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Abstract. In this manuscript we show that for every n ≥ 1, n,m ∈ N there are coefficients

Am,0,Am,1, . . . ,Am,m such that the polynomial identity holds

n2m+1 =

n∑
k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mkm(n− k)m
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n n3 ∆(n3) ∆2(n3) ∆3(n3)

0 0 1 6 6

1 1 7 12 6

2 8 19 18 6

3 27 37 24 6

4 64 61 30 6

5 125 91 36

6 216 127

7 343

Table 1. Table of finite differences of the polynomial n3.

We can observe easily that finite differences 1 of the polynomial n3 may be expressed

according to the following relation, via rearrangement of the terms

∆(03) = 1 + 6 · 0

∆(13) = 1 + 6 · 0 + 6 · 1

∆(23) = 1 + 6 · 0 + 6 · 1 + 6 · 2

∆(33) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3

...

∆(n3) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3 + · · ·+ 6 · n

(1.1)

Furthermore, the polynomial n3 is identical to

n3 = [1 + 6 · 0] + [1 + 6 · 0 + 6 · 1] + [1 + 6 · 0 + 6 · 1 + 6 · 2] + · · ·

+ [1 + 6 · 0 + 6 · 1 + 6 · 2 + · · ·+ 6 · (n− 1)]

1One may assume that it is possible to reach the form n2m+1 =
∑n

k=1 Am,0k
0(n− k)0 +Am,1(n− k)1 +

· · · + Am,mkm(n − k)m simply taking finite differences of the polynomial n2m+1 up to order of 2m + 1

and interpolating it backwards similarly as shown in (1.1). However, my observations do not provide any

evidence of such assumption. Interestingly enough is that we could have been arrived to the pure differential

approach of the relation (1.4) then.
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Rearranging the above equation, we get

n3 = n+ (n− 0) · 6 · 0 + (n− 1) · 6 · 1 + (n− 2) · 6 · 2 + · · ·+ 1 · 6 · (n− 1)

Therefore, we can consider the polynomial n3 as

n3 =
n∑

k=1

6k(n− k) + 1 (1.2)

Assume that equation (1.2) has an implicit form as follows

n3 =
n∑

k=1

A1,1k
1(n− k)1 +A1,0k

0(n− k)0, (1.3)

where A1,1 = 6 and A1,0 = 1, respectively. Note that here the power of 3 is actually defined

by 2m+1 where m = 1. So is there a generalization of the relation (1.3) for all positive odd

powers 2m+ 1, m = 0, 1, 2, . . . ? Therefore, let be a conjecture

Conjecture 1.1. For every n ≥ 1, n,m ∈ N there are coefficients Am,0,Am,1, . . . ,Am,m

such that

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m (1.4)

2. Approach via a system of linear equations

One approach to prove the conjecture was proposed by Albert Tkaczyk in his series of

the preprints [1, 2] and extended further at [3]. The main idea is to construct and solve a

system of linear equations. Such a system of linear equations is constructed via expanding the

definition of the coefficients Am,r applying Binomial theorem [4] and Faulhaber’s formula [5].

Consider the definition of the coefficients Am,r

n2m+1 =
m∑
r=0

Am,r

n∑
k=1

kr(n− k)r (2.1)
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Expanding the (n− k)r part via Binomial theorem we get

n2m+1 =
m∑
r=0

Am,r

n∑
k=1

kr(n− k)r

=
m∑
r=0

Am,r

n∑
k=1

kr

[
r∑

t=0

(−1)t
(
r

t

)
nr−tkt

]

=
m∑
r=0

Am,r

[
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

]
Applying the Faulhaber’s formula to the sum

∑n
k=1 k

t+r we get

n2m+1 =
m∑
r=0

Am,r

[
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

]

= Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
+Am,4

[
1

630
(−21n+ 20n3 + n9)

]
+Am,5

[
1

2772
(−210n+ 231n3 − 22n5 + n11)

]
+Am,6

[
1

60060
(−15202n+ 18200n3 − 3003n5 + 5n13)

]
+Am,7

[
1

51480
(−60060n+ 76010n3 − 16380n5 + 429n7 + n15)

]
+Am,8

[
1

218790
(−1551693n+ 2042040n3 − 516868n5 + 26520n7 + n17)

]
+ · · ·

(2.2)

Given fixed m, the coefficients Am,r can be determined via a system of linear equations.

Consider an example

Example 2.1. Let be m = 1 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
− n3 = 0

Multiplying by 6 right-hand side and left-hand side, we get

6A1,0n+A1,1(−n+ n3)− 6n3 = 0
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Opening brackets and rearranging the terms gives

6A1,0 −A1,1n+A1,1n
3 − 6n3 = 0

Combining the common terms yields

n(6A1,0 −A1,1) + n3(A1,1 − 6) = 0

Therefore, the system of linear equations follows
6A1,0 −A1,1 = 0

A1,1 − 6 = 0

Solving it, we get 
A1,1 = 6

A1,0 = 1

So that odd-power identity (2.1) holds

n3 =
n∑

k=1

6k(n− k) + 1

It is also clearly seen why the above identity is true evaluating the terms 6k(n− k) + 1 over

0 ≤ k ≤ n as it is shown at [6].

Example 2.2. Let be m = 2 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
− n5 = 0

Multiplying by 30 right-hand side and left-hand side, we get

30A2,0n+ 5A2,1(−n+ n3) +A2,2(−n+ n5)− 30n5 = 0

Opening brackets and rearranging the terms gives

30A2,0 − 5A2,1n+ 5A2,1n
3 −A2,2n+A2,2n

5 − 30n5 = 0

Combining the common terms yields

n(30A2,0 − 5A2,1 −A2,2) + 5A2,1n
3 + n5(A2,2 − 30) = 0
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Therefore, the system of linear equations follows
30A2,0 − 5A2,1 −A2,2 = 0

A2,1 = 0

A2,2 − 30 = 0

Solving it, we get 
A2,2 = 30

A2,1 = 0

A2,0 = 1

So that odd-power identity (2.1) holds

n5 =
n∑

k=1

30k2(n− k)2 + 1

It is also clearly seen why the above identity is true evaluating the terms 30k2(n − k)2 + 1

over 0 ≤ k ≤ n as it is shown at [7].

Example 2.3. Let be m = 3 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
−n7 = 0

Multiplying by 420 right-hand side and left-hand side, we get

420A3,0n+ 70A2,1(−n+ n3) + 14A2,2(−n+ n5) +A3,3(−10n+ 7n3 + 3n7)− 420n7 = 0

Opening brackets and rearranging the terms gives

420A3,0n− 70A3,1 + 70A3,1n
3 − 14A3,2n+ 14A3,2n

5

− 10A3,3n+ 7A3,3n
3 + 3A3,3n

7 − 420n7 = 0

Combining the common terms yields

n(420A3,0 − 70A3,1 − 14A3,2 − 10A3,3)

+ n3(70A3,1 + 7A3,3) + n514A3,2 + n7(3A3,3 − 420) = 0
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Therefore, the system of linear equations follows

420A3,0 − 70A3,1 − 14A3,2 − 10A3,3 = 0

70A3,1 + 7A3,3 = 0

A3,2 − 30 = 0

3A3,3 − 420 = 0

Solving it, we get 

A3,3 = 140

A3,2 = 0

A3,1 = − 7
70
A3,3 = −14

A3,0 =
(70A3,1+10A3,3)

420
= 1

So that odd-power identity (2.1) holds

n7 =
n∑

k=1

140k3(n− k)3 − 14k(n− k) + 1

It is also clearly seen why the above identity is true evaluating the terms 140k3(n − k)3 −

14k(n− k) + 1 over 0 ≤ k ≤ n as it is shown at [8].

Example 2.4. Let be m = 4 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
+Am,4

[
1

630
(−21n+ 20n3 + n9)

]
− n9 = 0

Multiplying by 630 right-hand side and left-hand side, we get

630A4,0n+ 105A4,1(−n+ n3) + 21A4,2(−n+ n5)

+
3

2
A4,3(−10n+ 7n3 + 3n7)

+A4,4(−21n+ 20n3 + n9)− 630n9 = 0
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Opening brackets and rearranging the terms gives

630A4,0n− 105A4,1n+ 105A4,1n
3 − 21A4,2n+ 21A4,2n

5

− 3

2
A4,3 · 10n+

3

2
A4,3 · 7n3 +

3

2
A4,3 · 3n7

− 21A4,4n+ 20A4,4n
3 +A4,4n

9 − 630n9 = 0

Combining the common terms yields

n(630A4,0 − 105A4,1 − 21A4,2 − 15A4,3 − 21A4,4)

+ n3

(
105A4,1 +

21

2
A4,3 + 20A4,4

)
+ n5(21A4,2)

+ n7

(
9

2
A4,3

)
+ n9(A4,4 − 630) = 0

Therefore, the system of linear equations follows

630A4,0 − 105A4,1 − 21A4,2 − 15A4,3 − 21A4,4 = 0

105A4,1 +
21
2
A4,3 + 20A4,4 = 0

A4,2 = 0

A4,3 = 0

A4,4 − 630 = 0

Solving it, we get 

A4,4 = 630

A4,3 = 0

A4,2 = 0

A4,1 = − 20
105

A4,4 = −120

A4,0 =
105A4,1+21A4,4

630
= 1

So that odd-power identity (2.1) holds

n9 =
n∑

k=1

630k4(n− k)4 − 120k(n− k) + 1
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3. Approach via recursion

Another approach to determine the coefficients Am,r was provided by Dr. Max Alekseyev

in MathOverflow discussion [9]. Generally, the idea was to determine the coefficientsAm,r re-

cursively starting from the base case Am,m up to Am,r−1, . . . ,Am,0 via previously determined

values. Consider the Faulhaber’s formula

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

it is very important to note that summation bound is p while binomial coefficient upper

bound is p+1. It means that we cannot skip summation bounds unless we do some trick as

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j =

[
1

p+ 1

p+1∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

]
−Bp+1

=

[
1

p+ 1

∑
j

(
p+ 1

j

)
Bjn

p+1−j

]
−Bp+1

Using the Faulhaber’s formula
∑n

k=1 k
p =

[
1

p+1

∑
j

(
p+1
j

)
Bjn

p+1−j
]
−Bp+1 we get

n∑
k=1

kr(n− k)r =
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

=
r∑

t=0

(−1)t
(
r

t

)
nr−t

[
1

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

t+r+1−j −Bt+r+1

]

=
r∑

t=0

(
r

t

)[
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −Bt+r+1n
r−t

]

=
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

=
∑
j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
Bjn

2r+1−j −
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

=
∑
j

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
−

r∑
t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t
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Now, we notice that

∑
t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=


1

(2r+1)(2rr )
, if j = 0;

(−1)r

j

(
r

2r−j+1

)
, if j > 0.

(3.1)

An elegant proof of the above binomial identity is provided at [10]. In particular, the

equation (3.1) is zero for 0 < t ≤ j. So that taking j = 0 we have

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
j≥1

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)]

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
Now let’s simplify the double summation applying the identity (3.1)

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
j≥1

(−1)r

j

(
r

2r − j + 1

)
Bjn

2r+1−j

]
︸ ︷︷ ︸

(⋆)

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
︸ ︷︷ ︸

(⋄)

Hence, introducing ℓ = 2r− j + 1 to (⋆) and ℓ = r− t to (⋄) we collapse the common terms

of the above equation so that we get

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

]

−

[∑
ℓ

(
r

ℓ

)
(−1)r−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

]

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

Using the definition of Am,r, we obtain the following identity for polynomials in n∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
r

Am,r

∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ ≡ n2m+1
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Replacing odd ℓ by d we get∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
r

Am,r

∑
d

(−1)r

2r − 2d

(
r

2d+ 1

)
B2r−2dn

2d+1 ≡ n2m+1

∑
r

Am,r

[
1

(2r + 1)
(
2r
r

)n2r+1

]
+ 2

∑
r

Am,r

[∑
d

(−1)r

2r − 2d

(
r

2d+ 1

)
B2r−2dn

2d+1

]
− n2m+1 = 0

(3.2)

Taking the coefficient of n2m+1 in (3.2), we get

Am,m = (2m+ 1)

(
2m

m

)
and taking the coefficient of n2d+1 for an integer d in the range m/2 ≤ d < m, we get

Am,d = 0

Taking the coefficient of n2d+1 for d in the range m/4 ≤ d < m/2 we get

Am,d
1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0

i.e

Am,d = (−1)m−1 (2m+ 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d

Continue similarly we can express Am,r for each integer r in range m/2s+1 ≤ r < m/2s

(iterating consecutively s = 1, 2, . . .) via previously determined values of Am,d as follows

Am,r = (2r + 1)

(
2r

r

) m∑
d≥2r+1

Am,d

(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Finally, the coefficient Am,r is defined recursively as

Am,r :=


(2r + 1)

(
2r
r

)
, if r = m;

(2r + 1)
(
2r
r

)∑m
d≥2r+1Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r, if 0 ≤ r < m;

0, if r < 0 or r > m,

(3.3)

where Bt are Bernoulli numbers [11]. It is assumed that B1 =
1
2
. For example,
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m/r 0 1 2 3 4 5 6 7

0 1

1 1 6

2 1 0 30

3 1 -14 0 140

4 1 -120 0 0 630

5 1 -1386 660 0 0 2772

6 1 -21840 18018 0 0 0 12012

7 1 -450054 491400 -60060 0 0 0 51480

Table 2. Coefficients Am,r.

The coefficients Am,r are also registered in the OEIS [12, 13]. It is as well interesting to

notice that row sums of the Am,r give powers of 2

m∑
r=0

Am,r = 22m+1

4. Approach via recursion: Examples

Consider the definition (3.3) of the coefficients Am,r, it can be written as

Am,r :=



(2r + 1)
(
2r
r

)
, if r = m;∑m

d≥2r+1Am,d (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r︸ ︷︷ ︸

T (d,r)

, if 0 ≤ r < m;

0, if r < 0 or r > m,

Therefore, let be a definition of the real coefficient T (d, r)

Definition 4.1. Real coefficient T (d, r)

T (d, r) = (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Example 4.2. Let be m = 2 so first we get A2,2

A2,2 = 5

(
4

2

)
= 30
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Then A2,1 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

1 ≤ d < 2. Finally, the coefficient A2,0 is

A2,0 =
2∑

d≥1

A2,d · T (d, 0) = A2,1 · T (1, 0) +A2,2 · T (2, 0)

= 30 · 1

30
= 1

Example 4.3. Let be m = 3 so that first we get A3,3

A3,3 = 7

(
6

3

)
= 140

Then A3,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

2 ≤ d < 3. The A3,1 coefficient is non-zero and calculated as

A3,1 =
3∑

d≥3

A3,d · T (d, 1) = A3,3 · T (3, 1) = 140 ·
(
− 1

10

)
= −14

Finally, the coefficient A3,0 is

A3,0 =
3∑

d≥1

A3,d · T (d, 0) = A3,1 · T (1, 0) +A3,2 · T (2, 0) +A3,3 · T (3, 0)

= −14 · 1
6
+ 140 · 1

42
= 1

Example 4.4. Let be m = 4 so that first we get A4,4

A4,4 = 9

(
8

4

)
= 630

Then A4,3 = 0 and A4,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 2 ≤ d < 4. The value of the coefficient A4,1 is non-zero and calculated as

A4,1 =
4∑

d≥3

A4,d · T (d, 1) = A4,3 · T (3, 1) +A4,4 · T (4, 1) = 630 ·
(
− 4

21

)
= −120

Finally, the coefficient A4,0 is

A4,0 =
4∑

d≥1

A4,d · T (d, 0) = A4,1 · T (1, 0) +A4,4 · T (4, 0) = −120 · 1
6
+ 630 · 1

30
= 1
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Example 4.5. Let be m = 5 so that first we get A5,5

A5,5 = 11

(
10

5

)
= 2772

Then A5,4 = 0 and A5,3 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 3 ≤ d < 5. The value of the coefficient A5,2 is non-zero and calculated as

A5,2 =
5∑

d≥5

A5,d · T (d, 2) = A5,5 · T (5, 2) = 2772 · 5

21
= 660

The value of the coefficient A5,1 is non-zero and calculated as

A5,1 =
5∑

d≥3

A5,d · T (d, 1) = A5,3 · T (3, 1) +A5,4 · T (4, 1) +A5,5 · T (5, 1)

= 2772 ·
(
−1

2

)
= −1386

Finally, the coefficient A5,0 is

A5,0 =
5∑

d≥1

A5,d · T (d, 0) = A5,1 · T (1, 0) +A5,2 · T (2, 0) +A5,5 · T (5, 0)

= −1386 · 1
6
+ 660 · 1

30
+ 2772 · 5

66
= 1

5. Conclusions

In this manuscript, we have shown that for every n ≥ 1, n,m ∈ N there are coefficients

Am,0,Am,1, . . . ,Am,m such that the polynomial identity holds

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m

In particular, the coefficientsAm,r may be evaluated both ways, by constructing and solving a

system of linear equations or applying recurrence relations; all these approaches are explained

with examples in the sections 2 and 3, respectively. Moreover, to validate the results, there

are supplementary Mathematica programs provided at [14].
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