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Abstract. The polynomial Pm
b (x) is a 2m+ 1 degree polynomial in (x, b) ∈ R defined by

an identity for odd-powers. The odd-power identity is derived applying certain interpolation

approaches including systems of linear equations and recurrence relations. This manuscript

provides a comprehensive historical survey of the milestones and evolution of the polynomial

Pm
b (x) continuing with related works based on it. Notable results inside related works

include the relation between ordinary and partial derivatives for odd-powers, finding the

derivative of polynomials via double limit etc. Finally, the manuscript concludes with future

research directions and activities.
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Back than, in 2016 being a student of faculty of mechanical engineering, I remember myself

playing with finite differences of the polynomial n3 over the domain of natural numbers n ∈ N

having at most 0 ≤ n ≤ 20 values. Looking to the values in my finite difference tables, the

first and very naive question that came to my mind was

Is it possible to re-assemble the value of the polynomial n3 backwards having its finite

differences?

The answer to this question is definitely Yes, utilizing the interpolation principles. Interpo-

lation is a process of finding new data points based on the range of a discrete set of known

data points. Interpolation has been well-developed in between 1674–1684 by Issac Newton’s

fundamental works, nowadays known as foundation of classical interpolation theory [1].

That time, in 2016, I was a first-year mechanical engineering undergraduate, so that due

to lack of knowledge and perspective of view I started re-inventing interpolation formula

myself, fueled by purest passion and feeling of mystery. All mathematical laws and relations

exist from the very beginning, but we only find and describe them, I thought. That mindset

truly inspired me so that my own mathematical journey has been started. Let us begin

considering the table of finite differences of the polynomial n3

n n3 ∆(n3) ∆2(n3) ∆3(n3)

0 0 1 6 6

1 1 7 12 6

2 8 19 18 6

3 27 37 24 6

4 64 61 30 6

5 125 91 36

6 216 127

7 343

Table 1. Table of finite differences of the polynomial n3.
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First and foremost, we can observe that finite difference ∆(n3) of the polynomial n3 can

be expressed via summation over n, e.g

∆(03) = 1 + 6 · 0

∆(13) = 1 + 6 · 0 + 6 · 1

∆(23) = 1 + 6 · 0 + 6 · 1 + 6 · 2

∆(33) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3

...

(1.1)

Finally reaching its generic form

∆(n3) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3 + · · ·+ 6 · n = 1 + 6
n∑

k=0

k (1.2)

The one experienced mathematician would immediately notice a spot to apply Faulhaber’s

formula [2] to expand the term
∑n

k=0 k reaching expected result that matches Binomial

theorem [3], so that
n∑

k=0

k =
1

2
(n+ n2)

Then our relation (1.2) immediately turns into Binomial expansion

∆(n3) = (n+ 1)3 − n3 = 1 + 6

[
1

2
(n+ n2)

]
= 1 + 3n+ 3n2 =

2∑
k=0

(
3

k

)
nk (1.3)

However, as it said, I was not the experienced one mathematician back than, so that I

reviewed the relation (1.2) from a little bit different perspective. Not following the convenient

solution (1.3), I have rearranged the first order finite differences from the table (1) using (1.1)

to get the polynomial n3

n3 = [1 + 6 · 0] + [1 + 6 · 0 + 6 · 1] + [1 + 6 · 0 + 6 · 1 + 6 · 2] + · · ·

+ [1 + 6 · 0 + 6 · 1 + 6 · 2 + · · ·+ 6 · (n− 1)] (1.4)
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Then, rearranging the terms of the equation (1.4) so that it turns into summation in terms

of k(n− k)

n3 = n+ [(n− 0) · 6 · 0] + [(n− 1) · 6 · 1] + [(n− 2) · 6 · 2] + · · ·

· · ·+ [(n− k) · 6 · k] + · · ·+ [1 · 6 · (n− 1)]

Gives the interpolation of the polynomial n3

n3 =
n∑

k=1

6k(n− k) + 1 (1.5)

It is immediately seen that (1.5) is true by observing the table of 6k(n− k) + 1 values

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 7 1

3 1 13 13 1

4 1 19 25 19 1

5 1 25 37 37 25 1

6 1 31 49 55 49 31 1

7 1 37 61 73 73 61 37 1

Table 2. Values of 6k(n−k)+1. See the OEIS entry: A287326 [4]. Sequences such

that row sums give the polynomials n5 and n7 are also registered in OEIS [5, 6].

Therefore, we have reached our base case by successfully interpolating the polynomial n3.

Fairly enough that the next curiosity would be

Well, if the relation (1.5) true for the polynomial n3, then is it true that (1.5) can be

generalized for higher powers, e.g. for n4 or n5 either?

That was my next question, however without any expectation of the final form of generalized

relation. Soon enough my idea was caught by other people. In 2018, Albert Tkaczyk has

published two of his works [7, 8] showing the cases for polynomials n5, n7 and n9 that were

obtained similarly as (1.5). In short, it appears that relation (1.5) could be generalized for

https://oeis.org/A287326
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any non-negative odd power 2m + 1 solving a system of linear equations. It was proposed

that the case for n5 has explicit form

n5 =
n∑

k=1

[
Ak2(n− k)2 +Bk(n− k) + C

]
where A,B,C are yet-unknown coefficients. Denote A,B,C as A2,0,A2,1,A2,2 to reach the

form of a compact double sum

n5 =
n∑

k=1

2∑
r=0

A2,rk
r(n− k)r

Observing the equation above, the potential form of generalized odd-power identity becomes

more obvious. To evaluate the coefficients A2,0,A2,1,A2,2 it is necessary construct and solve

a system of linear equations following the process

n5 =
2∑

r=0

A2,r

n∑
k=1

kr(n− k)r

= A2,0

n∑
k=1

k0(n− k)0 +A2,1

n∑
k=1

k1(n− k)1 +A2,2

n∑
k=1

k2(n− k)2

Expand the terms
∑n

k=1 k
r(n− k)r applying the Faulhaber’s formula [2] to get the equation

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
− n5 = 0

Multiplying by 30 both right-hand side and left-hand side, we get

30A2,0n+ 5A2,1(−n+ n3) +A2,2(−n+ n5)− 30n5 = 0

Expanding the brackets and rearranging the terms gives

30A2,0 − 5A2,1n+ 5A2,1n
3 −A2,2n+A2,2n

5 − 30n5 = 0

Combining the common terms yields

n(30A2,0 − 5A2,1 −A2,2) + 5A2,1n
3 + n5(A2,2 − 30) = 0
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Therefore, the system of linear equations follows
30A2,0 − 5A2,1 −A2,2 = 0

A2,1 = 0

A2,2 − 30 = 0

Solving it, we get 
A2,2 = 30

A2,1 = 0

A2,0 = 1

So that the odd-power identity holds

n5 =
n∑

k=1

30k2(n− k)2 + 1

It is also clearly seen why the above identity is true by arranging the terms 30k2(n− k)2 +1

over 0 ≤ k ≤ n as tabular. See the OEIS sequence [5].

Now we can see that the relation (1.5) we got via interpolation of cubes can be general-

ized for all non-negative odd-powers 2m + 1 by constructing and solving a system of linear

equations. Therefore, the generalized form of odd-power identity is

n2m+1 =
m∑
r=0

Am,r

n∑
k=1

kr(n− k)r (1.6)

where Am,r are real coefficients. In more details, the equation (1.6) is discussed separately

in [9, 10].

However, constructing and solving a system of linear equations for every odd-power 2m+1

requires a huge effort, there must be a formula that generates a set of real coefficients Am,r

for each fixed m, I thought. As it turned out, that assumption was correct. So that I reached

MathOverflow community in search of answers that arrived quite shortly. In [11], Dr. Max

Alekseyev has provided a complete and comprehensive formula to calculate coefficient Am,r

for each natural m ≥ 0, 0 ≤ r ≤ m. The main idea of Alekseyev’s approach was to utilize

dynamic programming methods to evaluate the Am,r recursively, taking base case Am,m
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then evaluating the next coefficient Am,m−1 via backtracking, continuing similarly up to

Am,0. Before we consider the derivation of the recurrent formula for coefficients Am,r, a few

words must be said regarding the Faulhaber’s formula [2]

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

it is important to notice that iteration step j is bounded by the value of exponent p, while

the upper bound of the binomial coefficient is p+1. That means we cannot omit summation

bounds letting j run over infinity, unless we perform the following action on the Faulhaber’s

formula

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j =

[
1

p+ 1

p+1∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

]
−Bp+1

=

[
1

p+ 1

∑
j

(
p+ 1

j

)
Bjn

p+1−j

]
−Bp+1

(1.7)

At this point we are good to go through the entire derivation of the recurrent formula for

coefficients Am,r. Applying both Binomial theorem and Faulhaber’s formula (1.7) to the

equation (1.6) we get

n∑
k=1

kr(n− k)r =
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

=
r∑

t=0

(−1)t
(
r

t

)
nr−t

[
1

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

t+r+1−j −Bt+r+1

]

=
r∑

t=0

(
r

t

)[
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −Bt+r+1n
r−t

]

=
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

=
∑
j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
Bjn

2r+1−j −
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

=
∑
j

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
−

r∑
t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t
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We can notice that

∑
t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=


1

(2r+1)(2rr )
if j = 0

(−1)r

j

(
r

2r−j+1

)
if j > 0

(1.8)

An elegant proof of the binomial identity (1.8) is presented in [12].

In particular, the equation (1.8) is zero for 0 < t ≤ j. So that taking j = 0 we have

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
j≥1

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)]

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
Simplifying above equation via (1.8) we get

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
j≥1

(−1)r

j

(
r

2r − j + 1

)
Bjn

2r−j+1

]
︸ ︷︷ ︸

(⋆)

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
︸ ︷︷ ︸

(⋄)

Hence, introducing ℓ = 2r− j + 1 to (⋆) and ℓ = r− t to (⋄) we collapse the common terms

in the equation above so that

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

]

−

[∑
ℓ

(
r

ℓ

)
(−1)r−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

]

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

Assuming that Am,r is defined by (1.6), we obtain the following relation for polynomials in

n ∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
r

Am,r

∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ ≡ n2m+1
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Replacing odd ℓ by d we get∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
r

Am,r

∑
d

(−1)r

2r − 2d

(
r

2d+ 1

)
B2r−2dn

2d+1 ≡ n2m+1

∑
r

Am,r

[
1

(2r + 1)
(
2r
r

)n2r+1

]
+ 2

∑
r

Am,r

[∑
d

(−1)r

2r − 2d

(
r

2d+ 1

)
B2r−2dn

2d+1

]
− n2m+1 = 0(1.9)

Let be r = m, then taking the coefficient of n2m+1 in (1.9) we get

Am,m = (2m+ 1)

(
2m

m

)
and taking the coefficient of n2d+1 for an integer d in the range m/2 ≤ d < m, we get

Am,d = 0

Taking the coefficient of n2d+1 for d in the range m/4 ≤ d < m/2 we get

Am,d
1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0

i.e

Am,d = (−1)m−1 (2m+ 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d

Continue similarly we can compute Am,r for each integer r in range m/2s+1 ≤ r < m/2s

(iterating consecutively s = 1, 2, . . .) via previously determined values of Am,d as follows

Am,r = (2r + 1)

(
2r

r

) m∑
d≥2r+1

Am,d

(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Finally, we are capable to define the coefficient Am,r via the next recurrent relation

Definition 1.1. (Definition of the real coefficients Am,r.)

Am,r :=


(2r + 1)

(
2r
r

)
if r = m

(2r + 1)
(
2r
r

)∑m
d≥2r+1Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r if 0 ≤ r < m

0 if r < 0 or r > m

(1.10)
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where Bt are Bernoulli numbers [13]. It is assumed that B1 =
1
2
. For example,

m/r 0 1 2 3 4 5 6 7

0 1

1 1 6

2 1 0 30

3 1 -14 0 140

4 1 -120 0 0 630

5 1 -1386 660 0 0 2772

6 1 -21840 18018 0 0 0 12012

7 1 -450054 491400 -60060 0 0 0 51480

Table 3. Coefficients Am,r.

The nominators and denominators of the coefficients Am,r are also registered as sequences

in OEIS [14, 15]. It is as well interesting to notice that row sums of the Am,r give powers of

2
m∑
r=0

Am,r = 22m+1 − 1

Let be a theorem

Theorem 1.2. For every n ≥ 1, n,m ∈ N there are Am,0,Am,1, . . . ,Am,m, such that

n2m+1 =
n∑

k=1

m∑
r=0

Am,rk
r(n− k)r

where Am,r is a real coefficient defined recursively by (1.10).

Finally, we got our road to the main definition of the polynomial Pm
b (x). Introducing the

parameter b to the upper summation bound of the equation (1.2), we have the definition

Definition 1.3. (Polynomial Pm
b (x)of degree 2m+ 1.)

Pm
b (x) =

b−1∑
k=0

m∑
r=0

Am,rk
r(x− k)r (1.11)
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where Am,r are real coefficients (1.10). A comprehensive discussion on the polynomial

Pm
b (x) as well as its properties can be found at [16]. In 2023, Albert Tkaczyk yet again

extended the theorem (1.2) to the so-called three dimension case so that it gives polynomials

of the form n3l+2 at [17].

2. Related works

In this section let’s give a short overview of related works that are based onto definition

of polynomials Pm
b (x). In [18] is given a relation in terms of partial differential differential

equations such that ordinary derivative of odd-power 2m + 1 can be reached in terms of

partial derivatives of Pm
b (x). Let be a fixed point v ∈ N, then ordinary derivative d

dx
gv(u)

of the odd-power function gv(x) = x2v+1 evaluate in point u ∈ R equals to partial derivative

(fv)
′
x(u, u) evaluate in point (u, u) plus partial derivative (fv)

′
z(u, u) evaluate in point (u, u)

d

dx
gv(u) = (fv)

′

x(u, u) + (fv)
′

z(u, u) (2.1)

where fy(x, z) =
∑z

k=1

∑y
r=0Ay,rk

r(x − k)r = Py
z(x). Afterward, the equation (2.1) is

generalized over the timescales T× T providing its dynamic equation analog in [19].

Second article [20] gives another perspective of ordinary derivatives of polynomials ex-

pressing them via double limit as

lim
h→0

Pm
x+h(x) = x2m+1

that opens such opportunity.

In [21] based on (1.9), the authors give a new identity involving Bernoulli polynomials and

combinatorial numbers that provides, in particular, the Faulhaber-like formula for sums of

the form 1m(n− 1)m + 2m(n− 2)m + · · ·+ (n− 1)m1m for positive integers m and n.

Three sequences were contributed to OEIS [22, 23, 24] showing the coefficients of the

polynomial Pm
b (x) having fixed points m, b while x ∈ R.
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3. Future research and activities

• Differential equation (2.1) can also be expressed in terms of backward and central

differential operators, including derivatives on time-scales so that results of [19] could

be generalized further.

• Theorem (1.2) gives an opportunity to express odd-power identity in terms of multi-

plication of certain matrices.

• There are Taylor series and Maclaurin series versions in terms of Pm
b (x).

• The summation bounds of definition (1.11) can be altered so that k runs over 1 ≤

k ≤ b, by symmetry.

• Prove that Pm
b (x) is an integer valued polynomial in (x, b).

• Definition (1.11) is closely related to discrete convolution because

Pm
b (x) =

m∑
r=0

Am,r

b−1∑
k=0

kr(x− k)r

where
∑b−1

k=0 k
r(x − k)r is the discrete convolution of xr. It is worth to get a closer

look at it so that new relations in terms of discrete convolution may be found.

• All kinds of derivatives e.g forward, backward and central, including the derivatives

on time-scales can be expressed as double limit of Pm
b (x) extending the results of [20].

• Introducing the definition of coefficient
⌈⌈

m,n
k

⌋⌋
⌈⌈m,n

k

⌋⌋
=

m∑
r=0

Am,rk
r(n− k)r

the novel identities can be reached, for example⌈⌈
m, 2t+ 1

1

⌋⌋
=

⌈⌈
m, t+ 2

2

⌋⌋
⌈⌈m,n

k

⌋⌋
=

⌈⌈
m,n

n− k

⌋⌋
⌈⌈
m, 2t− 3r

r

⌋⌋
=

⌈⌈
m, t

2r

⌋⌋
=

⌈⌈
m, 2t− 3r

2t− 4r

⌋⌋
so that combinatorial sense of above is also a topic to research.
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• Following the results of https://arxiv.org/pdf/1603.02468v15.pdf, the equa-

tion (1.11) approximates the odd-power polynomial x2m+1 around given points xi as

it may be observed from the following plots

x3

P(m = 1, x, b = 3) = -27 + 18 x

{x=3, F(x)=27}
{x=1.85, F(x)=6.37}

2 3 4 5
x

20

40

60

80

100

120

F(x)

Figure 1. Approximation of x3.

https://arxiv.org/pdf/1603.02468v15.pdf
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x5

P(m = 2, x, b = 3) = 513 - 540 x + 150 x2
{x=3, F(x)=243}

{x=2.06, F(x)=37.43}

2 3 4 5
x

500

1000

1500

2000

2500

3000

F(x)

Figure 2. Approximation of x5.

• English grammar reviews and improvements are welcome.

• Improvements and suggestions to current manuscript under open-source initiatives

at https://github.com/kolosovpetro/HistoryAndOverviewOfPolynomialP

4. Conclusions

In this manuscript we have successfully provided a comprehensive historical survey of the

milestones and evolution of the polynomial Pm
b (x) as well as related works such that based

onto, for instance various polynomial identities, differential equations etc. In addition, future

research directions are proposed and discussed.

References

[1] Meijering, Erik. A chronology of interpolation: from ancient astronomy to modern signal and image

processing. Proceedings of the IEEE, 90(3):319–342, 2002. https://infoscience.epfl.ch/record/

63085/files/meijering0201.pdf.

https://github.com/kolosovpetro/HistoryAndOverviewOfPolynomialP
https://infoscience.epfl.ch/record/63085/files/meijering0201.pdf
https://infoscience.epfl.ch/record/63085/files/meijering0201.pdf


HISTORY AND OVERVIEW OF THE POLYNOMIAL PM
B (X) 15

[2] Alan F. Beardon. Sums of powers of integers. The American mathematical monthly, 103(3):201–213,

1996. https://les-mathematiques.net/vanilla/uploads/editor/5w/3wm5emwr0i7p.pdf.

[3] Milton Abramowitz, Irene A. Stegun, and Robert H. Romer. Handbook of mathematical functions with

formulas, graphs, and mathematical tables, 1988.

[4] Petro Kolosov. Numerical triangle, row sums give third power, Entry A287326 in The On-Line Ency-

clopedia of Integer Sequences. Published electronically at https://oeis.org/A287326, 2017.

[5] Petro Kolosov. Numerical triangle, row sums give fifth power, Entry A300656 in The On-Line Encyclo-

pedia of Integer Sequences. Published electronically at https://oeis.org/A300656, 2018.

[6] Petro Kolosov. Numerical triangle, row sums give seventh power, Entry A300785 in The On-Line En-

cyclopedia of Integer Sequences. Published electronically at https://oeis.org/A300785, 2018.

[7] Tkaczyk, Albert. About the problem of a triangle developing the polynomial function. Published elec-

tronically at LinkedIn, 2018.

[8] Tkaczyk, Albert. On the problem of a triangle developing the polynomial function - continuation.

Published electronically at LinkedIn, 2018.

[9] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509–

513, 2022. https://doi.org/10.1017/mag.2022.129.

[10] Petro Kolosov. Polynomial identity involving Binomial Theorem and Faul-

haber’s formula. Published electronically at https://kolosovpetro.github.io/pdf/

PolynomialIdentityInvolvingBTandFaulhaber.pdf, 2023.

[11] Alekseyev, Max. MathOverflow answer 297916/113033. Published electronically at https://

mathoverflow.net/a/297916/113033, 2018.

[12] Scheuer, Markus. MathStackExchange answer 4724343/463487. Published electronically at https://

math.stackexchange.com/a/4724343/463487, 2023.

[13] Harry Bateman. Higher transcendental functions [volumes i-iii], volume 1. McGRAW-HILL book com-

pany, 1953.

[14] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences. Published electron-

ically at https://oeis.org/A302971, 2018.

[15] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences. Published electron-

ically at https://oeis.org/A304042, 2018.

[16] Petro Kolosov. On the link between binomial theorem and discrete convolution. arXiv preprint

arXiv:1603.02468, 2016. https://arxiv.org/abs/1603.02468.

https://les-mathematiques.net/vanilla/uploads/editor/5w/3wm5emwr0i7p.pdf
https://oeis.org/A287326
https://oeis.org/A300656
https://oeis.org/A300785
https://www.linkedin.com/pulse/problem-triangle-developing-polynomial-function-fn-nm-albert-tkaczyk/
https://www.linkedin.com/pulse/problem-triangle-developing-polynomial-function-f-n-m-albert-tkaczyk/
https://doi.org/10.1017/mag.2022.129
https://kolosovpetro.github.io/pdf/PolynomialIdentityInvolvingBTandFaulhaber.pdf
https://kolosovpetro.github.io/pdf/PolynomialIdentityInvolvingBTandFaulhaber.pdf
https://mathoverflow.net/a/297916/113033
https://mathoverflow.net/a/297916/113033
https://math.stackexchange.com/a/4724343/463487
https://math.stackexchange.com/a/4724343/463487
https://oeis.org/A302971
https://oeis.org/A304042
https://arxiv.org/abs/1603.02468


HISTORY AND OVERVIEW OF THE POLYNOMIAL PM
B (X) 16

[17] Albert Tkaczyk. On three-dimensional expansions of the polynomial function f(n)=nm̂, September 2023.

https://doi.org/10.5281/zenodo.8371454.

[18] Petro Kolosov. Another approach to get derivative of odd-power. arXiv preprint arXiv:2310.07804, 2023.

https://arxiv.org/abs/2310.07804.

[19] Petro Kolosov. A study on partial dynamic equation on time scales involving derivatives of polynomials.

arXiv preprint arXiv:1608.00801, 2016. https://arxiv.org/abs/1608.00801.

[20] Petro Kolosov. Finding the derivative of polynomials via double limit, January 2024. https://doi.

org/10.5281/zenodo.10575485.

[21] J. Fernando Barbero G., Juan Margalef-Bentabol, and Eduardo J.S. Villaseñor. A two-sided Faulhaber-

like formula involving Bernoulli polynomials. Comptes Rendus. Mathématique, 358(1):41–44, 2020.

https://doi.org/10.5802/crmath.10.

[22] Petro Kolosov. The coefficients u(m, l, k), m = 1 defined by the polynomial identity, 2018. https:

//oeis.org/A320047.

[23] Petro Kolosov. The coefficients u(m, l, k), m = 2 defined by the polynomial identity, 2018. https:

//oeis.org/A316349.

[24] Petro Kolosov. The coefficients u(m, l, k), m = 3 defined by the polynomial identity, 2018. https:

//oeis.org/A316387.

Version: 1.1.1-tags-v1-1-0.26+tags/v1.1.0.184a6d7

https://doi.org/10.5281/zenodo.8371454
https://arxiv.org/abs/2310.07804
https://arxiv.org/abs/1608.00801
https://doi.org/10.5281/zenodo.10575485
https://doi.org/10.5281/zenodo.10575485
https://doi.org/10.5802/crmath.10
https://oeis.org/A320047
https://oeis.org/A320047
https://oeis.org/A316349
https://oeis.org/A316349
https://oeis.org/A316387
https://oeis.org/A316387


HISTORY AND OVERVIEW OF THE POLYNOMIAL PM
B (X) 17

5. Addendum 1: Examples of the polynomial Pm
b (x)

P0
b(x) = b

P1
b(x) = 3b2 − 2b3 − 3bx+ 3b2x

P2
b(x) = 10b3 − 15b4 + 6b5 − 15b2x+ 30b3x− 15b4x+ 5bx2 − 15b2x2 + 10b3x2

P3
b(x) = −7b2 + 28b3 − 70b5 + 70b6 − 20b7 + 7bx− 42b2x+ 175b4x− 210b5x+ 70b6x

+ 14bx2 − 140b3x2 + 210b4x2 − 84b5x2 + 35b2x3 − 70b3x3 + 35b4x3

P4
b(x) = −60b2 + 180b3 − 294b5 + 420b7 − 315b8 + 70b9 + 60bx− 270b2x+ 735b4x− 1470b6x

+ 1260b7x− 315b8x+ 90bx2 − 630b3x2 + 1890b5x2 − 1890b6x2 + 540b7x2 + 210b2x3

− 1050b4x3 + 1260b5x3 − 420b6x3 − 21bx4 + 210b3x4 − 315b4x4 + 126b5x4

P5
b(x) = −693b2 + 2068b3 − 330b4 − 2640b5 + 2772b7 − 2310b9 + 1386b10 − 252b11 + 693bx

− 3102b2x+ 660b3x+ 6600b4x− 9702b6x+ 10395b8x− 6930b9x+ 1386b10x+ 1034bx2

− 330b2x2 − 5940b3x2 + 12936b5x2 − 18480b7x2 + 13860b8x2 − 3080b9x2 + 2310b2x3

− 8085b4x3 + 16170b6x3 − 13860b7x3 + 3465b8x3 − 330bx4 + 2310b3x4 − 6930b5x4

+ 6930b6x4 − 1980b7x4 − 231b2x5 + 1155b4x5 − 1386b5x5 + 462b6x5

P6
b(x) = −10920b2 + 33306b3 − 9009b4 − 36036b5 + 37752b7 − 22022b9 + 12012b11 − 6006b12 + 924b13

+ 10920bx− 49959b2x+ 18018b3x+ 90090b4x− 132132b6x+ 99099b8x− 66066b10x+ 36036b11x

− 6006b12x+ 16653bx2 − 9009b2x2 − 84084b3x2 + 180180b5x2 − 180180b7x2 + 150150b9x2

− 90090b10x2 + 16380b11x2 + 36036b2x3 − 120120b4x3 + 168168b6x3 − 180180b8x3

+ 120120b9x3 − 24024b10x3 − 6006bx4 + 40040b3x4 − 84084b5x4 + 120120b7x4 − 90090b8x4

+ 20020b9x4 − 6006b2x5 + 21021b4x5 − 42042b6x5 + 36036b7x5 − 9009b8x5 + 286bx6

− 2002b3x6 + 6006b5x6 − 6006b6x6 + 1716b7x6
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6. Addendum 2: Derivation of the coefficients Am,r

Consider the definition (1.10) of the coefficients Am,r, it can be written as

Am,r :=



(2r + 1)
(
2r
r

)
, if r = m;∑m

d≥2r+1Am,d (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r︸ ︷︷ ︸

T (d,r)

, if 0 ≤ r < m;

0, if r < 0 or r > m,

Therefore, let be a definition of the real coefficient T (d, r)

Definition 6.1. Real coefficient T (d, r)

T (d, r) = (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Example 6.2. Let be m = 2 so first we get A2,2

A2,2 = 5

(
4

2

)
= 30

Then A2,1 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

1 ≤ d < 2. Finally, the coefficient A2,0 is

A2,0 =
2∑

d≥1

A2,d · T (d, 0) = A2,1 · T (1, 0) +A2,2 · T (2, 0)

= 30 · 1

30
= 1

Example 6.3. Let be m = 3 so that first we get A3,3

A3,3 = 7

(
6

3

)
= 140

Then A3,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

2 ≤ d < 3. The A3,1 coefficient is non-zero and calculated as

A3,1 =
3∑

d≥3

A3,d · T (d, 1) = A3,3 · T (3, 1) = 140 ·
(
− 1

10

)
= −14
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Finally, the coefficient A3,0 is

A3,0 =
3∑

d≥1

A3,d · T (d, 0) = A3,1 · T (1, 0) +A3,2 · T (2, 0) +A3,3 · T (3, 0)

= −14 · 1
6
+ 140 · 1

42
= 1

Example 6.4. Let be m = 4 so that first we get A4,4

A4,4 = 9

(
8

4

)
= 630

Then A4,3 = 0 and A4,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 2 ≤ d < 4. The value of the coefficient A4,1 is non-zero and calculated as

A4,1 =
4∑

d≥3

A4,d · T (d, 1) = A4,3 · T (3, 1) +A4,4 · T (4, 1) = 630 ·
(
− 4

21

)
= −120

Finally, the coefficient A4,0 is

A4,0 =
4∑

d≥1

A4,d · T (d, 0) = A4,1 · T (1, 0) +A4,4 · T (4, 0) = −120 · 1
6
+ 630 · 1

30
= 1

Example 6.5. Let be m = 5 so that first we get A5,5

A5,5 = 11

(
10

5

)
= 2772

Then A5,4 = 0 and A5,3 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 3 ≤ d < 5. The value of the coefficient A5,2 is non-zero and calculated as

A5,2 =
5∑

d≥5

A5,d · T (d, 2) = A5,5 · T (5, 2) = 2772 · 5

21
= 660

The value of the coefficient A5,1 is non-zero and calculated as

A5,1 =
5∑

d≥3

A5,d · T (d, 1) = A5,3 · T (3, 1) +A5,4 · T (4, 1) +A5,5 · T (5, 1)

= 2772 ·
(
−1

2

)
= −1386
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Finally, the coefficient A5,0 is

A5,0 =
5∑

d≥1

A5,d · T (d, 0) = A5,1 · T (1, 0) +A5,2 · T (2, 0) +A5,5 · T (5, 0)

= −1386 · 1
6
+ 660 · 1

30
+ 2772 · 5

66
= 1
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