(MAGMAMagma) [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
(MAGMAMagma) [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
reviewed
approved
proposed
reviewed
editing
proposed
(MAGMA) [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
(PARI) a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
(MAGMA) [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
A. Bucur, J. Lopez-Bonilla, and J. Robles-Garcia, <a href="http://www.bhu.ac.in/journal/vol56-2012/BHU-11.pdf">A note on the Namias identity for Bernoulli numbers</a>, Journal of Scientific Research (Banaras Hindu University, Varanasi), Vol. 56 (2012), 117-120.
S. Kaji, T. Maeno, K. Nuida, and Y. Numata, <a href="http://arxiv.org/abs/1506.02742">Polynomial Expressions of Carries in p-ary Arithmetics</a>, arXiv preprint arXiv:1506.02742 [math.CO], 2015.
T. Komatsu, F. Luca, and C. de J. Pita Ruiz V., <a href="http://projecteuclid.org/euclid.pja/1398949123">A note on the denominators of Bernoulli numbers</a>, Proc. Japan Acad., 90, Ser. A (2014), p. 71-72.
Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Srivastava/sriva3.html">Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers</a>, J. Int. Seq. 17 (2014) # 14.4.6
H.-M. Liu, S-H. Qi, and S.-Y. Ding, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Liu/liu4.html">Some Recurrence Relations for Cauchy Numbers of the First Kind</a>, JIS 13 (2010) # 10.3.8.
proposed
editing
editing
proposed
Ronald Orozco López, <a href="https://www.researchgate.net/publication/350397609_Solution_of_the_Differential_Equation_ykeay_Special_Values_of_
approved
editing
proposed
approved
editing
proposed