WO2022210645A1 - ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 - Google Patents
ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 Download PDFInfo
- Publication number
- WO2022210645A1 WO2022210645A1 PCT/JP2022/015293 JP2022015293W WO2022210645A1 WO 2022210645 A1 WO2022210645 A1 WO 2022210645A1 JP 2022015293 W JP2022015293 W JP 2022015293W WO 2022210645 A1 WO2022210645 A1 WO 2022210645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- polypropylene resin
- polypropylene
- ethylene
- extruded
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 383
- 239000011347 resin Substances 0.000 title claims abstract description 383
- -1 Polypropylene Polymers 0.000 title claims abstract description 372
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 287
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 287
- 239000002245 particle Substances 0.000 title claims abstract description 128
- 239000006260 foam Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 95
- 239000011342 resin composition Substances 0.000 claims abstract description 106
- 238000001938 differential scanning calorimetry curve Methods 0.000 claims abstract description 72
- 239000007870 radical polymerization initiator Substances 0.000 claims abstract description 70
- 229920000573 polyethylene Polymers 0.000 claims abstract description 60
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 152
- 239000005977 Ethylene Substances 0.000 claims description 152
- 229920005673 polypropylene based resin Polymers 0.000 claims description 145
- 238000000034 method Methods 0.000 claims description 113
- 239000000203 mixture Substances 0.000 claims description 82
- 238000004898 kneading Methods 0.000 claims description 64
- 229920001519 homopolymer Polymers 0.000 claims description 60
- 229920000642 polymer Polymers 0.000 claims description 58
- 238000005187 foaming Methods 0.000 claims description 56
- 229920006379 extruded polypropylene Polymers 0.000 claims description 48
- 238000001125 extrusion Methods 0.000 claims description 31
- 239000004711 α-olefin Substances 0.000 claims description 29
- 239000000155 melt Substances 0.000 claims description 28
- 239000004088 foaming agent Substances 0.000 claims description 26
- 229920001971 elastomer Polymers 0.000 claims description 23
- 239000000806 elastomer Substances 0.000 claims description 23
- 238000000465 moulding Methods 0.000 claims description 23
- 239000003570 air Substances 0.000 claims description 14
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 238000010526 radical polymerization reaction Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- 239000003999 initiator Substances 0.000 claims description 2
- 101100223811 Caenorhabditis elegans dsc-1 gene Proteins 0.000 claims 2
- 239000011324 bead Substances 0.000 description 36
- 210000004027 cell Anatomy 0.000 description 34
- 239000000178 monomer Substances 0.000 description 33
- 238000002844 melting Methods 0.000 description 28
- 230000008018 melting Effects 0.000 description 28
- 229920001577 copolymer Polymers 0.000 description 23
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 22
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 22
- 239000002994 raw material Substances 0.000 description 19
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 11
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 10
- 229920002554 vinyl polymer Polymers 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 8
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 7
- 150000001451 organic peroxides Chemical class 0.000 description 7
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 6
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 6
- 239000004604 Blowing Agent Substances 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 229910001872 inorganic gas Inorganic materials 0.000 description 6
- 229920005604 random copolymer Polymers 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 229920000578 graft copolymer Polymers 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 239000012933 diacyl peroxide Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 2
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 2
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 2
- RITONZMLZWYPHW-UHFFFAOYSA-N 3-methylhex-1-ene Chemical compound CCCC(C)C=C RITONZMLZWYPHW-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 2
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- 229920003355 Novatec® Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012963 UV stabilizer Substances 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 230000001458 anti-acid effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- WXCZUWHSJWOTRV-UHFFFAOYSA-N but-1-ene;ethene Chemical compound C=C.CCC=C WXCZUWHSJWOTRV-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002432 hydroperoxides Chemical class 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920005678 polyethylene based resin Polymers 0.000 description 2
- 239000004293 potassium hydrogen sulphite Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920001384 propylene homopolymer Polymers 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- HCXVPNKIBYLBIT-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 3,5,5-trimethylhexaneperoxoate Chemical compound CC(C)(C)CC(C)CC(=O)OOOC(C)(C)C HCXVPNKIBYLBIT-UHFFFAOYSA-N 0.000 description 1
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- JVPKLOPETWVKQD-UHFFFAOYSA-N 1,2,2-tribromoethenylbenzene Chemical compound BrC(Br)=C(Br)C1=CC=CC=C1 JVPKLOPETWVKQD-UHFFFAOYSA-N 0.000 description 1
- SVHAMPNLOLKSFU-UHFFFAOYSA-N 1,2,2-trichloroethenylbenzene Chemical compound ClC(Cl)=C(Cl)C1=CC=CC=C1 SVHAMPNLOLKSFU-UHFFFAOYSA-N 0.000 description 1
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical compound BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- DZPCYXCBXGQBRN-UHFFFAOYSA-N 2,5-Dimethyl-2,4-hexadiene Chemical compound CC(C)=CC=C(C)C DZPCYXCBXGQBRN-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- XKBHBVFIWWDGQX-UHFFFAOYSA-N 2-bromo-3,3,4,4,5,5,5-heptafluoropent-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(Br)=C XKBHBVFIWWDGQX-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- DDBYLRWHHCWVID-UHFFFAOYSA-N 2-ethylbut-1-enylbenzene Chemical compound CCC(CC)=CC1=CC=CC=C1 DDBYLRWHHCWVID-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- CEBRPXLXYCFYGU-UHFFFAOYSA-N 3-methylbut-1-enylbenzene Chemical compound CC(C)C=CC1=CC=CC=C1 CEBRPXLXYCFYGU-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- JIUFYGIESXPUPL-UHFFFAOYSA-N 5-methylhex-1-ene Chemical compound CC(C)CCC=C JIUFYGIESXPUPL-UHFFFAOYSA-N 0.000 description 1
- UCKITPBQPGXDHV-UHFFFAOYSA-N 7-methylocta-1,6-diene Chemical compound CC(C)=CCCCC=C UCKITPBQPGXDHV-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920010346 Very Low Density Polyethylene (VLDPE) Polymers 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012508 resin bead Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- JIYXDFNAPHIAFH-UHFFFAOYSA-N tert-butyl 3-tert-butylperoxycarbonylbenzoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC(C(=O)OC(C)(C)C)=C1 JIYXDFNAPHIAFH-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3461—Making or treating expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0012—Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
- B29B9/065—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2351/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
Definitions
- the present invention relates to extruded polypropylene resin expanded particles, a method for producing the same, and a foamed article.
- a polypropylene resin-based in-mold expansion molded product obtained using polypropylene-based resin foamed particles is characterized by being excellent in arbitrariness of shape, shock-absorbing properties, light weight, heat-insulating properties, and the like.
- Examples of methods for producing expanded polypropylene resin particles include the depressurized foaming method, which is a discontinuous process, and the extrusion foaming method, which is a continuous process.
- Extrusion foaming has many advantages, such as efficiency and environmental aspects.
- the extrusion foaming method enables continuous production and does not require the wastewater treatment facility required for the depressurized foaming method.
- a resin obtained by modifying or performing multi-stage polymerization on general-purpose linear polypropylene can be used.
- at least one monomer selected from polypropylene-based resins, polyethylene-based resins, isoprene monomers and 1,3-butadiene monomers, and a radical polymerization initiator are melt-kneaded to obtain A modified polypropylene-based resin composition is disclosed.
- Patent Document 1 also discloses a method for producing a foam made of a modified polypropylene resin composition, characterized by extruding and foaming a mixture of the modified polypropylene resin composition and a foaming agent in a molten state. disclosed.
- One aspect of the present invention has been made in view of the above problems, and an object thereof is to provide expanded polypropylene resin particles having a low open cell ratio.
- the extruded polypropylene resin particles according to one embodiment of the present invention are extruded polypropylene resin particles obtained by extruding and foaming the modified polypropylene resin (B1), wherein the modified polypropylene resin ( B1) is obtained by reacting a polypropylene-based resin (A1), a conjugated diene compound, and a radical polymerization initiator, and the polypropylene-based resin (A1) contains (i) an ethylene homopolymer unit in the molecule.
- a DSC curve obtained by a differential scanning calorimeter method has a peak derived from the ethylene homopolymer unit, the temperature of the peak is 120 to 140 ° C., and the area of the peak is It is 1 to 40% with respect to 100% of the total area of the DSC curve.
- Extruded expanded polypropylene resin particles according to another embodiment of the present invention are extruded expanded polypropylene resin particles obtained by extrusion-foaming a resin composition containing a modified polypropylene resin (B),
- the resin composition comprises 100 parts by weight of a polypropylene resin (A), 0.1 to 13.0 parts by weight of an ethylene polymer (C) having an ethylene content of more than 50% by weight, a conjugated diene compound, and radical polymerization.
- the ethylene-based polymer (C) obtained by reaction with an initiator is an ethylene- ⁇ -olefin elastomer (C1) and an ethylene-based polymer having a peak at 120 to 140° C. in a DSC curve obtained by differential scanning calorimetry. At least one of the polymers (C2) is included.
- a method for producing extruded polypropylene-based resin expanded particles comprises melt-kneading a polypropylene-based resin (A1), a conjugated diene compound, and a radical polymerization initiator to form a modified polypropylene-based resin (B1 ), and an extrusion foaming step of extruding and foaming the modified polypropylene resin (B1), wherein the polypropylene resin (A1) includes (i) an ethylene homopolymer unit in the molecule.
- a DSC curve obtained by a differential scanning calorimeter method has a peak derived from the ethylene homopolymer unit, the temperature of the peak is 120 to 140 ° C., and the area of the peak is It is 1 to 40% with respect to 100% of the total area of the DSC curve, and the extrusion foaming step is a first step of melt-kneading the modified polypropylene resin (B1) and a foaming agent in a manufacturing apparatus. and a second step of discharging the composition obtained in the first step through a die into a region having a lower pressure than the internal pressure of the manufacturing apparatus.
- a method for producing extruded polypropylene resin expanded particles comprises 100 parts by weight of a polypropylene resin (A) and 0.1 to 0.1 parts of an ethylene polymer (C) having an ethylene content of more than 50% by weight.
- a melt-kneading step of obtaining a resin composition containing the modified polypropylene resin (B) by melt-kneading 13.0 parts by weight, a conjugated diene compound, and a radical polymerization initiator, and extruding the resin composition.
- the ethylene-based polymer (C) is an ethylene- ⁇ -olefin elastomer (C1) and an ethylene-based polymer having a peak at 120 to 140° C.
- the extrusion foaming step includes a first step of melt-kneading the resin composition and a foaming agent in a manufacturing apparatus, and and a second step of discharging the composition through a die into a region having a lower pressure than the internal pressure of the manufacturing apparatus.
- Modified polypropylene resin or resin composition As a result of intensive research to solve the above problems, the present inventors have found that the amount of the radical polymerization initiator used is reduced by the following means, and a modified polypropylene resin or resin composition having a high melt tension, and found that it is possible to provide polypropylene-based resin expanded beads with a low open-cell rate, and completed the present invention: A polypropylene resin (A1) having a specific peak in the DSC curve is reacted with a conjugated diene compound; or A specific ethylene-based polymer (C) is reacted with a polypropylene-based resin (A) via a conjugated diene compound.
- the modified polypropylene resin (B1) is a modified polypropylene resin (B1) obtained by reacting a polypropylene resin (A1), a conjugated diene compound, and a radical polymerization initiator.
- the polypropylene-based resin (A1) (i) contains an ethylene homopolymer unit in the molecule, and (ii) is derived from the ethylene homopolymer unit in a DSC curve obtained by differential scanning calorimetry. It has a peak, the temperature of the peak is 120-140° C., and the area of the peak is 1-40% with respect to 100% of the total area of the DSC curve.
- modified polypropylene resin may be referred to as "this modified polypropylene resin”.
- a modified polypropylene resin obtained using the polypropylene resin (A1) is referred to as a modified polypropylene resin (B1).
- modified polypropylene resin or “this modified polypropylene resin” includes the modified polypropylene resin (B1) and the modified polypropylene resin (B) described below.
- the modified polypropylene-based resin (B1) has the advantage of exhibiting high melt tension because it has the structure described above.
- the modified polypropylene resin (B1) also has the advantage that extruded foamed polypropylene resin particles having a low open cell ratio can be obtained.
- the modified polypropylene-based resin (B1) also has the advantage that it can be obtained by a production method that uses less radical polymerization initiator than conventional ones. Radical polymerization initiators are often expensive. Therefore, the modified polypropylene-based resin (B1) has the advantage of being obtained at a lower cost than conventional resins and exhibiting a high melt tension.
- the modified polypropylene resin (B1) contains structural units derived from the polypropylene resin (A1) and structural units derived from the conjugated diene compound.
- the modified polypropylene resin (B1) may contain the ethylene homopolymer unit described above in the structural unit derived from the polypropylene resin (A1).
- modified polypropylene resin (B1) contains other resins and/or components derived from other resins.
- the modified polypropylene-based resin (B1) may contain a structural unit derived from a radical polymerization initiator.
- the “structural unit derived from the radical polymerization initiator” refers to structural units derived from various substances generated by decomposition of the radical polymerization initiator in the production of the modified polypropylene resin (B1).
- the modified polypropylene resin (B1) contains the other components.
- the resin composition according to one embodiment of the present invention comprises 100 parts by weight of a polypropylene resin (A) and 0.1 to 13.0 parts by weight of an ethylene polymer (C) having an ethylene content of more than 50% by weight.
- the polypropylene-based resin (A) to be reacted with the ethylene-based polymer (C) may be a polypropylene-based resin (A1) containing an ethylene homopolymer unit in the molecule described above, or may be another polypropylene-based resin. There may be.
- the resin composition according to one embodiment of the present invention may also be referred to as “this resin composition”.
- the modified polypropylene-based resin contained in the present resin composition that is, the modified polypropylene-based resin obtained using the polypropylene-based resin (A) is referred to as the modified polypropylene-based resin (B). Since the present resin composition also has the structure described above, it has the same advantages as the modified polypropylene resin (B1).
- the modified polypropylene resin (B) contains structural units derived from the polypropylene resin (A) and structural units derived from the conjugated diene compound.
- the modified polypropylene resin (B) like the modified polypropylene resin (B1), contains structural units derived from radical polymerization initiators, other resins and / or components derived from other resins, and other components. can contain.
- the modified polypropylene resin (B) has a structure derived from at least one of the ethylene- ⁇ -olefin elastomer (C1) and the ethylene polymer (C2) apart from the structural units derived from the polypropylene resin (A). May contain units.
- the modified polypropylene resin (B) may have a structure in which the polypropylene resin (A) is crosslinked, and a structure in which the polypropylene resin (A) and the ethylene polymer (C) are crosslinked. or both.
- the present resin composition includes a resin having a structure in which a polypropylene resin (A) and an ethylene polymer (C) are crosslinked, a resin having a structure in which polypropylene resins (A) are crosslinked, and/or ethylene It may contain a resin having a structure in which the system polymers (C) are crosslinked.
- the modified polypropylene-based resin (B) may be the modified polypropylene-based resin (B1), or may be another modified polypropylene-based resin.
- polypropylene resin (A) means a resin containing 50% by weight or more of structural units derived from a propylene monomer out of 100% by weight of all structural units contained in the resin.
- structural unit derived from a propylene monomer may be referred to as "propylene unit”.
- the polypropylene-based resin (A) used in this production method may be (a) a homopolymer of propylene, or (b) a block copolymer or random copolymer of propylene and a monomer other than propylene. or a graft copolymer, or (c) a mixture thereof.
- the random copolymer is preferably a copolymer (propylene-ethylene random copolymer) containing propylene units and structural units (ethylene units) derived from ethylene monomers.
- the amount of ethylene units contained in 100% by weight of the random copolymer (ethylene content) is preferably 0 to 5.5% by weight, more preferably 0 to 3.0% by weight, and 0 to 2.5% by weight is more preferred.
- the polypropylene-based resin (A) may be a polypropylene-based resin (A1) containing an ethylene homopolymer unit in the molecule as described later.
- the polypropylene-based resin (A) may be (a) an unmodified polypropylene-based resin, or (b) a mixture of an unmodified polypropylene-based resin and a modified polypropylene-based resin.
- the modified polypropylene resin used in (b) a mixture with an unmodified polypropylene resin may be (i) a modified polypropylene resin obtained by the present production method, and (ii) It may be a graft copolymer of propylene and a monomer other than propylene, and (iii) a branched structure is formed in the unmodified polypropylene-based resin by a method of irradiating the unmodified polypropylene-based resin with radiation. or (iv) a mixture thereof.
- the polypropylene resin (A) may have one or more structural units derived from a monomer other than the propylene monomer, or may have one or more types.
- a monomer other than the propylene monomer used in the production of the polypropylene resin (A) may be referred to as a "comonomer”
- the "monomer other than the propylene monomer contained in the polypropylene resin (A) Structural unit derived from” may be referred to as "comonomer unit".
- Comonomers include monomers such as: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, ⁇ -olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, meth
- Acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and and glycidyl acrylate.
- Methacrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and and glycidyl methacrylate.
- Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alphamethylstyrene, paramethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene. , dichlorostyrene and trichlorostyrene.
- Polypropylene-based resin (A) preferably has, as a comonomer unit, a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms, ethylene, 1-butene, isobutene, 1-pentene, 3-methyl- derived from 1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc.
- the polypropylene resin (A) preferably contains 90% by weight or more, more preferably 93% by weight or more, of propylene units in 100% by weight of all structural units contained in the polypropylene resin (A), and 95% by weight. % or more, and particularly preferably 97% or more by weight.
- This configuration has the advantage that a modified polypropylene-based resin or resin composition having a high melt tension and a low gel fraction can be obtained.
- the melting point of the polypropylene resin (A) is not particularly limited.
- the melting point of the polypropylene resin (A) is, for example, preferably 130° C. to 165° C., more preferably 135° C. to 164° C., even more preferably 138° C. to 163° C., and 140° C. to 162° C. is particularly preferred.
- the melting point of the polypropylene-based resin (A) is (a) 130° C. or higher, there is no risk of deterioration in the dimensional stability of the in-mold foam-molded product, and there is a risk of insufficient heat resistance of the in-mold foam-molded product.
- extruded foamed particles can be molded at a relatively low steam pressure. Therefore, there is an advantage that extruded foamed particles can be molded using a general-purpose molding machine for polypropylene-based resin foamed particles.
- the melting point of the polypropylene resin (A) is measured by a differential scanning calorimeter method (hereinafter referred to as "DSC method").
- DSC method differential scanning calorimeter method
- the specific operating procedure is as follows: (1) The temperature of 5 to 6 mg of polypropylene resin (A) is raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. (2) Then, the temperature of the melted polypropylene resin (A) is lowered from 220° C. to 40° C. at a rate of 10° C./min to melt the polypropylene resin (A).
- the temperature of the further crystallized polypropylene resin (A) is raised from 40°C to 220°C at a heating rate of 10°C/min.
- the temperature of the peak (melting peak) of the DSC curve of the polypropylene-based resin (A) obtained during the second heating (that is, at the time of (3)) can be obtained as the melting point of the polypropylene-based resin (A).
- the differential scanning calorimeter for example, DSC6200 type manufactured by Seiko Instruments Inc. can be used.
- the melt flow rate (MFR) of the polypropylene resin (A) is not particularly limited, but is preferably 0.5 g/10 minutes to 20.0 g/10 minutes, and 0.5 g/10 minutes to 15.0 g/10 minutes. It is more preferably 0.5 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 0.5 g/10 minutes to 10.0 g/10 minutes.
- MFR of the polypropylene resin (A) is (a) 0.5 g/10 min or more, the resulting modified polypropylene resin or resin composition has little deformation and good surface properties (beautiful). It has the advantage of being able to provide an in-mold expansion-molded article, and (b) when it is 20.0 g/10 minutes or less, it has the advantage of obtaining expanded polypropylene-based resin beads with a lower open cell ratio.
- the MFR value of the polypropylene-based resin (A) is measured using an MFR measuring device described in JIS K7210, with an orifice diameter of 2.0959 ⁇ 0.0050 mm ⁇ and an orifice length of 8.000 ⁇ 0. .025 mm, a load of 2160 g, and a value measured at 230 ⁇ 0.2°C.
- the polypropylene resin (A) may contain ethylene homopolymer units in the molecule (that is, it may be the polypropylene resin (A1)).
- an ethylene homopolymer unit means a structural unit containing a plurality of consecutive ethylene units. Although the number of consecutive ethylene units is not limited, it may be, for example, 2 to 3,000 or 10 to 2,500.
- the polypropylene-based resin (A1) may be a resin obtained by actually polymerizing an ethylene-based homopolymer and a polypropylene-based resin (A).
- the structural unit other than the ethylene homopolymer unit may be (i) a propylene homopolymer unit (a structural unit containing a plurality of propylene units in succession), (ii) It may be a propylene random copolymer unit (structural unit in which a plurality of propylene units and comonomer units are randomly combined). Structural units other than these ethylene homopolymer units are collectively called polypropylene-based polymer units.
- the polypropylene-based resin (A1) has a peak derived from ethylene homopolymer units in the DSC curve obtained by the above-described DSC method. That is, this polypropylene-based resin (A1) can have at least two peaks in the DSC curve, a peak derived from the polypropylene-based polymer unit and a peak derived from the ethylene homopolymer unit.
- the temperature of the peak derived from ethylene homopolymer units is preferably 120 to 140°C, more preferably 125 to 140°C, even more preferably 130 to 140°C.
- An ethylene homopolymer unit exhibiting such a peak temperature is presumed to correspond to an ethylene homopolymer having a density of 0.925 g/cm 3 or more.
- Such ethylene homopolymers include high density polyethylene (HDPE) and the like.
- the area of the peak derived from the ethylene homopolymer unit is preferably 1 to 40%, more preferably 2 to 35%, more preferably 2 to 30% with respect to 100% of the total area of the DSC curve. is more preferable.
- the area of the peak is calculated as follows.
- FIG. 1 is a schematic diagram illustrating a method of calculating the area of a peak in a DSC curve.
- a DSC curve is obtained by the method described above.
- the DSC curve in FIG. 1 is an example of the DSC curve obtained during the second heating of the polypropylene resin (A1).
- a straight line (tangent line) connects the temperature before the start of melting and the temperature after the end of melting in the DSC curve.
- the DSC curve has a peak derived from the ethylene homopolymer and a peak derived from the polypropylene polymer.
- the maximum value existing between the peak derived from the ethylene homopolymer and the peak derived from the polypropylene-based polymer is defined as the dividing point.
- Divide the total area of the DSC curve by drawing a straight line with the shortest distance from the dividing point to the tangent line. Among the divided areas, the area including the peak derived from the ethylene homopolymer is defined as the area of the peak derived from the ethylene homopolymer unit.
- an ethylene polymer (C) having an ethylene content of more than 50% by weight may be used.
- the ethylene content of the ethylene-based polymer (C) means the content of ethylene units in 100% by weight of the ethylene-based polymer (C).
- the ethylene content can be calculated by the method described in Examples below. Since the ethylene polymer (C) has an ethylene content of more than 50% by weight, it can be distinguished from the polypropylene resin (A) containing 50% by weight or more of propylene units.
- the ethylene-based polymer (C) may or may not contain structural units derived from monomers other than ethylene monomers.
- the ethylene content is preferably 70% by weight or more, more preferably 80% by weight or more, and even more preferably 90% by weight or more.
- the upper limit of the ethylene content is not particularly limited, it may be, for example, 100% by weight or less, or 95% by weight or less.
- the amount of the ethylene polymer (C) used relative to 100 parts by weight of the polypropylene resin (A) is 0.1 parts by weight or more, the improvement having sufficient melt tension even if the amount of the radical polymerization initiator used is reduced.
- the advantage is that a high-quality polypropylene resin (B) or resin composition can be obtained.
- the amount used is 13.0 parts by weight or less, there is an advantage that it is possible to suppress excessive gel content due to crosslinking.
- the amount used is preferably 0.1 to 10.0 parts by weight, more preferably 0.1 to 5.0 parts by weight, and further preferably 0.1 to 4.0 parts by weight.
- 0.5 to 3.5 parts by weight is particularly preferred, and 0.5 to 3.0 parts by weight is most preferred.
- the ethylene-based polymer (C) is at least one of an ethylene- ⁇ -olefin elastomer (C1) and an ethylene-based polymer (C2) having a peak at 120 to 140°C in a DSC curve obtained by a DSC method. including one.
- the modified polypropylene-based resin (B) or resin composition has the advantage of exhibiting high melt tension. Further, the modified polypropylene-based resin (B) or the resin composition can provide expanded beads with a low open cell ratio.
- “Elastomer” as used herein means a resin having a surface hardness (Shore A) of 70 to 95 as defined in ASTM D2240.
- Examples of ethylene- ⁇ -olefin elastomers (C1) include (i) ethylene- ⁇ -olefin copolymer; (ii) ethylene- ⁇ -olefin-nonconjugated diene copolymer; and (iii) main chain and side chain.
- the main component constituting the main chain is an ethylene- ⁇ -olefin copolymer and/or an ethylene- ⁇ -olefin-nonconjugated diene copolymer, etc.
- the side It is a vinyl polymer in which the main component constituting the chain contains at least one structural unit derived from at least one vinyl monomer.
- the vinyl polymer may be a homopolymer or a copolymer. These may be used alone or in combination of two or more.
- Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 2-methyl-1-propene, 3-methyl-1-pentene, 4-methyl-1- Examples include pentene, 5-methyl-1-hexene, and the like. These ⁇ -olefins may be used alone or in combination of two or more.
- Examples of the non-conjugated diene (non-conjugated diene compound) include dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylenenorbornene, ethylidenenorbornene, and vinylnorbornene. These non-conjugated dienes may be used alone or in combination of two or more.
- Examples of ethylene- ⁇ -olefin copolymers include ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, and ethylene-1-octene copolymers.
- Examples of ethylene- ⁇ -olefin-nonconjugated diene copolymers include ethylene-1-butene-nonconjugated diene copolymers and ethylene-propylene-nonconjugated diene copolymers.
- vinyl monomers examples include (meth)acrylic acid alkyl esters having an alkyl chain length of 1 to 20 carbon atoms, vinyl monomers having an acid group, vinyl monomers having a hydroxyl group, and vinyl monomers having an epoxy group. At least one monomer selected from the group consisting of a monomer, a vinyl monomer having a cyano group, and styrene is preferred.
- the vinyl monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, ( Lauryl meth)acrylate, stearyl (meth)acrylate, (meth)acrylic acid, maleic acid, maleic anhydride, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, (meth)acrylic glycidyl acid, (meth)acrylonitrile, styrene, propylene, octene and the like.
- the ethylene content in the ethylene- ⁇ -olefin elastomer (C1) is preferably 80% by weight or more, more preferably 90% by weight or more.
- the upper limit of the ethylene content in the ethylene- ⁇ -olefin elastomer (C1) is not particularly limited, it may be, for example, 99% by weight or less, or 95% by weight or less.
- the ethylene polymer (C2) having a peak at 120 to 140° C. in the DSC curve obtained by the DSC method is preferably an ethylene polymer having a density of 0.925 g/cm 3 or more and 0.97 g/cm 3 or less. , and a density of 0.942 g/cm 3 or more and 0.97 g/cm 3 or less. Also, the peak temperature is more preferably 125 to 140.degree. C., even more preferably 130 to 140.degree.
- the ethylene polymer (C2) may be an ethylene homopolymer. Examples of such an ethylene-based polymer (C2) include high-density polyethylene (HDPE).
- Raw materials for the modified polypropylene resin (B) or the resin composition include low density polyethylene (LDPE), very low density polyethylene (VLDPE) and linear low density polyethylene (LLDPE) with a density of 0.925 g/cm 3 . It is preferred not to use resins with less than Resins with densities less than 0.925 g/cm 3 may have peak temperatures outside the 120-140° C. range (eg, 90-115° C.) in the DSC curve.
- LDPE low density polyethylene
- VLDPE very low density polyethylene
- LLDPE linear low density polyethylene
- the obtained DSC curve may have a peak derived from the ethylene polymer (C2). That is, the mixture of the polypropylene resin (A) and the ethylene polymer (C2) has at least the peak derived from the polypropylene resin (A) and the ethylene polymer (C2) in the DSC curve obtained during the second temperature rise. C2) may have two peaks, one from C2).
- the temperature of the peak derived from the ethylene polymer (C2) may be 120 to 140°C, may be 125 to 140°C, or may be 130 to 140°C.
- the ethylene polymer (C2) exhibiting such a peak temperature is presumed to correspond to an ethylene homopolymer having a density of 0.925 g/cm 3 or more.
- the area of the peak derived from the ethylene polymer (C2) is 1 to 1 with respect to 100% of the total area of the DSC curve. It is preferably 40%, more preferably 2 to 35%, even more preferably 2 to 30%.
- the area of the peak can be calculated by the same method as the area of the peak derived from the ethylene homopolymer unit in the DSC curve of the polypropylene-based resin (A1) described above.
- the area of the peak derived from the ethylene polymer (C2) in the DSC curve of the mixture of the polypropylene resin (A) and the ethylene polymer (C2) is the content of the ethylene polymer (C2) in the mixture.
- the amount (ratio) In the DSC curve of the mixture of the polypropylene resin (A) and the ethylene polymer (C2), the area of the peak derived from the ethylene polymer (C2) is 1 to 40% with respect to 100% of the total area of the DSC curve.
- the amount of the ethylene-based polymer (C2) with respect to 100 parts by weight of the polypropylene-based resin (A) in the mixture is highly likely to be 0.1 to 13.0 parts by weight.
- Conjugated diene compounds that may be used in one embodiment of the present invention include, for example, butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, and 2,5-dimethyl-2,4-hexadiene. can give. These conjugated diene compounds may be used singly or in combination of two or more. Among these conjugated diene compounds, butadiene and isoprene are particularly preferred from the viewpoints of (a) being inexpensive and easy to handle, and (b) the reaction to proceed uniformly.
- the amount of the conjugated diene compound used is preferably 0.20 parts by weight to 1.50 parts by weight, more preferably 0.25 parts by weight to 0.80 parts by weight, with respect to 100 parts by weight of the polypropylene resin (A). More preferably 0.25 to 0.60 parts by weight.
- the amount of the conjugated diene compound used is 0.20 parts by weight or more with respect to 100 parts by weight of the polypropylene resin (A)
- the number of crosslinks introduced into the polypropylene resin (A) becomes sufficient, and as a result, the obtained
- the melt tension of the modified polypropylene-based resin or resin composition obtained can be sufficiently increased (for example, to 8 cN or more).
- the amount of the conjugated diene compound used is 1.50 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (A)
- the cross-linking between the polypropylene resin (A) by the conjugated diene compound is moderate.
- the viscosity of the modified polypropylene resin or resin composition obtained can be suppressed.
- the amount of the conjugated diene compound used is more than 1.50 parts by weight, a large amount of gel content is generated, which may cause cell rupture during foaming.
- the ethylene-based polymer (C) when the ethylene-based polymer (C) is used, the ethylene-based polymer (C) may be crosslinked with itself or between the polypropylene-based resin (A) and the ethylene-based polymer (C).
- copolymerizable with the conjugated diene compound within a range that does not impair the effects of one embodiment of the present invention monomers may be used together.
- the resin mixture described later may further contain a monomer copolymerizable with the conjugated diene compound.
- monomers copolymerizable with conjugated diene compounds include (a) vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
- acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and stearyl acrylate
- methyl methacrylate, methacrylic acid examples include ethyl, butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylates such as stearyl methacrylate.
- Radical polymerization initiator is preferably an organic peroxide capable of abstracting hydrogen from the polypropylene resin (A), the ethylene polymer (C) and the conjugated diene compound.
- Radical polymerization initiators suitably used in one embodiment of the present invention include organic peroxides such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, and peroxyesters. oxides.
- organic peroxide one with particularly high hydrogen abstraction ability is preferable.
- organic peroxides with high hydrogen abstraction ability include 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n- Peroxyketals such as butyl 4,4-bis(t-butylperoxy)valerate and 2,2-bis(t-butylperoxy)butane; dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy)hexane, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2 , 5-di(t-butylperoxy)-3-hexyne and other dialkyl peroxides; benzoyl peroxide and other
- the amount of the radical polymerization initiator used is preferably 0.40 parts by weight to 1.00 parts by weight, more preferably 0.50 parts by weight to 1.00 parts by weight, with respect to 100 parts by weight of the polypropylene resin (A). , and more preferably 0.50 to 0.90 parts by weight.
- the amount of the radical polymerization initiator used is 0.40 parts by weight or more with respect to 100 parts by weight of the polypropylene resin (A)
- a sufficient number of crosslinks can be introduced into the polypropylene resin (A).
- the strain hardening property is sufficiently expressed in the modified polypropylene resin or resin composition, so that the extruded foam particles with a low open cell rate tends to be obtained.
- the amount of the radical polymerization initiator used is 1.00 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (A)
- the abstraction of hydrogen from the polypropylene resin (A) by the radical polymerization initiator is moderate.
- the molecular weight of the modified polypropylene resin obtained by is not reduced, and the modified polypropylene resin or resin composition can be obtained at low cost.
- the modified polypropylene-based resin or resin composition is used for extrusion foaming, extruded foam particles with a high expansion ratio and a low open cell ratio tend to be obtained.
- resin mixture In the method for producing the present modified polyethylene-based resin or the present resin composition, at least a polypropylene-based resin (A), a conjugated diene compound, and a radical polymerization initiator are included (in one embodiment, the ethylene-based polymer (C) ) is called a resin mixture.
- the resin mixture may optionally further contain other components.
- Other components include (a) a resin other than the polypropylene-based resin (A) and the ethylene-based polymer (C) (sometimes referred to as other resins), (b) an antioxidant, and a metal deactivator.
- phosphorous processing stabilizers such as antacid adsorbents, and/or (c) cell regulators, colorants, chain transfer agents.
- stabilizers such as antacid adsorbents, and/or (c) cell regulators, colorants, chain transfer agents.
- additives such as lubricants, plasticizers, fillers, reinforcing agents, flame retardants, hydrous agents and antistatic agents.
- resins include (a) polyolefin resins other than polypropylene resin (A) and ethylene polymer (C), (b) ethylene/vinyl acetate copolymer, ethylene/acrylic acid copolymer, and ethylene /ethylene-based resins such as methacrylic acid copolymers, and (c) styrene-based resins such as polystyrene, styrene/maleic anhydride copolymers, and styrene/ethylene copolymers. These other components may be used individually by 1 type, and may be used in combination of 2 or more type.
- the melt tension of the present modified polypropylene resin or the present resin composition is preferably 8.0 to 12.0 cN.
- the melt tension of the present modified polypropylene resin is the above configuration, when producing extruded polypropylene resin particles by an extrusion foaming method using the present modified polypropylene resin, the modified polypropylene resin at the time of foaming The melt tension becomes sufficiently high.
- the cell membranes can be sufficiently retained in the obtained extruded polypropylene-based resin expanded particles. Similar advantages are obtained when the present resin composition is used in place of the present modified polypropylene resin.
- the lower limit of the melt tension is preferably 8.0 cN or more, more preferably 8.2 cN or more, more preferably 8.4 cN or more, more preferably 8.6 cN or more, It is more preferably 8.8 cN or more, and even more preferably 9.0 cN or more.
- the upper limit of the melt tension may be 11.8 cN or less, 11.6 cN or less, 11.4 cN or less, 11.2 cN or less, or 11.0 cN. or less, 10.5 cN or less, or 10.0 cN or less.
- the breaking take-up speed of the present modified polypropylene resin or the present resin composition is preferably 7.0 m/min or less. According to the above configuration, when extruded expanded polypropylene resin particles are produced by an extrusion foaming method using the modified polypropylene resin, the degree of elongation of the modified polypropylene resin during foaming is to maintain the cell membrane. has the advantage of being sufficient for and not excessive. Similar advantages are obtained when the present resin composition is used in place of the present modified polypropylene resin.
- the breaking take-up speed is more preferably 6.5 m/min or less, more preferably 6.0 m/min or less, still more preferably 5.8 m/min or less, and 5.5 m/min or less. is particularly preferred.
- the breaking take-up speed may be 5.0 m/min or less, 4.8 m/min or less, 4.5 m/min or less, or 4.3 m/min or less. may be 4.0 m/min or less.
- the lower limit of the breaking take-up speed may be 3.5 m/min or more, 3.8 m/min or more, 4.0 m/min or more, or 4.2 m/min or more.
- 4.5 m/min or more, 4.7 m/min or more, 5.0 m/min or more, or 5.2 m/min or more may be 5.5 m/min or more.
- the present modified polypropylene resin or the present resin composition preferably has a melt tension of 8.0 to 12.0 cN and a breaking take-off speed of 7.0 m/min or less.
- (1) to (5) are as follows: (1) A sample resin for measurement (this modified polypropylene resin (2) then heat the sample resin for 10 minutes in a barrel heated to the test temperature (200° C.); (3) then a capillary die (1.0 mm diameter, (Length 10 mm), the sample resin is drawn out in the form of a string at a constant piston lowering speed (10 mm/min), and this string is passed through a tension detection pulley located 350 mm below the capillary die.
- the winding speed of the string is increased from 1.0 m / min to 200 m / min for 4 minutes.
- the MFR of the present modified polypropylene resin or the present resin composition is not particularly limited, but is preferably 0.5 g/10 minutes to 20.0 g/10 minutes, and 1.0 g/10 minutes to 15.0 g/10 minutes. More preferably, 1.5 g/10 min to 10.0 g/10 min, more preferably 1.5 g/10 min to 6.0 g/10 min, 1.5 g/10 min to 5.5 g/10 min is more preferable, and 2.0 g/10 minutes to 5.0 g/10 minutes is particularly preferable.
- the MFR of the present modified polypropylene resin or the present resin composition may be 2.2 g/10 minutes or more, 2.4 g/10 minutes or more, or 2.6 g/10 minutes or more. 2.8 g/10 minutes or more, or 3.0 g/10 minutes or more.
- the MFR of the modified polypropylene resin or the resin composition may be 4.8 g/10 min or less, 4.6 g/10 min or less, or 4.4 g/10 min or less. 4.2 g/10 minutes or less, or 4.0 g/10 minutes or less.
- the MFR of the present modified polypropylene-based resin is (a) 0.5 g/10 minutes or more, the modified polypropylene-based resin is less deformable and has good (beautiful) surface properties. and (b) when it is 20.0 g/10 minutes or less, the advantage that the foamability of the composition is improved when the composition containing the modified polypropylene resin is extruded and foamed. have Similar advantages are obtained when the present resin composition is used in place of the present modified polypropylene resin.
- the present modified polypropylene resin or the present resin composition has a melt tension of 8.0 to 12.0 cN, a breaking take-off speed of 7.0 m/min or less, and an MFR of 0.5 g/10 min to 20. 0 g/10 minutes is preferred.
- the MFR of the modified polypropylene resin or the resin composition is the polypropylene resin (A ) can be measured in the same manner as the MFR value.
- the shape and size of the present modified polypropylene resin or the present resin composition are not particularly limited, and may be, for example, pellets.
- a pellet is a polymer (resin) having a substantially constant length and thickness such as a cylindrical shape, a spherical shape, an elliptical shape, and a polygonal shape (e.g., a triangular prism, a square prism, a pentagonal prism, a hexagonal prism, etc.). It means a material granulated into a compact molding material.
- the size of the pellet is not particularly limited as long as the pellet can be handled, and examples thereof include those having a length of about 2.5 mm to 3.5 mm and a thickness of about 2.5 mm to 3.5 mm.
- Extruded foamed particles or an extruded foamed sheet can be obtained by extrusion-foaming a composition containing the present modified polypropylene-based resin and a foaming agent.
- the modified polypropylene-based resin can be used for injection foam molding such as core-back molding by using the modified polypropylene-based resin and a foaming agent. Since the modified polypropylene-based resin has a high melt tension, it has the advantage that the film obtained by molding the modified polypropylene-based resin into a film is difficult to cut.
- the modified polypropylene-based resin can also be used for surface coating of non-foamed films and paper.
- the modified polypropylene resin can also be used for normal injection molding (non-foaming).
- the present resin composition can also be used in the same manner as the present modified polypropylene resin.
- a method for producing a modified polypropylene-based resin (B1) includes a melt-kneading step of melt-kneading a polypropylene-based resin (A1), a conjugated diene compound, and a radical polymerization initiator,
- the polypropylene-based resin (A1) (i) contains an ethylene homopolymer unit in the molecule, and (ii) has a peak derived from the ethylene homopolymer unit in a DSC curve obtained by differential scanning calorimetry. , the temperature of the peak is 120-140° C., and the area of the peak is 1-40% with respect to 100% of the total area of the DSC curve.
- a method for producing a resin composition according to one embodiment of the present invention comprises 100 parts by weight of a polypropylene resin (A) and 0.1 to 13.0 parts by weight of an ethylene polymer (C) having an ethylene content of more than 50% by weight. part, a conjugated diene compound, and a radical polymerization initiator are melt-kneaded, and the ethylene-based polymer (C) is an ethylene- ⁇ -olefin elastomer (C1) obtained by differential scanning calorimetry. It may contain at least one of the ethylene-based polymer (C2) having a peak at 120 to 140° C. in the DSC curve obtained.
- the polypropylene-based resin (A) to be reacted with the ethylene-based polymer (C) may be the polypropylene-based resin (A1) containing an ethylene homopolymer unit in the molecule described above. may be a polypropylene-based resin.
- a modified polypropylene resin or resin composition having high melt tension can be obtained. That is, the present manufacturing method is similar to the above [1. Modified polypropylene resin or resin composition] can be provided.
- the modified polypropylene resin obtained by the production method of the present invention also has the advantage of being able to provide extruded polypropylene resin expanded particles having a low open cell ratio.
- a modified polypropylene resin having a high melt tension can be provided even when the amount of the radical polymerization initiator used is reduced. That is, according to this production method, there is also an advantage that a modified polypropylene resin having a high melt tension can be obtained at a lower cost than conventional methods. Similar advantages are obtained when the resin composition is obtained by this production method.
- the modified polypropylene resin may be read as the resin composition.
- a manufacturing apparatus used in the present manufacturing method includes, for example, a melt-kneading section having a screw and a die.
- the melt-kneading section includes a single-screw extruder and a multi-screw extruder (for example, a twin-screw extruder).
- a multi-screw extruder is preferably used as the melt-kneading unit, and a twin-screw extruder is more preferably used, in terms of continuous kneading and ease of scale-up.
- the die provided in the manufacturing apparatus used in this manufacturing method is located at the end of the manufacturing apparatus in the extrusion direction and has at least one hole (sometimes referred to as a discharge hole) for discharging the modified polypropylene resin. ing.
- the number and diameter of holes provided in the die and the thickness of the die (the length of the holes in the extrusion direction) are not particularly limited.
- melt-kneading process a polypropylene-based resin (A), a conjugated diene compound, and a "raw material for a modified polypropylene-based resin" containing a radical polymerization initiator are supplied to the melt-kneading unit, and a resin mixture containing these raw materials is melt-kneaded. It is a process of melting and kneading in the department.
- Melt-kneading in the melt-kneading step means that a resin mixture containing a polypropylene-based resin (A) and a conjugated diene compound is mixed with a radical polymerization initiator at a temperature at which the polypropylene-based resin (A) can be melted, in a melt-kneading unit. It is to knead with
- the above-described ethylene-based polymer (C) is contained in the raw material and resin mixture.
- the melt-kneading step is also a step of reacting a conjugated diene compound and a radical polymerization initiator with the polypropylene resin (A) (and the ethylene polymer (C)) to prepare (obtain) a modified polypropylene resin.
- the ethylene-based polymer (C) may be polymerized in advance with the polypropylene-based resin (A).
- Embodiments of the polypropylene-based resin (A), the ethylene-based polymer (C), the conjugated diene compound, the radical polymerization initiator, and other components are described in [1. Modified polypropylene resin or resin composition] section may be incorporated as appropriate.
- the unmelted polypropylene-based resin (A) and/or the ethylene-based polymer (C) are introduced into the melt-kneading unit, and the resulting modified polypropylene-based resin enters the die from the melt-kneading unit. means the point in time until the
- the modified polypropylene-based resin may be finally prepared.
- the polypropylene-based resin (A), the conjugated diene compound, and the radical polymerization initiator are supplied to the raw material supply port of the melt-kneading unit, and these raw materials are melt-kneaded to prepare the modified polypropylene-based resin.
- This aspect is not particularly limited, and examples thereof include the following methods (a1) to (a4) (note that in one embodiment, the ethylene polymer (C) is supplied together with the polypropylene resin (A) ): (a1) An unmelted polypropylene resin (A), a conjugated diene compound, and a radical polymerization initiator are mixed simultaneously or in random order to prepare a resin mixture.
- a method of supplying the resin mixture to a melt-kneading unit and melt-kneading the resin mixture to prepare a modified polypropylene resin (a2) An unmelted polypropylene-based resin (A) is supplied to a melt-kneading unit, and the polypropylene-based resin (A) is melt-kneaded.
- a conjugated diene compound and a radical polymerization initiator are supplied to the melt-kneaded polypropylene-based resin (A) from the same raw material supply port or separate raw material supply ports in the middle of the melt-kneading section to obtain A method of further melt-kneading the resulting resin mixture to prepare a modified polypropylene resin; (a3) An unmelted polypropylene resin (A) and a radical polymerization initiator are supplied to the melt kneading unit from the same raw material supply port or separate raw material supply ports of the melt kneading unit, and the polypropylene resin (A) and A radical polymerization initiator is melt-kneaded.
- a conjugated diene compound is supplied from a raw material supply port in the middle of the melt-kneading unit to the melt-kneaded mixture of the polypropylene resin (A) and the radical polymerization initiator, and the obtained resin mixture is further melted.
- a radical polymerization initiator is supplied from a raw material supply port in the middle of the melt-kneading unit to the melt-kneaded mixture of the polypropylene resin (A) and the conjugated diene compound, and the resulting resin mixture is further melted.
- a method of kneading to prepare a modified polypropylene resin is supplied from a raw material supply port in the middle of the melt-kneading unit to the melt-kneaded mixture of the polypropylene resin (A) and the conjugated diene compound, and the resulting resin mixture is further melted.
- the timing of supplying the other components to the melt-kneading unit is not particularly limited.
- Other components may be added to the resin mixture prepared in advance in (i) (a1), and (ii) (a2) to (a4) unmelted polypropylene-based resin (A), ethylene-based
- the polymer (C), the conjugated diene compound, or the radical polymerization initiator may be supplied to the melt-kneading section from the same raw material supply port or from a separate raw material supply port, together with or separately from these raw materials.
- the methods (a2) to (a4) are preferable because the polypropylene-based resin (A) in the resin mixture is in a molten state at the start of the reaction of the radical polymerization initiator.
- the method (a3) is more preferable for supplying raw materials from the viewpoint of safety.
- the production method may include a discharge step of discharging the modified polypropylene-based resin obtained by melt-kneading the resin mixture from a die.
- the discharge step means the time from when the modified polypropylene-based resin enters the die from the melt-kneading section to when the modified polypropylene-based resin is discharged from the die.
- the modified polypropylene resin is ejected from the die in a strand at a temperature at which the modified polypropylene resin can be ejected from the die holes.
- strand By cooling and shredding the extruded strand-shaped modified polypropylene resin (simply referred to as "strand"), a modified polypropylene resin having a desired shape and size can be obtained.
- a method for cooling the strand is not particularly limited, and examples include water cooling using water.
- the strands may be chopped after being cooled, or the cooling and chopping may occur simultaneously.
- polypropylene resin extruded expanded particles according to one embodiment of the present invention are described in [1. modified polypropylene resin or resin composition].
- the polypropylene-based resin extruded expanded particles according to one embodiment of the present invention are described in [1. modified polypropylene resin or resin composition].
- the extruded expanded polypropylene resin particles according to one embodiment of the present invention may have the following configuration: Extruded expanded polypropylene resin particles obtained by extrusion-foaming the modified polypropylene resin (B1).
- the modified polypropylene resin (B1) is obtained by reacting a polypropylene resin (A1), a conjugated diene compound, and a radical polymerization initiator, and the polypropylene resin (A1) is (i ) contains an ethylene homopolymer unit in the molecule, and (ii) has a peak derived from the ethylene homopolymer unit in a DSC curve obtained by a differential scanning calorimeter method, and the temperature of the peak is 120 to 140 ° C. and the area of the peak is 1 to 40% with respect to 100% of the total area of the DSC curve.
- the extruded expanded polypropylene resin particles according to another embodiment of the present invention may have the following configuration: extruding and foaming a resin composition containing the modified polypropylene resin (B).
- the resin composition comprises 100 parts by weight of a polypropylene resin (A) and 0.1 to 0.1 parts of an ethylene polymer (C) having an ethylene content of more than 50% by weight. 13.0 parts by weight, a conjugated diene compound, and a radical polymerization initiator.
- extruded polypropylene resin expanded particles may be referred to as “extruded expanded particles”, and is produced by the production method described in the section "[4. Method for producing extruded polypropylene resin expanded particles]".
- Extruded polypropylene resin expanded particles that is, “extruded polypropylene resin expanded particles according to one embodiment of the present invention” may also be referred to as "present extruded expanded particles”.
- the present extruded foamed particles have the above-described structure, so they have the advantage of having a low open cell ratio.
- the open cell ratio of the present extruded expanded particles is preferably as low as possible.
- the open cell rate of the extruded expanded beads is preferably 28.0% or less, more preferably 27.0% or less, further preferably 26.0% or less, and 25.0% or less. is particularly preferred.
- the lower limit of the open cell content of the present extruded expanded beads is not particularly limited, and is, for example, 0.0% or more.
- the extruded expanded beads when the extruded expanded beads are molded, the cells hardly break and shrink, so the advantage that the extruded expanded beads are excellent in moldability, and (b) the extruded expanded beads are
- the foamed molded article obtained by using it has the advantage that characteristics such as shape arbitrariness, cushioning properties, light weight, compressive strength and heat insulating properties are more exhibited.
- the open cell ratio of the extruded polypropylene resin expanded particles is described in ASTM D2856-87 Procedure C (PROCEDURE C) using an air comparison type hydrometer [manufactured by Tokyo Science Co., Ltd., model 1000].
- the expansion ratio of the extruded expanded beads is preferably 2 to 45 times, more preferably 3 to 40 times, even more preferably 3 to 30 times, and 3 to 25 times. It is particularly preferred to have According to the above configuration, the polypropylene resin-based in-mold expansion molded product obtained by using the extruded expanded particles has the advantage that characteristics such as shape arbitrariness, cushioning properties, lightness, and heat insulating properties are exhibited more effectively.
- the expansion ratio of the extruded expanded beads obtained by the production of the extruded expanded beads does not reach the above range, the inside of the obtained extruded expanded beads is pressurized with an inert gas, and then the extrusion is performed.
- a method of heating expanded beads to increase the expansion ratio (for example, the method described in Japanese Patent Application Laid-Open No. 10-237212) can also be used.
- the expansion ratio of the extruded polypropylene resin expanded beads is calculated by the following method: (1) measuring the weight w (g) of the extruded expanded beads; The extruded foamed particles used are submerged in ethanol contained in a graduated cylinder, and the volume v (cm 3 ) of the extruded foamed particles is measured based on the amount of rise in the liquid level of the graduated cylinder; (3) Weight w ( g) is divided by the volume v (cm 3 ) to calculate the density ⁇ 1 of the extruded foamed beads; (4) the density ⁇ 2 of the base resin of the extruded foamed beads is divided by the density ⁇ 1 of the extruded foamed beads ( ⁇ 2 / ⁇ 1 ), and the obtained value is taken as the foaming ratio.
- the base resin can also be said to be a resin component that substantially constitutes the extruded expanded beads.
- the density ⁇ 2 of the base resin the density 0.9 g/cm 3 of a general polypropylene-based resin can be adopted.
- a method for producing extruded expanded polypropylene resin particles according to one embodiment of the present invention includes an extrusion foaming step of extruding and foaming the above modified polypropylene resin or resin composition.
- the method for producing extruded polypropylene-based resin expanded particles according to one embodiment of the present invention includes (a) [2. Method for producing modified polypropylene resin or resin composition], or a modified polypropylene resin or resin composition obtained by the production method described in [1.
- Modified polypropylene resin or resin composition] and (b) a foaming agent are melt-kneaded in a manufacturing apparatus, and a first step a second step of discharging the resulting composition through a die into a region of lower pressure than the internal pressure of the manufacturing apparatus;
- the modified polypropylene resin may be read as the resin composition.
- a method for producing extruded expanded polypropylene resin particles according to an embodiment of the present invention may have the following configuration: a polypropylene resin (A1), a conjugated diene compound, and a radical polymerization initiator are melted.
- the extrusion foaming step produces the modified polypropylene resin (B1) and a foaming agent
- the method for producing extruded polypropylene resin expanded particles may have the following configuration: 100 parts by weight of polypropylene resin (A) and 50 parts by weight of ethylene content. 0.1 to 13.0 parts by weight of an ethylene-based polymer (C) exceeding %, a conjugated diene compound, and a radical polymerization initiator are melt-kneaded to form a modified polypropylene-based resin (B). and an extrusion foaming step of extruding and foaming the resin composition. At least one of the ethylene-based polymers (C2) having a peak at 120 to 140 ° C.
- the extrusion foaming step includes melt-kneading the resin composition and a foaming agent in a manufacturing apparatus.
- Extruded expanded polypropylene resin particles comprising a first step and a second step of discharging the composition obtained in the first step through a die into a region having a lower pressure than the internal pressure of the manufacturing apparatus. manufacturing method.
- the first step will be specifically described.
- a specific example of the first step includes a step of melting the modified polypropylene-based resin and dissolving the foaming agent in the modified polypropylene-based resin in the manufacturing apparatus.
- the first step can also be said to be a step of preparing a melt-kneaded composition containing a modified polypropylene-based resin and a foaming agent.
- the foaming agent used in one embodiment of the present invention is not particularly limited, and known organic foaming agents and inorganic foaming agents can be used.
- organic foaming agents include aliphatic hydrocarbons such as propane and butane, and fluorohydrocarbons such as difluoroethane.
- inorganic foaming agents include carbon dioxide, air, inorganic gases such as nitrogen, and water.
- the foaming agents described above may be used alone or in combination of two or more.
- the amount of the foaming agent used in the first step may be appropriately adjusted according to the type of the foaming agent and the target expansion ratio of the extruded polypropylene-based resin expanded particles.
- bubble nucleating agents e.g., stabilizers, metal deactivators, phosphorus-based processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, and antacid adsorbents, etc.
- additives e.g., colorants, crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, and antistatic agents, etc.
- the modified polypropylene-based resin and the blowing agent, and optionally other ingredients may be mixed before being supplied to the manufacturing equipment, or may be mixed within the manufacturing equipment. good.
- the composition may be supplied to the production equipment, or the composition may be prepared (completed) in the production equipment.
- the method and order of mixing the modified polypropylene-based resin and blowing agent, and optionally other ingredients, or (ii) the modified polypropylene-based resin and blowing agent, and , and the method and order of supplying other optional ingredients to the manufacturing equipment are not particularly limited.
- the composition Before extruding the composition obtained in the first step into the low pressure region, the composition may be cooled.
- the composition obtained in the first step i.e., the melt-kneaded composition
- the extruded composition is shredded. It is a process.
- the second step provides extruded foam particles. Therefore, the second step can also be said to be a granulation step of granulating the extruded polypropylene-based resin expanded particles.
- the region where the composition obtained in the first step is extruded is not particularly limited as long as the pressure is lower than the internal pressure of the manufacturing apparatus.
- the composition obtained in the first step may be extruded into a gas phase or into a liquid phase.
- the composition extruded into the region where the pressure is lower than the internal pressure of the manufacturing equipment immediately begins to foam.
- the composition being foamed may be shredded, or the composition that has finished foaming may be shredded. If the foaming composition is shredded, the shredded composition may complete foaming in the region beyond which it was extruded.
- the second step can be broadly divided into a cold cut method and a die face cut method, depending on the region where the composition obtained in the first step is extruded and the method of shredding the composition.
- the cold cut method include a method in which a composition containing a foaming agent extruded from a die is foamed, and a strand-shaped foam is taken off while being cooled in a water tank and then shredded (strand cut method).
- the die face cut method is a method in which a composition extruded from a die hole is cut with a rotating cutter while being in contact with the surface of the die or with a slight gap secured.
- the die face cutting method can be further divided into the following three methods according to the difference in cooling method. That is, they are an underwater cut (hereinafter also referred to as UWC) method, a water ring cut (hereinafter sometimes referred to as WRC) method, and a hot cut (hereinafter sometimes referred to as HC) method.
- UWC underwater cut
- WRC water ring cut
- HC hot cut
- the UWC method is a method in which a chamber attached to the tip of a die is filled with cooling water adjusted to a predetermined pressure so as to be in contact with the resin discharge surface of the die, and the composition extruded from the die hole is cut underwater.
- a cooling drum in which cooling water flows along the inner peripheral surface of the cooling drum connected to the die is arranged downstream from the die, and the composition cut by the cutter foams in the air. It is a method of cooling in the cooling water while or after foaming.
- the HC method is a method in which a composition is cut in the air with a cutter, and the cut composition is cooled in the air while foaming or after foaming.
- the HC method also includes a mist cut method further including a step of spraying mixed mist of water and air.
- the granulation method in the second step is preferably one or more selected from the group consisting of HC method, WRC method and UWC method.
- the "polypropylene-based resin foam-molded article” may be referred to as "foam-molded article”
- the "polypropylene-based resin foam-molded article according to one embodiment of the present invention” may be referred to as “this foam-molded article”.
- a foamed molded product obtained by manufacturing using a mold is sometimes called an in-mold foamed molded product.
- the polypropylene-based resin foam molded article according to one embodiment of the present invention has the structure described above, so it has a high expansion ratio and excellent fusion bondability.
- a method for producing a polypropylene-based resin foam molded article according to an embodiment of the present invention includes [4. Method for producing extruded expanded polypropylene resin particles], or extruded polypropylene resin particles obtained by the production method described in [3. Extruded polypropylene resin expanded particles] section, after filling the molding space formed by at least two molds provided in the mold, extruding the polypropylene resin in the molding space It has a heating step of heating the expanded particles.
- the mold used is not particularly limited.
- the mold may comprise at least two molds, for example a fixed mold that is not drivable and a moving mold that is drivable.
- a molding space is formed inside the fixed mold and the movable mold by moving the movable mold closer to the fixed mold. It should be noted that when the extruded foam particles in the mold space are heated, the stationary mold and the moving mold can be in contact (ie the mold can be closed but not sealed).
- the fixed mold and the movable mold do not have to be in contact, and there is a slight gap between the fixed mold and the movable mold. gaps (also called cracking) may be formed.
- the method of filling the molding space with the extruded polypropylene resin expanded particles and the method of heating the extruded polypropylene resin expanded particles in the mold are It is not particularly limited. Examples of these methods include the following methods (c1) to (c4).
- the extruded foamed particles are pressurized with an inorganic gas in a container to impregnate the extruded foamed particles with the inorganic gas, thereby imparting a predetermined particle internal pressure to the extruded foamed particles. Then, a method of filling the extruded foamed particles into the molding space of the mold and heating the extruded foamed particles in the molding space with steam; (c2) Filling the molding space of the mold with the extruded foam particles.
- molding pressure the pressure of the steam that heats the extruded foamed particles (hereinafter sometimes referred to as molding pressure) varies depending on the characteristics of the extruded foamed particles used, etc., and cannot be generally defined.
- At least one selected from the group consisting of air, nitrogen, oxygen, carbon dioxide, helium, neon, argon, etc. can be used as the inorganic gas in method (c1).
- air and/or carbon dioxide are preferred.
- the internal pressure of the expanded beads in the method (c1) is preferably 0.05 MPa to 0.30 MPa (gauge pressure), more preferably 0.06 MPa to 0.25 MPa (gauge pressure).
- the temperature in the container when impregnating the foamed particles with the inorganic gas is preferably 10°C to 90°C, more preferably 40°C to 90°C.
- An embodiment of the present invention may have the following configuration.
- [1-1] Extruded expanded polypropylene resin particles obtained by extrusion foaming a modified polypropylene resin (B1), wherein the modified polypropylene resin (B1) is a polypropylene resin (A1) and , Obtained by the reaction of a conjugated diene compound and a radical polymerization initiator, the polypropylene resin (A1) contains (i) an ethylene homopolymer unit in the molecule, and (ii) obtained by a differential scanning calorimetry method.
- the DSC curve obtained has a peak derived from the ethylene homopolymer unit, the temperature of the peak is 120 to 140 ° C., and the area of the peak is 100% of the total area of the DSC curve, 1 to 40% polypropylene-based resin extruded expanded particles.
- the modified polypropylene resin (B1) has a melt tension of 8.0 to 12.0 cN and a breaking take-off speed of 3.5 m/min or more and 7.0 m/min or less, [1 -1].
- the modified polypropylene resin (B1) has a melt flow rate of 0.5 g/10 min to 20.0 g/10 min, [1-1] or [1-2]. Polypropylene-based resin extruded expanded particles.
- Extruded polypropylene resin particles obtained by extrusion foaming a resin composition containing a modified polypropylene resin (B), wherein the resin composition comprises a polypropylene resin (A) 100 parts by weight, 0.1 to 13.0 parts by weight of an ethylene-based polymer (C) having an ethylene content of more than 50% by weight, a conjugated diene compound, and a radical polymerization initiator.
- the polymer (C) is at least one of an ethylene- ⁇ -olefin elastomer (C1) and an ethylene polymer (C2) having a peak at 120 to 140° C. in a DSC curve obtained by a differential scanning calorimeter method.
- Polypropylene-based resin extruded expanded particles comprising: [1-5] As described in [1-4], wherein the resin composition has a melt tension of 8.0 to 12.0 cN and a take-up speed at break of 3.5 m/min or more and 7.0 m/min or less. polypropylene-based resin extruded expanded particles. [1-6] The polypropylene-based resin extrusion foaming according to [1-4] or [1-5], wherein the resin composition has a melt flow rate of 0.5 g/10 minutes to 20.0 g/10 minutes. particle.
- the polypropylene-based resin (A) is one or more selected from the group consisting of propylene homopolymers, and block polymers and random copolymers of propylene and monomers other than propylene. [1-4] to [1-6], the extruded polypropylene-based resin expanded particles. [1-8] The extruded polypropylene resin expanded particles according to any one of [1-4] to [1-7], wherein the polypropylene resin (A) has a melting point of 130°C to 165°C.
- the ethylene- ⁇ -olefin elastomer (C1) comprises (i) an ethylene- ⁇ -olefin copolymer, (ii) an ethylene- ⁇ -olefin-nonconjugated diene copolymer, and (iii) a main chain
- the organic peroxide is one or more selected from the group consisting of ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, and peroxyesters;
- [1-15] A polypropylene-based resin foam-molded product obtained by molding the extruded polypropylene-based resin expanded particles according to any one of [1-1] to [1-14].
- (B1) is extruded and foamed, wherein the polypropylene resin (A1) contains (i) an ethylene homopolymer unit in the molecule, and (ii) a DSC curve obtained by a differential scanning calorimeter method.
- the extrusion foaming step includes a first step of melt-kneading the modified polypropylene resin (B1) and a foaming agent in a manufacturing apparatus, and the composition obtained in the first step, and a second step of discharging through a die to a region having a lower pressure than the internal pressure of the manufacturing apparatus.
- a polypropylene resin (A) 100 parts by weight of a polypropylene resin (A), 0.1 to 13.0 parts by weight of an ethylene polymer (C) having an ethylene content of more than 50% by weight, a conjugated diene compound, and radical polymerization initiation
- the extrusion foaming step includes a first step of melt-kneading the resin composition and a foaming agent in a manufacturing apparatus, and passing the composition obtained in the first step through a die at a pressure lower than the internal pressure of the manufacturing apparatus.
- a method for producing extruded polypropylene resin expanded particles comprising a second step of discharging to a region.
- the amount of the conjugated diene compound used is 0.20 to 1.50 parts by weight with respect to 100 parts by weight of the polypropylene resin (A), [1-19] or [1-20 ].
- the foaming agent is one or more selected from the group consisting of aliphatic hydrocarbons, fluorocarbons, carbon dioxide, air, nitrogen and water, [1-16] to [1 -21].
- the granulation method in the second step is one or more selected from the group consisting of a hot cut method, a watering cut method, and an underwater cut method, [1-16] to [1- 22].
- the modified polypropylene resin (B1) according to [2-1], which has a melt tension of 8.0 to 12.0 cN and a take-up speed at break of 7.0 m/min or less.
- the amount of the radical polymerization initiator used is 0.40 to 1.00 parts by weight with respect to 100 parts by weight of the polypropylene resin (A1), the improvement according to [2-5] A method for producing a high-quality polypropylene resin (B1).
- the ethylene polymer (C) has a peak at 120 to 140° C. in a DSC curve obtained by differential scanning calorimetry with the ethylene- ⁇ -olefin elastomer (C1).
- the resin according to [2-7], wherein the amount of the radical polymerization initiator used is 0.40 to 1.00 parts by weight with respect to 100 parts by weight of the polypropylene resin (A) A method of making the composition.
- [2-9] Extrusion foaming of the modified polypropylene resin (B1) described in [2-1] or [2-2] or the resin composition described in [2-3] or [2-4] Polypropylene-based resin extruded expanded particles obtained by.
- [2-10] A polypropylene-based resin foam-molded article obtained by molding the extruded polypropylene-based resin expanded particles according to [2-9].
- RD265CF is listed in the item of polypropylene resin (A), but RD265CF is a random polypropylene resin (polypropylene resin (A1)) containing an ethylene homopolymer unit in the molecule, or a random polypropylene It is presumed to be a mixture of a resin (polypropylene resin (A)) and an ethylene polymer (C2).
- the 128 ° C. melting peak observed in the DSC curve obtained by differential scanning calorimetry of RD265CF is a peak derived from ethylene homopolymer units contained in the molecule of RD265CF, or is a mixture. It is a peak derived from the ethylene-based polymer (C2) contained in RD265CF.
- HDPE, LLDPE, and LDPE correspond to ethylene homopolymers.
- HDPE corresponds to the ethylene polymer (C2) having a peak at 120 to 140° C. in the DSC curve. A method for measuring the melting peak of the ethylene homopolymer will be described later.
- Tafmer DF640 is presumed to be equivalent to the ethylene-butene 1 copolymer (density 0.864 g/cm 3 ) described in the examples of Japanese Patent Application Laid-Open No. 2019-172961 based on its physical properties, so the ethylene content is 80 wt. %, and the butene content was 20% by weight.
- Toughmer DF840 is presumed to be equivalent to the ethylene-butene 1 copolymer (density 0.885 g/cm 3 ) described in the examples of Japanese Patent Application Laid-Open No. 2019-172961 from its physical properties, so the ethylene content is 90 wt. %, and the butene content was 10% by weight.
- Engage manufactured by Dow Chemical Co., Ltd. which is an ethylene-octene copolymer
- the Tafmer series is an ethylene-1-butene copolymer and, like Engage, is an ethylene- ⁇ -olefin elastomer. From this, it is considered that there is a correlation between the butene content and the density in the tafmer. Therefore, an approximate expression of the correlation between the butene content and the density in the TAFMER series was calculated from the values of TAFMER DF640 and TAFMER DF840. The approximation formula was as follows.
- Butene content [% by weight] -476.19 x density [g/cm 3 ] + 431.43 Based on this approximation formula, the butene content was calculated from the density in Tafmer DF9200 and Tafmer DF7350. Also, the ethylene content was calculated from this butene content.
- RD265CF a differential scanning calorimeter (manufactured by Seiko Instruments Inc., model DSC6200) was used to determine the melting peak of the DSC curve by the following procedure: (1) The temperature of 5 to 6 mg of RD265CF was increased by 10 ° C./min. The RD265CF was melted by raising the temperature from 40 ° C. to 220 ° C. at a rate of 40 ° C. to 220 ° C.; The RD265CF was crystallized; (3) thereafter, the temperature of the further crystallized RD265CF was raised from 40°C to 220°C at a heating rate of 10°C/min.
- the temperature of the peak (melting peak) of the DSC curve of the RD265CF obtained during the second heating (that is, at (3)) was determined.
- the melting peak temperature was determined in the same manner.
- the melting peak area was determined by the following procedure.
- a straight line (tangent line) connected the temperature before the start of melting and the temperature after the end of melting of the DSC curve obtained when the temperature of RD265CF obtained by the above method was increased for the second time.
- the area surrounded by the tangent line and the DSC curve was taken as the total area of the DSC curve.
- the maximum value existing between the peak derived from the ethylene homopolymer and the peak derived from the polypropylene-based polymer in the DSC curve was taken as the dividing point.
- the total area of the DSC curve was divided by drawing a straight line with the shortest distance from the dividing point to the tangent line. Among the divided areas, the area including the peak derived from the ethylene homopolymer was taken as the area of the peak derived from the ethylene homopolymer unit.
- melt tension was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho, Ltd., Japan).
- Capilograph 1D manufactured by Toyo Seiki Seisakusho, Ltd., Japan.
- the modified polypropylene resin may be read as the resin composition.
- the expansion ratio of the extruded polypropylene resin expanded beads was calculated by the following method: (1) the weight w (g) of the extruded expanded beads was measured; , immersed in ethanol contained in a graduated cylinder, and the volume v (cm 3 ) of the extruded foamed particles was measured based on the rise in the liquid level of the graduated cylinder; (3) weight w (g) was converted to volume v ( cm 3 ) to calculate the density ⁇ 1 of the extruded foamed beads; (4) Divide the density ⁇ 2 of the base resin of the extruded foamed beads by the density ⁇ 1 of the extruded foamed beads ( ⁇ 2 / ⁇ 1 ) , and foaming ratio. As the density ⁇ 2 of the base resin, the density 0.9 g/cm 3 of a general polypropylene-based resin was adopted.
- Example 1 ⁇ Production of modified polypropylene resin or resin composition> A modified polypropylene resin or resin composition of Example 1 (modified PP-1) was produced by the following method. RD265CF was supplied to the twin-screw extruder, and then the amount of radical polymerization initiator shown in Table 1 was supplied to the twin-screw extruder with respect to 100 parts by weight of RD265CF. After that, the amount of conjugated diene compound shown in Table 1 per 100 parts by weight of RD265CF is supplied to a twin-screw extruder, and a resin mixture is prepared in the twin-screw extruder. did. The feed rate of the resin mixture to the twin-screw extruder was 70 kg/h. The supply amount of the resin mixture means the amount per unit time of the resin mixture prepared in the twin-screw extruder when the conjugated diene compound is supplied to the twin-screw extruder.
- the prepared resin mixture was melt-kneaded in a twin-screw extruder at a cylinder temperature of 180°C and a screw rotation speed of 230 rpm to obtain a modified polypropylene resin or resin composition (melt-kneading step).
- the resulting modified polypropylene resin or resin composition was extruded from a die at an extruding rate of 70 kg/h in the form of a strand (extruding step).
- the discharged modified polypropylene resin or resin composition (strand) was (a) cooled with water, and then (b) chopped into pellets (cylindrical).
- ⁇ Production of extruded expanded particles 100 parts by weight of modified polypropylene resin or resin composition and 0.02 parts by weight of talc as a cell nucleating agent were blended to prepare a resin mixture. Thereafter, the resin mixture was supplied from the raw material supply section to the twin-screw extruder (melt-kneading section), and melt-kneading of the resin mixture was started at a cylinder temperature of 180° C. and a screw rotation speed of 80 rpm. The feed rate of the resin mixture to the twin-screw extruder was 0.75 kg/h.
- the melt-kneaded composition obtained through the melt-kneading step is passed through the die of the granulation unit and discharged into the air phase, which has a lower pressure than the internal pressure of the manufacturing apparatus, at a discharge rate of 0.75 kg/h. did.
- the extruded composition was chopped with a cutter in the air phase to obtain spherical or substantially spherical extruded polypropylene-based resin expanded particles.
- the obtained extruded polypropylene-based resin expanded particles were made to land on the surface of water flowing on the wall surface of the manufacturing apparatus, and collected by the water flow.
- Examples 2 and 3 Resin compositions of Examples 2 and 3 (modified PP-2 and modified PP-3) were produced by the following method.
- RD265CF and the ethylene polymer (C) shown in Table 1 were supplied to a twin-screw extruder.
- the ethylene polymer (C) was supplied in the amount shown in Table 1 with respect to 100 parts by weight of RD265CF.
- the amount of radical polymerization initiator shown in Table 1 was supplied to the twin-screw extruder with respect to 100 parts by weight of RD265CF.
- Examples 4-9, Comparative Examples 1-2 Resin compositions of Examples 4 to 9 (modified PP-4 to modified PP-9) and Comparative Examples 1 to 2 (modified PP-10 to modified PP-11) were produced by the following method. Specifically, using the polypropylene resin (A) shown in Table 1 instead of RD265CF, the type and amount of the ethylene polymer (C), and the amount of radical polymerization initiator and conjugated diene compound added are shown in Table 1. A resin composition and extruded polypropylene-based resin expanded particles were obtained in the same manner as in Examples 2 and 3, except that the procedure was changed as shown.
- a resin composition and extruded polypropylene-based resin expanded particles were obtained in the same manner as in Examples 2 and 3, except that the procedure was changed as shown.
- Modified polypropylene resins of Reference Example 1 (modified PP-12) and Comparative Examples 3 to 5 (modified PP-13 to modified PP-15) were produced by the following method. Specifically, the polypropylene resin (A) shown in Table 1 was used instead of RD265CF, and the addition amounts of the radical polymerization initiator and the conjugated diene compound were changed as shown in Table 1. The procedure was the same as in Example 1. A modified polypropylene resin and extruded polypropylene resin expanded particles were obtained.
- Table 1 shows the compositions and physical properties of Modified PP-1 to Modified PP-15.
- Modified PP-1 corresponds to a modified polypropylene-based resin (B1) obtained using a polypropylene-based resin (A1), or using a polypropylene-based resin (A) and an ethylene-based polymer (C2) It corresponds to the obtained resin composition.
- Modified PP-2 and modified PP-3 are resin compositions obtained by using polypropylene resin (A1) and ethylene- ⁇ -olefin elastomer (C1), or polypropylene resin (A) and ethylene-based It corresponds to the resin composition obtained by using the polymer (C2) and the ethylene- ⁇ -olefin elastomer (C1).
- Modified PP-4 to Modified PP-9 correspond to resin compositions obtained by using polypropylene resin (A) and ethylene- ⁇ -olefin elastomer (C1) or ethylene polymer (C2). . Therefore, Modified PP-1 to Modified PP-9 have high melt tension and low take-to-break speed even when the amount of radical polymerization initiator used is relatively small. Further, in Examples 1 to 9, by using these modified polypropylene resins or resin compositions, expanded beads with a low open cell ratio could be obtained.
- modified PP-10 and modified PP-11 obtained using an ethylene-based polymer (C) that does not correspond to either the ethylene- ⁇ -olefin elastomer (C1) or the ethylene-based polymer (C2)
- ethylene-based polymer (C) that does not correspond to either the ethylene- ⁇ -olefin elastomer (C1) or the ethylene-based polymer (C2)
- Comparative Examples 1 and 2 expanded beads with a high open cell ratio were obtained.
- Comparative Examples 3 to 5 in which the ethylene-based polymer (C) was not used, modified polypropylene-based resins having a high breaking take-up speed were obtained, and expanded beads with a high open cell ratio were obtained.
- the open cell ratio could not be suppressed unless a large amount of radical polymerization initiator was used as in Reference Example 1.
- one embodiment of the present invention it is possible to provide a novel modified polypropylene-based resin or resin composition with improved melt tension. Therefore, one embodiment of the present invention can be suitably used to obtain extruded polypropylene-based resin expanded particles having a low open-cell ratio. Therefore, one embodiment of the present invention can be suitably used in fields such as automobile interior parts, cushioning materials, packaging materials, and heat insulating materials.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明者らは、前記課題を解決するため鋭意研究した結果、以下の手段により、ラジカル重合開始剤の使用量を減らした上で、高い溶融張力を有する改質ポリプロピレン系樹脂または樹脂組成物、および連続気泡率の低いポリプロピレン系樹脂発泡粒子を提供できることを見出し、本発明を完成するに至った:
DSC曲線において特定のピークを有するポリプロピレン系樹脂(A1)を共役ジエン化合物と反応させる;または、
共役ジエン化合物を介して特定のエチレン系重合体(C)をポリプロピレン系樹脂(A)と反応させる。
本明細書において、ポリプロピレン系樹脂(A)とは、樹脂に含まれる全構造単位100重量%中、プロピレン単量体に由来する構造単位を50重量%以上含む樹脂を意図する。本明細書において、「プロピレン単量体に由来する構造単位」を「プロピレン単位」と称する場合もある。
改質ポリプロピレン系樹脂(B)または樹脂組成物を得るために、エチレン含量が50重量%を超えるエチレン系重合体(C)を用いてもよい。本明細書において、エチレン系重合体(C)のエチレン含量は、エチレン系重合体(C)100重量%中のエチレン単位の含量を意味する。エチレン含量は、後述の実施例に記載の方法により算出することができる。前記エチレン系重合体(C)は、エチレン含量が50重量%を超えるため、プロピレン単位を50重量%以上含むポリプロピレン系樹脂(A)と区別できる。
本発明の一実施形態で用いられ得る共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、および2,5-ジメチル-2,4-ヘキサジエン、などがあげられる。これら共役ジエン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これら共役ジエン化合物の中では、(a)安価で取り扱い点、および(b)反応が均一に進みやすい点から、ブタジエン、およびイソプレンが特に好ましい。
本発明の一実施形態に係るラジカル重合開始剤は、ポリプロピレン系樹脂(A)、エチレン系重合体(C)および共役ジエン化合物からの水素引き抜き能を有する有機過酸化物であることが好ましい。本発明の一実施形態において好適に用いられるラジカル重合開始剤としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。
本改質ポリエチレン系樹脂または本樹脂組成物の製造方法において、少なくとも、ポリプロピレン系樹脂(A)、共役ジエン化合物、およびラジカル重合開始剤を含む(一実施形態においてはさらにエチレン系重合体(C)を含む)混合物を、樹脂混合物と称する。
本改質ポリエチレン系樹脂または本樹脂組成物の製造方法では、上述したポリプロピレン系樹脂(A)、エチレン系重合体(C)、共役ジエン化合物およびラジカル重合開始剤以外に、必要に応じてその他の成分を使用してもよく、換言すれば樹脂混合物は、必要に応じてその他の成分をさらに含んでいてもよい。その他の成分としては、(a)ポリプロピレン系樹脂(A)およびエチレン系重合体(C)以外の樹脂(その他の樹脂、と称する場合もある。)、(b)酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤などの安定剤、並びに/または、(c)気泡調整剤、着色剤、連鎖移動剤、滑剤、可塑剤、充填材、強化材、難燃剤、含水剤および帯電防止剤などの添加剤、が挙げられる。その他の樹脂としては、(a)ポリプロピレン系樹脂(A)およびエチレン系重合体(C)以外のポリオレフィン系樹脂、(b)エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、およびエチレン/メタアクリル酸共重合体などのエチレン系樹脂、並びに(c)ポリスチレン、スチレン/無水マレイン酸共重合体、およびスチレン/エチレン共重合体などのスチレン系樹脂、などが挙げられる。これらその他の成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本改質ポリプロピレン系樹脂または本樹脂組成物の溶融張力は、8.0~12.0cNであることが好ましい。本改質ポリプロピレン系樹脂の溶融張力が前記構成である場合には、本改質ポリプロピレン系樹脂を用いる押出発泡法によってポリプロピレン系樹脂押出発泡粒子を製造するとき、発泡時の改質ポリプロピレン系樹脂の溶融張力が十分に高いものとなる。その結果、得られるポリプロピレン系樹脂押出発泡粒子においてセル膜を十分に保持できる、という利点を有する。本改質ポリプロピレン系樹脂の代わりに本樹脂組成物を用いる場合も同様の利点を有する。溶融張力の下限値は、8.0cN以上であることが好ましく、8.2cN以上であることがより好ましく、8.4cN以上であることがより好ましく、8.6cN以上であることがより好ましく、8.8cN以上であることがより好ましく、9.0cN以上であることがさらに好ましい。溶融張力の上限値は、11.8cN以下であってもよく、11.6cN以下であってもよく、11.4cN以下であってもよく、11.2cN以下であってもよく、11.0cN以下であってもよく、10.5cN以下であってもよく、10.0cN以下であってもよい。
本改質ポリプロピレン系樹脂または本樹脂組成物の用途としては、押出発泡粒子および押出発泡シートを挙げることができる。本改質ポリプロピレン系樹脂と発泡剤とを含む組成物を押出発泡することにより、押出発泡粒子または押出発泡シートを得ることができる。本改質ポリプロピレン系樹脂は、当該改質ポリプロピレン系樹脂と発泡剤とを用いることによって、コアバック成形などの射出発泡成形に用いることができる。本改質ポリプロピレン系樹脂は溶融張力が高いため、当該改質ポリプロピレン系樹脂をフィルム状に成形して得られるフィルムは切れ難いという利点を有する。そのため、本改質ポリプロピレン系樹脂は、非発泡のフィルム、および紙の表面コーティングに用いることもできる。また、本改質ポリプロピレン系樹脂は、通常の射出成型(非発泡)にも用いることができる。本樹脂組成物も本改質ポリプロピレン系樹脂と同様に利用できる。
本発明の一実施形態に係る改質ポリプロピレン系樹脂(B1)の製造方法は、ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練する溶融混練工程を含み、前記ポリプロピレン系樹脂(A1)は、(i)分子内にエチレン単独重合体単位を含み、(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%である。
本製造方法において使用する製造装置は例えば、スクリューを有する溶融混練部とダイとを備える。溶融混練部としては、単軸スクリューを有する単軸押出機、および複数軸スクリューを有する複数軸押出機(例えば2本のスクリューを有する二軸押出機)が挙げられる。これらのうち、連続的に混練できる点およびスケールアップを行いやすい点から、溶融混練部としては複数軸押出機を使用することが好ましく、二軸押出機を使用することがより好ましい。
溶融混練工程は、ポリプロピレン系樹脂(A)、共役ジエン化合物、およびラジカル重合開始剤を含む「改質ポリプロピレン系樹脂の原料」を溶融混練部に供給し、これらの原料を含む樹脂混合物を溶融混練部内で溶融混練する工程である。溶融混練工程における溶融混練とは、ポリプロピレン系樹脂(A)が溶融し得る温度において、ポリプロピレン系樹脂(A)と、共役ジエン化合物とを含む樹脂混合物を、ラジカル重合開始剤とを、溶融混練部内で混練することである。ここで、一実施形態においては、原料および樹脂混合物に上述のエチレン系重合体(C)が含まれる。溶融混練工程は、ポリプロピレン系樹脂(A)(およびエチレン系重合体(C))に対して共役ジエン化合物およびラジカル重合開始剤を反応させて、改質ポリプロピレン系樹脂を調製する(得る)工程ともいえる。なお、前述の通り、エチレン系重合体(C)は、予めポリプロピレン系樹脂(A)と重合されていてもよい。ポリプロピレン系樹脂(A)、エチレン系重合体(C)、共役ジエン化合物、ラジカル重合開始剤、およびその他の成分の態様としては、前記〔1.改質ポリプロピレン系樹脂または樹脂組成物〕の項の説明が適宜援用され得る。
(a1)未溶融のポリプロピレン系樹脂(A)と、共役ジエン化合物と、ラジカル重合開始剤とを同時にまたは順不同に混合して樹脂混合物を調製する。その後、当該樹脂混合物を溶融混練部に供給して樹脂混合物を溶融混練し、改質ポリプロピレン系樹脂を調製する方法;
(a2)未溶融のポリプロピレン系樹脂(A)を溶融混練部に供給し、当該ポリプロピレン系樹脂(A)を溶融混練する。その後、溶融混練されたポリプロピレン系樹脂(A)に対して、溶融混練部の途中にある同一の原料供給口または別々の原料供給口から、共役ジエン化合物およびラジカル重合開始剤を供給し、得られた樹脂混合物をさらに溶融混練し、改質ポリプロピレン系樹脂を調製する方法;
(a3)未溶融のポリプロピレン系樹脂(A)およびラジカル重合開始剤を、溶融混練部の同一の原料供給口または別々の原料供給口から、溶融混練部に供給し、ポリプロピレン系樹脂(A)およびラジカル重合開始剤を溶融混練する。その後、溶融混練されたポリプロピレン系樹脂(A)およびラジカル重合開始剤の混合物に対して、溶融混練部の途中にある原料供給口から、共役ジエン化合物を供給し、得られた樹脂混合物をさらに溶融混練し、改質ポリプロピレン系樹脂を調製する方法;
(a4)未溶融のポリプロピレン系樹脂(A)および共役ジエン化合物を、溶融混練部の同一の原料供給口または別々の原料供給口から、溶融混練部に供給し、ポリプロピレン系樹脂(A)および共役ジエン化合物を溶融混練する。その後、溶融混練されたポリプロピレン系樹脂(A)および共役ジエン化合物の混合物に対して、溶融混練部の途中にある原料供給口から、ラジカル重合開始剤を供給し、得られた樹脂混合物をさらに溶融混練し、改質ポリプロピレン系樹脂を調製する方法。
本製造方法は、樹脂混合物を溶融混練することにより得られた改質ポリプロピレン系樹脂を、ダイから吐出する吐出工程を含んでいてもよい。吐出工程は、改質ポリプロピレン系樹脂を溶融混練部からダイに進入させた時点から、当該改質ポリプロピレン系樹脂をダイから吐出するまでの時点を意味する。
本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、〔1.改質ポリプロピレン系樹脂または樹脂組成物〕の項に記載の改質ポリプロピレン系樹脂または樹脂組成物を押出発泡することにより得られる。本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、〔1.改質ポリプロピレン系樹脂または樹脂組成物〕の項に記載の改質ポリプロピレン系樹脂または樹脂組成物を含む、ともいえる。
本押出発泡粒子の連続気泡率は、低いほど好ましい。本押出発泡粒子の連続気泡率は、28.0%以下であることが好ましく、27.0%以下であることがより好ましく、26.0%以下であることがさらに好ましく、25.0%以下であることが特に好ましい。本本押出発泡粒子の連続気泡率の下限値は特に限定されず、例えば0.0%以上である。当該構成によると、(a)押出発泡粒子の成形時に、セルが破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、圧縮強度および断熱性などの特徴がより発揮されるという利点を有する。
連続気泡率(%)=((Va-Vc)×100)/Va
なお、体積Vaの測定の方法は水没法とも称される。
本押出発泡粒子の発泡倍率は、2倍~45倍であることが好ましく、3倍~40倍であることがより好ましく、3倍~30倍であることがさらに好ましく、3倍~25倍であることが特に好ましい。前記構成によると、当該押出発泡粒子を用いて得られたポリプロピレン系樹脂型内発泡成形体において、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点を有する。押出発泡粒子の製造により得られた押出発泡粒子の発泡倍率が前記範囲に至らなかった場合、得られた押出発泡粒子に対して、押出発泡粒子内を不活性ガスで加圧した後、当該押出発泡粒子を加熱して発泡倍率を高める方法(例えば、日本国特開平10-237212号公報に記載の方法)も利用可能である。
本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子の製造方法は、上述の改質ポリプロピレン系樹脂または樹脂組成物を押出発泡する押出発泡工程を含む。具体的には、本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子の製造方法は、(a)〔2.改質ポリプロピレン系樹脂または樹脂組成物の製造方法〕の項に記載の製造方法により得られた改質ポリプロピレン系樹脂もしくは樹脂組成物、または、〔1.改質ポリプロピレン系樹脂または樹脂組成物〕の項に記載の改質ポリプロピレン系樹脂もしくは樹脂組成物と、(b)発泡剤と、を製造装置内で溶融混練する第一の工程、および第一の工程で得られた組成物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程、を含む。以下において、改質ポリプロピレン系樹脂を樹脂組成物に読み替えてもよい。
第一の工程について、具体的に説明する。第一の工程の具体例としては、製造装置にて、改質ポリプロピレン系樹脂を溶融させて、改質ポリプロピレン系樹脂に発泡剤を溶解させる工程が挙げられる。第一の工程は、改質ポリプロピレン系樹脂と発泡剤とを含む組成物の溶融混練物を調製する工程ともいえる。
第二の工程は、第一の工程で得られた組成物、すなわち溶融混練された組成物を、ダイを通して製造装置の内圧よりも低圧である領域に押出し、押し出された組成物を細断する工程である。第二の工程により、押出発泡粒子が得られる。そのため、第二の工程は、ポリプロピレン系樹脂押出発泡粒子を造粒する造粒工程ともいえる。
本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体は、〔3.ポリプロピレン系樹脂押出発泡粒子〕の項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる。
本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体の製造方法は、〔4.ポリプロピレン系樹脂押出発泡粒子の製造方法〕の項に記載の製造方法により得られたポリプロピレン系樹脂押出発泡粒子、または、〔3.ポリプロピレン系樹脂押出発泡粒子〕の項に記載のポリプロピレン系樹脂押出発泡粒子を、金型が備える少なくとも2つの型から形成される成形空間内に充填した後、当該成形空間内の前記ポリプロピレン系樹脂押出発泡粒子を加熱する加熱工程を有する。
(c2)押出発泡粒子を金型の成形空間内に充填する。次いで、該成形空間内の体積を10%~75%減ずるように成形空間内の押出発泡粒子を圧縮した後、成形空間内の押出発泡粒子を水蒸気で加熱する方法;
(c3)押出発泡粒子をガス圧力で圧縮して金型の成形空間内に充填する。その後、成形空間内の押出発泡粒子の回復力を利用して、成形空間内の押出発泡粒子を水蒸気で加熱する方法;
(c4)特に前処理することなく、押出発泡粒子を金型の成形空間内に充填する。その後、成形空間内の押出発泡粒子を水蒸気で加熱する方法。
〔1-1〕改質ポリプロピレン系樹脂(B1)を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子であって、前記改質ポリプロピレン系樹脂(B1)は、ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤との反応により得られ、前記ポリプロピレン系樹脂(A1)は、(i)分子内にエチレン単独重合体単位を含み、(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%である、ポリプロピレン系樹脂押出発泡粒子。
〔1-2〕前記改質ポリプロピレン系樹脂(B1)の溶融張力が8.0~12.0cNであり、かつ破断引取速度が3.5m/分以上7.0m/分以下である、〔1-1〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔1-3〕前記改質ポリプロピレン系樹脂(B1)のメルトフローレートが、0.5g/10分~20.0g/10分である、〔1-1〕または〔1-2〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔1-4〕改質ポリプロピレン系樹脂(B)を含有する樹脂組成物を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子であって、前記樹脂組成物は、ポリプロピレン系樹脂(A)100重量部と、エチレン含量が50重量%を超えるエチレン系重合体(C)0.1~13.0重量部と、共役ジエン化合物と、ラジカル重合開始剤との反応により得られ、前記エチレン系重合体(C)は、エチレン-α-オレフィンエラストマー(C1)および示差走査熱量計法により得られるDSC曲線において120~140℃にピークを有するエチレン系重合体(C2)の少なくとも何れか1つを含む、ポリプロピレン系樹脂押出発泡粒子。
〔1-5〕前記樹脂組成物の溶融張力が8.0~12.0cNであり、かつ破断引取速度が3.5m/分以上7.0m/分以下である、〔1-4〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔1-6〕前記樹脂組成物のメルトフローレートが、0.5g/10分~20.0g/10分である、〔1-4〕または〔1-5〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔1-7〕前記ポリプロピレン系樹脂(A)は、プロピレンの単独重合体、並びにプロピレンとプロピレン以外の単量体のブロック重合体およびランダム共重合体からなる群から選ばれる1つ以上である、〔1-4〕~〔1-6〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-8〕前記ポリプロピレン系樹脂(A)の融点は、130℃~165℃である、〔1-4〕~〔1-7〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-9〕エチレン-α-オレフィンエラストマー(C1)は、(i)エチレン-α-オレフィン共重合体、(ii)エチレン-α-オレフィン-非共役ジエン共重合体、および(iii)主鎖と側鎖とからなるグラフト共重合体からなる群から選ばれる1つ以上である、〔1-4〕~〔1-8〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-10〕前記DSC曲線において120~140℃にピークを有するエチレン系重合体(C2)は、密度が0.925g/cm3以上0.97g/cm3以下である、〔1-4〕~〔1-9〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-11〕連続気泡率が28.0%以下である、〔1-1〕~〔1-10〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-12〕前記ラジカル重合開始剤は有機過酸化物である、〔1-1〕~〔1-11〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-13〕前記有機過酸化物が、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、およびパーオキシエステルからなる群から選ばれる1つ以上である、〔1-12〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔1-14〕発泡倍率が2倍~45倍である、〔1-1〕~〔1-13〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔1-15〕〔1-1〕~〔1-14〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
〔1-16〕ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練することにより改質ポリプロピレン系樹脂(B1)を得る溶融混練工程と、前記改質ポリプロピレン系樹脂(B1)を押出発泡する押出発泡工程とを含み、前記ポリプロピレン系樹脂(A1)は、(i)分子内にエチレン単独重合体単位を含み、(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%であり、前記押出発泡工程は、前記改質ポリプロピレン系樹脂(B1)と発泡剤とを製造装置内で溶融混練する第一の工程と、前記第一の工程で得られた組成物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程と、を含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-17〕前記ラジカル重合開始剤の使用量は、前記ポリプロピレン系樹脂(A1)100重量部に対して、0.40~1.00重量部である、〔1-16〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-18〕前記共役ジエン化合物の使用量は、前記ポリプロピレン系樹脂(A1)100重量部に対して、0.20~1.50重量部である、〔1-16〕または〔1-17〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-19〕ポリプロピレン系樹脂(A)100重量部と、エチレン含量が50重量%を超えるエチレン系重合体(C)0.1~13.0重量部と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練することにより改質ポリプロピレン系樹脂(B)を含有する樹脂組成物を得る溶融混練工程と、前記樹脂組成物を押出発泡する押出発泡工程とを含み、前記エチレン系重合体(C)は、エチレン-α-オレフィンエラストマー(C1)および示差走査熱量計法により得られるDSC曲線において120~140℃にピークを有するエチレン系重合体(C2)の少なくとも何れか1つを含み、前記押出発泡工程は、前記樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程と、前記第一の工程で得られた組成物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程と、を含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-20〕前記ラジカル重合開始剤の使用量は、前記ポリプロピレン系樹脂(A)100重量部に対して、0.40~1.00重量部である、〔1-19〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-21〕前記共役ジエン化合物の使用量は、前記ポリプロピレン系樹脂(A)100重量部に対して、0.20~1.50重量部である、〔1-19〕または〔1-20〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-22〕前記発泡剤は、脂肪族炭化水素類、フッ化炭化水素類、炭酸ガス、空気、窒素および水からなる群から選ばれる1種以上である、〔1-16〕~〔1-21〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔1-23〕第二の工程における造粒方法が、ホットカット法、ウォータリングカット法、およびアンダーウォーターカット法からなる群から選ばれる1つ以上である、〔1-16〕~〔1-22〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔2-1〕ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤との反応により得られる改質ポリプロピレン系樹脂(B1)であって、前記ポリプロピレン系樹脂(A1)は、(i)分子内にエチレン単独重合体単位を含み、(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%である、改質ポリプロピレン系樹脂(B1)。
〔2-2〕溶融張力が8.0~12.0cNであり、かつ破断引取速度が7.0m/分以下である、〔2-1〕に記載の改質ポリプロピレン系樹脂(B1)。
〔2-3〕ポリプロピレン系樹脂(A)100重量部と、エチレン含量が50重量%を超えるエチレン系重合体(C)0.1~13.0重量部と、共役ジエン化合物と、ラジカル重合開始剤との反応により得られる、改質ポリプロピレン系樹脂(B)を含有する樹脂組成物であって、前記エチレン系重合体(C)は、エチレン-α-オレフィンエラストマー(C1)および示差走査熱量計法により得られるDSC曲線において120~140℃にピークを有するエチレン系重合体(C2)の少なくとも何れか1つを含む、樹脂組成物。
〔2-4〕溶融張力が8.0~12.0cNであり、かつ破断引取速度が7.0m/分以下である、〔2-3〕に記載の樹脂組成物。
〔2-5〕ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練する溶融混練工程を含み、前記ポリプロピレン系樹脂(A1)は、(i)分子内にエチレン単独重合体単位を含み、(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%である、改質ポリプロピレン系樹脂(B1)の製造方法。
〔2-6〕前記ラジカル重合開始剤の使用量は、前記ポリプロピレン系樹脂(A1)100重量部に対して、0.40~1.00重量部である、〔2-5〕に記載の改質ポリプロピレン系樹脂(B1)の製造方法。
〔2-7〕ポリプロピレン系樹脂(A)100重量部と、エチレン含量が50重量%を超えるエチレン系重合体(C)0.1~13.0重量部と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練する溶融混練工程を含み、前記エチレン系重合体(C)は、エチレン-α-オレフィンエラストマー(C1)および示差走査熱量計法により得られるDSC曲線において120~140℃にピークを有するエチレン系重合体(C2)の少なくとも何れか1つを含む、改質ポリプロピレン系樹脂(B)を含有する樹脂組成物の製造方法。
〔2-8〕前記ラジカル重合開始剤の使用量は、前記ポリプロピレン系樹脂(A)100重量部に対して、0.40~1.00重量部である、〔2-7〕に記載の樹脂組成物の製造方法。
〔2-9〕〔2-1〕もしくは〔2-2〕に記載の改質ポリプロピレン系樹脂(B1)または〔2-3〕もしくは〔2-4〕に記載の樹脂組成物を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子。
〔2-10〕〔2-9〕に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
<ポリプロピレン系樹脂(A)>
・RD265CF(Borouge社製、ポリプロピレン系重合体単位中のエチレン含量(エチレン単独重合体単位以外のエチレン含量):5.1重量%、融解ピーク:128℃および152℃、120~140℃の範囲のピーク面積:3~30%)
・F724NPC(プライムポリマー社製、ランダムポリプロピレン樹脂、エチレン含量:2.0重量%、融解ピーク:148℃)
・E228(プライムポリマー社製、ランダムポリプロピレン樹脂、エチレン含量:2.8重量%、融解ピーク:144℃)
RD265CFを便宜上、ポリプロピレン系樹脂(A)の項目に列挙しているが、RD265CFは、分子内にエチレン単独重合体単位を含むランダムポリプロピレン樹脂(ポリプロピレン系樹脂(A1))であるか、またはランダムポリプロピレン樹脂(ポリプロピレン系樹脂(A))とエチレン系重合体(C2)との混合物であると推測される。それ故、RD265CFの示差走査熱量計法により得られるDSC曲線において観察される128℃の融解ピークは、RD265CFの分子内に含まれるエチレン単独重合体単位に由来するピークであるか、または混合物であるRD265CFに含まれるエチレン系重合体(C2)に由来するピークである。
・タフマーDF7350(三井化学社製、エチレン-1-ブテン共重合体、密度:0.870g/cm3、Shore A:70)
・タフマーDF840(三井化学社製、エチレン-1-ブテン共重合体、密度:0.885g/cm3、Shore A:86)
・タフマーDF9200(三井化学社製、エチレン-1-ブテン共重合体、密度:0.893g/cm3、Shore A:92)
・ノバテックHD HJ490(日本ポリエチレン社製、HDPE、密度:0.958g/cm3、融解ピーク:133℃)
・ユメリット613A(宇部丸善ポリエチレン社製、LLDPE、密度:0.913g/cm3、融解ピーク:113℃)
・UBEポリエチレンJ3524(宇部丸善ポリエチレン社製、LDPE、密度:0.924g/cm3、融解ピーク:112℃)
エチレン-1-ブテン共重合体は、エチレン-α-オレフィンエラストマー(C1)に該当する。HDPE、LLDPE、LDPEはエチレン単独重合体に該当する。HDPEは、DSC曲線において120~140℃にピークを有するエチレン系重合体(C2)に該当する。エチレン単独重合体の融解ピークの測定方法は後述する。
・パーブチルI(日油株式会社製)
<共役ジエン化合物>
・イソプレン
〔測定および評価方法〕
<エチレン系重合体(C)中のエチレン含量>
三井化学社製のエチレン-1-ブテン共重合体であるタフマーシリーズにおけるエチレン含量は、タフマーDF640およびタフマーDF840のブテン含量と密度との関係から作成した近似式に基づいて求めた。タフマーDF640は、その物性から日本国特開2019-172961号公報の実施例に記載のエチレン-ブテン1共重合体(密度0.864g/cm3)と同等と推測されるため、エチレン含量80重量%、ブテン含量20重量%とした。タフマーDF840は、その物性から日本国特開2019-172961号公報の実施例に記載のエチレン-ブテン1共重合体(密度0.885g/cm3)と同等と推測されるため、エチレン含量90重量%、ブテン含量10重量%とした。
ブテン含量[重量%]=-476.19×密度[g/cm3]+431.43
この近似式に基づき、タフマーDF9200およびタフマーDF7350において密度からブテン含量を算出した。また、このブテン含量からエチレン含量を算出した。
RD265CFについて、示差走査熱量計(セイコーインスツルメンツ(株)製、DSC6200型)を用いて以下の手順によりDSC曲線の融解ピークを求めた:(1)RD265CF5~6mgの温度を10℃/分の昇温速度で40℃から220℃まで昇温することにより当該RD265CFを融解させた;(2)その後、融解されたRD265CFの温度を10℃/分の降温速度で220℃から40℃まで降温することにより当該RD265CFを結晶化させた;(3)その後、さらに結晶化されたRD265CFの温度を10℃/分の昇温速度で40℃から220℃まで昇温した。2回目の昇温時(すなわち(3)のとき)に得られる当該RD265CFのDSC曲線のピーク(融解ピーク)の温度を求めた。F724NPCおよびE228、並びにエチレン単独重合体についても同様に融解ピークの温度を求めた。
溶融張力は、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定した。以下において、改質ポリプロピレン系樹脂を樹脂組成物に読み替えてもよい。具体的には、以下(1)~(5)の通りであった:(1)200℃に加熱された径9.55mmのバレルに、各実施例または比較例で得られた改質ポリプロピレン系樹脂を充填した;(2)次いで、改質ポリプロピレン系樹脂を10分間、試験温度(200℃)に加熱されたバレル内で加熱した;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、改質ポリプロピレン系樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始した;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を、初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させた;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定した。また、破断したときの巻取り速度の値を破断引取速度として測定した。
以下の方法によって、ポリプロピレン系樹脂押出発泡粒子の発泡倍率を算出した:(1)押出発泡粒子の重量w(g)を測定した;(2)次に、重量の測定に用いた押出発泡粒子を、メスシリンダー中に入っているエタノール中に沈め、メスシリンダーの液面位置の上昇分に基づき押出発泡粒子の体積v(cm3)を測定した;(3)重量w(g)を体積v(cm3)で除し、押出発泡粒子の密度ρ1を算出した;(4)押出発泡粒子の基材樹脂の密度ρ2を押出発泡粒子の密度ρ1で除し(ρ2/ρ1)、発泡倍率とした。基材樹脂の密度ρ2としては、一般的なポリプロピレン系樹脂の密度0.9g/cm3を採用した。
押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定した。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出した:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm3)を測定した;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈めた;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm3)を求めた;(4)以下の式により、押出発泡粒子の連続気泡率を算出した:
連続気泡率(%)=((Va-Vc)×100)/Va。
<改質ポリプロピレン系樹脂または樹脂組成物の製造>
以下の方法により、実施例1(改質PP-1)の改質ポリプロピレン系樹脂または樹脂組成物を製造した。RD265CFを二軸押出機に供給し、次いで、RD265CF100重量部に対して表1に示す量のラジカル重合開始剤を二軸押出機に供給した。その後、溶融混練されたRD265CFおよびラジカル重合開始剤に対して、RD265CF100重量部に対して表1に示す量の共役ジエン化合物を、二軸押出機に供給し、二軸押出機内で樹脂混合物を調製した。樹脂混合物の二軸押出機への供給量は、70kg/hであった。なお、樹脂混合物の供給量とは、二軸押出機に共役ジエン化合物を供給した時点で二軸押出機内で調製される樹脂混合物の単位時間当たりの量を意図する。
改質ポリプロピレン系樹脂または樹脂組成物100重量部および気泡核形成剤としてタルク0.02重量部をブレンドし、樹脂混合物を調製した。その後、樹脂混合物を、原料供給部から二軸押出機(溶融混練部)に供給し、シリンダ温度180℃およびスクリュー回転数80rpmにて、樹脂混合物の溶融混練を開始した。樹脂混合物の二軸押出機への供給量は、0.75kg/hであった。樹脂混合物の溶融混練の途中で、発泡剤として炭酸ガスを発泡剤供給部から二軸押出機内に圧入し、得られた組成物をさらに溶融混練した。発泡剤の二軸押出機への供給量は、0.0375kg/hであった。
以下の方法により、実施例2、3(改質PP-2、改質PP-3)の樹脂組成物を製造した。RD265CFおよび表1に示すエチレン系重合体(C)を二軸押出機に供給した。なお、エチレン系重合体(C)はRD265CF100重量部に対して表1に示す量にて供給した。次いで、RD265CF100重量部に対して表1に示す量のラジカル重合開始剤を二軸押出機に供給した。その後、溶融混練されたRD265CF、エチレン系重合体(C)およびラジカル重合開始剤に対して、RD265CF100重量部に対して表1に示す量の共役ジエン化合物を、二軸押出機に供給した。以上のこと以外は実施例1と同様にして樹脂組成物およびポリプロピレン系樹脂押出発泡粒子を得た。
以下の方法により、実施例4~9(改質PP-4~改質PP-9)および比較例1~2(改質PP-10~改質PP-11)の樹脂組成物を製造した。具体的にはRD265CFの代わりに表1に示すポリプロピレン系樹脂(A)を用い、エチレン系重合体(C)の種類および添加量、並びにラジカル重合開始剤および共役ジエン化合物の添加量を表1に示す通りに変更したこと以外は実施例2、3と同様にして樹脂組成物およびポリプロピレン系樹脂押出発泡粒子を得た。
以下の方法により、参考例1(改質PP-12)および比較例3~5(改質PP-13~改質PP-15)の改質ポリプロピレン系樹脂を製造した。具体的にはRD265CFの代わりに表1に示すポリプロピレン系樹脂(A)を用い、ラジカル重合開始剤および共役ジエン化合物の添加量を表1に示す通りに変更したこと以外は実施例1と同様にして改質ポリプロピレン系樹脂およびポリプロピレン系樹脂押出発泡粒子を得た。
改質PP-1~改質PP-15の組成および物性等を表1に示す。
Claims (15)
- 改質ポリプロピレン系樹脂(B1)を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子であって、
前記改質ポリプロピレン系樹脂(B1)は、ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤との反応により得られ、
前記ポリプロピレン系樹脂(A1)は、
(i)分子内にエチレン単独重合体単位を含み、
(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%である、ポリプロピレン系樹脂押出発泡粒子。 - 前記改質ポリプロピレン系樹脂(B1)の溶融張力が8.0~12.0cNであり、かつ破断引取速度が7.0m/分以下である、請求項1に記載のポリプロピレン系樹脂押出発泡粒子。
- 前記改質ポリプロピレン系樹脂(B1)のメルトフローレートが、0.5g/10分~20.0g/10分である、請求項1または2に記載のポリプロピレン系樹脂押出発泡粒子。
- 改質ポリプロピレン系樹脂(B)を含有する樹脂組成物を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子であって、
前記樹脂組成物は、ポリプロピレン系樹脂(A)100重量部と、エチレン含量が50重量%を超えるエチレン系重合体(C)0.1~13.0重量部と、共役ジエン化合物と、ラジカル重合開始剤との反応により得られ、
前記エチレン系重合体(C)は、エチレン-α-オレフィンエラストマー(C1)および示差走査熱量計法により得られるDSC曲線において120~140℃にピークを有するエチレン系重合体(C2)の少なくとも何れか1つを含む、ポリプロピレン系樹脂押出発泡粒子。 - 前記樹脂組成物の溶融張力が8.0~12.0cNであり、かつ破断引取速度が7.0m/分以下である、請求項4に記載のポリプロピレン系樹脂押出発泡粒子。
- 前記樹脂組成物のメルトフローレートが、0.5g/10分~20.0g/10分である、請求項4または5に記載のポリプロピレン系樹脂押出発泡粒子。
- 発泡倍率が2倍~45倍である、請求項1~6のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 請求項1~7のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
- ポリプロピレン系樹脂(A1)と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練することにより改質ポリプロピレン系樹脂(B1)を得る溶融混練工程と、
前記改質ポリプロピレン系樹脂(B1)を押出発泡する押出発泡工程とを含み、
前記ポリプロピレン系樹脂(A1)は、
(i)分子内にエチレン単独重合体単位を含み、
(ii)示差走査熱量計法により得られるDSC曲線において、前記エチレン単独重合体単位に由来するピークを有し、当該ピークの温度が120~140℃であり、且つ当該ピークの面積が、前記DSC曲線の総面積100%に対して、1~40%であり、
前記押出発泡工程は、前記改質ポリプロピレン系樹脂(B1)と発泡剤とを製造装置内で溶融混練する第一の工程と、前記第一の工程で得られた組成物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程と、を含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。 - 前記ラジカル重合開始剤の使用量は、前記ポリプロピレン系樹脂(A1)100重量部に対して、0.40~1.00重量部である、請求項9に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
- 前記共役ジエン化合物の使用量は、前記ポリプロピレン系樹脂(A1)100重量部に対して、0.20~1.50重量部である、請求項9または10に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
- ポリプロピレン系樹脂(A)100重量部と、エチレン含量が50重量%を超えるエチレン系重合体(C)0.1~13.0重量部と、共役ジエン化合物と、ラジカル重合開始剤とを溶融混練することにより改質ポリプロピレン系樹脂(B)を含有する樹脂組成物を得る溶融混練工程と、
前記樹脂組成物を押出発泡する押出発泡工程とを含み、
前記エチレン系重合体(C)は、エチレン-α-オレフィンエラストマー(C1)および示差走査熱量計法により得られるDSC曲線において120~140℃にピークを有するエチレン系重合体(C2)の少なくとも何れか1つを含み、
前記押出発泡工程は、前記樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程と、前記第一の工程で得られた組成物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程と、を含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。 - 前記ラジカル重合開始剤の使用量は、前記ポリプロピレン系樹脂(A)100重量部に対して、0.40~1.00重量部である、請求項12に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
- 前記共役ジエン化合物の使用量は、前記ポリプロピレン系樹脂(A)100重量部に対して、0.20~1.50重量部である、請求項12または13に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
- 前記発泡剤は、脂肪族炭化水素類、フッ化炭化水素類、炭酸ガス、空気、窒素および水からなる群から選ばれる1種以上である、請求項9~14のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22780856.5A EP4316763A4 (en) | 2021-03-29 | 2022-03-29 | EXTRUDED POLYPROPYLENE RESIN FOAM PARTICLES, PROCESS FOR THEIR PRODUCTION AND FOAM MOLDED BODY |
JP2023511334A JPWO2022210645A1 (ja) | 2021-03-29 | 2022-03-29 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-055660 | 2021-03-29 | ||
JP2021055660 | 2021-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210645A1 true WO2022210645A1 (ja) | 2022-10-06 |
Family
ID=83459383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015293 WO2022210645A1 (ja) | 2021-03-29 | 2022-03-29 | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4316763A4 (ja) |
JP (1) | JPWO2022210645A1 (ja) |
WO (1) | WO2022210645A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237212A (ja) | 1997-02-21 | 1998-09-08 | Huels Ag | 発泡したポリオレフィン粒状物を更に発泡する方法 |
JPH10251436A (ja) * | 1997-03-10 | 1998-09-22 | Jsp Corp | 無機物含有ポリプロピレン系樹脂発泡粒子成形体 |
JPH1135723A (ja) | 1997-07-24 | 1999-02-09 | Kanegafuchi Chem Ind Co Ltd | 改質ポリプロピレン系樹脂組成物からなる発泡体およびその製法 |
JP2004330464A (ja) * | 2003-04-30 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | ポリプロピレン系樹脂発泡シートの製造方法、発泡シートおよびその成形体 |
JP2005307024A (ja) * | 2004-04-22 | 2005-11-04 | Kaneka Corp | ポリプロピレン系樹脂発泡シートおよび成形体 |
WO2017030124A1 (ja) * | 2015-08-20 | 2017-02-23 | 株式会社カネカ | ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂型内発泡成形体の製造方法およびポリプロピレン系樹脂型内発泡成形体 |
WO2018016399A1 (ja) * | 2016-07-19 | 2018-01-25 | 株式会社カネカ | ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法 |
JP2019172961A (ja) | 2018-03-29 | 2019-10-10 | 藤森工業株式会社 | 接着性樹脂組成物、フッ素系樹脂接着用フィルム、積層体、及び積層体の製造方法 |
WO2020004429A1 (ja) * | 2018-06-28 | 2020-01-02 | 株式会社カネカ | 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法 |
-
2022
- 2022-03-29 JP JP2023511334A patent/JPWO2022210645A1/ja active Pending
- 2022-03-29 EP EP22780856.5A patent/EP4316763A4/en active Pending
- 2022-03-29 WO PCT/JP2022/015293 patent/WO2022210645A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237212A (ja) | 1997-02-21 | 1998-09-08 | Huels Ag | 発泡したポリオレフィン粒状物を更に発泡する方法 |
JPH10251436A (ja) * | 1997-03-10 | 1998-09-22 | Jsp Corp | 無機物含有ポリプロピレン系樹脂発泡粒子成形体 |
JPH1135723A (ja) | 1997-07-24 | 1999-02-09 | Kanegafuchi Chem Ind Co Ltd | 改質ポリプロピレン系樹脂組成物からなる発泡体およびその製法 |
JP2004330464A (ja) * | 2003-04-30 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | ポリプロピレン系樹脂発泡シートの製造方法、発泡シートおよびその成形体 |
JP2005307024A (ja) * | 2004-04-22 | 2005-11-04 | Kaneka Corp | ポリプロピレン系樹脂発泡シートおよび成形体 |
WO2017030124A1 (ja) * | 2015-08-20 | 2017-02-23 | 株式会社カネカ | ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂型内発泡成形体の製造方法およびポリプロピレン系樹脂型内発泡成形体 |
WO2018016399A1 (ja) * | 2016-07-19 | 2018-01-25 | 株式会社カネカ | ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法 |
JP2019172961A (ja) | 2018-03-29 | 2019-10-10 | 藤森工業株式会社 | 接着性樹脂組成物、フッ素系樹脂接着用フィルム、積層体、及び積層体の製造方法 |
WO2020004429A1 (ja) * | 2018-06-28 | 2020-01-02 | 株式会社カネカ | 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4316763A1 (en) | 2024-02-07 |
JPWO2022210645A1 (ja) | 2022-10-06 |
EP4316763A4 (en) | 2025-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10941265B2 (en) | Polypropylene-type resin pre-expanded particles, and method for producing said pre-expanded particles | |
US9023904B2 (en) | Polypropylene resin foam particle and molding thereof | |
CN114341237B (zh) | 聚丙烯系树脂发泡颗粒、其制造方法及聚丙烯系树脂发泡成型体 | |
EP4112678A1 (en) | Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body | |
JP2022152955A (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022203036A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
JP2011102028A (ja) | 射出発泡成形用熱可塑性エラストマー組成物及び該樹脂組成物からなる射出発泡成形体 | |
JP3808843B2 (ja) | 改質ポリプロピレン系樹脂組成物の製造方法および該樹脂組成物の発泡体 | |
WO2021131933A1 (ja) | ポリプロピレン系樹脂組成物、その製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法 | |
WO2022191181A1 (ja) | 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体 | |
WO2022210645A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
WO2022163627A1 (ja) | 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法 | |
KR20010033980A (ko) | 개질 폴리프로필렌계 수지 및 폴리스티렌계 수지의혼합수지 압출발포 보드 | |
WO2022210647A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022154070A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
JP4493821B2 (ja) | 改質ポリプロピレンの製造方法および発泡体 | |
TWI627193B (zh) | 改質聚丙烯系樹脂及改質聚丙烯系樹脂之製造方法 | |
WO2022210646A1 (ja) | ポリプロピレン系樹脂押出発泡粒子 | |
WO2023176911A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022210648A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2023054223A1 (ja) | ポリプロピレン系樹脂押出発泡粒子、ポリプロピレン系樹脂発泡成形体および積層発泡体 | |
WO2023127914A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022181762A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 | |
JP2015093963A (ja) | プロピレン重合体組成物 | |
TW201741124A (zh) | 積層發泡片及發泡成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780856 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023511334 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022780856 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022780856 Country of ref document: EP Effective date: 20231030 |