[go: up one dir, main page]

login
Search: a127188 -id:a127188
     Sort: relevance | references | number | modified | created      Format: long | short | data
Denominator of Bernoulli number B_n.
+10
373
1, 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1
OFFSET
0,2
COMMENTS
Row products of A138243. - Mats Granvik, Mar 08 2008
Equals row products of triangle A143343 and for a(n) > 1, row products of triangle A080092. - Gary W. Adamson, Aug 09 2008
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is described in A028246. - Gary W. Adamson, Aug 09 2008
The sequence of denominators of B_n is defined here by convention, not by necessity. The convention amounts to mapping 0 to the rational number 0/1. It might be more appropriate to regard numerators and denominators of the Bernoulli numbers as independent sequences N_n and D_n which combine to B_n = N_n / D_n. This is suggested by the theorem of Clausen which describes the denominators as the sequence D_n = 1, 2, 6, 2, 30, 2, 42, ... which combines with N_n = 1, -1, 1, 0, -1, 0, ... to the sequence of Bernoulli numbers. (Cf. A141056 and A027760.) - Peter Luschny, Apr 29 2009
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
Jacob Bernoulli, Ars Conjectandi, Basel: Thurneysen Brothers, 1713. See page 97.
Thomas Clausen, "Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352 (see P. Luschny link).
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
Roger Plymen, The Great Prime Number Race, AMS, 2020. See pp. 8-10.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
K.-W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
H. W. Gould and J. Quaintance, Bernoulli Numbers and a New Binomial Transform Identity, J. Int. Seq. 17 (2014) # 14.2.2
A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
A. F. Neto, Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra, J. Int. Seq. 18 (2015) # 15.5.6.
Carl Pomerance and Samuel S. Wagstaff Jr, The denominators of the Bernoulli numbers, arXiv:2105.13252 [math.NT], 2021.
J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 5.
Matthew Roughan, The Polylogarithm Function in Julia, arXiv:2010.09860 [math.NA], 2020.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
Wikipedia, Bernoulli number
FORMULA
E.g.f: x/(exp(x) - 1); take denominators.
Let E(x) be the e.g.f., then E(x) = U(0), where U(k) = 2*k + 1 - x*(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Jun 25 2012
E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
E.g.f.: x/(exp(x)-1) = 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
E.g.f.: x/(exp(x)-1) = (1-x)/E(0), where E(k) = 1 - x*(k+1)/(x*(k+1) + (k+2-x)*(k+1-x)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
E.g.f.: conjecture: x/(exp(x)-1) = T(0)/2 - x, where T(k) = 8*k+2 + x/( 1 - x/( 8*k+6 + x/( 1 - x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
a(2*n) = 2*A001897(n) = A002445(n) = 3*A277087(n) for n >= 1. Jonathan Sondow, Dec 14 2016
EXAMPLE
B_n sequence begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ...
MAPLE
(-1)^n*sum( (-1)^'m'*'m'!*stirling2(n, 'm')/('m'+1), 'm'=0..n);
A027642 := proc(n) denom(bernoulli(n)) ; end: # Zerinvary Lajos, Apr 08 2009
MATHEMATICA
Table[ Denominator[ BernoulliB[n]], {n, 0, 68}] (* Robert G. Wilson v, Oct 11 2004 *)
Denominator[ Range[0, 68]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 68}], x]]
(* Alternative code using Clausen Theorem: *)
A027642[k_Integer]:=If[EvenQ[k], Times@@Table[Max[1, Prime[i]*Boole[Divisible[k, Prime[i]-1]]], {i, 1, PrimePi[2k]}], 1+KroneckerDelta[k, 1]]; (* Enrique Pérez Herrero, Jul 15 2010 *)
a[0] = 1; a[1] = 2; a[n_?OddQ] = 1; a[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 12 2012, after Ilan Vardi, when direct computation for large n is unfeasible *)
PROG
(PARI) a(n)=if(n<0, 0, denominator(bernfrac(n)))
(PARI) a(n) = if(n == 0 || (n > 1 && n % 2), 1, vecprod(select(x -> isprime(x), apply(x -> x + 1, divisors(n))))); \\ Amiram Eldar, Apr 24 2024
(Magma) [Denominator(Bernoulli(n)): n in [0..150]]; // Vincenzo Librandi, Mar 29 2011
(Haskell)
a027642 n = a027642_list !! n
a027642_list = 1 : map (denominator . sum) (zipWith (zipWith (%))
(zipWith (map . (*)) (tail a000142_list) a242179_tabf) a106831_tabf)
-- Reinhard Zumkeller, Jul 04 2014
(Sage)
def A027642_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
return R
A027642_list(62) # Peter Luschny, Feb 20 2016
(Python)
from sympy import bernoulli
[bernoulli(i).denominator() for i in range(51)] # Indranil Ghosh, Mar 18 2017
CROSSREFS
See A027641 (numerators) for full list of references, links, formulas, etc.
KEYWORD
nonn,frac,easy,core,nice
STATUS
approved
Numerator of Bernoulli number B_n.
+10
245
1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
OFFSET
0,11
COMMENTS
a(n)/A027642(n) (Bernoulli numbers) provide the a-sequence for the Sheffer matrix A094816 (coefficients of orthogonal Poisson-Charlier polynomials). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The corresponding z-sequence is given by the rationals A130189(n)/A130190(n).
Harvey (2008) describes a new algorithm for computing Bernoulli numbers. His method is to compute B(k) modulo p for many small primes p and then reconstruct B(k) via the Chinese Remainder Theorem. The time complexity is O(k^2 log(k)^(2+eps)). The algorithm is especially well-suited to parallelization. - Jonathan Vos Post, Jul 09 2008
Regard the Bernoulli numbers as forming a vector = B_n, and the variant starting (1, 1/2, 1/6, 0, -1/30, ...), (i.e., the first 1/2 has sign +) as forming a vector Bv_n. The relationship between the Pascal triangle matrix, B_n, and Bv_n is as follows: The binomial transform of B_n = Bv_n. B_n is unchanged when multiplied by the Pascal matrix with rows signed (+-+-, ...), i.e., (1; -1,-1; 1,2,1; ...). Bv_n is unchanged when multiplied by the Pascal matrix with columns signed (+-+-, ...), i.e., (1; 1,-1; 1,-2,1; 1,-3,3,-1; ...). - Gary W. Adamson, Jun 29 2012
The sequence of the Bernoulli numbers B_n = a(n)/A027642(n) is the inverse binomial transform of the sequence {A164555(n)/A027642(n)}, illustrated by the fact that they appear as top row and left column in A190339. - Paul Curtz, May 13 2016
Named by de Moivre (1773; "the numbers of Mr. James Bernoulli") after the Swiss mathematician Jacob Bernoulli (1655-1705). - Amiram Eldar, Oct 02 2023
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
Harold T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
Harold M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974; see p. 11.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.1.
Herman H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.6.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304052, 1993.
Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
H. Bergmann, Eine explizite Darstellung der Bernoullischen Zahlen, Math. Nach. 34 (1967), 377-378. Math Rev 36#4030.
Richard P. Brent and David Harvey, Fast computation of Bernoulli, Tangent and Secant numbers, arXiv preprint arXiv:1108.0286 [math.CO], 2011.
K.-W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
W. Y.C. Chen, J. J. F. Guo and L. X. W. Wang, Log-behavior of the Bernoulli Numbers, arXiv:1208.5213 [math.CO], 2012-2013.
Abraham de Moivre, The Doctrine of Chances, 3rd edition, London, 1733, p. 95.
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
H. W. Gould and J. Quaintance, Bernoulli Numbers and a New Binomial Transform Identity, J. Int. Seq. 17 (2014), Article 14.2.2.
M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
David Harvey, A multimodular algorithm for computing Bernoulli numbers, arXiv:0807.1347 [math.NT], Jul 08 2008.
A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), Article 00.2.9.
Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014), Article 14.4.6.
F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithmetical sequences, J. Combin. Number Theory 4 (2012) 1-10.
Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.8.4.
Hisanori Mishima, Bernoulli numbers (n = 2 to 114), (n = 116 to 154) (Factorizations).
Ben Moonen, A remark on the paper of Deninger and Murre, arXiv:2407.05837 [math.AG], 2024. See p. 6.
A. F. Neto, Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra, J. Int. Seq. 18 (2015), Article 15.5.6.
A. F. Neto, A note of a Theorem of Guo, Mezo, and Qi, J. Int. Seq. 19 (2016) Article 16.4.8.
Niels Nielsen, Traite Elementaire des Nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
Simon Plouffe, The First 498 Bernoulli numbers. [Project Gutenberg Etext]
Ed Sandifer, How Euler Did It, Bernoulli numbers.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
J. Singh, On an Arithmetic Convolution, J. Int. Seq. 17 (2014) Article 14.6.7.
J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 5.
Eric Weisstein's World of Mathematics, Bernoulli Number.
Eric Weisstein's World of Mathematics, Polygamma Function.
Roman Witula, Damian Slota and Edyta Hetmaniok, Bridges between different known integer sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.
FORMULA
E.g.f: x/(exp(x) - 1); take numerators.
Recurrence: B^n = (1+B)^n, n >= 2 (interpreting B^j as B_j).
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k>=1} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/(2*Pi)^(2*n).
Sum_{i=1..n-1} i^k = ((n+B)^(k+1)-B^(k+1))/(k+1) (interpreting B^j as B_j).
B_{n-1} = - Sum_{r=1..n} (-1)^r binomial(n, r) r^(-1) Sum_{k=1..r} k^(n-1). More concisely, B_n = 1 - (1-C)^(n+1), where C^r is replaced by the arithmetic mean of the first r n-th powers of natural numbers in the expansion of the right-hand side. [Bergmann]
Sum_{i>=1} 1/i^(2k) = zeta(2k) = (2*Pi)^(2k)*|B_{2k}|/(2*(2k)!).
B_{2n} = (-1)^(m-1)/2^(2m+1) * Integral{-inf..inf, [d^(m-1)/dx^(m-1) sech(x)^2 ]^2 dx} (see Grosset/Veselov).
Let B(s,z) = -2^(1-s)(i/Pi)^s s! PolyLog(s,exp(-2*i*Pi/z)). Then B(2n,1) = B_{2n} for n >= 1. Similarly the numbers B(2n+1,1), which might be called Co-Bernoulli numbers, can be considered, and it is remarkable that Leonhard Euler in 1755 already calculated B(3,1) and B(5,1) (Opera Omnia, Ser. 1, Vol. 10, p. 351). (Cf. the Luschny reference for a discussion.) - Peter Luschny, May 02 2009
The B_n sequence is the left column of the inverse of triangle A074909, the "beheaded" Pascal's triangle. - Gary W. Adamson, Mar 05 2012
From Sergei N. Gladkovskii, Dec 04 2012: (Start)
E.g.f. E(x)= 2 - x/(tan(x) + sec(x) - 1)= Sum_{n>=0} a(n)*x^n/n!, a(n)=|B(n)|, where B(n) is Bernoulli number B_n.
E(x)= 2 + x - B(0), where B(k)= 4*k+1 + x/(2 + x/(4*k+3 - x/(2 - x/B(k+1)))); (continued fraction, 4-step). (End)
E.g.f.: x/(exp(x)-1)= U(0); U(k)= 2*k+1 - x(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012
E.g.f.: 2*(x-1)/(x*Q(0)-2) where Q(k) = 1 + 2*x*(k+1)/((2*k+1)*(2*k+3) - x*(2*k+1)*(2*k+3)^2/(x*(2*k+3) + 4*(k+1)*(k+2)/Q(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 26 2013
a(n) = numerator(B(n)), B(n) = (-1)^n*Sum_{k=0..n} Stirling1(n,k) * Stirling2(n+k,n) / binomial(n+k,k). - Vladimir Kruchinin, Mar 16 2013
E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1)); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
G.f. for Bernoulli(n) = a(n)/A027642(n): psi_1(1/x)/x - x, where psi_n(z) is the polygamma function, psi_n(z) = (d/dz)^(n+1) log(Gamma(z)). - Vladimir Reshetnikov, Apr 24 2013
E.g.f.: 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
B_n = Sum_{m=0..n} (-1)^m *A131689(n, m)/(m + 1), n >= 0. See one of the Maple programs. - Wolfdieter Lang, May 05 2017
a(n) = numerator((-1)^n*A155585(n-1)*n/(4^n-2^n)), for n>=1. - Mats Granvik, Nov 26 2017
From Artur Jasinski, Dec 30 2020: (Start)
a(n) = numerator(-2*cos(Pi*n/2)*Gamma(n+1)*zeta(n)/(2*Pi)^n), for n=0 and n>1.
a(n) = numerator(-n*zeta(1-n)), for n=0 and n>1. (End)
EXAMPLE
B_n sequence begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ...
MAPLE
B := n -> add((-1)^m*m!*Stirling2(n, m)/(m+1), m=0..n);
B := n -> bernoulli(n);
seq(numer(bernoulli(n)), n=0..40); # Zerinvary Lajos, Apr 08 2009
MATHEMATICA
Table[ Numerator[ BernoulliB[ n]], {n, 0, 40}] (* Robert G. Wilson v, Oct 11 2004 *)
Numerator[ Range[0, 40]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 40}], x]]
Numerator[CoefficientList[Series[PolyGamma[1, 1/x]/x - x, {x, 0, 40}, Assumptions -> x > 0], x]] (* Vladimir Reshetnikov, Apr 24 2013 *)
PROG
(PARI) a(n)=numerator(bernfrac(n))
(Maxima) B(n):=(-1)^((n))*sum((stirling1(n, k)*stirling2(n+k, n))/binomial(n+k, k), k, 0, n);
makelist(num(B(n)), n, 0, 20); /* Vladimir Kruchinin, Mar 16 2013 */
(Magma) [Numerator(Bernoulli(n)): n in [0..40]]; // Vincenzo Librandi, Mar 17 2014
(SageMath)
[bernoulli(n).numerator() for n in range(41)] # Peter Luschny, Feb 19 2016
(SageMath) # Alternatively:
def A027641_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).numerator())
return R
A027641_list(41) # Peter Luschny, Feb 20 2016
(Python)
from sympy import bernoulli
from fractions import Fraction
[bernoulli(i).as_numer_denom()[0] for i in range(51)] # Indranil Ghosh, Mar 18 2017
(Python)
from sympy import bernoulli
def A027641(n): return bernoulli(n).p
print([A027641(n) for n in range(80)]) # M. F. Hasler, Jun 11 2019
CROSSREFS
This is the main entry for the Bernoulli numbers and has all the references, links and formulas. Sequences A027642 (the denominators of B_n) and A000367/A002445 = B_{2n} are also important!
A refinement is A194587.
KEYWORD
sign,frac,nice,core
STATUS
approved
Numerators of Bernoulli numbers B_2n.
(Formerly M4039 N1677)
+10
148
1, 1, -1, 1, -1, 5, -691, 7, -3617, 43867, -174611, 854513, -236364091, 8553103, -23749461029, 8615841276005, -7709321041217, 2577687858367, -26315271553053477373, 2929993913841559, -261082718496449122051
OFFSET
0,6
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
H. H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.6.
F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 330.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Table of n, a(n) for n = 0..249 [taken from link below]
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Richard P. Brent and David Harvey, Fast computation of Bernoulli, Tangent and Secant numbers, arXiv preprint arXiv:1108.0286 [math.CO], 2011.
C. K. Caldwell, The Prime Glossary, Bernoulli number
F. N. Castro, O. E. González, and L. A. Medina, The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers, 2014.
M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), 405-441; arXiv:0409223 [math.NT], 2004.
C. Lin and L. Zhipeng, On Bernoulli numbers and its properties, arXiv:math/0408082 [math.HO], 2004.
Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6.
H.-M. Liu, S-H. Qi, and S.-Y. Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS 13 (2010) # 10.3.8.
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Niels Nielsen, Traite Elementaire des Nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
Simon Plouffe, The First 498 Bernoulli numbers [Project Gutenberg Etext]
Zhi-Hong Sun, Congruences involving Bernoulli polynomials, Discr. Math., 308 (2007), 71-112.
Eric Weisstein's World of Mathematics, Bernoulli Number.
Wikipedia, Bernoulli number
FORMULA
E.g.f: x/(exp(x) - 1); take numerators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k>=1} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/(2*Pi)^(2*n).
If n >= 3 is prime, then 12*|a((n+1)/2)| == (-1)^((n-1)/2)*A002445((n+1)/2) (mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = numerator(-i*(2*n)!/(Pi*(1-2*n))*Integral_{t=0..1} log(1-1/t)^(1-2*n) dt). - Gerry Martens, May 17 2011, corrected by Vaclav Kotesovec, Oct 22 2014
a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 29 2012
E.g.f.: G(0) where G(k) = 2*k + 1 - x*(2*k+1)/(x + (2*k+2)/(1 + x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 13 2013
a(n) = numerator(2*n*Sum_{k=0..2*n} (2*n+k-2)! * Sum_{j=1..k} ((-1)^(j+1) * Stirling1(2*n+j,j)) / ((k-j)!*(2*n+j)!)), n > 0. - Vladimir Kruchinin, Mar 15 2013
E.g.f.: E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
E.g.f.: E(0) - x, where E(k) = x + k + 1 - x*(k+1)/E(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
a(n) = numerator((-1)^(n+1)*2*Gamma(2*n + 1)*zeta(2*n)/(2*Pi)^(2*n)). - Artur Jasinski, Dec 29 2020
a(n) = numerator(-2*n*zeta(1 - 2*n)) for n > 0. - Artur Jasinski, Jan 01 2021
EXAMPLE
B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
MAPLE
A000367 := n -> numer(bernoulli(2*n)):
# Illustrating an algorithmic approach:
S := proc(n, k) option remember; if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end: Bernoulli2n := n -> `if`(n = 0, 1, (-1)^n * S(2*n-1, 2*n-1)*n/(2^(2*n-1)*(1-4^n))); A000367 := n -> numer(Bernoulli2n(n)); seq(A000367(n), n=0..20); # Peter Luschny, Jul 08 2012
MATHEMATICA
Numerator[ BernoulliB[ 2*Range[0, 20]]] (* Jean-François Alcover, Oct 16 2012 *)
Table[Numerator[(-1)^(n+1) 2 Gamma[2 n + 1] Zeta[2 n]/(2 Pi)^(2 n)], {n, 0, 20}] (* Artur Jasinski, Dec 29 2020 *)
PROG
(PARI) a(n)=numerator(bernfrac(2*n))
(Python) # The objective of this implementation is efficiency.
# n -> [a(0), a(1), ..., a(n)] for n > 0.
from fractions import Fraction
def A000367_list(n): # Bernoulli numerators
T = [0 for i in range(1, n+2)]
T[0] = 1; T[1] = 1
for k in range(2, n+1):
T[k] = (k-1)*T[k-1]
for k in range(2, n+1):
for j in range(k, n+1):
T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
a = 0; b = 6; s = 1
for k in range(1, n+1):
T[k] = s*Fraction(T[k]*k, b).numerator
h = b; b = 20*b - 64*a; a = h; s = -s
return T
print(A000367_list(100)) # Peter Luschny, Aug 09 2011
(Maxima)
B(n):=if n=0 then 1 else 2*n*sum((2*n+k-2)!*sum(((-1)^(j+1)*stirling1(2*n+j, j))/ ((k-j)!*(2*n+j)!), j, 1, k), k, 0, 2*n);
makelist(num(B(n)), n, 0, 10); /* Vladimir Kruchinin, Mar 15 2013, fixed by Vaclav Kotesovec, Oct 22 2014 */
CROSSREFS
B_n gives A027641/A027642. See A027641 for full list of references, links, formulas, etc.
See A002445 for denominators.
KEYWORD
sign,frac,nice
STATUS
approved
Denominators of Bernoulli numbers B_{2n}.
(Formerly M4189 N1746)
+10
145
1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
OFFSET
0,2
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Row products of A138239. - Mats Granvik, Mar 08 2008
Equals row products of even rows in triangle A143343. In triangle A080092, row products = denominators of B1, B2, B4, B6, ... . - Gary W. Adamson, Aug 09 2008
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is shown in A028246. - Gary W. Adamson, Aug 09 2008
There is a relation between the Euler numbers E_n and the Bernoulli numbers B_{2*n}, for n>0, namely, B_{2n} = A000367(n)/a(n) = ((-1)^n/(2*(1-2^{2*n})) * Sum_{k = 0..n-1} (-1)^k*2^{2*k}*C(2*n,2*k)*A000364(n-k)*A000367(k)/a(k). (See Bucur, et al.) - L. Edson Jeffery, Sep 17 2012
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
See A000367 for further references and links (there are a lot).
LINKS
A. Bucur, J. Lopez-Bonilla and J. Robles-Garcia, A note on the Namias identity for Bernoulli numbers, Journal of Scientific Research (Banaras Hindu University, Varanasi), Vol. 56 (2012), 117-120.
G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3
S. Kaji, T. Maeno, K. Nuida and Y. Numata, Polynomial Expressions of Carries in p-ary Arithmetics, arXiv preprint arXiv:1506.02742 [math.CO], 2015.
T. Komatsu, F. Luca and C. de J. Pita Ruiz V., A note on the denominators of Bernoulli numbers, Proc. Japan Acad., 90, Ser. A (2014), p. 71-72.
Guo-Dong Liu, H. M. Srivastava and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
H.-M. Liu, S-H. Qi and S.-Y. Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS 13 (2010) # 10.3.8.
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Niels Nielsen, Traite Elementaire des Nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
Simon Plouffe, The First 498 Bernoulli numbers [Project Gutenberg Etext]
FORMULA
E.g.f: x/(exp(x) - 1); take denominators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k=1..inf} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/ (2*Pi)^(2*n).
If n>=3 is prime,then a((n+1)/2)==(-1)^((n-1)/2)*12*|A000367((n+1)/2)|(mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = denominator(-I*(2*n)!/(Pi*(1-2*n))*integral(log(1-1/t)^(1-2*n) dt, t=0..1)). - Gerry Martens, May 17 2011
a(n) = 2*denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 28 2012
a(n) = gcd(2!S(2n+1,2),...,(2n+1)!S(2n+1,2n+1)). Here S(n,k) is the Stirling number of the second kind. See the paper of Komatsu et al. - Istvan Mezo, May 12 2016
a(n) = 2*A001897(n) = A027642(2*n) = 3*A277087(n) for n>0. - Jonathan Sondow, Dec 14 2016
EXAMPLE
B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
MAPLE
A002445 := n -> mul(i, i=select(isprime, map(i->i+1, numtheory[divisors] (2*n)))): seq(A002445(n), n=0..40); # Peter Luschny, Aug 09 2011
# Alternative
N:= 1000: # to get a(0) to a(N)
A:= Vector(N, 2):
for p in select(isprime, [seq(2*i+1, i=1..N)]) do
r:= (p-1)/2;
for n from r to N by r do
A[n]:= A[n]*p
od
od:
1, seq(A[n], n=1..N); # Robert Israel, Nov 16 2014
MATHEMATICA
Take[Denominator[BernoulliB[Range[0, 100]]], {1, -1, 2}] (* Harvey P. Dale, Oct 17 2011 *)
PROG
(PARI) a(n)=prod(p=2, 2*n+1, if(isprime(p), if((2*n)%(p-1), 1, p), 1)) \\ Benoit Cloitre
(PARI) A002445(n, P=1)=forprime(p=2, 1+n*=2, n%(p-1)||P*=p); P \\ M. F. Hasler, Jan 05 2016
(PARI) a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
(Magma) [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
(Sage)
def A002445(n):
if n == 0:
return 1
M = (i + 1 for i in divisors(2 * n))
return prod(s for s in M if is_prime(s))
[A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016
CROSSREFS
Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
B_n gives A027641/A027642. See A027641 for full list of references, links, formulas, etc.
Cf. A160014 for a generalization.
KEYWORD
nonn,frac,nice
STATUS
approved
Nearest integer to (n+1)*Bernoulli(n).
+10
11
1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 18, 0, -121, 0, 1044, 0, -11112, 0, 142419, 0, -2164506, 0, 38488964, 0, -791648701, 0, 18649007091, 0, -498838420314, 0, 15036512507141, 0, -507331242588268, 0, 19044960439970134, 0
OFFSET
0,13
LINKS
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 26 2007
STATUS
approved
From von Staudt-Clausen representation of Bernoulli numbers: a(n) = Bernoulli(2n) + Sum_{(p-1)|2n} 1/p.
(Formerly M1717 N0680)
+10
10
1, 1, 1, 1, 1, 1, 2, -6, 56, -528, 6193, -86579, 1425518, -27298230, 601580875, -15116315766, 429614643062, -13711655205087, 488332318973594, -19296579341940067, 841693047573682616, -40338071854059455412, 2115074863808199160561, -120866265222965259346026
OFFSET
1,7
COMMENTS
The von Staudt-Clausen theorem states that this number is always an integer.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 168-170.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Section 5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..317 (first 100 terms from T. D. Noe)
Joerg Arndt, Table of n, a(n) for n = 1..1000 (contains terms with more than 1000 decimal digits)
Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688. [Annotated scanned copy]
Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Eric Weisstein's World of Mathematics, von Staudt-Clausen Theorem
MAPLE
A000146 := proc(n) local a , i, p; a := bernoulli(2*n) ; for i from 1 do p := ithprime(i) ; if (2*n) mod (p-1) = 0 then a := a+1/p ; elif p-1 > 2*n then break; end if; end do: a ; end proc: # R. J. Mathar, Jul 08 2011
MATHEMATICA
Table[ BernoulliB[2 n] + Total[ 1/Select[ Prime /@ Range[n+1], Divisible[2n, #-1] &]], {n, 1, 22}] (* Jean-François Alcover, Oct 12 2011 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(2*n, d, isprime(d+1)/(d+1))+bernfrac(2*n))
(Python)
from fractions import Fraction
from sympy import bernoulli, divisors, isprime
def A000146(n): return int(bernoulli(m:=n<<1)+sum(Fraction(1, d+1) for d in divisors(m, generator=True) if isprime(d+1))) # Chai Wah Wu, Apr 14 2023
CROSSREFS
KEYWORD
sign,nice,easy
EXTENSIONS
Signs courtesy of Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)
More terms from Michael Somos
STATUS
approved
Numerator of (n+1)*Bernoulli(n).
+10
10
1, -1, 1, 0, -1, 0, 1, 0, -3, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -1181820455, 0, 76977927, 0, -23749461029, 0, 8615841276005, 0, -84802531453387, 0, 90219075042845, 0, -26315271553053477373, 0, 38089920879940267, 0
OFFSET
0,9
COMMENTS
The denominators are in A050932. The e.g.f. for (n+1)*Bernoulli(n), n >= 0, is (d/dx)(x^2/(exp(x)-1)) = x*(2*(exp(x)-1)- x*exp(x))/(exp(x)-1)^2. - Wolfdieter Lang, Jul 15 2013
It can be observed that the rational sequence [0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, ...], derived from a(n)/A050932(n), is an autosequence of the first kind. - Jean-François Alcover, Jul 21 2017
Apparently a(n) = numerator(Sum_{k=0..n-1} (-1)^(n-k+1)*E1(n,k+1)/binomial(n,k+1)) for n >= 2, where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
LINKS
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
OEIS Wiki, Autosequence
S. C. Woon, A tree for generating Bernoulli numbers, Math. Mag., 70 (1997), 51-56.
MATHEMATICA
Numerator[Table[(n+1)BernoulliB[n], {n, 0, 40}]] (* Harvey P. Dale, May 13 2012 *)
PROG
(Haskell)
a050925 n = a050925_list !! n
a050925_list = 1 : -1 : (tail $ map (numerator . sum) $
zipWith (zipWith (%))
(zipWith (map . (*)) (drop 2 a000142_list) a242179_tabf) a106831_tabf)
-- Reinhard Zumkeller, Jul 04 2014
(PARI) a(n)=numerator(bernfrac(n)*(n+1)) \\ Charles R Greathouse IV, Feb 07 2017
KEYWORD
sign,easy,frac,nice
AUTHOR
N. J. A. Sloane, Dec 30 1999
STATUS
approved
Denominator of (n+1)*Bernoulli(n).
+10
10
1, 1, 2, 1, 6, 1, 6, 1, 10, 1, 6, 1, 210, 1, 2, 1, 30, 1, 42, 1, 110, 1, 6, 1, 546, 1, 2, 1, 30, 1, 462, 1, 170, 1, 6, 1, 51870, 1, 2, 1, 330, 1, 42, 1, 46, 1, 6, 1, 6630, 1, 22, 1, 30, 1, 798, 1, 290, 1, 6, 1, 930930, 1, 2, 1, 102, 1, 966, 1, 10, 1, 66, 1, 1919190
OFFSET
0,3
COMMENTS
Apparently a(n) = denominator(Sum_{k=0..n-1} (-1)^(n-k+1)*E1(n, k+1)/binomial(n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..20000 (terms 0..200 from N. J. A. Sloane)
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
S. C. Woon, A tree for generating Bernoulli numbers, Math. Mag., 70 (1997), 51-56.
MATHEMATICA
Denominator/@Table[(n+1)BernoulliB[n], {n, 0, 80}] (* Harvey P. Dale, May 19 2011 *)
PROG
(Haskell)
a050932 n = a050932_list !! n
a050932_list = 1 : map (denominator . sum) (zipWith (zipWith (%))
(zipWith (map . (*)) (drop 2 a000142_list) a242179_tabf) a106831_tabf)
-- Reinhard Zumkeller, Jul 04 2014
(PARI) a(n)=denominator(bernfrac(n)*(n+1)) \\ Charles R Greathouse IV, Feb 07 2017
(Python)
from sympy import bernoulli, gcd
def A050932(n):
q = bernoulli(n).q
return q//gcd(q, n+1) # Chai Wah Wu, Apr 02 2021
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, Dec 30 1999
STATUS
approved
Triangle read by rows: T(n,k) is the numerator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0.
+10
9
1, 1, 6, 1, 0, 30, 1, -14, 0, 140, 1, -120, 0, 0, 630, 1, -1386, 660, 0, 0, 2772, 1, -21840, 18018, 0, 0, 0, 12012, 1, -450054, 491400, -60060, 0, 0, 0, 51480, 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790, 1, -394788954, 581981400, -196409840, 8817900, 0, 0, 0, 0, 923780, 1, -16172552880, 26003271294, -10863652800, 1031151660, 0, 0, 0, 0, 0, 3879876
OFFSET
0,3
LINKS
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
C. Jordan, Calculus of Finite Differences, Röttig and Romwalter, Budapest, 1939. [Annotated scans of pages 448-450 only]
Petro Kolosov, On the link between Binomial Theorem and Discrete Convolution of Power Function, arXiv:1603.02468 [math.NT], 2016-2020.
Petro Kolosov, An unusual identity for odd-powers, arXiv:2101.00227 [math.GM], 2021.
FORMULA
Recurrence given by Max Alekseyev (see the MathOverflow link):
R(n, k) = 0 if k < 0 or k > n.
R(n, k) = (2k+1)*binomial(2k, k) if k = n.
R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.
T(n, k) = numerator(R(n, k)).
EXAMPLE
Triangle begins:
------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
------------------------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 0, 30;
n=3: 1, -14, 0, 140;
n=4: 1, -120, 0, 0, 630;
n=5: 1, -1386, 660, 0, 0, 2772;
n=6: 1, -21840, 18018, 0, 0, 0, 12012;
n=7: 1, -450054, 491400, -60060, 0, 0, 0, 51480;
n=8: 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790;
MAPLE
R := proc(n, k) if k < 0 or k > n then return 0 fi; (2*k+1)*binomial(2*k, k);
if n = k then % else -%*add((-1)^j*R(n, j)*binomial(j, 2*k+1)*
bernoulli(2*j-2*k)/(j-k), j=2*k+1..n) fi end: T := (n, k) -> numer(R(n, k)):
seq(print(seq(T(n, k), k=0..n)), n=0..12);
# Numerical check that S(m, n) = n^(2*m+1):
S := (m, n) -> add(add(R(m, j)*(n-k)^j*k^j, j=0..m), k=0..n-1):
seq(seq(S(m, n) - n^(2*m+1), n=0..12), m=0..12); # Peter Luschny, Apr 30 2018
MATHEMATICA
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
T[n_, k_] := Numerator[R[n, k]];
(* Print Fifteen Initial rows of Triangle A302971 *)
Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
PROG
(PARI) T(n, k) = if ((n>k) || (n<0), 0, if (k==n, (2*n+1)*binomial(2*n, n), if (2*n+1>k, 0, if (n==0, 1, (2*n+1)*binomial(2*n, n)*sum(j=2*n+1, k+1, T(j, k)*binomial(j, 2*n+1)*(-1)^(j-1)/(j-n)*bernfrac(2*j-2*n))))));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(numerator(T(k, n)), ", ")); print); \\ Michel Marcus, Apr 27 2018
CROSSREFS
Items of second row are the coefficients in the definition of A287326.
Items of third row are the coefficients in the definition of A300656.
Items of fourth row are the coefficients in the definition of A300785.
T(n,n) gives A002457(n).
Denominators of R(n,k) are shown in A304042.
Row sums return A000079(2n+1) - 1.
KEYWORD
sign,tabl,easy,frac
AUTHOR
Kolosov Petro, Apr 16 2018
STATUS
approved
Triangle read by rows: T(n,k) is the denominator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0.
+10
9
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,68
LINKS
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
Petro Kolosov, On the link between Binomial Theorem and Discrete Convolution of Power Function, arXiv:1603.02468 [math.NT], 2016-2020.
Petro Kolosov, An unusual identity for odd-powers, arXiv:2101.00227 [math.GM], 2021.
FORMULA
Recurrence given by Max Alekseyev (see the MathOverflow link):
R(n, k) = 0 if k < 0 or k > n.
R(n, k) = (2k+1)*binomial(2k, k) if k = n.
R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.
T(n, k) = denominator(R(n, k)).
EXAMPLE
Triangle begins:
-----------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-----------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 1, 1;
n=3: 1, 1, 1, 1;
n=4: 1, 1, 1, 1, 1;
n=5: 1, 1, 1, 1, 1, 1;
n=6: 1, 1, 1, 1, 1, 1, 1;
n=7: 1, 1, 1, 1, 1, 1, 1, 1;
n=8: 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=9: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=10: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=11: 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1;
n=12: 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=13: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=14: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=15: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
MATHEMATICA
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
T[n_, k_] := Denominator[R[n, k]];
(* Print Fifteen Initial rows of Triangle A304042 *)
Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
PROG
(PARI)
up_to = 1274; \\ = binomial(50+1, 2)-1
A304042aux(n, k) = if((k<0)||(k>n), 0, (k+k+1)*binomial(2*k, k)*if(k==n, 1, sum(j=k+k+1, n, A304042aux(n, j)*binomial(j, k+k+1)*((-1)^(j-1))/(j-k)*bernfrac(2*(j-k)))));
A304042tr(n, k) = denominator(A304042aux(n, k));
A304042list(up_to) = { my(v = vector(up_to), i=0); for(n=0, oo, for(k=0, n, if(i++ > up_to, return(v)); v[i] = A304042tr(n, k))); (v); };
v304042 = A304042list(1+up_to);
A304042(n) = v304042[1+n]; \\ Antti Karttunen, Nov 07 2018
KEYWORD
nonn,tabl,frac
AUTHOR
Kolosov Petro, May 05 2018
STATUS
approved

Search completed in 0.016 seconds