OFFSET
0,6
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,6,...] where DELTA is the operator defined in A084938; another version of A019538.
See also A019538: version with n > 0 and k > 0. - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 21 2014: (Start)
T(n,k) gives the number of (k-1)-dimensional faces in the interior of the first barycentric subdivision of the standard (n-1)-dimensional simplex. For example, the barycentric subdivision of the 1-simplex is o--o--o, with 1 interior vertex and 2 interior edges, giving T(2,1) = 1 and T(2,2) = 2.
This triangle is used when calculating the face vectors of the barycentric subdivision of a simplicial complex. Let S be an n-dimensional simplicial complex and write f_k for the number of k-dimensional faces of S, with the usual convention that f_(-1) = 1, so that F := (f_(-1), f_0, f_1,...,f_n) is the f-vector of S. If M(n) denotes the square matrix formed from the first n+1 rows and n+1 columns of the present triangle, then the vector F*M(n) is the f-vector of the first barycentric subdivision of the simplicial complex S (Brenti and Welker, Lemma 2.1). For example, the rows of Pascal's triangle A007318 (but with row and column indexing starting at -1) are the f-vectors for the standard n-simplexes. It follows that A007318*A131689, which equals A028246, is the array of f-vectors of the first barycentric subdivision of standard n-simplexes. (End)
This triangle T(n, k) appears in the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} (x^k/(1 - x)^(k+2))*T(n, k). See also the Eulerian triangle A008292 with a Mar 31 2017 comment for a rewritten form. For the e.g.f. see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
T(n,k) = the number of alignments of length k of n strings each of length 1. See Slowinski. An example is given below. Cf. A122193 (alignments of strings of length 2) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018
The row polynomials R(n,x) are the Fubini polynomials. - Emanuele Munarini, Dec 05 2020
From Gus Wiseman, Feb 18 2022: (Start)
Also the number of patterns of length n with k distinct parts (or with maximum part k), where we define a pattern to be a finite sequence covering an initial interval of positive integers. For example, row n = 3 counts the following patterns:
(1,1,1) (1,2,2) (1,2,3)
(2,1,2) (1,3,2)
(2,2,1) (2,1,3)
(1,1,2) (2,3,1)
(1,2,1) (3,1,2)
(2,1,1) (3,2,1)
(End)
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
F. Brenti and V. Welker, f-vectors of barycentric subdivisions, arXiv:math/0606356 [math.CO], Math. Z., 259(4), 849-865, 2008.
M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
Massimo Nocentini, An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation, PhD Thesis, University of Florence, 2019. See Ex. 36.
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
Wikipedia, Barycentric subdivision
Wikipedia, Simplicial complex
Wikipedia, Simplex
FORMULA
T(n,k) = k*(T(n-1,k-1) + T(n-1,k)) with T(0,0)=1. Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A000629(n), A033999(n), A000007(n), A000670(n), A004123(n+1), A032033(n), A094417(n), A094418(n), A094419(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. [corrected by Philippe Deléham, Feb 11 2013]
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A000670(n), A122704(n) for x=-1, 0, 1, 2 respectively. - Philippe Deléham, Oct 09 2007
Sum_{k=0..n} (-1)^k*T(n,k)/(k+1) = Bernoulli numbers A027641(n)/A027642(n). - Peter Luschny, Sep 17 2011
G.f.: F(x,t) = 1 + x*t + (x+x^2)*t^2/2! + (x+6*x^2+6*x^3)*t^3/3! + ... = Sum_{n>=0} R(n,x)*t^n/n!.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = (x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x. - Philippe Deléham, Feb 11 2013
T(n,k) = [t^k] (n! [x^n] (1/(1-t*(exp(x)-1)))). - Peter Luschny, Jan 23 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See also Bala, Example E8. - Peter Bala, Jan 08 2018
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 1 2
3: 0 1 6 6
4: 0 1 14 36 24
5: 0 1 30 150 240 120
6: 0 1 62 540 1560 1800 720
7: 0 1 126 1806 8400 16800 15120 5040
8: 0 1 254 5796 40824 126000 191520 141120 40320
9: 0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
... reformatted and extended. - Wolfdieter Lang, Mar 31 2017
From Peter Bala, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
(i) A - (ii) A - (iii) A -
B - B - - B
C - - C - C
- D - D - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
MAPLE
A131689 := (n, k) -> Stirling2(n, k)*k!: # Peter Luschny, Sep 17 2011
# Alternatively:
A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%, x, n+1)); n!*coeff(%, x, n); PolynomialTools:-CoefficientList(%, t) end:
for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
MATHEMATICA
t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
PROG
(PARI) {T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
(Julia)
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) + T(n-1, k))
end
for n in 0:7
println([T(n, k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
(SageMath)
@cached_function
def F(n): # Fubini polynomial
R.<x> = PolynomialRing(ZZ)
if n == 0: return R(1)
return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021
CROSSREFS
Columns k=0..10 are A000007, A000012, A000918, A001117, A000919, A001118, A000920, A135456, A133068, A133360, A133132,
Case m=1 of the polynomials defined in A278073.
Cf. A000142 (diagonal), A000670 (row sums), A000012 (alternating row sums), A210029 (central terms).
Classes of patterns:
- A000142 = strict
- A019536 = necklace
- A032011 = distinct multiplicities
- A060223 = Lyndon
- A296975 = aperiodic
- A349058 = weakly alternating
- A351200 = distinct runs
- A351292 = distinct run-lengths
KEYWORD
AUTHOR
Philippe Deléham, Sep 14 2007
STATUS
approved