) 2001-11-10 2002-11-26 Bridge Semiconductor Corporation Semiconductor module with encapsulant base
JP3674780B2 (ja) 2001-11-29 2005-07-20 ユーディナデバイス株式会社 高周波半導体装置
US6656809B2 (en) 2002-01-15 2003-12-02 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
US6797995B2 (en) 2002-02-14 2004-09-28 Rockwell Scientific Licensing, Llc Heterojunction bipolar transistor with InGaAs contact and etch stop layer for InP sub-collector
US6605825B1 (en) 2002-02-14 2003-08-12 Innovative Technology Licensing, Llc Bipolar transistor characterization apparatus with lateral test probe pads
TWI239578B (en) 2002-02-21 2005-09-11 Advanced Semiconductor Eng Manufacturing process of bump
US6621140B1 (en) 2002-02-25 2003-09-16 Rf Micro Devices, Inc. Leadframe inductors
JP2003249607A (ja) 2002-02-26 2003-09-05 Seiko Epson Corp 半導体装置及びその製造方法、回路基板並びに電子機器
CN100353544C (zh) 2002-03-21 2007-12-05 Nxp股份有限公司 功率放大器器件
TW538481B (en) 2002-06-04 2003-06-21 Univ Nat Cheng Kung InGaP/AlGaAs/GaAs hetero-junction bipolar transistor with zero conduction band discontinuity
US6806767B2 (en) 2002-07-09 2004-10-19 Anadigics, Inc. Power amplifier with load switching circuit
JP3663397B2 (ja) 2002-08-30 2005-06-22 株式会社東芝 高周波電力増幅器
KR100922423B1 (ko) 2002-09-06 2009-10-16 페어차일드코리아반도체 주식회사 바이폴라 트랜지스터 및 그 제조방법
US6731174B2 (en) 2002-09-12 2004-05-04 Motorola, Inc. Radio frequency power amplifier device
US6949776B2 (en) 2002-09-26 2005-09-27 Rockwell Scientific Licensing, Llc Heterojunction bipolar transistor with dielectric assisted planarized contacts and method for fabricating
US20040188712A1 (en) 2002-10-08 2004-09-30 Eic Corporation Heterojunction bipolar transistor having non-uniformly doped collector for improved safe-operating area
US6994901B1 (en) 2002-11-12 2006-02-07 Dana Corporation Heat shield having a fold-over edge crimp with variable width and method of making same
US6917188B2 (en) 2002-11-14 2005-07-12 Fyre Storm, Inc. Power converter circuitry and method
US7333788B2 (en) 2002-12-20 2008-02-19 Texas Instruments Incorporated Method for calibrating automatic gain control in wireless devices
TW200411871A (en) 2002-12-30 2004-07-01 Advanced Semiconductor Eng Thermal-enhance package and manufacturing method thereof
TW565009U (en) 2003-01-20 2003-12-01 Benq Corp Electronic module having ball grid array
TWI235469B (en) 2003-02-07 2005-07-01 Siliconware Precision Industries Co Ltd Thermally enhanced semiconductor package with EMI shielding
US6873043B2 (en) 2003-03-10 2005-03-29 Delphi Technologies, Inc. Electronic assembly having electrically-isolated heat-conductive structure
JP2004289640A (ja) 2003-03-24 2004-10-14 Ube Ind Ltd 半導体回路
KR100531373B1 (ko) 2003-03-28 2005-11-28 엘지전자 주식회사 전력 증폭기
US7443693B2 (en) 2003-04-15 2008-10-28 Wavezero, Inc. Electromagnetic interference shielding for a printed circuit board
DE60314844T2 (de) * 2003-05-07 2008-03-13 Harman Becker Automotive Systems Gmbh Verfahren und Vorrichtung zur Sprachausgabe, Datenträger mit Sprachdaten
US6797996B1 (en) 2003-05-27 2004-09-28 Matsushita Electric Industrial Co., Ltd. Compound semiconductor device and method for fabricating the same
US7038250B2 (en) 2003-05-28 2006-05-02 Kabushiki Kaisha Toshiba Semiconductor device suited for a high frequency amplifier
CN1810068A (zh) 2003-06-19 2006-07-26 波零公司 印刷电路板的emi吸收屏蔽
US6974776B2 (en) * 2003-07-01 2005-12-13 Freescale Semiconductor, Inc. Activation plate for electroless and immersion plating of integrated circuits
US20070220499A1 (en) 2003-07-23 2007-09-20 Silicon Laboratories Inc. USB tool stick with multiple processors
US6858887B1 (en) 2003-07-30 2005-02-22 Innovative Technology Licensing Llc BJT device configuration and fabrication method with reduced emitter width
US7170394B2 (en) 2003-07-31 2007-01-30 Agilent Technologies, Inc. Remote current sensing and communication over single pair of power feed wires
TW200518345A (en) 2003-08-08 2005-06-01 Renesas Tech Corp Semiconductor device
US7088009B2 (en) 2003-08-20 2006-08-08 Freescale Semiconductor, Inc. Wirebonded assemblage method and apparatus
US7030469B2 (en) 2003-09-25 2006-04-18 Freescale Semiconductor, Inc. Method of forming a semiconductor package and structure thereof
US7409200B2 (en) 2003-10-08 2008-08-05 Sige Semiconductor Inc. Module integration integrated circuits
JP2005143079A (ja) 2003-10-14 2005-06-02 Matsushita Electric Ind Co Ltd 高周波電力増幅器
US6906359B2 (en) 2003-10-22 2005-06-14 Skyworks Solutions, Inc. BiFET including a FET having increased linearity and manufacturability
CN1914791A (zh) 2003-12-05 2007-02-14 艾利森电话股份有限公司 单芯片功率放大器和包络调制器
US7145385B2 (en) 2003-12-05 2006-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Single chip power amplifier and envelope modulator
US7502601B2 (en) 2003-12-22 2009-03-10 Black Sand Technologies, Inc. Power amplifier with digital power control and associated methods
KR100586737B1 (ko) 2003-12-26 2006-06-08 한국전자통신연구원 SOI 기판 위에 구현된 NMOS 소자, PMOS 소자및 SiGe BiCMOS 소자 및 그 제조 방법
US7284170B2 (en) 2004-01-05 2007-10-16 Texas Instruments Incorporated JTAG circuit transferring data between devices on TMS terminals
JP2005217887A (ja) 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd 可変利得回路
US8159048B2 (en) 2004-01-30 2012-04-17 Triquint Semiconductor, Inc. Bipolar junction transistor geometry
US20080112151A1 (en) 2004-03-04 2008-05-15 Skyworks Solutions, Inc. Overmolded electronic module with an integrated electromagnetic shield using SMT shield wall components
US7198987B1 (en) 2004-03-04 2007-04-03 Skyworks Solutions, Inc. Overmolded semiconductor package with an integrated EMI and RFI shield
US8399972B2 (en) 2004-03-04 2013-03-19 Skyworks Solutions, Inc. Overmolded semiconductor package with a wirebond cage for EMI shielding
US20100253435A1 (en) 2004-03-18 2010-10-07 Ikuroh Ichitsubo Rf power amplifier circuit utilizing bondwires in impedance matching
JP2004248323A (ja) 2004-04-23 2004-09-02 Matsushita Electric Works Ltd テレビスイッチモジュールのアンプ回路
US6974724B2 (en) 2004-04-28 2005-12-13 Nokia Corporation Shielded laminated structure with embedded chips
US7902627B2 (en) 2004-06-03 2011-03-08 Silicon Laboratories Inc. Capacitive isolation circuitry with improved common mode detector
US7900065B2 (en) 2004-06-04 2011-03-01 Broadcom Corporation Method and system for monitoring module power status in a communication device
JP2006013566A (ja) 2004-06-22 2006-01-12 Renesas Technology Corp 高周波電力増幅用電子部品
US7687886B2 (en) 2004-08-19 2010-03-30 Microlink Devices, Inc. High on-state breakdown heterojunction bipolar transistor
EP2426785A2 (en) 2004-10-01 2012-03-07 L. Pierre De Rochemont Ceramic antenna module and methods of manufacture thereof
US7943861B2 (en) 2004-10-14 2011-05-17 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
TW200616093A (en) 2004-10-20 2006-05-16 Kopin Corp Bipolar transistor with graded base layer
US7142058B2 (en) 2004-11-09 2006-11-28 Freescale Semiconductor, Inc. On-chip temperature compensation circuit for an electronic device
US7288940B2 (en) 2004-12-06 2007-10-30 Analog Devices, Inc. Galvanically isolated signal conditioning system
US7238565B2 (en) 2004-12-08 2007-07-03 International Business Machines Corporation Methodology for recovery of hot carrier induced degradation in bipolar devices
JP2006180151A (ja) 2004-12-22 2006-07-06 Renesas Technology Corp 電力増幅モジュールおよびその製造方法
US20060138650A1 (en) * 2004-12-28 2006-06-29 Freescale Semiconductor, Inc. Integrated circuit packaging device and method for matching impedance
US7633170B2 (en) 2005-01-05 2009-12-15 Advanced Semiconductor Engineering, Inc. Semiconductor device package and manufacturing method thereof
EP1843849A2 (en) 2005-01-12 2007-10-17 Inverness Medical Switzerland GmbH A method of producing a microfluidic device and microfluidic devices
US8081928B2 (en) 2005-02-03 2011-12-20 Peregrine Semiconductor Corporation Canceling harmonics in semiconductor RF switches
US7640379B2 (en) 2005-02-12 2009-12-29 Broadcom Corporation System method for I/O pads in mobile multimedia processor (MMP) that has bypass mode wherein data is passed through without being processed by MMP
US7288991B2 (en) 2005-02-17 2007-10-30 Skyworks Solutions, Inc. Power control circuit for accurate control of power amplifier output power
US7563713B2 (en) 2005-02-23 2009-07-21 Teledyne Scientific & Imaging, Llc Semiconductor devices having plated contacts, and methods of manufacturing the same
JP4843229B2 (ja) 2005-02-23 2011-12-21 株式会社東芝 半導体装置の製造方法
US8736034B2 (en) 2005-02-24 2014-05-27 Freescale Semiconductor, Inc. Lead-frame circuit package
JP4558539B2 (ja) * 2005-03-09 2010-10-06 日立協和エンジニアリング株式会社 電子回路用基板、電子回路、電子回路用基板の製造方法および電子回路の製造方法
US7546402B2 (en) 2005-03-24 2009-06-09 Sunplus Technology Co., Ltd. Optical storage system comprising interface for transferring data
JP2006279316A (ja) 2005-03-28 2006-10-12 Sanyo Electric Co Ltd スイッチ回路装置
KR100677816B1 (ko) 2005-03-28 2007-02-02 산요덴키가부시키가이샤 능동 소자 및 스위치 회로 장치
TW200637139A (en) 2005-04-06 2006-10-16 Richwave Technology Corp Adaptive linear biasing circuit
US20060255102A1 (en) 2005-05-11 2006-11-16 Snyder Rick B Technique for defining a wettable solder joint area for an electronic assembly substrate
JP5106758B2 (ja) 2005-06-28 2012-12-26 ローム株式会社 半導体装置
FR2888664B1 (fr) 2005-07-18 2008-05-02 Centre Nat Rech Scient Procede de realisation d'un transistor bipolaire a heterojonction
US7372334B2 (en) 2005-07-26 2008-05-13 Infineon Technologies Ag Output match transistor
US7439098B2 (en) 2005-09-09 2008-10-21 Advanced Semiconductor Engineering, Inc. Semiconductor package for encapsulating multiple dies and method of manufacturing the same
US20070057731A1 (en) 2005-09-15 2007-03-15 Le Phuong T On-chip harmonic termination for RF power amplifier applications
US7473999B2 (en) 2005-09-23 2009-01-06 Megica Corporation Semiconductor chip and process for forming the same
KR101205324B1 (ko) 2005-11-25 2012-11-28 삼성전자주식회사 직렬 인터페이스 방식을 갖는 시스템의 전력을 제어하는방법
KR100746824B1 (ko) 2005-12-16 2007-08-06 동부일렉트로닉스 주식회사 반도체 소자의 패드 구조 및 그 형성 방법
JP2007173624A (ja) 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタ及びその製造方法
US8175703B2 (en) * 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US7411458B2 (en) 2006-02-01 2008-08-12 Motorola, Inc. Method and apparatus for controlling an output voltage in a power amplifier
JP2007221080A (ja) 2006-02-14 2007-08-30 Zycube:Kk 半導体装置およびその製造方法
JP2007221490A (ja) 2006-02-17 2007-08-30 Renesas Technology Corp ヘテロ接合バイポーラトランジスタを用いたrfパワーモジュール
KR101260066B1 (ko) 2006-02-17 2013-04-30 삼성전자주식회사 직렬 및 병렬 인터페이스들을 포함하는 컴퓨터 시스템
US7692295B2 (en) 2006-03-31 2010-04-06 Intel Corporation Single package wireless communication device
KR101383480B1 (ko) 2006-04-24 2014-04-14 파커비전, 인크. Rf 전력 전송, 변조 및 증폭 시스템 및 방법
US8310060B1 (en) 2006-04-28 2012-11-13 Utac Thai Limited Lead frame land grid array
TW200849556A (en) 2006-06-14 2008-12-16 Nxp Bv Semiconductor device and method of manufacturing such a device
US7598827B2 (en) 2006-06-19 2009-10-06 Maxim Integrated Products Harmonic termination of power amplifiers using BAW filter output matching circuits
US20070296583A1 (en) 2006-06-21 2007-12-27 Broadcom Corporation, A California Corporation Integrated circuit assembly including RFID and components thereof
JP2008010552A (ja) 2006-06-28 2008-01-17 Nec Electronics Corp パワーアンプモジュール
JP2008013586A (ja) 2006-06-30 2008-01-24 Pentel Corp ボールペン用油性インキ組成物
US20080014678A1 (en) 2006-07-14 2008-01-17 Texas Instruments Incorporated System and method of attenuating electromagnetic interference with a grounded top film
US8160518B2 (en) 2006-08-10 2012-04-17 Freescale Semiconductor, Inc. Multi-mode transceiver having tunable harmonic termination circuit and method therefor
TWI370515B (en) 2006-09-29 2012-08-11 Megica Corp Circuit component
CN101162928A (zh) 2006-10-13 2008-04-16 松下电器产业株式会社 高频功率放大器
KR100781905B1 (ko) 2006-10-25 2007-12-04 한국전자통신연구원 헤테로 정션 바이폴라 트랜지스터를 포함하는 이미지 센서및 그 제조 방법
JP5160071B2 (ja) 2006-11-16 2013-03-13 ルネサスエレクトロニクス株式会社 ヘテロ接合バイポーラトランジスタ
US7729674B2 (en) 2007-01-09 2010-06-01 Skyworks Solutions, Inc. Multiband or multimode receiver with shared bias circuit
US8274162B2 (en) 2007-01-20 2012-09-25 Triquint Semiconductor, Inc. Apparatus and method for reduced delamination of an integrated circuit module
KR101451455B1 (ko) 2007-01-25 2014-10-15 스카이워크스 솔루션즈, 인코포레이티드 선형 및 포화 모드에서의 동작을 위한 멀티모드 증폭기
US7643800B2 (en) 2007-01-30 2010-01-05 Broadcom Corporation Transmit power management for a communication device and method for use therewith
WO2008093626A1 (ja) 2007-02-01 2008-08-07 Murata Manufacturing Co., Ltd. チップ素子およびその製造方法
US7867806B2 (en) 2007-02-26 2011-01-11 Flextronics Ap, Llc Electronic component structure and method of making
US7554407B2 (en) 2007-03-07 2009-06-30 Fairchild Semiconductor Corporation Multi-mode power amplifier with low gain variation over temperature
JP2008262104A (ja) 2007-04-13 2008-10-30 Mgc Filsheet Co Ltd 多層構造の偏光板、および該偏光板を含む防眩製品および液晶ディスプレイ用の偏光板
US7898066B1 (en) 2007-05-25 2011-03-01 Amkor Technology, Inc. Semiconductor device having EMI shielding and method therefor
US8010149B2 (en) 2007-05-29 2011-08-30 Broadcom Corporation Multi-mode IC with multiple processing cores
JP4524298B2 (ja) 2007-06-04 2010-08-11 パナソニック株式会社 半導体装置の製造方法
US20080307240A1 (en) 2007-06-08 2008-12-11 Texas Instruments Incorporated Power management electronic circuits, systems, and methods and processes of manufacture
US8299572B2 (en) 2007-06-20 2012-10-30 Skyworks Solutions, Inc Semiconductor die with backside passive device integration
US8230455B2 (en) * 2007-07-11 2012-07-24 International Business Machines Corporation Method and system for enforcing password policy for an external bind operation in a distributed directory
TWI346449B (en) 2007-08-16 2011-08-01 Ind Tech Res Inst Power amplifier circuit for multi-frequencies and multi-modes and method for operating the same
US7928574B2 (en) 2007-08-22 2011-04-19 Texas Instruments Incorporated Semiconductor package having buss-less substrate
US8049531B2 (en) 2007-09-14 2011-11-01 Agate Logic, Inc. General purpose input/output system and method
GB2453115A (en) 2007-09-25 2009-04-01 Filtronic Compound Semiconduct HBT and FET BiFET hetrostructure and substrate with etch stop layers
US7709963B2 (en) 2007-10-01 2010-05-04 Himax Analogic, Inc. Audio power amplifier package
US7911803B2 (en) 2007-10-16 2011-03-22 International Business Machines Corporation Current distribution structure and method
US8359071B2 (en) 2007-10-31 2013-01-22 Hewlett-Packard Development Company, L.P. Power management techniques for a universal serial bus
US8060681B2 (en) 2007-11-27 2011-11-15 Microsoft Corporation Interface protocol and API for a wireless transceiver
US7911271B1 (en) 2007-12-14 2011-03-22 Pengcheng Jia Hybrid broadband power amplifier with capacitor matching network
WO2009083896A2 (en) 2007-12-27 2009-07-09 Koninklijke Philips Electronics, N.V. Ultrasound transducer assembly with improved thermal behavior
US7978031B2 (en) * 2008-01-31 2011-07-12 Tdk Corporation High frequency module provided with power amplifier
US7733118B2 (en) 2008-03-06 2010-06-08 Micron Technology, Inc. Devices and methods for driving a signal off an integrated circuit
JP5042894B2 (ja) 2008-03-19 2012-10-03 松田産業株式会社 電子部品およびその製造方法
US20090257208A1 (en) 2008-04-10 2009-10-15 Zlatko Filipovic Compact packaging for power amplifier module
JP5131540B2 (ja) 2008-05-20 2013-01-30 株式会社村田製作所 Rf電力増幅器およびrf電力増幅装置
US8237229B2 (en) 2008-05-22 2012-08-07 Stmicroelectronics Inc. Method and apparatus for buried-channel semiconductor device
US7618846B1 (en) 2008-06-16 2009-11-17 Stats Chippac, Ltd. Semiconductor device and method of forming shielding along a profile disposed in peripheral region around the device
US9030418B2 (en) * 2008-06-24 2015-05-12 Lg Electronics Inc. Mobile terminal capable of sensing proximity touch
US7852281B2 (en) 2008-06-30 2010-12-14 Intel Corporation Integrated high performance package systems for mm-wave array applications
US7872523B2 (en) 2008-07-01 2011-01-18 Mks Instruments, Inc. Radio frequency (RF) envelope pulsing using phase switching of switch-mode power amplifiers
US8324721B2 (en) 2008-07-01 2012-12-04 Texas Instruments Incorporated Integrated shunt resistor with external contact in a semiconductor package
EP2752872B1 (en) 2008-07-31 2018-06-27 Skyworks Solutions, Inc. Semiconductor package with integrated interference shielding and method of manufacture thereof
US8373264B2 (en) 2008-07-31 2013-02-12 Skyworks Solutions, Inc. Semiconductor package with integrated interference shielding and method of manufacture thereof
US8350627B2 (en) 2008-09-01 2013-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid class amplifier
US7974306B2 (en) 2008-09-06 2011-07-05 Universal Scientific Industrial (Shanghai) Co., Ltd. Signal transferring device
US7782134B2 (en) 2008-09-09 2010-08-24 Quantance, Inc. RF power amplifier system with impedance modulation
JP5405785B2 (ja) 2008-09-19 2014-02-05 ルネサスエレクトロニクス株式会社 半導体装置
US7755107B2 (en) 2008-09-24 2010-07-13 Skyworks Solutions, Inc. Bipolar/dual FET structure including enhancement and depletion mode FETs with isolated channels
US7948064B2 (en) 2008-09-30 2011-05-24 Infineon Technologies Ag System on a chip with on-chip RF shield
CN101478292A (zh) 2008-11-25 2009-07-08 锐迪科微电子(上海)有限公司 射频功率放大器电路芯片
US8129824B1 (en) 2008-12-03 2012-03-06 Amkor Technology, Inc. Shielding for a semiconductor package
JP2010171037A (ja) 2009-01-20 2010-08-05 Renesas Technology Corp 半導体装置
TW201034540A (en) 2009-03-02 2010-09-16 Chung-Cheng Wang A printing circuit board and manufacturing method(s) for making the same of
KR20100103015A (ko) 2009-03-12 2010-09-27 엘지이노텍 주식회사 리드 프레임 및 그 제조방법
US8026745B2 (en) 2009-03-16 2011-09-27 Apple Inc. Input/output driver with controlled transistor voltages
JP2010219210A (ja) 2009-03-16 2010-09-30 Renesas Electronics Corp 半導体装置およびその製造方法
CN101505178B (zh) 2009-03-17 2013-01-23 京信通信系统(中国)有限公司 一种包络检波装置及其方法
JP5714564B2 (ja) 2009-03-30 2015-05-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated 上部ポストパッシベーション技術および底部構造技術を使用する集積回路チップ
WO2010134858A1 (en) 2009-05-18 2010-11-25 Telefonaktiebolaget L M Ericsson (Publ) A harmonic control apparatus
JP2010278521A (ja) 2009-05-26 2010-12-09 Mitsubishi Electric Corp 電力増幅器
TWI406497B (zh) 2009-06-02 2013-08-21 Richwave Technology Corp 具溫度和輸出功率補償機制之功率放大器積體電路
US8378485B2 (en) 2009-07-13 2013-02-19 Lsi Corporation Solder interconnect by addition of copper
US8350639B2 (en) * 2009-08-26 2013-01-08 Qualcomm Incorporated Transformer signal coupling for flip-chip integration
US8521101B1 (en) 2009-09-17 2013-08-27 Rf Micro Devices, Inc. Extracting clock information from a serial communications bus for use in RF communications circuitry
US8301106B2 (en) 2010-02-10 2012-10-30 Javelin Semiconductor, Inc. Stacked CMOS power amplifier and RF coupler devices and related methods
US7994862B1 (en) 2010-02-11 2011-08-09 Sige Semiconductor Inc. Circuit and method of temperature dependent power amplifier biasing
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US8571492B2 (en) 2010-04-20 2013-10-29 Rf Micro Devices, Inc. DC-DC converter current sensing
US8559898B2 (en) 2010-04-20 2013-10-15 Rf Micro Devices, Inc. Embedded RF PA temperature compensating bias transistor
US8565694B2 (en) 2010-04-20 2013-10-22 Rf Micro Devices, Inc. Split current current digital-to-analog converter (IDAC) for dynamic device switching (DDS) of an RF PA stage
US8154345B2 (en) 2010-06-03 2012-04-10 Skyworks Solutions, Inc. Apparatus and method for current sensing using a wire bond
US20110298432A1 (en) 2010-06-07 2011-12-08 Skyworks Solutions, Inc Apparatus and method for variable voltage function
US8164387B1 (en) 2010-06-30 2012-04-24 Triquint Semiconductor, Inc. Simultaneous harmonic termination in a push-pull power amplifier
JP5952998B2 (ja) 2010-07-26 2016-07-13 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
TWM394582U (en) 2010-07-26 2010-12-11 Acsip Technology Corp Antenna module
TW201212228A (en) 2010-09-13 2012-03-16 Visual Photonics Epitaxy Co Ltd Heterojunction Bipolar Transistor structure with GaPSbAs base
US8188575B2 (en) 2010-10-05 2012-05-29 Skyworks Solutions, Inc. Apparatus and method for uniform metal plating
US8357263B2 (en) 2010-10-05 2013-01-22 Skyworks Solutions, Inc. Apparatus and methods for electrical measurements in a plasma etcher
US8611834B2 (en) 2010-11-01 2013-12-17 Cree, Inc. Matching network for transmission circuitry
US20120112243A1 (en) 2010-11-04 2012-05-10 Zampardi Peter J Bipolar and FET Device Structure
US9105488B2 (en) 2010-11-04 2015-08-11 Skyworks Solutions, Inc. Devices and methodologies related to structures having HBT and FET
KR20120053332A (ko) 2010-11-17 2012-05-25 삼성전자주식회사 반도체 패키지 및 이의 제조 방법
US8797103B2 (en) 2010-12-07 2014-08-05 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US8598950B2 (en) 2010-12-14 2013-12-03 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US8415805B2 (en) 2010-12-17 2013-04-09 Skyworks Solutions, Inc. Etched wafers and methods of forming the same
WO2012088300A2 (en) 2010-12-22 2012-06-28 Skyworks Solutions, Inc. Power amplifier control circuit
US8686537B2 (en) * 2011-03-03 2014-04-01 Skyworks Solutions, Inc. Apparatus and methods for reducing impact of high RF loss plating
US8889995B2 (en) 2011-03-03 2014-11-18 Skyworks Solutions, Inc. Wire bond pad system and method
WO2012118896A2 (en) 2011-03-03 2012-09-07 Skyworks Solutions, Inc. Apparatus and methods related to wire bond pads and reducing impact of high rf loss plating
US9092393B2 (en) 2011-03-11 2015-07-28 Skyworks Solutions, Inc. Dual mode serial/parallel interface and use thereof in improved wireless devices and switching components
US8938566B2 (en) 2011-03-17 2015-01-20 American Megatrends, Inc. Data storage system for managing serial interface configuration based on detected activity
US20120293520A1 (en) * 2011-05-19 2012-11-22 Qualcomm Mems Technologies, Inc. Piezoelectric resonators with configurations having no ground connections to enhance electromechanical coupling
TW201301481A (zh) 2011-06-23 2013-01-01 Kopin Corp 雙極高電子遷移率電晶體及其形成方法
WO2013009640A2 (en) 2011-07-08 2013-01-17 Skyworks Solutions, Inc. Signal path termination
US20150039391A1 (en) * 2011-08-16 2015-02-05 Better Place GmbH Estimation and management of loads in electric vehicle networks
US9679869B2 (en) * 2011-09-02 2017-06-13 Skyworks Solutions, Inc. Transmission line for high performance radio frequency applications
US8417200B1 (en) 2011-09-30 2013-04-09 Broadcom Corporation Wideband power efficient high transmission power radio frequency (RF) transmitter
KR101859252B1 (ko) 2011-10-24 2018-05-18 스카이워크스 솔루션즈, 인코포레이티드 듀얼 모드 전력 증폭기 제어 인터페이스
GB2510084B (en) 2011-11-04 2018-02-21 Skyworks Solutions Inc Apparatus and methods for power amplifiers
US9876478B2 (en) 2011-11-04 2018-01-23 Skyworks Solutions, Inc. Apparatus and methods for wide local area network power amplifiers
WO2013071152A2 (en) 2011-11-11 2013-05-16 Skyworks Solutions, Inc. Flip-chip linear power amplifier with high power added efficiency
US9054065B2 (en) 2012-04-30 2015-06-09 Skyworks Solutions, Inc. Bipolar transistor having collector with grading
US8948712B2 (en) 2012-05-31 2015-02-03 Skyworks Solutions, Inc. Via density and placement in radio frequency shielding applications
US9419567B2 (en) 2012-06-14 2016-08-16 Skyworks Solutions, Inc. Process-compensated HBT power amplifier bias circuits and methods
CN104410373B (zh) 2012-06-14 2016-03-09 西凯渥资讯处理科技公司 包含相关系统、装置及方法的功率放大器模块
US8884700B2 (en) 2013-01-17 2014-11-11 Raytheon Company Integrated circuit chip temperature sensor
JP2014217014A (ja) * 2013-04-30 2014-11-17 株式会社東芝 無線装置
US20160145755A1 (en) 2013-07-09 2016-05-26 United Technologies Corporation Lightweight metal parts produced by plating polymers
WO2021006023A1 (ja) * 2019-07-11 2021-01-14 株式会社村田製作所 高周波モジュール、通信装置及び弾性波装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104207A1 (en) * 2003-07-01 2005-05-19 Dean Timothy B. Corrosion-resistant bond pad and integrated device
JP2007031826A (ja) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd 接続用端子、およびこれを有する半導体搭載用基板
CN1953175A (zh) * 2005-10-20 2007-04-25 松下电器产业株式会社 合成射频器件和用于制造该器件的方法
US20100178879A1 (en) * 2006-02-28 2010-07-15 Renesas Technology Corp. Rf power module
CN101595636A (zh) * 2007-01-30 2009-12-02 株式会社瑞萨科技 Rf放大装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11984423B2 (en) 2011-09-02 2024-05-14 Skyworks Solutions, Inc. Radio frequency transmission line with finish plating on conductive layer
US9041472B2 (en) 2012-06-14 2015-05-26 Skyworks Solutions, Inc. Power amplifier modules including related systems, devices, and methods
US9520835B2 (en) 2012-06-14 2016-12-13 Skyworks Solutions, Inc. Power amplifier modules including bipolar transistor with grading and related systems, devices, and methods
US9660584B2 (en) 2012-06-14 2017-05-23 Skyworks Solutions, Inc. Power amplifier modules including wire bond pad and related systems, devices, and methods
US9692357B2 (en) 2012-06-14 2017-06-27 Skyworks Solutions, Inc. Power amplifier modules with bifet and harmonic termination and related systems, devices, and methods
US9755592B2 (en) 2012-06-14 2017-09-05 Skyworks Solutions, Inc. Power amplifier modules including tantalum nitride terminated through wafer via and related systems, devices, and methods
US9847755B2 (en) 2012-06-14 2017-12-19 Skyworks Solutions, Inc. Power amplifier modules with harmonic termination circuit and related systems, devices, and methods
US9887668B2 (en) 2012-06-14 2018-02-06 Skyworks Solutions, Inc. Power amplifier modules with power amplifier and transmission line and related systems, devices, and methods
US10090812B2 (en) 2012-06-14 2018-10-02 Skyworks Solutions, Inc. Power amplifier modules with bonding pads and related systems, devices, and methods
US10771024B2 (en) 2012-06-14 2020-09-08 Skyworks Solutions, Inc. Power amplifier modules including transistor with grading and semiconductor resistor
US11451199B2 (en) 2012-06-14 2022-09-20 Skyworks Solutions, Inc. Power amplifier systems with control interface and bias circuit
US12143077B2 (en) 2012-06-14 2024-11-12 Skyworks Solutions, Inc. Power amplifier modules including semiconductor resistor and tantalum nitride terminated through wafer via

Also Published As

Publication number Publication date
US20170271302A1 (en) 2017-09-21
US10529686B2 (en) 2020-01-07
KR101740102B1 (ko) 2017-05-25
US20170271301A1 (en) 2017-09-21
TW201735750A (zh) 2017-10-01
TWI641298B (zh) 2018-11-11
US20130057451A1 (en) 2013-03-07
TWI592078B (zh) 2017-07-11
KR20140074913A (ko) 2014-06-18
US20210159209A1 (en) 2021-05-27
US20170301647A1 (en) 2017-10-19
US9679869B2 (en) 2017-06-13
US20170271303A1 (en) 2017-09-21
US11984423B2 (en) 2024-05-14
TW201318492A (zh) 2013-05-01
WO2013032545A1 (en) 2013-03-07
US10937759B2 (en) 2021-03-02
CN103907194B (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
CN103907194A (zh) 用于高性能射频应用的传输线
US12143077B2 (en) Power amplifier modules including semiconductor resistor and tantalum nitride terminated through wafer via
US11576248B2 (en) Front end systems with multi-mode power amplifier stage and overload protection of low noise amplifier
JP5239309B2 (ja) 半導体装置
US7515879B2 (en) Radio frequency circuit module
CN106464218A (zh) 关于改进的射频模块的系统、设备和方法
CN103988424A (zh) 具有高功率附加效率的倒装芯片线性功率放大器
US12279353B2 (en) Packaged module with antenna and front end integrated circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1194863

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1194863

Country of ref document: HK