[go: up one dir, main page]

login
Revisions by Peter Luschny (See also Peter Luschny's wiki page
and changes approved by Peter Luschny)

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Bell or exponential numbers: number of ways to partition a set of n labeled elements.
(history; published version)
#1338 by Peter Luschny at Wed Nov 06 05:31:44 EST 2024
STATUS

editing

proposed

Discussion
Wed Nov 06
05:34
Amiram Eldar: The new formula is equivalent to the first formula: E.g.f.: exp(exp(x) - 1).
05:38
Peter Luschny: One way to write it is: lim_{x->0} ((d^n e^(e^x))/(dx^n))/e.
06:18
Peter Luschny: @Amiram. Yes, and it should be better that way. But that doesn't speak against this formulation. I knew the symbolism for the n-th derivative many years before I learned the abbreviations typical for the OEIS. And others may feel the same way.
12:52
Joan Ludevid: @Peter Luschny. I put it as a comment because I thought it was an interesting curiosity. At no point do I think it is used as a formula to calculate Bell numbers.
#1337 by Peter Luschny at Wed Nov 06 05:31:12 EST 2024
COMMENTS

a(n) is the n-th derivative of e^e^x divided by e at point x=0. - Joan Ludevid, Nov 05 2024

FORMULA

a(n) is the n-th derivative of e^e^x divided by e at point x=0. - Joan Ludevid, Nov 05 2024

STATUS

proposed

editing

allocated for Peter Luschny
(history; published version)
#10 by Peter Luschny at Tue Nov 05 19:12:01 EST 2024
NAME

Array read by ascending antidiagonals: TA(n, k) = n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))) where GHZeta(k, n, m) = m^(k+1)*HurwitzZeta(-k, 1/(m*n)) for n > 0, and T(0, k) = 1.

FORMULA

TA(n, k) = Im(P(n, k)) where P(n, k) = 2*i*(1 + Sum_{j=0..k} binomial(k, j)*polylog(-j, i)*n^j.

EXAMPLE

Array A(n, k) starts:

MAPLE

T A := (n, k) -> ifelse(n = 0, 1, n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))):

for n from 0 to 7 do lprint(seq(TA(n, k), k = 0..7)) od;

P := proc(n, k) local j; 2*I*(1 + add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end:

T A := n -> Im(P(n, k)): seq(lprint(seq(TA(n, k), k = 0..7)), n = 0..7);

MATHEMATICA

TA[n_, k_] := n^k (4^(k+1) HurwitzZeta[-k, 1/(4n)] - 2^(k + 1) HurwitzZeta[-k, 1/(2n)]);

a(n) = 2^bil(n) - bil(n) where bil(0) = 0 and bil(n) = floor(log_2(n)) + 1 for n > 0.
(history; published version)
#34 by Peter Luschny at Tue Nov 05 13:53:32 EST 2024
STATUS

editing

approved

#33 by Peter Luschny at Tue Nov 05 13:50:10 EST 2024
PROG

def eytzinger(n):

def e(t, k=1, i=0):

if (k < len(t)):

i = e(t, k * 2, i)

t[k] = i

i += 1

i = e(t, k * 2 + 1, i)

return i

t = [0] * (n+1)

e(t)

return t[1:]

major_index = lambda p: sum(i+1 for i in range(len(p)-1) if p[i] > p[i+1])

a = lambda n: major_index(eytzinger(n)) + 1

print([a(n) for n in range(0, 59)]) # Darío Clavijo, Nov 04 2024

(Python)

print([a(n) for n in range(0, 5967)]) # Darío Clavijo, Nov 05 2024

STATUS

proposed

editing

allocated for Peter Luschny
(history; published version)
#9 by Peter Luschny at Tue Nov 05 13:13:09 EST 2024
PROG

(SageMath)

from mpmath import *

mp.dps = 32; mp.pretty = True

def EulerianPoly(k, n):

if x == 1: return k^n*factorial(n)

p = 2*I*(1+sum(binomial(n, j)*polylog(-j, I)*k^j for j in range(n+1)))

return int(imag(p))

for n in range(8): print([EulerianPoly(n, k) for k in range(7)])

#8 by Peter Luschny at Tue Nov 05 12:22:54 EST 2024
EXAMPLE

[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012

[1] 1, 0, -1, 0, 5, 0, -61, 0, ... A122045

[2] 1, -1, -3, 11, 57, -361, -2763, 24611, ... A212435

[3] 1, -2, -5, 46, 205, -3362, -22265, 515086, ... A225147

[4] 1, -3, -7, 117, 497, -15123, -95767, 4116837, ... A156201

[5] 1, -4, -9, 236, 981, -47524, -295029, 20208716, ... A377667A377665

[6] 1, -5, -11, 415, 1705, -120125, -737891, 73544935, ...

[7] 1, -6, -13, 666, 2717, -262086, -1599793, 218380506, ...

#7 by Peter Luschny at Tue Nov 05 11:53:29 EST 2024
FORMULA

T(n, k) = Im(P(n, k)) where P(n, k) = 2*i*(1 + Sum_{j=0..k} binomial(k, j)*polylog(-j, i)*n^j.

MAPLE

# Alternative:

P := proc(n, k) local j; 2*I*(1+add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end:

T := n -> Im(P(n, k)): seq(lprint(seq(T(n, k), k = 0..7)), n = 0..7);

#6 by Peter Luschny at Tue Nov 05 11:33:39 EST 2024
REFERENCES

Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/EulerianPolynomialsGeneralized#Assorted_values_of_the_polynomials">Generalized Eulerian polynomials</a>. (See last row of the table.)

LINKS

Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/EulerianPolynomialsGeneralized#Assorted_values_of_the_polynomials">Generalized Eulerian polynomials</a>. (See last row of the table.)

#5 by Peter Luschny at Tue Nov 05 11:32:00 EST 2024
REFERENCES

Peter Luschny, <a href="http://oeis.org/wiki/https://oeis.org/wiki/User:Peter_Luschny/EulerianPolynomialsGeneralized#Assorted_values_of_the_polynomials">Generalized Eulerian polynomials</a>. (See last row of the table.)