[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a050932 -id:a050932
Displaying 1-9 of 9 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A233565 Numerators of the autosequence preceding Br(n)=A229979(n)/(1 followed by A050932(n)). +20
1
0, 0, 0, 1, 2, 5, 5, 7, 7, 5, 5, 11, 11, 91, 91, -9, -9, 1207, 1207, -10849, -10849, 65879, 65879, -783127, -783127, 61098739, 61098739, -2034290233, -2034290233, 72986324461, 72986324461 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Br(n)=0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, 0, -691/210, 0,.. .
a(n) is the numerators of Bp2(n)=0, 0, 0, 1, 2, 5/2, 5/2, 7/3, 7/3, 5/2, 5/2, 11/5, 11/5, 91/30, 91/30,... . Bp2(n) is an autosequence like Br(n).
With possible future sequences we can write the array PB
1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 3/2, 1, 0, 0, 0, 0, 0, 0,
1, 5/3, 2, 1, 0, 0, 0, 0, 0,
1, 5/3, 5/2, 5/2, 1, 0, 0, 0, 0,
1, 49/30, 5/2, 7/2, 3, 1, 0, 0, 0,
1, 49/30, 7/3, 7/2, 14/3, 7/2, 1, 0, 0,
1, 58/35, 7/3, 3, 14/3, 6, 4, 1, 0,
1, 58/35, 5/2, 3, 7/2, 6, 15/2, 9/2, 1, etc.
The first column is A000012. The second A165142(n+1)/(1 followed by A100650(n)). The third is Bp2(n+1). The next others are built by the same way. From the second,every column is based on A164555(n)/A027642(n).
With negative (2*n+2)-th diagonals,the array without 0's is the triangle NPB. The sum of every row is
1, 0, 1/2, -1/3, 1/3, -11/30, 11/30, -12/35, 12/35, -79/210, 79/210,... .
See A176250(n+2)/A100650(n).
The inverse of NPB is A193815(n)/(A003056(n) with 1 instead of 0).
LINKS
EXAMPLE
a(0)=a(1)=0, a(i)=numerators of 0+Br(0)=0, 0+Br(1)=1, 1+Br(2)=2, 2+Br(3)=5/2, 5/2+Br(4)=5/2,... .
MATHEMATICA
nmax = 30; Br[0] = 0; Br[1] = Br[2] = 1; Br[n_] := Numerator[2*n*BernoulliB[n-1]] / Denominator[n*BernoulliB[n-1]]; Bp2 = Join[{0, 0}, Table[Br[n], {n, 0, nmax-2}] // Accumulate]; a[n_] := Numerator[Bp2[[n+1]]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 18 2013 *)
CROSSREFS
Cf. A233316.
KEYWORD
sign
AUTHOR
Paul Curtz, Dec 13 2013
EXTENSIONS
a(17)-a(30) from Jean-François Alcover, Dec 18 2013
STATUS
approved
A002427 Numerator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
(Formerly M2510 N0993)
+10
11
1, 1, -1, 1, -3, 5, -691, 35, -3617, 43867, -1222277, 854513, -1181820455, 76977927, -23749461029, 8615841276005, -84802531453387, 90219075042845, -26315271553053477373, 38089920879940267, -261082718496449122051, 1520097643918070802691 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..314 (terms 0..100 from T. D. Noe)
L. Euler, (E393) De summis serierum numeros Bernoullianos involventium, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 93.
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
EXAMPLE
(n+1)*B_n gives: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
MAPLE
gf := z / (1 - exp(-z)): ser := series(gf, z, 84):
seq(numer((n+1)!*coeff(ser, z, n)), n=0..42, 2); # Peter Luschny, Aug 29 2020
MATHEMATICA
Table[Numerator[2(2n+1)BernoulliB[2n]], {n, 1, 30}]
PROG
(PARI) a(n) = numerator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017
(Magma) [Numerator((2*n+1)*Bernoulli(2*n)): n in [1..30]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator((2*n+1)*bernoulli(2*n)) for n in (1..30)] # G. C. Greubel, Jul 03 2019
CROSSREFS
Denominators are in A006955.
KEYWORD
sign,easy,nice,frac
AUTHOR
STATUS
approved
A006955 Denominator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
(Formerly M1562)
+10
11
1, 2, 6, 6, 10, 6, 210, 2, 30, 42, 110, 6, 546, 2, 30, 462, 170, 6, 51870, 2, 330, 42, 46, 6, 6630, 22, 30, 798, 290, 6, 930930, 2, 102, 966, 10, 66, 1919190, 2, 30, 42, 76670, 6, 680862, 2, 690, 38874, 470, 6, 46410, 2, 330, 42, 106, 6, 1919190 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Also denominators of asymptotic expansion of polygamma function psi''(z).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
L. Euler, (E393) De summis serierum numeros Bernoullianos involventium, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 93.
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
FORMULA
Apparently a(n) = denominator(Sum_{k=0..2*n-1} (-1)^(2*n-k+1)*E1(2*n, k+1)/ binomial(2*n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
EXAMPLE
(n+1)*B_n gives the sequence 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
MAPLE
gf := z / (1 - exp(-z)): ser := series(gf, z, 220):
seq(denom((n+1)!*coeff(ser, z, n)), n=0..108, 2); # Peter Luschny, Aug 29 2020
MATHEMATICA
Denominator[Table[(2n+1)BernoulliB[2n], {n, 0, 60}]] (* Harvey P. Dale, Nov 03 2011 *)
PROG
(PARI) a(n) = denominator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017
CROSSREFS
Numerators are in A002427.
KEYWORD
nonn,frac,easy,nice
AUTHOR
STATUS
approved
A127187 Nearest integer to (n+1)*Bernoulli(n). +10
11
1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 18, 0, -121, 0, 1044, 0, -11112, 0, 142419, 0, -2164506, 0, 38488964, 0, -791648701, 0, 18649007091, 0, -498838420314, 0, 15036512507141, 0, -507331242588268, 0, 19044960439970134, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,13
LINKS
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 26 2007
STATUS
approved
A127188 Nearest integer to (2*n+1)*Bernoulli(2*n). +10
11
1, 1, 0, 0, 0, 1, -3, 18, -121, 1044, -11112, 142419, -2164506, 38488964, -791648701, 18649007091, -498838420314, 15036512507141, -507331242588268, 19044960439970134, -791159753019542794 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
LINKS
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 26 2007
STATUS
approved
A050925 Numerator of (n+1)*Bernoulli(n). +10
10
1, -1, 1, 0, -1, 0, 1, 0, -3, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -1181820455, 0, 76977927, 0, -23749461029, 0, 8615841276005, 0, -84802531453387, 0, 90219075042845, 0, -26315271553053477373, 0, 38089920879940267, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
The denominators are in A050932. The e.g.f. for (n+1)*Bernoulli(n), n >= 0, is (d/dx)(x^2/(exp(x)-1)) = x*(2*(exp(x)-1)- x*exp(x))/(exp(x)-1)^2. - Wolfdieter Lang, Jul 15 2013
It can be observed that the rational sequence [0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, ...], derived from a(n)/A050932(n), is an autosequence of the first kind. - Jean-François Alcover, Jul 21 2017
Apparently a(n) = numerator(Sum_{k=0..n-1} (-1)^(n-k+1)*E1(n,k+1)/binomial(n,k+1)) for n >= 2, where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
LINKS
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
OEIS Wiki, Autosequence
S. C. Woon, A tree for generating Bernoulli numbers, Math. Mag., 70 (1997), 51-56.
MATHEMATICA
Numerator[Table[(n+1)BernoulliB[n], {n, 0, 40}]] (* Harvey P. Dale, May 13 2012 *)
PROG
(Haskell)
a050925 n = a050925_list !! n
a050925_list = 1 : -1 : (tail $ map (numerator . sum) $
zipWith (zipWith (%))
(zipWith (map . (*)) (drop 2 a000142_list) a242179_tabf) a106831_tabf)
-- Reinhard Zumkeller, Jul 04 2014
(PARI) a(n)=numerator(bernfrac(n)*(n+1)) \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
KEYWORD
sign,easy,frac,nice
AUTHOR
N. J. A. Sloane, Dec 30 1999
STATUS
approved
A106831 Define a triangle in which the entries are of the form +-1/(b!c!d!e!...), where the order of the factorials is important; read the triangle by rows and record and expand the denominators. +10
9
2, 6, 4, 24, 12, 12, 8, 120, 48, 36, 24, 48, 24, 24, 16, 720, 240, 144, 96, 144, 72, 72, 48, 240, 96, 72, 48, 96, 48, 48, 32, 5040, 1440, 720, 480, 576, 288, 288, 192, 720, 288, 216, 144, 288, 144, 144, 96, 1440, 480, 288, 192, 288, 144, 144, 96, 480, 192, 144, 96, 192 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Row n has 2^n terms. Row 0 is +1/2!. An entry +-1/b!c!d!... has two children, a left child -+1/(a+1)!b!c!... and a right child +-1/2!b!c!d!...
Let S_n = sum of entries in row n of the triangle. Then for n > 0, n!S_{n-1} is the Bernoulli number B_n.
LINKS
S. C. Woon, A tree for generating Bernoulli numbers, Math. Mag., 70 (1997), 51-56.
FORMULA
From Antti Karttunen, Jan 16 2019: (Start)
If sequence is shifted one term to the right, then the following recurrence works:
a(0) = 1; and for n > 0, a(2n) = (1+A001511(2n))*a(n), a(2n+1) = 2*a(n).
(End)
EXAMPLE
Woon's "Bernoulli Tree" begins like this (see also the given Wikipedia-link). This sequence gives the values of the denominators:
+1
────
2!
-1 / \ +1
──── ............../ \.............. ─────
3! 2!2!
+1 . -1 -1 . +1
──── / \ ──── ──── / \ ──────
4! ...../ \..... 2!3! 3!2! ...../ \.... 2!2!2!
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
-1 +1 +1 -1 +1 -1 -1 +1
──── ──── ──── ────── ──── ────── ────── ────────
5! 2!4! 3!3! 2!2!3! 4!2! 2!3!2! 3!2!2! 2!2!2!2!
etc.
MAPLE
Contribution from Peter Luschny, Jun 12 2009: (Start)
The routine computes the triangle row by row and gives the numbers with their sign.
Thus A(1)=[2]; A(2)=[ -6, 4]; A(3)=[24, -12, -12, 8]; etc.
A := proc(n) local k, i, j, m, W, T; k := 2;
W := array(0..2^n); W[1] := [1, `if`(n=0, 1, 2)];
for i from 1 to n-1 do for m from k by 2 to 2*k-1 do
T := W[iquo(m, 2)]; W[m] := [ -T[1], T[2]+1, seq(T[j], j=3..nops(T))];
W[m+1] := [T[1], 2, seq(T[j], j=2..nops(T))]; od; k := 2*k; od;
seq(W[i][1]*mul(W[i][j]!, j=2..nops(W[i])), i=iquo(k, 2)..k-1) end:
seq(print(A(i)), i=1..5); (End)
MATHEMATICA
a [n_] := Module[{k, i, j, m, w, t}, k = 2; w = Array[0&, 2^n]; w[[1]] := {1, If[n == 0, 1, 2]}; For[i = 1, i <= n-1, i++, For[m = k, m <= 2*k-1 , m = m+2, t = w[[Quotient[m, 2]]]; w[[m]] = {-t[[1]], t[[2]]+1, Sequence @@ Table[t[[j]], {j, 3, Length[t]}]}; w[[m+1]] = {t[[1]], 2, Sequence @@ Table[t[[j]], {j, 2, Length[t]}]}]; k = 2*k]; Table[w[[i, 1]]*Product[w[[i, j]]!, {j, 2, Length[w[[i]]]}], {i, Quotient[k, 2], k-1}]]; Table[a[i] , {i, 1, 6}] // Flatten // Abs (* Jean-François Alcover, Dec 20 2013, translated from Maple *)
PROG
(Haskell)
a106831 n k = a106831_tabf !! n !! n
a106831_row n = a106831_tabf !! n
a106831_tabf = map (map (\(_, _, left, right) -> left * right)) $
iterate (concatMap (\(x, f, left, right) -> let f' = f * x in
[(x + 1, f', f', right), (3, 2, 2, left * right)])) [(3, 2, 2, 1)]
-- Reinhard Zumkeller, May 05 2014
(PARI)
A106831off1(n) = if(!n, 1, my(rl=1, m=1); while(n, if(!(n%2), rl++, m *= ((1+rl)!); rl=1); n >>= 1); (m));
A106831(n) = A106831off1(1+n); \\ Antti Karttunen, Jan 16 2019
(PARI)
A001511(n) = (1+valuation(n, 2));
A106831r1(n) = if(!n, 1, if(n%2, 2*A106831r1((n-1)/2), (1+A001511(n))*A106831r1(n/2))); \\ Implements the given recurrence.
A106831(n) = A106831r1(1+n); \\ Antti Karttunen, Jan 16 2019
CROSSREFS
Cf. A242179 (numerators), A050925, A050932, A000142.
Cf. A323505 (mirror image), and also A005940, A283477, A322827 for other similar trees.
KEYWORD
nonn,tabf,frac,easy,nice
AUTHOR
N. J. A. Sloane, May 22 2005
EXTENSIONS
More terms from Franklin T. Adams-Watters, Apr 28 2006
Example section reillustrated by Antti Karttunen, Jan 16 2019
STATUS
approved
A233316 a(n) = Numerator(binomial(n+2, 2)*Bernoulli(n, 1)) for n >= 0 and 0 for n < 0. +10
2
0, 0, 1, 3, 1, 0, -1, 0, 2, 0, -3, 0, 5, 0, -691, 0, 140, 0, -10851, 0, 219335, 0, -1222277, 0, 1709026, 0, -1181820455, 0, 538845489, 0, -23749461029, 0, 68926730208040, 0, -84802531453387, 0, 270657225128535, 0, -26315271553053477373, 0, 380899208799402670, 0, -1827579029475143854357 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
-2,4
COMMENTS
Numerators of 0, 0, followed by A000217(n)*A164555(n)/A027642(n).
Third fractional autosequence after (1) (Br0(n) = ) A164555/A027642 and (2) Br(n) = A229979/(c(n) = 1,1,1,2,1,6,... = 1 interleaved with A006955 or 1 followed by A050932; thanks to Jean-François Alcover). Hence
Br2(n) = 0, 0, 1, 3/2, 1, 0, -1/2, 0, 2/3, 0, -3/2, 0, 5, 0, -691/30, ..., second complementary Bernoulli numbers.
Br2(n) differences table:
0, 0, 1, 3/2, 1, 0, -1/2, ...
0, 1, 1/2, -1/2, -1, -1/2, 1/2, ...
1, -1/2, -1, -1/2, 1/2, 1, 1/6, ...
-3/2, -1/2, 1/2, 1, 1/2, -5/6, -3/2, ...
1, 1, 1/2, -1/2, -4/3, -2/3, 2, ...
0, -1/2, -1, -5/6, 2/3, 8/3, 4/3, ...
-1/2, -1/2, 1/6, 3/2, 2, -4/3, -8, ... .
The main diagonal is the double of the first upper diagonal. Then, the autosequence (its inverse binomial transform is the signed sequence) is of second kind. Note that Br0(n) is an autosequence of second kind and Br(n) an autosequence of first kind.
First Bernoulli polynomials, i.e., for B(1) = -1/2, A196838/A196839, with 0's instead of the spaces:
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
-1/2, 1, 0, 0, 0, 0, 0, 0, 0, ...
1/6, -1, 1, 0, 0, 0, 0, 0, 0, ...
0, 1/2, -3/2, 1, 0, 0, 0, 0, 0, ...
-1/30, 0, 1, -2, 1, 0, 0, 0, 0, ...
0, -1/6, 0, 5/3, -5/2, 1, 0, 0, 0, ...
1/42, 0, -1/2, 0, 5/2, -3, 1, 0, 0, ...
0, 1/6, 0, -7/6, 0, 0, -7/2, 1, 0, ...
-1/30, 0, 2/3, 0, -7/3, 0, 14/3, -4, 10, ... .
First column: A164555/A027642 with -1/2 instead of 1/2, A027641/A027642.
Second column: A229979/c(n) with -1 instead of 1, first column in A229979.
Third column: Br2(n) with -3/2 instead of 3/2, first column of the first array.
Etc.
Sequences used for Brp(n). For p=1, Br(n) is used.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... = A001477,
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 0, 0, 1, 4, 10, 20, 35, 56, 84, ... . See A052553.
For every sequence, the multiplication by A164555/A027642 begins at 1.
(Br0(n), Br(n), Br2(n), Br3(n), ... lead to A193815.)
LINKS
EXAMPLE
a(2) = 1*1 = 1,
a(3) = 3*1/2 = 3/2,
a(4) = 6/6 = 1,
a(5) = 10*0 = 0,
a(6) = -15/30 = -1/2.
MATHEMATICA
b[-2] = b[-1] = 0; b[1] = 1/2; b[n_] := BernoulliB[n]; a[n_] := (n+1)*(n+2)/2*b[n] // Numerator; Table[a[n], {n, -2, 40}] (* Jean-François Alcover, Dec 09 2013 *)
CROSSREFS
Cf. A190339(array). A000012 for Br0(n), A000217 for Br(n)=A229979/c(n), A000217 for Br2(n), A000292 for Br3(n).
KEYWORD
sign,frac,tabl,uned
AUTHOR
Paul Curtz, Dec 07 2013
EXTENSIONS
Corrected and extended by Jean-François Alcover, Dec 09 2013
STATUS
approved
A166123 If n is prime, a(n) = 1; otherwise, a(n) is gcd(n, d) where d is the denominator of the (n-1)-th Bernoulli number. +10
1
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,9
LINKS
FORMULA
a(n) = A166120(n)/ A050932(n-1).
MATHEMATICA
Table[If[PrimeQ[n], 1, GCD[n, Denominator[BernoulliB[n-1]]]], {n, 100}] (* Harvey P. Dale, Sep 07 2017 *)
PROG
(PARI) a(n)=if(isprime(n), 1, gcd(denominator(bernfrac(n-1)), n)) \\ Charles R Greathouse IV, Jun 20 2011
(PARI) a(n)=my(b=bernfrac(n-1)); denominator(b)/denominator(b*n)/if(isprime(n), n, 1) \\ Charles R Greathouse IV, Jun 20 2011
(PARI) a(n)=if(isprime(n), 1, my(b=bernfrac(n-1)); denominator(b)/denominator(b*n)) \\ Charles R Greathouse IV, Jun 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Oct 07 2009
STATUS
approved
page 1

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 07:08 EDT 2024. Contains 375531 sequences. (Running on oeis4.)