OFFSET
0,9
COMMENTS
The beginning of this sequence does not quite agree with the usual version, which is A173018. - N. J. A. Sloane, Nov 21 2010
Each row of A123125 is the reverse of the corresponding row in A173018. - Michael Somos, Mar 17 2011
A008292 (subtriangle for k>=1 and n>=1 is the main entry for these numbers.
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,2,0,3,0,4,0,5,0,...] DELTA [1,0,2,0,3,0,4,0,5,0,6,...] where DELTA is the operator defined in A084938.
Row sums are the factorials. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008
If the initial zero column is deleted, the result is A008292. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008
This result gives an alternative method of calculating the Eulerian numbers by an Umbral Calculus expansion from Comtet. - Roger L. Bagula, Nov 21 2009
This function seems to be equivalent to the PolyLog expansion. - Roger L. Bagula, Nov 21 2009
A raising operator formed from the e.g.f. of this entry is the generator of a sequence of polynomials p(n,x;t) defined in A046802 that specialize to those for A119879 as p(n,x;-1), A007318 as p(n,x;0), A073107 as p(n,x;1), and A046802 as p(n,0;t). See Copeland link for more associations. - Tom Copeland, Oct 20 2015
The Eulerian numbers in this setup count the permutation trees of power n and width k (see the Luschny link). For the associated combinatorial statistic over permutations see the Sage program below and the example section. - Peter Luschny, Dec 09 2015 [See Elder et al. link. Peter Luschny, Jul 13 2022]
From Wolfdieter Lang, Apr 03 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k are the numerator polynomials of the o.g.f. G(n, x) of n-powers {m^n}_{m>=0} (with 0^0 = 1): G(n, x) = R(n, x)/(1-x)^(n+1). See the Aug 14 2008 formula, where f(x,n) = R(n, x). The e.g.f. of R(n, t) is given in Copeland's Oct 14 2015 formula below.
The first nine column sequences are A000007, A000012, A000295, A000460, A000498, A000505, A000514, A001243, A001244. (End)
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of this entry, A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
Let b(n) = (1/(n+1))*Sum_{k=0..n-1} (-1)^(n-k+1)*T(n, k+1) / binomial(n, k+1). Then b(n) = Bernoulli(n, 1) = -n*Zeta(1 - n) = Integral_{x=0..1} F_n(x) for n >= 1. Here F_n(x) are the signed Fubini polynomials (A278075). (See also Rzadkowski and Urlinska, example 1.) - Peter Luschny, Feb 15 2021
Patrick J. Burchell (see link) describes the following method: To get the k-th row of the triangle write the nonnegative integers with a fixed exponent k as a sequence, 0^k, 1^k, 2^k, ..., and then apply the first differences to them k + 1 times. - Peter Luschny, Apr 02 2023
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, Holland, 1978, page 245. [Roger L. Bagula, Nov 21 2009]
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed.; Addison-Wesley, 1994, p. 268, Row reversed table 268. - Wolfdieter Lang, Apr 03 2017
Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008
LINKS
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv preprint arXiv:1105.3043 [math.CO], 2011, J. Int. Seq. 14 (2011) # 11.9.5
Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
V. Batyrev and M. Blume, The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces, p. 11, arXiv:/0911.3607 [math.AG], 2009. [Tom Copeland, Oct 16 2015]
Anna Borowiec and Wojciech Mlotkowski, New Eulerian numbers of type D, arXiv:1509.03758 [math.CO], 2015.
Patrick J. Burchell, A Generalisation of Ramanujan's (back of the envelope) Method for Divergent Series, arXiv:2303.14045 math.NT, 2023.
A. Cohen, Eulerian polynomials of spherical type, Münster J. of Math. 1 (2008). [Tom Copeland, Oct 16 2015]
Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker and Amanda Welch, Homomesies on permutations -- an analysis of maps and statistics in the FindStat database, math.CO, arXiv, 2022. (Def. 4.20 and Prop. 4.22.)
FindStat - Combinatorial Statistic Finder, The number of descents of a permutation.
F. Hirzebruch, Eulerian polynomials, Münster J. of Math. 1 (2008), pp. 9-12.
P. Hitczenko and S. Janson, Weighted random staircase tableaux, arXiv preprint arXiv:1212.5498 [math.CO], 2012.
Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018.
Svante Janson, Euler-Frobenius numbers and rounding, arXiv preprint arXiv:1305.3512 [math.PR], 2013.
Katarzyna Kril and Wojciech Mlotkowski, Permutations of Type B with Fixed Number of Descents and Minus Signs, Volume 26(1) of The Electronic Journal of Combinatorics, 2019.
Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 22.
A. Losev and Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, arXiv preprint arXiv:math/0001003 [math.AG], 2000 (p. 8). - Tom Copeland, Oct 16 2015
Peter Luschny, Permutation Trees
G. Rzadkowski and M. Urlinska, A Generalization of the Eulerian Numbers, arXiv:1612.06635 [math.CO], 2016.
FORMULA
Sum_{k=0..n} T(n,k) = n! = A000142(n).
Sum_{k=0..n} 2^k*T(n,k) = A000629(n).
Sum_{k=0..n} 3^k*T(n,k) = abs(A009362(n+1)).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A000670(n).
Sum_{k=0..n} T(n,k)*3^(n-k) = A122704(n). - Philippe Deléham, Nov 07 2007
G.f.: f(x,n) = (1 - x)^(n + 1)*Sum_{k>=0} k^n*x^k. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008. f is not the g.f. of the triangle, it is the polynomial of row n. See an Apr 03 2017 comment above - Wolfdieter Lang, Apr 03 2017
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000629(n), A123227(n), A201355(n), A201368(n) for x = 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Dec 01 2011
E.g.f. (1-t)/(1-t*exp((1-t)x)). A123125 * A007318 = A130850 = unsigned A075263, related to reversed A028246. A007318 * A123125 = A046802. Evaluating the row polynomials at -1, giving the alternating-sign row sum, generates A009006. - Tom Copeland, Oct 14 2015
From Wolfdieter Lang, Apr 03 2017: (Start)
T(n, k) = A173018(n, n-k), 0 <= k <= n. Row reversed Euler's triangle. See Graham et al., p. 268.
Recurrence (from A173018): T(n, 0) = 1 if n=0 else 0; T(n, k) = 0 if n < k and T(n, k) = (n+1-k)*T(n-1, k-1) + k*T(n-1, k) else.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n-j, k-j)*S2(n, j)*j!, 0 <= k <= n, else 0. For S2(n, k)*k! see A131689.
The recurrence for the o.g.f. of the sequence of column k is
G(k, x) = (x/(1 - k*x))*(E_x - (k-2))*G(k-1, x), with the Euler operator E_x = x*d_x, for k >= 1, with G(0, x) = 1. (Proof from the recurrence of T(n, k)).
The e.g.f of the sequence of column k is found from E(k, x) = (1 + int(A(k, x),x)*exp(-k*x))*exp(k*x), k >= 1, with the recurrence
A(k, x) = x*A(k-1, x) +(1 + (1-k)*(1-x))*E(k-1, x) for k >= 1, with A(0,x)= 0. (Proof from the recurrence of T(n, k)). (End)
T(n, k) = Sum_{j=0..n-k} (-1)^j*(n-j-k+1)^n*binomial(n + 1, j). - Peter Luschny, Aug 12 2022
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10...
0: 1
1: 0 1
2: 0 1 1
3: 0 1 4 1
4: 0 1 11 11 1
5: 0 1 26 66 26 1
6: 0 1 57 302 302 57 1
7: 0 1 120 1191 2416 1191 120 1
8: 0 1 247 4293 15619 15619 4293 247 1
9: 0 1 502 14608 88234 156190 88234 14608 502 1
10: 0 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1
... Reformatted. - Wolfdieter Lang, Feb 14 2015
------------------------------------------------------------------
The width statistic over permutations, n=4.
[1, 2, 3, 4] => 3; [1, 2, 4, 3] => 2; [1, 3, 2, 4] => 2; [1, 3, 4, 2] => 2;
[1, 4, 2, 3] => 2; [1, 4, 3, 2] => 1; [2, 1, 3, 4] => 3; [2, 1, 4, 3] => 2;
[2, 3, 1, 4] => 2; [2, 3, 4, 1] => 3; [2, 4, 1, 3] => 2; [2, 4, 3, 1] => 2;
[3, 1, 2, 4] => 3; [3, 1, 4, 2] => 3; [3, 2, 1, 4] => 2; [3, 2, 4, 1] => 3;
[3, 4, 1, 2] => 3; [3, 4, 2, 1] => 2; [4, 1, 2, 3] => 4; [4, 1, 3, 2] => 3;
[4, 2, 1, 3] => 3; [4, 2, 3, 1] => 3; [4, 3, 1, 2] => 3; [4, 3, 2, 1] => 2;
Gives row(4) = [0, 1, 11, 11, 1]. - Peter Luschny, Dec 09 2015
------------------------------------------------------------------
From Wolfdieter Lang, Apr 03 2017: (Start)
Recurrence: T(5, 3) = (6-3)*T(4, 2) + 3*T(4, 3) = 3*11 + 3*11 = 66.
O.g.f. column k=2: (x/(1 - 2*x))*E_x*(x/(1-x) = (x/1-x)^2/(1-2*x).
E.g.f. column k=2: A(2, x) = x*A(1, x) + x*E(1, x) = x*1 + x*(exp(x)-1) = x*exp(x), hence E(2, x) = (1 + int(x*exp(-x),x ))*exp(2*x) = exp(x)*(exp(x) - (1+x)). See A000295. (End)
MAPLE
gf := 1/(1 - t*exp(x)): ser := series(gf, x, 12):
cx := n -> (-1)^(n + 1)*factor(n!*coeff(ser, x, n)*(t - 1)^(n + 1)):
seq(print(seq(coeff(cx(n), t, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 11 2021
A123125 := proc(n, k) option remember; if k = n then 1 elif k <= 0 or k > n then 0 else k*procname(n-1, k) + (n-k+1)*procname(n-1, k-1) fi end:
seq(print(seq(A123125(n, k), k=0..n)), n=0..10); # Peter Luschny, Mar 28 2021
# Alternative (Patrick J. Burchell):
t := a -> Statistics:-Difference([0, a]): Trow := k -> (t@@(k+1))([seq(n^k, n = 0..k)]):
seq(print(Trow(n)), n = 0..6); # Peter Luschny, Apr 02 2023
MATHEMATICA
f[x_, n_] := f[x, n] = (1 - x)^(n + 1)*Sum[k^n*x^k, {k, 0, Infinity}];
Table[CoefficientList[f[x, n], x], {n, 0, 9}] // Flatten (* Roger L. Bagula, Aug 14 2008 *)
t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = (n-k) t[n-1, k-1] + (k+1) t[n-1, k]; T[n_, k_] := t[n, n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019 *)
A123125[n_, k_] := Sum[(-1)^j*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
Table[A123125[n, k], {n, 0, 9}, {k, 0, n}] // TableForm (* Peter Luschny, Aug 12 2022 *)
PROG
(Haskell)
a123125 n k = a123125_tabl !! n !! k
a123125_row n = a123125_tabl !! n
a123125_tabl = [1] : zipWith (:) [0, 0 ..] a008292_tabl
-- Reinhard Zumkeller, Nov 06 2013
(Sage)
def statistic_eulerian(pi):
if not pi: return 0
h, i, branch, next = 0, len(pi), [0], pi[0]
while True:
while next < branch[len(branch)-1]:
del(branch[len(branch)-1])
current = 0
h += 1
while next > current:
i -= 1
if i == 0: return h
branch.append(next)
current, next = next, pi[i]
def A123125_row(n):
L = [0]*(n+1)
for p in Permutations(n):
L[statistic_eulerian(p)] += 1
return L
[A123125_row(n) for n in range(7)] # Peter Luschny, Dec 09 2015
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Sep 30 2006
STATUS
approved