[go: up one dir, main page]

login
A000920
Differences of 0: 6!*Stirling2(n,6).
(Formerly M5473 N2370)
12
0, 0, 0, 0, 0, 720, 15120, 191520, 1905120, 16435440, 129230640, 953029440, 6711344640, 45674188560, 302899156560, 1969147121760, 12604139926560, 79694820748080, 499018753280880, 3100376804676480, 19141689213218880, 117579844328562000
OFFSET
1,6
COMMENTS
Number of surjections from an n-element set onto a six-element set, with n >= 6. - Mohamed Bouhamida, Dec 15 2007
Number of rows of n colors using exactly six colors. For n=6, the 720 rows are the 720 permutations of ABCDEF. - Robert A. Russell, Sep 25 2018
REFERENCES
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
LINKS
P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
FORMULA
a(n) = Sum((-1)^i*binomial(6, i)*(6-i)^n, i = 0 .. 5).
a(n) = 6^n-C(6,5)*5^n+C(6,4)*4^n-C(6,3)*3^n+C(6,2)*2^n-C(6,1) with n>=6. - Mohamed Bouhamida, Dec 15 2007
G.f.: 720*x^6/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 720*A000770(n). - R. J. Mathar, Apr 30 2015
E.g.f.: (exp(x) - 1)^6. - Geoffrey Critzer, May 17 2015
MAPLE
720/(-1+z)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1);
MATHEMATICA
CoefficientList[Series[(720*x^5)/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 11 2012 *)
k=6; Table[k!StirlingS2[n, k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
PROG
(Magma) [6^n-Binomial(6, 5)*5^n+Binomial(6, 4)*4^n-Binomial(6, 3)*3^n+Binomial(6, 2)*2^n-Binomial(6, 1): n in [1..30]]; // Vincenzo Librandi, May 18 2015
(PARI) a(n) = 6!*stirling(n, 6, 2); \\ Altug Alkan, Sep 25 2018
CROSSREFS
Column 6 of A019538.
Sequence in context: A004033 A137891 A056271 * A052779 A254079 A037212
KEYWORD
nonn,easy
STATUS
approved