WO2022191181A1 - 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体 - Google Patents
押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体 Download PDFInfo
- Publication number
- WO2022191181A1 WO2022191181A1 PCT/JP2022/009986 JP2022009986W WO2022191181A1 WO 2022191181 A1 WO2022191181 A1 WO 2022191181A1 JP 2022009986 W JP2022009986 W JP 2022009986W WO 2022191181 A1 WO2022191181 A1 WO 2022191181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypropylene
- resin
- polypropylene resin
- extruded
- branched
- Prior art date
Links
- -1 Polypropylene Polymers 0.000 title claims abstract description 241
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 216
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 216
- 239000002245 particle Substances 0.000 title claims abstract description 127
- 239000011342 resin composition Substances 0.000 title claims abstract description 83
- 238000001125 extrusion Methods 0.000 title claims abstract description 53
- 238000007664 blowing Methods 0.000 title abstract 3
- 239000013518 molded foam Substances 0.000 title 1
- 229920005989 resin Polymers 0.000 claims abstract description 297
- 239000011347 resin Substances 0.000 claims abstract description 297
- 239000006260 foam Substances 0.000 claims abstract description 79
- 230000003068 static effect Effects 0.000 claims abstract description 50
- 229920005673 polypropylene based resin Polymers 0.000 claims description 111
- 238000005187 foaming Methods 0.000 claims description 65
- 238000002844 melting Methods 0.000 claims description 38
- 230000008018 melting Effects 0.000 claims description 38
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 238000000465 moulding Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 26
- 229920006379 extruded polypropylene Polymers 0.000 claims description 23
- 239000004088 foaming agent Substances 0.000 claims description 19
- 239000000155 melt Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 13
- 239000003570 air Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 238000004898 kneading Methods 0.000 claims description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000007906 compression Methods 0.000 abstract description 9
- 230000006835 compression Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 88
- 239000011324 bead Substances 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 38
- 230000008901 benefit Effects 0.000 description 23
- 239000003086 colorant Substances 0.000 description 23
- 239000000178 monomer Substances 0.000 description 16
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 14
- 238000010097 foam moulding Methods 0.000 description 14
- 239000007870 radical polymerization initiator Substances 0.000 description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 12
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 11
- 239000006229 carbon black Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 10
- 239000005977 Ethylene Substances 0.000 description 9
- 229920001971 elastomer Polymers 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 8
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- 239000004594 Masterbatch (MB) Substances 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002667 nucleating agent Substances 0.000 description 8
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000012860 organic pigment Substances 0.000 description 7
- 239000005060 rubber Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229920005630 polypropylene random copolymer Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 150000001451 organic peroxides Chemical group 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920001384 propylene homopolymer Polymers 0.000 description 5
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 2
- RITONZMLZWYPHW-UHFFFAOYSA-N 3-methylhex-1-ene Chemical compound CCCC(C)C=C RITONZMLZWYPHW-UHFFFAOYSA-N 0.000 description 2
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 239000012933 diacyl peroxide Substances 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920005633 polypropylene homopolymer resin Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- HCXVPNKIBYLBIT-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 3,5,5-trimethylhexaneperoxoate Chemical compound CC(C)(C)CC(C)CC(=O)OOOC(C)(C)C HCXVPNKIBYLBIT-UHFFFAOYSA-N 0.000 description 1
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- JVPKLOPETWVKQD-UHFFFAOYSA-N 1,2,2-tribromoethenylbenzene Chemical compound BrC(Br)=C(Br)C1=CC=CC=C1 JVPKLOPETWVKQD-UHFFFAOYSA-N 0.000 description 1
- SVHAMPNLOLKSFU-UHFFFAOYSA-N 1,2,2-trichloroethenylbenzene Chemical compound ClC(Cl)=C(Cl)C1=CC=CC=C1 SVHAMPNLOLKSFU-UHFFFAOYSA-N 0.000 description 1
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 description 1
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical compound BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- DZPCYXCBXGQBRN-UHFFFAOYSA-N 2,5-Dimethyl-2,4-hexadiene Chemical compound CC(C)=CC=C(C)C DZPCYXCBXGQBRN-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- XKBHBVFIWWDGQX-UHFFFAOYSA-N 2-bromo-3,3,4,4,5,5,5-heptafluoropent-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(Br)=C XKBHBVFIWWDGQX-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- DDBYLRWHHCWVID-UHFFFAOYSA-N 2-ethylbut-1-enylbenzene Chemical compound CCC(CC)=CC1=CC=CC=C1 DDBYLRWHHCWVID-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- CEBRPXLXYCFYGU-UHFFFAOYSA-N 3-methylbut-1-enylbenzene Chemical compound CC(C)C=CC1=CC=CC=C1 CEBRPXLXYCFYGU-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- UCKITPBQPGXDHV-UHFFFAOYSA-N 7-methylocta-1,6-diene Chemical compound CC(C)=CCCCC=C UCKITPBQPGXDHV-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920011250 Polypropylene Block Copolymer Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 230000001458 anti-acid effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000000038 blue colorant Substances 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000000040 green colorant Substances 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HWPKGOGLCKPRLZ-UHFFFAOYSA-M monosodium citrate Chemical compound [Na+].OC(=O)CC(O)(C([O-])=O)CC(O)=O HWPKGOGLCKPRLZ-UHFFFAOYSA-M 0.000 description 1
- 239000002524 monosodium citrate Substances 0.000 description 1
- 235000018342 monosodium citrate Nutrition 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004293 potassium hydrogen sulphite Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229960003351 prussian blue Drugs 0.000 description 1
- 239000013225 prussian blue Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000001062 red colorant Substances 0.000 description 1
- CLJTZNIHUYFUMR-UHFFFAOYSA-M sodium;hydrogen carbonate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].OC([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O CLJTZNIHUYFUMR-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- JIYXDFNAPHIAFH-UHFFFAOYSA-N tert-butyl 3-tert-butylperoxycarbonylbenzoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC(C(=O)OC(C)(C)C)=C1 JIYXDFNAPHIAFH-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000001060 yellow colorant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2351/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2451/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2451/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Definitions
- the present invention relates to a polypropylene-based resin composition for extrusion foaming, extruded foamed particles, and foamed moldings.
- a polypropylene resin foam molded product obtained using polypropylene resin expanded particles has the advantages of foam molded products such as arbitrariness of shape, cushioning properties, light weight, and heat insulating properties.
- Examples of methods for producing expanded polypropylene resin particles include a batch foaming method, which is a discontinuous process, and an extrusion foaming method, which is a continuous process. Extrusion foaming has many advantages, such as efficiency and environmental aspects.
- Patent Document 1 discloses pre-expanded polypropylene-based resin particles obtained by a specific method and characterized by having a melting point peak half width of 20° C. or more in crystal melting measurement by a differential scanning calorimeter method. ing.
- One embodiment of the present invention has been made in view of the above problems, and its object is to provide extruded polypropylene resin particles with excellent moldability and expanded polypropylene resin particles with excellent static compressive strength and tensile elongation at break.
- An object of the present invention is to provide a polypropylene-based resin composition for extrusion foaming, which can be used to obtain a molded article.
- the polypropylene resin composition for extrusion foaming has a tensile elastic modulus defined in JIS K7161 in the total 100% by weight of the resin components in the polypropylene resin composition for extrusion foaming.
- a foamed molded article is formed by extruding and foaming extruded foamed particles obtained by extrusion foaming a resin composition containing a polypropylene-based resin having a branched structure, and the extruded foamed particles are continuous.
- the foaming molding has a void content of 15% or less, a density of 60 g/L to 300 g/L, a tensile elongation at break satisfying Formula 1, and static compression of the foaming molding.
- a polypropylene-based resin foam molded article whose strength satisfies Formula 2: Tensile elongation at break (%) ⁇ 0.000002 ⁇ D 3 +0.0011 ⁇ D 2 ⁇ 0.285 ⁇ D+32.2 (Formula 1) Static compressive strength (kPa) ⁇ 0.000049 ⁇ D 3 +0.0542 ⁇ D 2 ⁇ 0.265 ⁇ D+146.9 (Formula 2) D in formulas 1 and 2 represents the density (g/L) of the foam molded article.
- an extruded polypropylene resin composition for extruded foam that can obtain extruded polypropylene resin particles having excellent moldability and a polypropylene resin foam molded article having excellent static compressive strength and tensile elongation at break.
- a foamed molded product obtained from expanded polypropylene resin particles obtained by an extrusion foaming method has a higher static compressive strength than a foamed molded product obtained from expanded polypropylene resin particles obtained by a depressurized expansion method. and inferior tensile elongation at break.
- the use of a branched polypropylene resin with a tensile modulus within a specific range could approximately improve the static compressive strength, but the tensile elongation at break tended to be inferior.
- the polypropylene resin composition for extrusion foaming has a tensile elastic modulus of 1100 MPa as defined in JIS K7161 in the total 100% by weight of the resin components in the polypropylene resin composition for extrusion foaming.
- the polypropylene resin (A) having a branched structure is 65% by weight or more and 85% by weight or less, and the tensile elastic modulus specified by JIS K7161 is 550 MPa or more and 950 MPa or less, and the tensile failure specified by JIS K7161.
- extrusion-foaming the polypropylene-based resin composition for extrusion-foaming By extrusion-foaming the polypropylene-based resin composition for extrusion-foaming, extruded polypropylene-based resin particles can be obtained. Further, by molding (for example, in-mold foam molding) the extruded polypropylene resin foam particles, a polypropylene resin foam molded article can be obtained.
- the "polypropylene resin composition for extrusion foaming” may be referred to as "resin composition”
- the "polypropylene resin composition for extrusion foaming according to one embodiment of the present invention” may be referred to as "this resin composition.”
- things Sometimes referred to as "things”.
- extruded expanded polypropylene particles may be referred to as “extruded expanded particles”
- extruded expanded polypropylene particles according to one embodiment of the present invention may be referred to as “extruded expanded particles”.
- Polypropylene-based resin foam-molded article may be referred to as “foam-molded article”
- polypropylene-based resin foam-molded article according to one embodiment of the present invention may be referred to as “this foam-molded article”.
- the present resin composition has the structure described above, it has the advantage of being able to provide extruded expanded particles with excellent moldability and foam molded articles with excellent static compressive strength and tensile elongation at break.
- the moldability of the extruded expanded beads is evaluated by the molding width of the extruded expanded beads. The molding width will be described later. The static compressive strength and tensile elongation at break will also be described later.
- Extruded foamed particles, extruded foamed sheets, or extruded foamed boards can be obtained by extrusion-foaming the present resin composition.
- the extruded foamed particles, the extruded foamed sheet, and the extruded foamed board can be produced separately by appropriately changing the shape of the die, the method of shredding, and the like.
- polypropylene resin having a branched structure refers to (a) a polypropylene resin obtained by partially cross-linking the molecules of a polypropylene resin to which no branched structure has been introduced, and (b) A polypropylene resin in which a diene compound other than (poly)propylene or the like is introduced as a branched chain is intended for a polypropylene resin in which no branched structure is introduced.
- polypropylene-based resin into which no branched structure is introduced may be referred to as "linear polypropylene-based resin", and the "polypropylene-based resin having a branched structure” is referred to as "branched polypropylene-based resin”.
- linear polypropylene resin and branched polypropylene resin may be collectively referred to as “polypropylene resin”.
- the linear polypropylene-based resin can also be said to be a raw material for the branched polypropylene-based resin.
- the polypropylene-based resin means a resin containing 50 mol% or more of structural units derived from a propylene monomer out of 100 mol% of all structural units contained in the resin.
- structural unit derived from propylene monomer may be referred to as "propylene unit”.
- This resin composition contains a polypropylene resin (A) having a branched structure and a polypropylene resin (B) having a branched structure.
- the "polypropylene resin (A) having a branched structure” may be referred to as “branched polypropylene resin (A)”
- the polypropylene resin (B) having a branched structure may be referred to as "branched polypropylene-based It may be referred to as "resin (B)”.
- the branched polypropylene resin (A) has a tensile modulus of 1100 MPa or more as defined in JIS K7161. JIS K7161 corresponds to ISO527-1.
- JIS K7161 corresponds to ISO527-1.
- the tensile modulus of the branched polypropylene resin (A) is preferably 1200 MPa or more, more preferably 1300 MPa or more, still more preferably 1400 MPa or more, and particularly preferably 1500 MPa or more.
- the upper limit of the tensile modulus of the branched polypropylene-based resin (A) is not particularly limited, it may be, for example, 3000 MPa or less, or 2500 MPa or less.
- the nominal tensile strain at break of the branched polypropylene resin (A) is preferably less than 50%, more preferably 45% or less.
- the lower limit of the nominal tensile strain at break of the branched polypropylene resin (B) is not particularly limited, it may be, for example, 5% or more, or 10% or more.
- the content of the branched polypropylene resin (A) in the resin composition is 65% by weight or more and 85% by weight or less when the total of the resin components in the resin composition is 100% by weight, and 70% by weight. % or more and 80% by weight or less. If the content of the branched polypropylene-based resin (A) is 65% by weight or more, it is possible to provide a foam molded article having excellent static compressive strength. If the content of the branched polypropylene-based resin (A) is 85% by weight or less, a decrease in tensile elongation at break can be suppressed.
- the term "resin component” is a concept encompassing the branched polypropylene-based resin (A), the branched polypropylene-based resin (B), and other resins described later, which are contained in the present resin composition. is intended.
- the "resin component” can also be said to be a concept excluding stabilizers and additives described below.
- the branched polypropylene resin (B) has a tensile elastic modulus of 550 MPa or more and 950 MPa or less as defined by JIS K7161, and a tensile breaking nominal strain of 50% or more as defined by JIS K7161.
- the open cell ratio of the extruded expanded beads can be reduced, and as a result, extruded expanded beads with excellent moldability can be provided.
- the branched polypropylene-based resin (B) in the present resin composition it is possible to provide a foam molded article having an excellent tensile elongation at break.
- the tensile modulus of the branched polypropylene resin (B) is preferably 600 MPa or more and 900 MPa or less, more preferably 600 MPa or more and 850 MPa or less, and even more preferably 650 MPa or more and 850 MPa or less.
- the above elastomer has a tensile modulus of less than 550 MPa.
- the nominal tensile strain at break of the branched polypropylene resin (B) is preferably 55% or more, more preferably 60% or more, even more preferably 80% or more, and 100% or more. Especially preferred.
- the upper limit of the nominal tensile strain at break of the branched polypropylene resin (B) is not particularly limited, it may be, for example, 500% or less, or 400% or less.
- the content of the branched polypropylene resin (B) in the resin composition is 15% by weight or more and 35% by weight or less when the total of the resin components in the resin composition is 100% by weight, and 20% by weight. % or more and 30% by weight or less. If the content of the branched polypropylene-based resin (B) is 15% by weight or more, it is possible to provide extruded expanded particles with excellent moldability and a foam molded article with excellent tensile elongation at break. When the content of the branched polypropylene-based resin (B) is 35% by weight or less, a decrease in static compressive strength can be suppressed.
- the melting point of the branched polypropylene resin (A) is preferably 145°C or higher, more preferably 150°C or higher, and even more preferably 155°C or higher.
- the upper limit of the melting point of the branched polypropylene-based resin (A) is not particularly limited, it may be, for example, 170° C. or lower, or 165° C. or lower.
- the melting point of the branched polypropylene-based resin (B) is preferably less than 145°C, more preferably 143°C or less, and even more preferably 140°C or less.
- the lower limit of the melting point of the branched polypropylene-based resin (B) is not particularly limited, it may be, for example, 120° C.
- branched polypropylene resin (A) and the branched polypropylene resin (B) together having these melting points it is possible to provide a foam molded article having an excellent balance between static compressive strength and tensile elongation at break. .
- the melting point of the branched polypropylene-based resin is a value obtained by measuring with a differential scanning calorimeter method (hereinafter referred to as "DSC method").
- the specific operating procedure is as follows: (a1) by raising the temperature of 5 to 6 mg of the branched polypropylene resin from 40° C. to 220° C. at a rate of 10° C./min. (a2) Then, the branched polypropylene resin is cooled from 220° C. to 40° C. at a rate of 10° C./min.
- the temperature of the crystallized branched polypropylene-based resin is further increased from 40°C to 220°C at a rate of temperature increase of 10°C/min.
- the temperature of the peak (melting peak) of the DSC curve of the branched polypropylene-based resin obtained during the second temperature rise (that is, in (a3)) can be determined as the melting point of the branched polypropylene-based resin. If there are multiple peaks (melting peaks) in the DSC curve of the branched polypropylene resin obtained during the second heating by the above method, the temperature of the peak (melting peak) with the maximum amount of heat of fusion is , the melting point of the branched polypropylene resin.
- the differential scanning calorimeter for example, DSC6200 type manufactured by Seiko Instruments Inc. can be used.
- the branched polypropylene resin (A) preferably has a crystal content ⁇ H measured by differential scanning calorimetry of 70 J/g or more, more preferably 75 J/g or more, and 80 J/g or more. is more preferred.
- the upper limit of ⁇ H of the branched polypropylene-based resin (A) is not particularly limited, it may be, for example, 150 J/g or less, or 120 J/g or less.
- ⁇ H of the branched polypropylene resin (B) is preferably 40 J/g or more and 65 J/g or less, more preferably 42 J/g or more and 63 J/g or less, and 45 J/g or more and 60 J/g or less. is more preferable.
- branched polypropylene-based resin (A) and the branched polypropylene-based resin (B) having these ⁇ H together it is possible to provide a foam-molded article having an excellent balance between static compressive strength and tensile elongation at break. .
- the crystal content ⁇ H of the branched polypropylene resin is a value calculated by performing the following (1) to (2) in order: (1) the second measured by the DSC method In the DSC curve of the branched polypropylene resin obtained when the temperature is raised (that is, in the above (a3)), A is the 80° C. point on the DSC curve, and B is the melting end point. (2) Let ⁇ H be the amount of heat (J/g) calculated from the area surrounded by the line segment AB and the DSC curve.
- the melt flow rate (MFR) of the branched polypropylene resin is not particularly limited.
- the MFR of the branched polypropylene resin is, for example, preferably 0.3 g/10 min to 20.0 g/10 min, more preferably 0.5 g/10 min to 15.0 g/10 min, It is more preferably 1.0 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 1.5 g/10 minutes to 10.0 g/10 minutes.
- the MFR of the branched polypropylene-based resin is (a) 0.3 g/10 minutes or more, the extruded expanded particles obtained from the branched polypropylene-based resin have little deformation and good surface properties (beautiful). It has the advantage of being able to provide a foamed molded article, and (b) when it is 20.0 g / 10 minutes or less, the composition containing the extruded foamed particles obtained from the branched polypropylene resin has foamability during extrusion foaming has the advantage of being better
- the MFR of a branched polypropylene resin is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
- the melt tension of the branched polypropylene-based resin is preferably 5 cN to 20 cN, more preferably 7 cN to 17 cN, even more preferably 9 cN to 15 cN.
- the melt tension of the branched polypropylene is (a) 5 cN or more, the extruded expanded particles obtained from the branched polypropylene tend to have a low open cell ratio, and a foamed molded product having good surface properties (beautiful) is produced.
- it is 20 cN or less, there is an advantage that the discharge rate during extrusion foaming can be easily increased, that is, the productivity is excellent.
- the melt tension of the branched polypropylene resin is measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, it is as follows (1) to (5): (1) A sample resin (branched polypropylene resin) for measurement is placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200 ° C.).
- the branched polypropylene resin (A) and/or the branched polypropylene resin (B) consist of a homopolypropylene resin having a branched structure, a random polypropylene resin having a branched structure, and a block polypropylene resin having a branched structure. It is preferably one or more selected from the group.
- a homopolypropylene-based resin having a branched structure means a propylene homopolymer into which a branched structure is introduced.
- a random polypropylene resin having a branched structure and a block polypropylene resin having a branched structure mean a polypropylene random copolymer having a branched structure and a polypropylene block copolymer having a branched structure, respectively.
- a polypropylene-based resin having a branched structure (branched polypropylene-based resin) can be obtained by introducing a branched structure into a linear polypropylene-based resin.
- the method for introducing a branched structure into the linear polypropylene-based resin is not particularly limited, but for example, (b1) a method of irradiating the linear polypropylene-based resin with radiation, and (b2) a linear polypropylene-based resin and a conjugated diene compound. and a method of melt kneading a mixture containing a radical polymerization initiator.
- a branched polypropylene-based resin may be used instead of the linear polypropylene-based resin as a raw material in the method (b1) or the method (b2). This makes it possible to obtain a branched polypropylene-based resin having physical properties different from those of the raw material branched polypropylene-based resin.
- the method (b2) will be further explained.
- the following (i) to (iv) are performed in order to obtain a branched polypropylene resin: (i) a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator (ii) extruding the obtained melt-kneaded material from the die; (iii) cooling the extruded melt-kneaded material (also referred to as a strand) (iv) chopping the strands simultaneously with and after cooling the strands.
- Specific examples of the method (b2) include the method described in WO2020/004429.
- branched structure can be stably introduced into a linear polypropylene-based resin, and the reproducibility of the introduction of the branched structure is high; and/or (ii) no complicated equipment is required and high productivity Since a branched polypropylene-based resin can be obtained, in one embodiment of the present invention, the branched polypropylene-based resin is preferably a branched polypropylene-based resin obtained by the method (b2) described above.
- branched polypropylene resin (A) and the branched polypropylene resin (B) contain structural units derived from conjugated diene compounds.
- a branched structure is separately introduced into at least two kinds of linear polypropylene resins by the method (b2) to prepare branched polypropylene resins (A) and (B), and then and mixing the branched polypropylene resins (A) and (B) to obtain the present resin composition.
- two or more linear polypropylene resins may be used as raw materials.
- the linear polypropylene-based resin may be (a) a homopolymer of propylene, or (b) a block copolymer or random copolymer of propylene and a monomer other than propylene, or (c) A mixture of two or more of these may be used.
- the linear polypropylene resin may have one or more structural units derived from a monomer other than the propylene monomer, or may have one or more types.
- “Monomers other than propylene monomers” used in the production of linear polypropylene resins are sometimes referred to as “comonomers”, and “monomers other than propylene monomers” contained in linear polypropylene resins Structural unit derived from” may be referred to as "comonomer unit".
- Comonomers include monomers such as: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, ⁇ -olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, meth
- Acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and and glycidyl acrylate.
- Methacrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and and glycidyl methacrylate.
- Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alphamethylstyrene, paramethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene. , dichlorostyrene and trichlorostyrene.
- Linear polypropylene resin as a comonomer unit, preferably has a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms, ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1 -butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc.
- the linear polypropylene-based resin is preferably a propylene homopolymer, a polypropylene-based block copolymer and/or a polypropylene-based random copolymer, and is preferably a propylene homopolymer and/or a polypropylene-based random copolymer. more preferred. According to this configuration, there is an advantage that the obtained branched polypropylene-based resin can provide extruded polypropylene-based resin expanded particles having excellent moldability.
- the linear polypropylene resin preferably contains 90 mol% or more of propylene units, more preferably 93 mol% or more, and 95 mol% or more of all 100 mol% of the total structural units contained in the linear polypropylene resin. It is more preferable to contain it, and it is particularly preferable to contain it in an amount of 97 mol % or more.
- the melting point of the linear polypropylene resin is not particularly limited.
- the melting point of the linear polypropylene resin is, for example, preferably 130° C. to 165° C., more preferably 135° C. to 164° C., even more preferably 138° C. to 163° C., and 140° C. to 162° C. °C is particularly preferred.
- the melting point of the linear polypropylene-based resin is within the range described above, (a) the advantage that the obtained extruded expanded particles are excellent in moldability, and (b) the extruded expanded particles can be used to form a foamed molded article with excellent breakage resistance.
- the melting point of the linear polypropylene resin is a value obtained by measuring by the DSC method. Specifically, it can be identified by the same method as the method for measuring the melting point of the branched polypropylene-based resin described above, except that the linear polypropylene-based resin is used instead of the branched polypropylene-based resin.
- the MFR of the linear polypropylene resin is not particularly limited.
- the MFR of the linear polypropylene resin is, for example, preferably 0.5 g/10 min to 20.0 g/10 min, more preferably 1.0 g/10 min to 15.0 g/10 min, It is more preferably 2.0 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes.
- the MFR of a linear polypropylene resin is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
- conjugated diene compound examples include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, and 2,5-dimethyl-2,4-hexadiene. These conjugated diene compounds may be used singly or in combination of two or more. Among these conjugated diene compounds, butadiene and isoprene are particularly preferred from the viewpoints of (a) being inexpensive and easy to handle, and (b) the reaction to proceed uniformly.
- the amount of the conjugated diene compound used in the production of the branched polypropylene resin is preferably 0.01 to 5.00 parts by weight, preferably 0.10 to 3.0 parts by weight, based on 100 parts by weight of the linear polypropylene resin. 00 parts by weight is more preferred, and 0.10 to 2.00 parts by weight is even more preferred.
- the amount of the conjugated diene compound used increases, the resulting branched polypropylene resin tends to have a smaller MFR and a lower nominal strain at break.
- the smaller the amount of the conjugated diene compound used the higher the MFR of the resulting branched polypropylene-based resin and the higher the nominal tensile strain at break.
- the conjugated diene compound in addition to the linear polypropylene-based resin, the conjugated diene compound, and the radical polymerization initiator, copolymerization with the conjugated diene compound is performed within a range that does not impair the effects of one embodiment of the present invention.
- Possible monomers may be used in combination.
- monomers copolymerizable with conjugated diene compounds include (a) vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
- acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and stearyl acrylate
- methyl methacrylate, methacrylic acid examples include ethyl, butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylates such as stearyl methacrylate.
- Radical polymerization initiator is an organic peroxide capable of abstracting hydrogen from the linear polypropylene resin and the conjugated diene compound.
- Radical polymerization initiators suitably used in one embodiment of the present invention include organic peroxides such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, and peroxyesters. oxides.
- organic peroxide one with particularly high hydrogen abstraction ability is preferable.
- organic peroxides with high hydrogen abstraction ability include 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n- Peroxyketals such as butyl 4,4-bis(t-butylperoxy)valerate and 2,2-bis(t-butylperoxy)butane; dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy)hexane, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2 , 5-di(t-butylperoxy)-3-hexyne and other dialkyl peroxides; benzoyl peroxide and other
- the amount of the radical polymerization initiator used in the production of the branched polypropylene resin is not particularly limited. It is preferably from 0.10 to 2.00 parts by weight, particularly preferably from 0.10 to 1.00 parts by weight.
- the MFR of the obtained branched polypropylene-based resin tends to increase as the amount of the radical polymerization initiator used increases. On the other hand, the smaller the amount of the radical polymerization initiator used, the lower the MFR of the resulting branched polypropylene resin.
- the present resin composition may optionally contain (a) an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, a fluorescent whitening agent, a metallic soap, and an antacid adsorbent. and/or (b) additives such as cell nucleators, inorganic colorants, organic colorants, lubricants, plasticizers, fillers, reinforcements, flame retardants, and antistatic agents, may further include These components may be used individually by 1 type, and may be used in combination of 2 or more type.
- the resin composition may contain a cell nucleating agent.
- cell nucleating agents may be used in making the extruded foam particles. By using a cell nucleating agent, the cell number and cell shape of the resulting extruded foam particles can be controlled.
- Bubble nucleating agents include sodium bicarbonate-citric acid mixture, monosodium citrate, talc, and calcium carbonate. One of these cell nucleating agents may be used alone, or two or more thereof may be used in combination.
- the content of the cell nucleating agent in the present resin composition in other words, the amount of the cell nucleating agent used in the production of the extruded expanded beads is not particularly limited.
- the content of the cell nucleating agent is, for example, preferably 0.01 to 5.00 parts by weight, more preferably 0.01 to 3.50 parts by weight, with respect to 100 parts by weight of the total resin component. is more preferably 0.01 to 1.00 parts by weight, and particularly preferably 0.01 to 0.50 parts by weight.
- the cell size (average cell diameter) and cell shape of the extruded foamed particles become uniform, and as a result, there is an advantage that the foamability during extrusion foaming tends to be stable.
- “cell” intends "bubble".
- the resin composition may contain an inorganic colorant within a range that does not impair the effects of one embodiment of the present invention.
- Inorganic colorants may include white colorants in addition to black, red, green, blue, and yellow colorants.
- examples of inorganic colorants include carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green. These inorganic colorants may be used singly or in combination of two or more. Carbon black is particularly preferable as the inorganic colorant from the viewpoint of ultraviolet absorption performance.
- the present resin composition preferably contains 0.5 to 5.0 parts by weight, more preferably 0.5 to 4.5 parts by weight, of an inorganic colorant with respect to a total of 100 parts by weight of the resin components. It is more preferable to contain 0.5 parts by weight to 4.0 parts by weight, more preferably 1.0 parts by weight to 3.5 parts by weight, 1.0 parts by weight to 3.0 parts by weight It is particularly preferred to include According to this configuration, there is an advantage that the open cell rate of the extruded foamed particles obtained by the extrusion foaming method tends to be low.
- the content of the inorganic colorant in the present resin composition can also be said to be the amount of the inorganic colorant used in the production of the extruded foamed particles.
- the resin composition may contain an organic colorant within a range that does not impair the effects of one embodiment of the present invention.
- organic colorants include perylene organic pigments, azo organic pigments, quinacridone organic pigments, phthalocyanine organic pigments, threne organic pigments, dioxazine organic pigments, and isoindoline organic pigments. These organic colorants may be used singly or in combination of two or more.
- the content of the organic colorant in the present resin composition is not particularly limited.
- the present resin composition may further contain a resin other than the branched polypropylene-based resin (sometimes referred to as other resin) or rubber within a range that does not impair the effects of one embodiment of the present invention.
- Resins other than branched polypropylene resins include (a) linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, and propylene homopolymers; Polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene/vinyl acetate copolymer, ethylene/acrylic acid copolymer, and ethylene/methacrylic acid copolymer and (c) styrene resins such as polystyrene, styrene/maleic anhydride copolymers, and styrene/ethylene copolymers.
- the rubber examples include olefin rubbers such as ethylene/propylene rubber, ethylene/butene rubber, ethylene/hexene rubber, and ethylene/octene rubber.
- the present resin composition may contain 0 wt % to 20 wt % of the above other resins when the total of the resin components in the present resin composition is taken as 100 wt %.
- the extruded polypropylene-based resin particles according to one embodiment of the present invention are obtained by extrusion-foaming the present resin composition. It can also be said that the present extruded expanded particles contain the present resin composition. It can also be said that the present extruded expanded beads contain the present resin composition as a base resin. It can also be said that the base resin is a resin component that substantially constitutes the extruded expanded beads.
- the average cell diameter of the extruded expanded particles is preferably 100 ⁇ m to 400 ⁇ m, more preferably 120 ⁇ m to 350 ⁇ m, even more preferably 150 ⁇ m to 300 ⁇ m. According to this configuration, the extruded foamed beads have an advantage of being excellent in moldability because the cells are hardly broken and contracted when the extruded foamed beads are molded.
- the open cell ratio of the present extruded expanded particles is preferably as low as possible.
- the open cell ratio of the extruded expanded beads is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less, and particularly preferably 5% or less.
- the lower limit of the open cell content of the extruded expanded beads is not particularly limited, and is, for example, 0% or more.
- the extruded expanded beads when the extruded expanded beads are molded, the cells hardly break and shrink, so the advantage that the extruded expanded beads are excellent in moldability, and (b) the extruded expanded beads are
- the foamed molded article obtained by using it has the advantage that characteristics such as shape arbitrariness, cushioning properties, light weight, compressive strength and heat insulating properties are more exhibited.
- the open cell ratio of the extruded foamed particles is measured using an air-comparative hydrometer [manufactured by Tokyo Science Co., Ltd., model 1000], according to the method described in ASTM D2856-87 Procedure C (PROCEDURE C). , is the measured value.
- the bulk density of the extruded expanded particles is preferably 40 g/L or more, preferably 50 g/L or more, more preferably 60 g/L or more, and even more preferably 70 g/L or more. , 80 g/L or more.
- the upper limit of the bulk density of the extruded expanded particles is not particularly limited, and is, for example, 300 g/L or less. The tensile elongation at break of the resulting foamed article tends to be lower as the extruded foam particles, which are the material of the foamed article, have a lower magnification.
- the present extruded expanded particles have the above-described structure, they have the advantage of being able to provide a foamed molded article having an excellent tensile elongation at break even if the magnification is as low as having a bulk density of 40 g/L or more.
- the expanded molded article obtained using the extruded expanded particles has more features such as shape arbitrariness, cushioning properties, light weight, and heat insulating properties. It also has the advantage of being demonstrated.
- the extruded foam particles have the advantage of a wide molding width (eg greater than 0). In the present specification, it is intended that the larger the molding width of the extruded expanded beads, the better the moldability of the extruded expanded beads.
- the term "forming width of extruded foam particles” refers to the vapor pressure (gauge pressure ) is intended to have a width of: (x1) sufficient fusion between the extruded foam particles (for example, fusion rate of 80% or more), (x2) sufficient gaps between the extruded foam particles, and (x3)
- the surface is beautiful, (x4) the surface is not melted, and (x5) the mold used for in-mold foam molding does not shrink by 5% or more with respect to the dimensions of the mold.
- the foamed molded article sticks to the mold and cannot be taken out, it is determined that the foamed molded article cannot be obtained.
- vapor pressure is too low for the extruded expanded particles, (a) the fusion between the extruded expanded particles is insufficient, (b) the gaps between the extruded expanded particles are not sufficiently filled, and (c) the surface and/or (d) shrinkage. If the vapor pressure is too high for the extruded foam particles, foamed articles with (a) melted surfaces and/or (b) insufficient compressive strength may be obtained.
- the applicable vapor pressure range of the extruded expanded particles is not particularly limited. It is preferable that the molding width of the extruded expanded particles is as wide as possible.
- the molding width of the extruded expanded beads is more preferably 0.02 MPa or more, more preferably 0.03 MPa or more, still more preferably 0.04 MPa or more, and preferably 0.05 MPa or more. Especially preferred.
- the extruded expanded beads obtained by the extrusion foaming method are characterized by having one crystal peak in the DSC curve of the extruded expanded beads obtained by DSC measurement.
- the polypropylene-based resin expanded beads having one crystal peak in the DSC curve of the extruded expanded beads obtained by DSC measurement were obtained by the extrusion expansion method.
- This extruded expanded bead can also have one crystal peak in the DSC curve of the extruded expanded bead obtained by DSC measurement.
- the DSC curve of the extruded expanded particles used for calculating the crystal peak is obtained by raising the temperature of 5 to 6 mg of the extruded expanded particles from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min by DSC measurement. is the curve obtained while
- a method for producing the present extruded foamed particles is not particularly limited, and a known extrusion foaming method can be employed.
- the present method for producing extruded expanded particles includes a first step of melt-kneading the present resin composition and a foaming agent in a manufacturing apparatus, and passing the melt-kneaded product obtained in the first step through a die to the manufacturing apparatus. and a second step of discharging into a region having a lower pressure than the internal pressure of the.
- the first step will be specifically described.
- a specific example of the first step includes a step of melting the present resin composition and dissolving the foaming agent in the present resin composition in a manufacturing apparatus.
- the first step can also be said to be a step of preparing a melt-kneaded product containing the present resin composition and a foaming agent.
- the foaming agent is not particularly limited, and known organic foaming agents and inorganic foaming agents can be used.
- organic foaming agents include aliphatic hydrocarbons such as propane and fluorohydrocarbons such as difluoroethane.
- inorganic foaming agents include carbon dioxide, air, inorganic gases such as nitrogen, and water.
- the foaming agents described above may be used alone or in combination of two or more.
- the amount of the foaming agent used in the first step may be appropriately adjusted according to the type of the foaming agent and the target expansion ratio of the extruded polypropylene-based resin expanded particles.
- stabilizers e.g., antioxidants, metal deactivators, phosphorus-based processing stabilizers, UV absorbers, UV stabilizers, optical brighteners, metal soaps, and antacids
- adsorbents, etc. and additives (e.g., cell nucleators, inorganic colorants, organic colorants, crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcements, pigments, dyes, flame retardants, and charging inhibitors, etc.) may also be used.
- the inorganic colorant may be blended (used) as a masterbatch.
- a masterbatch of an inorganic colorant can be obtained by mixing an inorganic colorant and an arbitrary resin (for example, a polypropylene resin) in an arbitrary ratio.
- concentration of the inorganic colorant in the masterbatch is not particularly limited.
- the masterbatch may contain 5 to 50% by weight of the inorganic colorant in 100% by weight of the masterbatch.
- the present resin composition and foaming agent, and optionally other components may be mixed before being supplied to the manufacturing equipment, or may be mixed within the manufacturing equipment. .
- the present resin composition may be supplied to the manufacturing apparatus, or the present resin composition may be prepared (completed) within the manufacturing apparatus.
- the method and order of mixing the resin composition and the blowing agent, and optionally other ingredients, or (ii) the resin composition and the blowing agent, and optionally The method and order of supplying the other ingredients that can be used in are not particularly limited.
- the melt-kneaded product obtained in the first step may be cooled before extruding it into the low-pressure region.
- the second step is a step of extruding the melt-kneaded product obtained in the first step through a die into a region having a lower pressure than the internal pressure of the manufacturing apparatus, and shredding the extruded melt-kneaded product.
- the second step provides extruded foam particles. Therefore, the second step can also be said to be a granulation step of granulating the extruded polypropylene-based resin expanded particles.
- the region in which the melt-kneaded product obtained in the first step is extruded is not particularly limited as long as the pressure is lower than the internal pressure of the manufacturing apparatus.
- the melt-kneaded product obtained in the first step may be extruded into the gas phase or the liquid phase.
- the melt-kneaded material during foaming may be shredded, or the melt-kneaded material that has finished foaming may be shredded. If the melt kneaded material is shredded during foaming, the shredded melt kneaded material may complete foaming in the region beyond which it was extruded.
- the second step can be broadly divided into two methods, a cold cut method and a die face cut method, depending on the region where the melt-kneaded product obtained in the first step is extruded and the method of shredding the extruded melt-kneaded product. can be separated.
- the cold cut method include a method of foaming a melt-kneaded material containing a foaming agent extruded from a die, passing it through a water tank to cool it, taking the strand-shaped foam, and then shredding it (strand cut method). be done.
- the die face cut method is a method in which the molten kneaded material extruded from the die hole is cut by a rotating cutter while being in contact with the surface of the die or ensuring a slight gap.
- the die face cutting method can be further divided into the following three methods according to the difference in cooling method. That is, they are an underwater cut (hereinafter also referred to as UWC) method, a water ring cut (hereinafter sometimes referred to as WRC) method, and a hot cut (hereinafter sometimes referred to as HC) method.
- UWC underwater cut
- WRC water ring cut
- HC hot cut
- a chamber attached to the tip of the die is filled with cooling water adjusted to a predetermined pressure so as to come in contact with the resin discharge surface of the die, and the molten kneaded material extruded from the die hole is cut underwater.
- a cooling drum in which cooling water flows along the inner peripheral surface of the cooling drum connected to the die is arranged downstream from the die, and the melted and kneaded material cut by the cutter foams in the air. It is a method of cooling in the cooling water while or after foaming.
- the HC method is a method in which a melt-kneaded material is cut in air with a cutter, and the cut melt-kneaded material is cooled in air while or after foaming.
- the HC method also includes a mist cut method further including a step of spraying mixed mist of water and air. It is preferable that the method for shredding the molten kneaded material discharged in the second step is one or more selected from the group consisting of the HC method, the WRC method, and the UWC method.
- polypropylene resin foam molded product The polypropylene-based resin foam molded article according to one embodiment of the present invention is described in [3. extruded foamed particles of polypropylene resin], or the extruded foamed particles described in [4. Method for producing extruded expanded polypropylene resin particles].
- the in-mold foam molding method is not particularly limited, and a known method can be employed.
- the density of the present foam molded product is preferably 60 g/L to 300 g/L, more preferably 70 g/L to 300 g/L, even more preferably 80 g/L to 300 g/L, and 90 g/L. /L to 300 g/L is particularly preferred. According to the above configuration, the foam molded article has the advantage of being superior in features such as flexibility in shape, cushioning properties, light weight, and heat insulating properties.
- the density of the foamed molded body is calculated by performing the following (1) to (3) in order: (1) Measure the weight W1 (g) of the foamed molded body. (2) Measure the volume V1 (L) of the foam molded body.
- V1 can be obtained by submerging the foam molded article in a container filled with water and measuring the amount of overflowing water. In the case of a plate-shaped foam molded body, the volume V1 may be calculated from the length, width, and thickness.
- (3) Calculate the density by W1/V1.
- a foam molded product which has been sufficiently dried after being molded and kept in an environment of room temperature of 23° C. and humidity of 50% for 24 hours or more is used.
- Static compressive strength (kPa) ⁇ 0.000049 ⁇ D 3 +0.0542 ⁇ D 2 ⁇ 0.265 ⁇ D+146.9
- D in Formula 2 represents the density (g/L) of the foam molded article.
- the static compressive strength of a foam molded product is measured by the following method.
- only one side of the foam molded body perpendicular to the thickness direction is cut. That is, the uncut surface of the surface perpendicular to the thickness direction of the foam molded article is the surface (also referred to as the skin layer) that was in contact with the mold during in-mold foam molding.
- test piece in accordance with ISO 844, using a tensile compression tester (eg, TG-50kN manufactured by MinebeaMitsumi Co., Ltd.), 50% of the thickness when compressed at a speed of 10% (about 5 mm / min) Measure the value of compressive stress during compression. The obtained value is taken as the static compressive strength of the foam molded product.
- a tensile compression tester eg, TG-50kN manufactured by MinebeaMitsumi Co., Ltd.
- the present foam molded article has an advantage of high tensile elongation at break.
- the tensile elongation at break of the present foam molded product preferably satisfies Equation (1).
- Tensile elongation at break (%) ⁇ 0.000002 ⁇ D 3 +0.0011 ⁇ D 2 ⁇ 0.285 ⁇ D+32.2 (Formula 1)
- D in Formula 1 represents the density (g/L) of the foam molded article.
- the tensile elongation at break (%) of a foamed molded product is a value obtained from the results of a tensile test conducted based on ISO 1798 using the foamed molded product as a sample. Specifically, in a tensile test using a foam molded article, the tensile elongation at breakage of the foam molded article is measured and defined as the tensile elongation at break (%) of the foam molded article.
- the tensile elongation at break of the foam-molded article satisfies Formula 1
- the static compressive strength of the foam-molded article satisfies Formula 2.
- the foamed molded article according to one embodiment of the present invention is formed by molding extruded foamed particles obtained by extrusion foaming a resin composition containing a polypropylene-based resin having a branched structure.
- the open cell rate is 15% or less
- the density of the foamed molding is 60 g / L to 300 g / L
- the tensile elongation at break of the foamed molding satisfies Formula 1
- the static Polypropylene-based resin foam molded articles whose compressive strength satisfies formula 2 are also included:
- Tensile elongation at break (%) ⁇ 0.000002 ⁇ D 3 +0.0011 ⁇ D 2 ⁇ 0.285 ⁇ D+32.2
- D in formulas 1 and 2 represents the density (g/L) of the foam molded article.
- the resin composition may be the present resin composition described
- An embodiment of the present invention may have the following configuration.
- a polypropylene resin composition for extrusion foaming wherein the tensile elastic modulus defined in JIS K7161 is 1100 MPa or more and 3000 MPa or less in the total 100% by weight of the resin components in the extrusion foaming polypropylene resin composition.
- the polypropylene resin (A) having a branched structure is 65% by weight or more and 85% by weight or less, and the tensile elastic modulus specified by JIS K7161 is 550 MPa or more and 950 MPa or less, and the tensile fracture nominal specified by JIS K7161.
- a polypropylene resin composition for extrusion foaming comprising 15% by weight or more and 35% by weight or less of a polypropylene resin (B) having a branched structure and having a strain of 50% or more and 500% or less.
- the melting point of the polypropylene-based resin (A) having a branched structure is 145° C. or higher and 170° C. or lower, and the melting point of the polypropylene-based resin (B) having a branched structure is 120° C. or higher and lower than 145° C.
- the polypropylene-based resin composition for extrusion foaming according to .
- the crystal content ⁇ H measured by differential scanning calorimetry is 70 J / g or more and 150 J / g or less for the polypropylene resin (A) having a branched structure, and 40 J / g for the polypropylene resin (B) having a branched structure.
- a polypropylene-based resin composition for foaming is 70 J / g or more and 150 J / g or less for the polypropylene resin (A) having a branched structure, and 40 J / g for the polypropylene resin (B) having a branched structure.
- the melt flow rate of at least one of the polypropylene-based resin (A) having a branched structure and the polypropylene-based resin (B) having a branched structure is 0.3 g/10 minutes to 20.0 g/10 minutes.
- the polypropylene resin composition for extrusion foaming according to any one of [1] to [6].
- the polypropylene resin (A) having a branched structure and/or the polypropylene resin (B) having a branched structure includes a homopolypropylene resin having a branched structure, a random polypropylene resin having a branched structure, and a branched structure.
- the extruded polypropylene resin expanded particles according to [9] having an average cell diameter of 100 ⁇ m or more and 400 ⁇ m or less.
- the extruded polypropylene-based resin expanded particles according to [9] or [10] which have an open cell content of 15% or less.
- the foaming agent is one or more selected from the group consisting of aliphatic hydrocarbons, fluorocarbons, carbon dioxide gas, air, nitrogen and water.
- the method for shredding the molten kneaded material discharged in the second step is one or more selected from the group consisting of a hot cut method, a watering cut method, and an underwater cut method, [14] or [15] The method for producing extruded polypropylene-based resin expanded particles.
- a foam-molded article which is obtained by extruding and foaming a resin composition containing a polypropylene-based resin having a branched structure, and molding extruded foam particles, wherein the extruded foam particles have an open cell rate of 15%.
- the density of the foam molding is 60 g / L to 300 g / L, the tensile elongation at break of the foam molding satisfies formula 1, and the static compressive strength of the foam molding satisfies formula 2.
- MFR The MFR of the branched polypropylene resin used in the examples and comparative examples was determined by using the resin as a sample and conforming to the provisions of the B method described in ISO 1133 (1997), using the melt indexer S-01 (manufactured by Toyo Seiki Seisakusho). was obtained by measuring under the conditions of a temperature of 230° C. and a load of 2.16 kg. In addition, MFR measures the distance that the piston of the melt indexer S-01 moves within a certain time, and from the obtained distance and the density of the sample at the measured temperature, the weight of the sample extruded from the orifice in 10 minutes converted to .
- the fixed time is 120 seconds when the melt flow rate is more than 0.1 g/10 minutes and 1.0 g/10 minutes or less, and more than 1.0 g/10 minutes and 3.5 g/10 minutes or less. In the case of , it was 60 seconds, over 3.5 g/10 minutes, and 30 seconds in the case of 30.0 g/10 minutes or less.
- ⁇ Melting point> The melting points of the branched polypropylene resins used in Examples and Comparative Examples were obtained by measuring the branched polypropylene resins as samples by differential scanning calorimetry.
- a differential scanning calorimeter DSC6200 type manufactured by Seiko Instruments Inc. was used.
- the method for measuring the melting point by differential scanning calorimetry was as follows: (a1) The sample was melted by increasing the temperature of the sample from 40°C to 220°C at a rate of 10°C/min. (a2) Then, the sample was crystallized by lowering the temperature of the obtained sample from 220 ° C. to 40 ° C.
- ⁇ Tensile modulus and nominal strain at break> The tensile modulus and nominal strain at break of the branched polypropylene resins used in Examples and Comparative Examples were measured according to JIS K7161.
- melt tension of the branched polypropylene resins used in Examples and Comparative Examples was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho, Ltd., Japan). Specifically, (1) to (5) were as follows: (1) A barrel with a diameter of 9.55 mm heated to 200° C. was filled with the branched polypropylene resin used in Examples and Comparative Examples.
- ⁇ Amount of crystals ⁇ H> The crystal content ⁇ H of the branched polypropylene-based resins used in Examples and Comparative Examples was calculated by performing the following (1) to (2) in order: (1) the second elevation measured by the DSC method; In the DSC curve of the branched polypropylene-based resin obtained when warm (that is, in the above (a3)), the 80° C. point on the DSC curve was A, and the melting end point was B. (2) The amount of heat (J/g) calculated from the area surrounded by the line segment AB and the DSC curve was defined as ⁇ H.
- the range of steam pressure during in-mold foam molding was determined to obtain a polypropylene-based resin foam-molded article that satisfies the following: (x1) sufficient fusion between extruded foamed particles (internal fusion rate of 80 % or more), (x2) the gaps between the extruded foam particles are sufficiently filled, (x3) the surface is beautiful, (x4) the surface is not melted, and (x5) in-mold foam molding A foamed molded product in which the shape of the mold used for the above is transferred without shrinking by 5% or more with respect to the dimensions of the mold. For the above evaluation, the molded product was dried in a 75 to 80° C. dryer for 12 to 24 hours after molding, and was subjected to an environment of 23° C. and humidity of 50% for 24 hours or more.
- ⁇ Density of foamed molded product The densities of the foamed molded articles obtained in Examples and Comparative Examples were calculated by performing the following (1) to (3) in order: (1) the weight W1 (g) of the foamed molded article was measured; ) The length, width, and thickness dimensions of the foamed molded product were measured, and the volume V1 (L) was calculated; (3) The density was calculated by W1/V1.
- ⁇ Static Compressive Strength> A test piece having a length/width/thickness of 50/50/50 mm was cut out from the foamed molded articles obtained in Examples and Comparative Examples. Here, only one side of the foam molded body perpendicular to the thickness direction was cut. That is, the uncut surface of the surface perpendicular to the thickness direction of the foam molded article is the surface (also referred to as the skin layer) that was in contact with the mold during in-mold foam molding.
- test piece in accordance with ISO 844, using a tensile compression tester (eg, TG-50kN manufactured by MinebeaMitsumi Co., Ltd.), 50% when compressed at a speed of 10% of the thickness (about 5 mm / min) Compressive stress values during compression were measured. The obtained value was taken as the static compressive strength of the foam molded article.
- a tensile compression tester eg, TG-50kN manufactured by MinebeaMitsumi Co., Ltd.
- ⁇ Tensile elongation at break> The tensile elongation at break (%) of the foamed molded articles obtained in Examples and Comparative Examples was obtained from the results of a tensile test conducted based on ISO 1798 using the foamed molded article as a sample. Specifically, in a tensile test using the sample, the value of the tensile elongation at break when the sample was broken was measured and defined as the tensile elongation at break (%) of the foam molded product.
- ⁇ material ⁇ The following materials were used in Examples and Comparative Examples. ⁇ Raw material resin> ⁇ F-724NPC (manufactured by Prime Polymer Co., Ltd., linear polypropylene resin (polypropylene random copolymer), melting point: 150 ° C., MFR: 7 g / 10 minutes) ⁇ F113G (manufactured by Prime Polymer Co., Ltd., linear polypropylene resin (propylene homopolymer), melting point: 162 ° C., MFR: 3 g / 10 minutes) WB140HMS (manufactured by Borealis, branched polypropylene resin, melting point 162° C., MFR: 2 g/10 minutes, melt tension 14.4 cN) ⁇ F227D (manufactured by Prime Polymer Co., Ltd., linear polypropylene resin (polypropylene random copolymer), melting point: 140 ° C., MFR: 7 g / 10 minutes) ⁇
- t-butyl peroxy isopropyl carbonate manufactured by NOF Corporation, Perbutyl (registered trademark) I ⁇ Additive> ⁇ Talc: Luzenac 20MO manufactured by Imerys - Carbon black Carbon black was used as a carbon black masterbatch having a carbon black concentration of 40%.
- a carbon black masterbatch was prepared as follows. Carbon black is blended into the mixture of branched polypropylene resins used in Examples and Comparative Examples to a concentration of 40%, melt-kneaded with an extruder, and the resulting melt-kneaded product is extruded into water and cut.
- Example 8 carbon black was added to a mixture containing 80% by weight of Resin A and 20% by weight of Resin D.
- inorganic colorant in Tables 2 to 4, numbers outside the parentheses and numbers inside the parentheses are shown. The numbers outside the parentheses indicate the amount of the carbon black masterbatch blended, and the numbers in the parentheses indicate the amount of carbon black actually blended.
- Resin A was produced as a branched polypropylene resin as follows. First, F-724NPC as a raw material resin was supplied to a twin-screw extruder, and then 1.0 part by weight of a radical polymerization initiator was supplied to the twin-screw extruder with respect to 100 parts by weight of the raw material resin. Thereafter, 0.45 parts by weight of a conjugated diene compound is supplied to 100 parts by weight of the raw material resin to a twin-screw extruder containing the melt-kneaded raw material resin and a radical polymerization initiator, and a resin mixture is formed in the twin-screw extruder. was prepared.
- the feed rate of the resin mixture to the twin-screw extruder was 70 kg/h.
- the supply amount of the resin mixture means the amount per unit time of the resin mixture prepared in the twin-screw extruder when the conjugated diene compound is supplied to the twin-screw extruder.
- the prepared resin mixture was melt-kneaded in a twin-screw extruder at a cylinder temperature of 200°C and a screw rotation speed of 230 rpm to obtain a branched polypropylene resin.
- the resulting branched polypropylene-based resin was extruded from a die in the form of strands at an extruding rate of 70 kg/h.
- the discharged branched polypropylene resin (strand) was (a) cooled with water, and then (b) chopped into pellets (cylindrical shape).
- Resins B and D to H were obtained in the same manner as above, except that the type of raw material resin, the amount of the radical polymerization initiator and/or the amount of the conjugated diene compound added were changed as shown in Table 1.
- resin C WB140HMS, which is a branched polypropylene resin, was used.
- resin J RD208CF was used. That is, these resins C and J were used without being separately reacted with the conjugated diene compound as described above.
- Examples 1 to 8, Comparative Examples 1 to 14 As an apparatus used for producing extruded expanded particles, an apparatus in which a twin-screw extruder having a shaft diameter of ⁇ 26 mm, a melt cooler, a diverter valve and a die were connected in series was used. The types of resins and additives shown in Tables 2 to 4 were blended in the amounts shown in Tables 2 to 4 to prepare polypropylene resin compositions for extrusion foaming. Then, the resin composition was supplied to a twin-screw extruder and melt-kneaded at cylinder temperatures (extruder temperatures) shown in Tables 2 to 4. Further, carbon dioxide gas as a foaming agent was supplied from a press-fitting section provided in the middle of the extruder in the amounts shown in Tables 2 to 4 using a metering pump, and the resulting composition was further melt-kneaded.
- cylinder temperatures extruder temperatures
- the resulting melt-kneaded material was cooled by passing through a melt cooler connected to the tip of the twin-screw extruder and set to the temperatures shown in Tables 2-4.
- the melt-kneaded material is extruded from a die attached to the tip of the melt cooler into air at a pressure lower than the internal pressure of the device (HC method), or into a region filled with water at a pressure lower than the internal pressure of the device (UWC method). and foamed.
- a rotary cutter attached to the tip of the die cut the composition immediately after passing through the die to obtain extruded foamed particles.
- the temperature of the melt-kneaded material (resin temperature at the die) immediately before entering the die was the temperature shown in Tables 2-4.
- the temperature of the melt-kneaded material immediately before entering the die is set near the outlet of the diverter valve, specifically, at a point 10 mm upstream from the die inlet along the extrusion direction so as to be in contact with the melt-kneaded material. It was measured with a thermometer.
- the obtained extruded foamed particles were measured for bulk density, average cell diameter and open cell ratio, and the results are shown in Tables 2-4. Further, the formed width was evaluated using the obtained extruded foamed particles, and the obtained results are described in the columns of "steam pressure range" and "formed width” in Tables 2 to 4.
- Table 1 shows the physical properties of resins A to H and J.
- Resins A to C correspond to the branched polypropylene resin (A).
- Resins D to F correspond to the branched polypropylene resin (B).
- Resins G and H correspond to other branched polypropylene-based resins (for convenience, they are referred to as branched polypropylene-based resins (C)).
- Resin J is a linear polypropylene resin.
- Tables 2 to 4 show the composition of the extruded foamed particles of Examples 1 to 8 and Comparative Examples 1 to 14, the production conditions, the moldability of the extruded foamed particles, the physical properties of the foamed molded articles, and the like.
- branched polypropylene resin (A), branched polypropylene resin (B), branched polypropylene resin (C), and linear polypropylene resin are simply (A), (B), (C), described as linear.
- the resins listed in parentheses in Tables 2 to 4 for resins A, B, and D to H are raw material resins used to produce resins A, B, and D to H, respectively.
- the resins listed in parentheses in Tables 2-4 for resins C and J are resins C and J themselves.
- the resin formulations in Tables 2 to 4 show the proportion of each resin in 100% by weight of the total resin components (mixture of resins A to H and J).
- the amounts of additive and foaming agent added in Tables 2 to 4 indicate the amount added to a total of 100 parts by weight of the resin components.
- any of the resins A to C corresponding to the branched polypropylene resin (A) having a tensile modulus of elasticity of 1100 MPa or more and a tensile modulus of 550 MPa to 950 MPa and a tensile fracture nominal strain contains a specific amount of each of the resins D to F corresponding to the branched polypropylene resin (B) having a content of 50% or more. It can be seen that in Examples 1 to 8, extruded polypropylene resin particles with excellent moldability and foamed polypropylene resin articles with excellent static compressive strength and tensile elongation at break can be obtained.
- Comparative Example 4 in which the amount of resin D used, which corresponds to the branched polypropylene resin (B), exceeds 35% by weight is compared to Examples 1 and 2, in which the amount of resin D used is 35% by weight or less. Inferior in strength. Comparative Example 5, in which the amount of resin E corresponding to the branched polypropylene resin (B) used exceeds 35% by weight, has a static compressive strength compared to Example 3 in which the amount of resin E used is 35% by weight or less. Inferior.
- Comparative Example 6 in which the amount of resin F used, which corresponds to the branched polypropylene-based resin (B), exceeds 35% by weight is compared to Examples 4 and 5, in which the amount of resin F used is 35% by weight or less, compared to static compression. Inferior in strength.
- Comparative Example 11 in which the amount of resin B used, which corresponds to the branched polypropylene resin (A), exceeds 85% by weight, the tensile elongation at break compared to Example 7 in which the amount of resin B used is 85% by weight or less inferior to the rate.
- Comparative Example 12 in which the amount of resin C corresponding to the branched polypropylene resin (A) used exceeds 85% by weight, has a tensile elongation at break compared to Example 8 in which the amount of resin C used is 85% by weight or less. inferior to the rate.
- Comparative Example 13 in which the amount of resin D used, which corresponds to the branched polypropylene resin (B), exceeds 35% by weight, compared to Examples 6 to 8 in which the amount of resin D used was 35% by weight or less, compared to static compression. Inferior in strength.
- Comparative Example 14 in which resin J, which is a linear polypropylene-based resin, was used without using a resin corresponding to the branched polypropylene-based resin (B), the open cell ratio was increased, and the molding width could not be measured. .
- Example 1 contains 80% by weight of resin A and 20% by weight of resin D.
- the static compressive strength is 480 kPa and the tensile elongation at break is 16% as in Comparative Example 1.
- Resin D is 100% by weight, the static compressive strength is 350 kPa and the tensile elongation at break is 25% as in Comparative Example 4.
- extruded expanded particles with excellent moldability can be provided. Therefore, one embodiment of the present invention can be suitably used to obtain a foam molded article having excellent static compressive strength and tensile elongation at break. Therefore, one embodiment of the present invention can be suitably used in fields such as automobile interior parts, cushioning materials, packaging materials, and heat insulating materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
引張破断伸び率(%)≧-0.000002×D3+0.0011×D2-0.285×D+32.2 (式1)
静的圧縮強度(kPa)≧0.000049×D3+0.0542×D2-0.265×D+146.9 (式2)
式1および式2中のDは、前記発泡成形体の密度(g/L)を表す。
本発明者は、押出発泡法によって得られるポリプロピレン系樹脂発泡粒子から得られる発泡成形体は、除圧発泡法によって得られるポリプロピレン系樹脂発泡粒子から得られる発泡成形体に比べて、静的圧縮強度および引張破断伸び率に劣ることを見出した。この問題点を解決すべく本発明者が検討したところ、引張弾性率が特定の範囲である分岐状ポリプロピレン系樹脂を使用することにより静的圧縮強度をおおよそ改善可能であったが、引張破断伸び率に劣る傾向にあった。また、分岐状ポリプロピレン系樹脂に汎用の線状ポリプロピレン系樹脂またはエラストマー等の各種樹脂をブレンドすることにより引張破断伸び率をある程度改善可能であったが、その代わり静的圧縮強度が低下する傾向にあった。分岐状ポリプロピレン系樹脂に汎用の線状ポリプロピレン系樹脂をブレンドした場合、成形性に劣る傾向も見られた。
本発明の一実施形態に係る押出発泡用ポリプロピレン系樹脂組成物は、当該押出発泡用ポリプロピレン系樹脂組成物中の樹脂成分の合計100重量%中に、JIS K7161に規定される引張弾性率が1100MPa以上である、分岐構造を有するポリプロピレン系樹脂(A)65重量%以上85重量%以下と、JIS K7161に規定される引張弾性率が550MPa以上950MPa以下であり、かつJIS K7161に規定される引張破壊呼びひずみが50%以上である、分岐構造を有するポリプロピレン系樹脂(B)15重量%以上35重量%以下と、を含む。
本明細書において、「分岐構造を有するポリプロピレン系樹脂」とは、(a)分岐構造が導入されていないポリプロピレン系樹脂の分子同士を分子間で一部架橋させたポリプロピレン系樹脂、および(b)分岐構造が導入されていないポリプロピレン系樹脂に対して、(ポリ)プロピレン以外のジエン化合物等を分岐鎖として導入したポリプロピレン系樹脂を意図する。本明細書において、「分岐構造が導入されていないポリプロピレン系樹脂」を「線状ポリプロピレン系樹脂」と称する場合があり、「分岐構造を有するポリプロピレン系樹脂」を「分岐状ポリプロピレン系樹脂」と称する場合があり、「線状ポリプロピレン系樹脂」および「分岐状ポリプロピレン系樹脂」をまとめて「ポリプロピレン系樹脂」と称する場合がある。線状ポリプロピレン系樹脂は、分岐状ポリプロピレン系樹脂の原料ともいえる。
分岐構造を有するポリプロピレン系樹脂(分岐状ポリプロピレン系樹脂)は、線状ポリプロピレン系樹脂に分岐構造を導入することによって得ることができる。線状ポリプロピレン系樹脂に分岐構造を導入する方法としては、特に限定されないが、例えば、(b1)線状ポリプロピレン系樹脂に放射線を照射する方法、および(b2)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練する方法などが挙げられる。
線状ポリプロピレン系樹脂は、(a)プロピレンの単独重合体であってもよく、(b)プロピレンとプロピレン以外の単量体とのブロック共重合体もしくはランダム共重合体であってもよく、または(c)これらの2種以上の混合物であってもよい。
共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、および2,5-ジメチル-2,4-ヘキサジエン、などがあげられる。これら共役ジエン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これら共役ジエン化合物の中では、(a)安価で取り扱い点、および(b)反応が均一に進みやすい点から、ブタジエン、およびイソプレンが特に好ましい。
ラジカル重合開始剤は、線状ポリプロピレン系樹脂および共役ジエン化合物からの水素引き抜き能を有する有機過酸化物である。本発明の一実施形態において好適に用いられるラジカル重合開始剤としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。
本樹脂組成物は、必要に応じて、(a)酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤などの安定剤、並びに/または、(b)気泡核形成剤、無機系着色剤、有機系着色剤、滑剤、可塑剤、充填材、強化材、難燃剤、および帯電防止剤などの添加剤、をさらに含んでいてもよい。これらの成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、本樹脂組成物を押出発泡することにより得られる。本押出発泡粒子は、本樹脂組成物を含むとも言える。本押出発泡粒子は、基材樹脂として本樹脂組成物を含むとも言える。基材樹脂は、押出発泡粒子を実質的に構成している樹脂成分であるとも言える。
本押出発泡粒子の平均セル径は、100μm~400μmであることが好ましく、120μm~350μmであることがより好ましく、150μm~300μmであることがさらに好ましい。当該構成によると、押出発泡粒子の成形時に、セルが破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点を有する。
平均セル径(μm)=2000/平均セル数。
本押出発泡粒子の連続気泡率は、低いほど好ましい。本押出発泡粒子の連続気泡率は、15%以下であることが好ましく、10%以下であることがより好ましく、7%以下であることがさらに好ましく、5%以下であることが特に好ましい。本押出発泡粒子の連続気泡率の下限値は特に限定されず、例えば0%以上である。当該構成によると、(a)押出発泡粒子の成形時に、セルが破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、圧縮強度および断熱性などの特徴がより発揮されるという利点を有する。
本押出発泡粒子の嵩密度は、40g/L以上であることが好ましく、50g/L以上であることが好ましく、60g/L以上であることがより好ましく、70g/L以上であることがさらに好ましく、80g/L以上であることが特に好ましい。本押出発泡粒子の嵩密度の上限値は特に限定されず、例えば300g/L以下である。発泡成形体の材料である押出発泡粒子が低倍であるほど、得られる発泡成形体の引張破断伸び率は低い傾向にある。本押出発泡粒子は上述の構成を有するため、40g/L以上の嵩密度を有するほどに低倍であっても、引張破断伸び率に優れる発泡成形体を提供できるという利点を有する。また、押出発泡粒子の嵩密度が前記範囲内である場合、当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点も有する。
嵩密度(g/L)=押出発泡粒子の重量W(g)/容器の体積V(L)。
本押出発泡粒子は、成形幅が広い(例えば0を超える)という利点を有する。本明細書において、押出発泡粒子の成形幅が大きいほど、当該押出発泡粒子は成形性に優れることを意図する。本明細書において、「押出発泡粒子の成形幅」とは、押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、型内発泡成形時の蒸気圧(ゲージ圧)の幅を意図する:(x1)押出発泡粒子同士の融着が十分(例えば融着率80%以上)であり、(x2)押出発泡粒子間の隙間が十分に埋まっており、(x3)表面が美麗であり、(x4)表面がメルトしておらず、かつ(x5)型内発泡成形に使用した型(金型)の寸法に対して5%以上収縮することなく、当該金型の形状が転写されている、発泡成形体。また、発泡成形体が金型に張り付いて取り出せなくなった場合、発泡成形体が得られない、と判断する。本明細書において、例えば、押出発泡粒子を型内発泡成形したとき、上述した(x1)~(x5)を満たす発泡成形体を得ることができる、型内発泡成形時の蒸気圧がP1~P2である場合、P2-P1で得られる「値」を、「押出発泡粒子の成形幅」とする。また、本明細書において、「P1~P2」を「実施可能な蒸気圧幅」とも称する。
押出発泡法により得られる押出発泡粒子は、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであるという特徴を有する。換言すれば、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであるポリプロピレン系樹脂発泡粒子は、押出発泡法により得られたものである蓋然性が高い。本押出発泡粒子もまた、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであり得る。
本押出発泡粒子の製造方法としては、特に限定されず、公知の押出発泡方法を採用できる。例えば本押出発泡粒子の製造方法は、本樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程、および第一の工程で得られた溶融混練物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程、を含む。
第一の工程について、具体的に説明する。第一の工程の具体例としては、製造装置にて、本樹脂組成物を溶融させて、本樹脂組成物に発泡剤を溶解させる工程が挙げられる。第一の工程は、本樹脂組成物と発泡剤とを含む溶融混練物を調製する工程ともいえる。
第二の工程は、第一の工程で得られた溶融混練物を、ダイを通して製造装置の内圧よりも低圧である領域に押出し、押し出された溶融混練物を細断する工程である。第二の工程により、押出発泡粒子が得られる。そのため、第二の工程は、ポリプロピレン系樹脂押出発泡粒子を造粒する造粒工程ともいえる。
本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体は、〔3.ポリプロピレン系樹脂押出発泡粒子〕の項に記載の本押出発泡粒子、または〔4.ポリプロピレン系樹脂押出発泡粒子の製造方法〕の項に記載の製造方法で得られる押出発泡粒子を型内発泡成形して得られる。型内発泡成形方法としては特に限定されず、公知の方法を採用できる。
本発泡成形体の密度は、60g/L~300g/Lであることが好ましく、70g/L~300g/Lであることがより好ましく、80g/L~300g/Lであることがさらに好ましく、90g/L~300g/Lであることが特に好ましい。前記構成によると、当該発泡成形体は、形状の任意性、緩衝性、軽量性、および断熱性などの特徴により優れるという利点を有する。
本発泡成形体の静的圧縮強度は、式2を満足していることが好ましい。
静的圧縮強度(kPa)≧0.000049×D3+0.0542×D2-0.265×D+146.9 (式2)
式2中のDは、前記発泡成形体の密度(g/L)を表す。
本発泡成形体は、引張破断伸び率が大きいという利点を有する。本明細書において、発泡成形体の引張破断伸び率が大きいほど、当該発泡成形体は耐破断性に優れることを意図する。
引張破断伸び率(%)≧-0.000002×D3+0.0011×D2-0.285×D+32.2 (式1)
式1中のDは、前記発泡成形体の密度(g/L)を表す。
引張破断伸び率(%)≧-0.000002×D3+0.0011×D2-0.285×D+32.2 (式1)
静的圧縮強度(kPa)≧0.000049×D3+0.0542×D2-0.265×D+146.9 (式2)
式1および式2中のDは、前記発泡成形体の密度(g/L)を表す。
前記樹脂組成物は上述の本樹脂組成物であってもよく、前記押出発泡粒子は上述の本押出発泡粒子であってもよい。
〔1〕押出発泡用ポリプロピレン系樹脂組成物であって、当該押出発泡用ポリプロピレン系樹脂組成物中の樹脂成分の合計100重量%中に、JIS K7161に規定される引張弾性率が1100MPa以上3000MPa以下である、分岐構造を有するポリプロピレン系樹脂(A)65重量%以上85重量%以下と、JIS K7161に規定される引張弾性率が550MPa以上950MPa以下であり、かつJIS K7161に規定される引張破壊呼びひずみが50%以上500%以下である、分岐構造を有するポリプロピレン系樹脂(B)15重量%以上35重量%以下と、を含む、押出発泡用ポリプロピレン系樹脂組成物。
〔2〕分岐構造を有するポリプロピレン系樹脂(A)の融点が145℃以上170℃以下であり、分岐構造を有するポリプロピレン系樹脂(B)の融点が120℃以上145℃未満である、〔1〕に記載の押出発泡用ポリプロピレン系樹脂組成物。
〔3〕示差走査熱量測定で測定される結晶量ΔHが、分岐構造を有するポリプロピレン系樹脂(A)は70J/g以上150J/g以下、分岐構造を有するポリプロピレン系樹脂(B)は40J/g以上65J/g以下である、〔1〕または〔2〕に記載の押出発泡用ポリプロピレン系樹脂組成物。
〔4〕分岐構造を有するポリプロピレン系樹脂(A)のJIS K7161に規定される引張破壊呼びひずみが5%以上50%未満である、〔1〕~〔3〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物。
〔5〕分岐構造を有するポリプロピレン系樹脂(A)および分岐構造を有するポリプロピレン系樹脂(B)の少なくともいずれか一方のメルトテンションは、5cN~20cNである、〔1〕~〔4〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物。
〔6〕分岐構造を有するポリプロピレン系樹脂(A)および分岐構造を有するポリプロピレン系樹脂(B)の少なくともいずれか一方は、共役ジエン化合物に由来する構造単位を含む、〔1〕~〔5〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物。
〔7〕分岐構造を有するポリプロピレン系樹脂(A)および分岐構造を有するポリプロピレン系樹脂(B)の少なくともいずれか一方のメルトフローレートは、0.3g/10分~20.0g/10分である、〔1〕~〔6〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物。
〔8〕分岐構造を有するポリプロピレン系樹脂(A)および/または分岐構造を有するポリプロピレン系樹脂(B)は、分岐構造を有するホモポリプロピレン系樹脂、分岐構造を有するランダムポリプロピレン系樹脂、および分岐構造を有するブロックポリプロピレン系樹脂からなる群から選ばれる1つ以上である、〔1〕~〔7〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物。
〔9〕〔1〕~〔8〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子。
〔10〕平均セル径が100μm以上400μm以下である、〔9〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔11〕連続気泡率が15%以下である、〔9〕または〔10〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔12〕嵩密度が40g/L以上300g/L以下である、〔9〕~〔11〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔13〕DSC測定により得られる前記押出発泡粒子のDSC曲線において結晶ピークが1つである、〔1〕~〔12〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔14〕〔1〕~〔8〕のいずれか1つに記載の押出発泡用ポリプロピレン系樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程と、
前記第一の工程で得られた溶融混練物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程とを含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。
〔15〕前記発泡剤は、脂肪族炭化水素類、フッ化炭化水素類、炭酸ガス、空気、窒素および水からなる群から選ばれる1種以上である、〔14〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔16〕第二の工程において吐出された溶融混練物の細断方法が、ホットカット法、ウォータリングカット法、およびアンダーウォーターカット法からなる群から選ばれる1つ以上である、〔14〕または〔15〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔17〕〔9〕~〔13〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子を型内発泡成形して得られるポリプロピレン系樹脂発泡成形体。
〔18〕前記発泡成形体の引張破断伸び率が式1を満たし、かつ前記発泡成形体の静的圧縮強度が式2を満たす、〔17〕に記載のポリプロピレン系樹脂発泡成形体:
引張破断伸び率(%)≧-0.000002×D3+0.0011×D2-0.285×D+32.2 (式1)
静的圧縮強度(kPa)≧0.000049×D3+0.0542×D2-0.265×D+146.9 (式2)
式1および式2中のDは、前記発泡成形体の密度(g/L)を表す。
〔19〕発泡成形体であって、分岐構造を有するポリプロピレン系樹脂を含む樹脂組成物を押出発泡することにより得られる押出発泡粒子を成形してなり、前記押出発泡粒子の連続気泡率は15%以下であり、前記発泡成形体の密度は60g/L~300g/Lであり、前記発泡成形体の引張破断伸び率が式1を満たし、かつ前記発泡成形体の静的圧縮強度が式2を満たすポリプロピレン系樹脂発泡成形体:
引張破断伸び率(%)≧-0.000002×D3+0.0011×D2-0.285×D+32.2 (式1)
静的圧縮強度(kPa)≧0.000049×D3+0.0542×D2-0.265×D+146.9 (式2)
式1および式2中のDは、前記発泡成形体の密度(g/L)を表す。
<MFR>
実施例および比較例で用いた分岐状ポリプロピレン系樹脂のMFRは、当該樹脂を試料として、ISO 1133(1997)記載のB法の規定に準拠し、メルトインデクサーS-01(東洋精機製作所製)を用い、温度230℃および荷重2.16kgの条件下で、測定して求めた。また、MFRは、メルトインデクサーS-01のピストンが一定時間内に移動する距離を測定し、得られた距離と測定温度における前記試料の密度から、10分間にオリフィスから押し出される前記試料の重量に換算した値とした。なお、前記一定時間とは、メルトフローレートが0.1g/10分を超え、1.0g/10分以下の場合は120秒間、1.0g/10分を超え、3.5g/10分以下の場合は、60秒間、3.5g/10分を超え、30.0g/10分以下の場合は30秒間とした。
実施例および比較例で用いた分岐状ポリプロピレン系樹脂の融点は、当該分岐状ポリプロピレン系樹脂を試料として、示差走査熱量計法により測定して求めた。示差走査熱量計としては、セイコーインスツルメンツ(株)製、DSC6200型を用いた。示差走査熱量計法による融点の測定方法は、以下の通りであった:(a1)試料の温度を10℃/分の昇温速度で40℃から220℃まで昇温することにより当該試料を融解させた;(a2)その後、得られた試料の温度を10℃/分の降温速度で220℃から40℃まで降温することにより当該試料を結晶化させた;(a3)その後、さらに、結晶化された試料の温度を10℃/分の昇温速度で40℃から220℃まで昇温した。2回目の昇温時(すなわち(a3)のとき)に得られる当該試料のDSC曲線のピーク(融解ピーク)の温度を融点とした。
実施例および比較例で用いた分岐状ポリプロピレン系樹脂の引張弾性率および引張破壊呼びひずみは、JIS K7161に従って測定した。
実施例および比較例で用いた分岐状ポリプロピレン系樹脂のメルトテンションを、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定した。具体的には、以下(1)~(5)の通りであった:(1)200℃に加熱された径9.55mmのバレルに実施例および比較例で用いた分岐状ポリプロピレン系樹脂を充填した;(2)次いで、分岐状ポリプロピレン系樹脂を10分間、200℃に加熱されたバレル内で加熱した;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、分岐状ポリプロピレン系樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始した;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させた;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重をメルトテンションとして測定した。
実施例および比較例で用いた分岐状ポリプロピレン系樹脂の結晶量ΔHは、以下の(1)~(2)を順に実施して算出した:(1)前記DSC法により測定される2回目の昇温時(すなわち前記(a3)のとき)に得られる分岐状ポリプロピレン系樹脂のDSC曲線において、当該DSC曲線上の80℃の点をA、融解終了点をBとした。;(2)線分ABとDSC曲線に囲まれた領域から算出される熱量(J/g)をΔHとした。
押出発泡粒子の嵩密度は、以下(1)~(3)を順に実施して算出した:(1)押出発泡粒子を、体積V(L)が既知である容器、例えばメスシリンダー、ビーカー、バケツ等へ、容器からあふれるまで入れた;(2)容器の粉面(上端)を擦切り、容器内の押出発泡粒子の重量W(g)を測定した;(3)以下の式により、押出発泡粒子の嵩密度を算出した:
嵩密度(g/L)=押出発泡粒子の重量W(g)/容器の体積V(L)。
以下(1)~(4)を順に実施して算出した:(1)押出発泡粒子の中心を通るように、押出発泡粒子をカミソリで切断した;(2)得られた切断面を、光学顕微鏡で観察した;(3)当該切断面に2000μmの直線を引き、その直線上に存在するセル数を計測した。10個の押出発泡粒子に関して前記セル数を測定し、それらの相加平均セル数を算出した;(4)下記式で、試験に使用した押出発泡粒子の平均セル径を算出した:
平均セル径(μm)=2000/平均セル数。
押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定した。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出した:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm3)を測定した;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈めた;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm3)を求めた;(4)以下の式により、押出発泡粒子の連続気泡率を算出した:
連続気泡率(%)=((Va-Vc)×100)/Va。
縦/横/厚み=400/300/60mmの金型に対し、クラッキングを18mm設け、金型内に押出発泡粒子を充填した。型内発泡成形の蒸気圧を0.02MPa(ゲージ圧)ずつ変化させながら、蒸気圧のある一定の範囲内において、押出発泡粒子を型内発泡成形しポリプロピレン系樹脂発泡成形体を得た。このとき、以下を満たすポリプロピレン系樹脂発泡成形体を得ることができる、型内発泡成形時の蒸気圧の幅を求めた:(x1)押出発泡粒子同士の融着が十分(内部融着率80%以上)であり、(x2)押出発泡粒子間の隙間が十分に埋まっており、(x3)表面が美麗であり、(x4)表面がメルトしておらず、かつ(x5)型内発泡成形に使用した型(金型)の寸法に対して5%以上収縮することなく、当該金型の形状が転写されている、発泡成形体。なお、上記評価には、成形後75~80℃乾燥機にて12~24時間乾燥させ、23℃湿度50%の環境下で24時間以上経過した成形体を用いて評価した。
実施例および比較例で得られた発泡成形体の密度は、以下(1)~(3)を順に実施して算出した:(1)発泡成形体の重量W1(g)を測定した;(2)発泡成形体の縦・横・厚みの寸法を測定し、体積V1(L)を算出した;(3)W1/V1にて密度を算出した。
実施例および比較例で得られた発泡成形体から、縦/横/厚み=50/50/50mmの試験片を切り出した。ここで、発泡成形体の厚み方向に垂直な面は、片面のみをカットした。すなわち、発泡成形体の厚み方向に垂直な面の、カットしていない面は、型内発泡成形時に金型に接触していた面(スキン層ともいう)である。当該試験片について、ISO 844に準拠し、引張圧縮試験機(例えば、ミネベアミツミ社製、TG-50kN)を用いて、厚みの10%(約5mm/分)の速度で圧縮したときの50%圧縮時の圧縮応力の値を測定した。得られた値を、発泡成形体の静的圧縮強度とした。
実施例および比較例で得られた発泡成形体の引張破断伸び率(%)は、当該発泡成形体を試料として、ISO 1798に基づいて行った引張試験の結果から求めた。具体的には、当該試料を用いた引張試験において、当該試料が破断する際の引張破断伸び率の値を測定し、発泡成形体の引張破断伸び率(%)とした。
実施例および比較例では、以下の材料を使用した。
<原料樹脂>
・F-724NPC(プライムポリマー社製、線状ポリプロピレン系樹脂(ポリプロピレン系ランダム共重合体)、融点:150℃、MFR:7g/10分)
・F113G(プライムポリマー社製、線状ポリプロピレン系樹脂(プロピレン単独重合体)、融点:162℃、MFR:3g/10分)
・WB140HMS(Borealis社製、分岐状ポリプロピレン系樹脂、融点162℃、MFR:2g/10分、メルトテンション14.4cN)
・F227D(プライムポリマー社製、線状ポリプロピレン系樹脂(ポリプロピレン系ランダム共重合体)、融点:140℃、MFR:7g/10分)
・F-744NP(プライムポリマー社製、線状ポリプロピレン系樹脂(ポリプロピレン系ランダム共重合体)、融点134℃、MFR:7g/10分)
・E228(プライムポリマー社製、線状ポリプロピレン系樹脂(ポリプロピレン系ランダム共重合体)、融点146℃、MFR:8g/10分)
・RD208CF(Borealis社製、線状ポリプロピレン系樹脂(ポリプロピレン系ランダム共重合体)、融点140℃、MFR:8g/10分)
<共役ジエン化合物>
・イソプレン:クラレ社製、イソプレンモノマー
<ラジカル重合開始剤>
・t-ブチルパーオキシイソプロピルカーボネート:日油社製、パーブチル(登録商標)I
<添加剤>
・タルク:Imerys社製、Luzenac 20MO
・カーボンブラック
なお、カーボンブラックは、カーボンブラックの濃度が40%であるカーボンブラックマスターバッチとして使用した。カーボンブラックマスターバッチは、以下のようにして調製した。実施例および比較例で用いた分岐状ポリプロピレン系樹脂の混合物に濃度40%になるようにカーボンブラックを配合し、押出機にて溶融混練し、得られた溶融混練物を水中に押出しカットすることで作製した。例えば実施例8では樹脂A80重量%と樹脂D20重量%とを含む混合物にカーボンブラックを配合した。表2~4の「無機系着色剤」の欄には、括弧外の数字と、括弧内の数値とを表記している。括弧外の数字はカーボンブラックマスターバッチの配合量を示し、括弧内の数字は実際に配合されたカーボンブラックの量を示している。
分岐状ポリプロピレン系樹脂として以下のように樹脂Aを製造した。まず、原料樹脂であるF-724NPCを二軸押出機に供給し、次いで当該原料樹脂100重量部に対してラジカル重合開始剤1.0重量部を二軸押出機に供給した。その後、溶融混練された原料樹脂およびラジカル重合開始剤を含む二軸押出機に対して、原料樹脂100重量部に対して共役ジエン化合物0.45重量部を供給し、二軸押出機内で樹脂混合物を調製した。樹脂混合物の二軸押出機への供給量は、70kg/hであった。なお、樹脂混合物の供給量とは、二軸押出機に共役ジエン化合物を供給した時点で二軸押出機内で調製される樹脂混合物の単位時間当たりの量を意図する。
押出発泡粒子の製造に使用する装置として、軸径φ26mmの二軸押出機とメルトクーラーとダイバーターバルブとダイとが直列に連結された装置を使用した。表2~4に示す種類の樹脂および添加剤を表2~4に示す量にてブレンドし、押出発泡用ポリプロピレン系樹脂組成物を調製した。次いで、当該樹脂組成物を二軸押出機に供給して、表2~4に示すシリンダ温度(押出機温度)で当該樹脂組成物を溶融混練した。さらに、押出機途中に設けた圧入部より、発泡剤である炭酸ガスを、表2~4に示す量にて、定量ポンプを用いて供給し、得られた組成物をさらに溶融混練した。
樹脂A~H、Jの物性を表1に示す。樹脂A~Cは、分岐状ポリプロピレン系樹脂(A)に該当する。樹脂D~Fは分岐状ポリプロピレン系樹脂(B)に該当する。樹脂G、Hはその他の分岐状ポリプロピレン系樹脂(便宜上、分岐状ポリプロピレン系樹脂(C)と称する)に該当する。また、樹脂Jは線状ポリプロピレン系樹脂である。
Claims (15)
- 押出発泡用ポリプロピレン系樹脂組成物であって、
当該押出発泡用ポリプロピレン系樹脂組成物中の樹脂成分の合計100重量%中に、
JIS K7161に規定される引張弾性率が1100MPa以上である、分岐構造を有するポリプロピレン系樹脂(A)65重量%以上85重量%以下と、
JIS K7161に規定される引張弾性率が550MPa以上950MPa以下であり、かつJIS K7161に規定される引張破壊呼びひずみが50%以上である、分岐構造を有するポリプロピレン系樹脂(B)15重量%以上35重量%以下と、を含む、押出発泡用ポリプロピレン系樹脂組成物。 - 分岐構造を有するポリプロピレン系樹脂(A)の融点が145℃以上であり、分岐構造を有するポリプロピレン系樹脂(B)の融点が145℃未満である、請求項1に記載の押出発泡用ポリプロピレン系樹脂組成物。
- 示差走査熱量測定で測定される結晶量ΔHが、分岐構造を有するポリプロピレン系樹脂(A)は70J/g以上、分岐構造を有するポリプロピレン系樹脂(B)は40J/g以上65J/g以下である、請求項1または2に記載の押出発泡用ポリプロピレン系樹脂組成物。
- 分岐構造を有するポリプロピレン系樹脂(A)のJIS K7161に規定される引張破壊呼びひずみが50%未満である、請求項1~3のいずれか1項に記載の押出発泡用ポリプロピレン系樹脂組成物。
- 分岐構造を有するポリプロピレン系樹脂(A)および分岐構造を有するポリプロピレン系樹脂(B)の少なくともいずれか一方のメルトテンションは、5cN~20cNである、請求項1~4のいずれか1項に記載の押出発泡用ポリプロピレン系樹脂組成物。
- 分岐構造を有するポリプロピレン系樹脂(A)および分岐構造を有するポリプロピレン系樹脂(B)の少なくともいずれか一方は、共役ジエン化合物に由来する構造単位を含む、請求項1~5のいずれか1項に記載の押出発泡用ポリプロピレン系樹脂組成物。
- 分岐構造を有するポリプロピレン系樹脂(A)および分岐構造を有するポリプロピレン系樹脂(B)の少なくともいずれか一方のメルトフローレートは、0.3g/10分~20.0g/10分である、請求項1~6のいずれか1項に記載の押出発泡用ポリプロピレン系樹脂組成物。
- 請求項1~7のいずれか1項に記載の押出発泡用ポリプロピレン系樹脂組成物を押出発泡することにより得られる、ポリプロピレン系樹脂押出発泡粒子。
- 平均セル径が100μm以上400μm以下である、請求項8に記載のポリプロピレン系樹脂押出発泡粒子。
- 連続気泡率が15%以下である、請求項8または9に記載のポリプロピレン系樹脂押出発泡粒子。
- 嵩密度が40g/L以上である、請求項8~10のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 請求項1~7のいずれか1項に記載の押出発泡用ポリプロピレン系樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程と、
前記第一の工程で得られた溶融混練物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程とを含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。 - 前記発泡剤は、脂肪族炭化水素類、フッ化炭化水素類、炭酸ガス、空気、窒素および水からなる群から選ばれる1種以上である、請求項12に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
- 請求項8~11のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子を型内発泡成形して得られるポリプロピレン系樹脂発泡成形体。
- 発泡成形体であって、
分岐構造を有するポリプロピレン系樹脂を含む樹脂組成物を押出発泡することにより得られる押出発泡粒子を成形してなり、
前記押出発泡粒子の連続気泡率は15%以下であり、
前記発泡成形体の密度は60g/L~300g/Lであり、
前記発泡成形体の引張破断伸び率が式1を満たし、かつ
前記発泡成形体の静的圧縮強度が式2を満たすポリプロピレン系樹脂発泡成形体:
引張破断伸び率(%)≧-0.000002×D3+0.0011×D2-0.285×D+32.2 (式1)
静的圧縮強度(kPa)≧0.000049×D3+0.0542×D2-0.265×D+146.9 (式2)
式1および式2中のDは、前記発泡成形体の密度(g/L)を表す。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023505573A JPWO2022191181A1 (ja) | 2021-03-10 | 2022-03-08 | |
EP22767135.1A EP4306579A4 (en) | 2021-03-10 | 2022-03-08 | POLYPROPYLENE RESIN COMPOSITION FOR EXTRUSION BLOWING, EXTRUSION-BLOWN PARTICLES, AND MOLDED FOAM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021038634 | 2021-03-10 | ||
JP2021-038634 | 2021-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022191181A1 true WO2022191181A1 (ja) | 2022-09-15 |
Family
ID=83228003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009986 WO2022191181A1 (ja) | 2021-03-10 | 2022-03-08 | 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4306579A4 (ja) |
JP (1) | JPWO2022191181A1 (ja) |
WO (1) | WO2022191181A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101188A1 (ja) * | 2022-11-10 | 2024-05-16 | 株式会社カネカ | ポリプロピレン系樹脂押出発泡粒子、その製造方法、及び発泡成形体 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277340A (ja) * | 1995-04-05 | 1996-10-22 | Jsp Corp | ポリプロピレン単独重合体発泡粒子、及び発泡粒子成型体 |
JPH10330436A (ja) * | 1997-05-20 | 1998-12-15 | Pcd Polymere Gmbh | 改良された加工性の改質ポリプロピレン |
US6225366B1 (en) * | 1997-05-20 | 2001-05-01 | Borealis Ag | Polyolefin foam materials of high dimensional stability at elevated temperatures |
JP2002542360A (ja) | 1999-04-19 | 2002-12-10 | バセル テクノロジー カンパニー ベスローテン フェンノートシャップ | 高い溶融強度を持つ軟質プロピレンポリマーブレンド |
JP2004331722A (ja) * | 2003-04-30 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | ポリプロピレン系樹脂発泡シートおよび成形体 |
JP2004339498A (ja) * | 2003-04-25 | 2004-12-02 | Kaneka Corp | ポリプロピレン系樹脂組成物発泡シートおよびそれを用いた多層発泡シート |
JP2005023302A (ja) * | 2003-06-12 | 2005-01-27 | Jsp Corp | ポリプロピレン系樹脂発泡粒子の製造方法 |
JP2009533540A (ja) * | 2006-04-18 | 2009-09-17 | ボレアリス テクノロジー オイ | 多分枝状ポリプロピレン |
JP2009256460A (ja) | 2008-04-16 | 2009-11-05 | Kaneka Corp | ポリプロピレン系樹脂予備発泡粒子および該ポリプロピレン系樹脂予備発泡粒子より得られるポリプロピレン系樹脂型内発泡成形体 |
JP2013049830A (ja) * | 2011-07-29 | 2013-03-14 | Nitto Denko Corp | ポリオレフィン系樹脂発泡体用樹脂組成物、ポリオレフィン系樹脂発泡体及び発泡シール材 |
JP2016069449A (ja) * | 2014-09-29 | 2016-05-09 | 株式会社カネカ | ポリプロピレン系樹脂発泡シート |
WO2018016399A1 (ja) * | 2016-07-19 | 2018-01-25 | 株式会社カネカ | ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法 |
WO2018079699A1 (ja) * | 2016-10-31 | 2018-05-03 | キョーラク株式会社 | 発泡成形用樹脂、発泡成形体及びその製造方法 |
JP2018204008A (ja) * | 2017-06-06 | 2018-12-27 | 株式会社カネカ | プロピレン系樹脂組成物および成形体 |
JP2019119759A (ja) * | 2017-12-28 | 2019-07-22 | 出光興産株式会社 | 熱可塑性樹脂組成物及び発泡成形体 |
WO2020004429A1 (ja) | 2018-06-28 | 2020-01-02 | 株式会社カネカ | 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法 |
WO2020174792A1 (ja) * | 2019-02-28 | 2020-09-03 | 積水化成品工業株式会社 | 積層発泡シート、及びその成形体 |
-
2022
- 2022-03-08 JP JP2023505573A patent/JPWO2022191181A1/ja active Pending
- 2022-03-08 WO PCT/JP2022/009986 patent/WO2022191181A1/ja active Application Filing
- 2022-03-08 EP EP22767135.1A patent/EP4306579A4/en active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277340A (ja) * | 1995-04-05 | 1996-10-22 | Jsp Corp | ポリプロピレン単独重合体発泡粒子、及び発泡粒子成型体 |
JPH10330436A (ja) * | 1997-05-20 | 1998-12-15 | Pcd Polymere Gmbh | 改良された加工性の改質ポリプロピレン |
US6225366B1 (en) * | 1997-05-20 | 2001-05-01 | Borealis Ag | Polyolefin foam materials of high dimensional stability at elevated temperatures |
JP2002542360A (ja) | 1999-04-19 | 2002-12-10 | バセル テクノロジー カンパニー ベスローテン フェンノートシャップ | 高い溶融強度を持つ軟質プロピレンポリマーブレンド |
JP2004339498A (ja) * | 2003-04-25 | 2004-12-02 | Kaneka Corp | ポリプロピレン系樹脂組成物発泡シートおよびそれを用いた多層発泡シート |
JP2004331722A (ja) * | 2003-04-30 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | ポリプロピレン系樹脂発泡シートおよび成形体 |
JP2005023302A (ja) * | 2003-06-12 | 2005-01-27 | Jsp Corp | ポリプロピレン系樹脂発泡粒子の製造方法 |
JP2009533540A (ja) * | 2006-04-18 | 2009-09-17 | ボレアリス テクノロジー オイ | 多分枝状ポリプロピレン |
JP2009256460A (ja) | 2008-04-16 | 2009-11-05 | Kaneka Corp | ポリプロピレン系樹脂予備発泡粒子および該ポリプロピレン系樹脂予備発泡粒子より得られるポリプロピレン系樹脂型内発泡成形体 |
JP2013049830A (ja) * | 2011-07-29 | 2013-03-14 | Nitto Denko Corp | ポリオレフィン系樹脂発泡体用樹脂組成物、ポリオレフィン系樹脂発泡体及び発泡シール材 |
JP2016069449A (ja) * | 2014-09-29 | 2016-05-09 | 株式会社カネカ | ポリプロピレン系樹脂発泡シート |
WO2018016399A1 (ja) * | 2016-07-19 | 2018-01-25 | 株式会社カネカ | ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法 |
WO2018079699A1 (ja) * | 2016-10-31 | 2018-05-03 | キョーラク株式会社 | 発泡成形用樹脂、発泡成形体及びその製造方法 |
JP2018204008A (ja) * | 2017-06-06 | 2018-12-27 | 株式会社カネカ | プロピレン系樹脂組成物および成形体 |
JP2019119759A (ja) * | 2017-12-28 | 2019-07-22 | 出光興産株式会社 | 熱可塑性樹脂組成物及び発泡成形体 |
WO2020004429A1 (ja) | 2018-06-28 | 2020-01-02 | 株式会社カネカ | 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法 |
WO2020174792A1 (ja) * | 2019-02-28 | 2020-09-03 | 積水化成品工業株式会社 | 積層発泡シート、及びその成形体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4306579A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101188A1 (ja) * | 2022-11-10 | 2024-05-16 | 株式会社カネカ | ポリプロピレン系樹脂押出発泡粒子、その製造方法、及び発泡成形体 |
Also Published As
Publication number | Publication date |
---|---|
EP4306579A1 (en) | 2024-01-17 |
JPWO2022191181A1 (ja) | 2022-09-15 |
EP4306579A4 (en) | 2025-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10941265B2 (en) | Polypropylene-type resin pre-expanded particles, and method for producing said pre-expanded particles | |
EP3816209B1 (en) | Modified polypropylene resin and method for producing same, and extruded foam particles that use said modified polypropylene resin and method for their production | |
CN114341237B (zh) | 聚丙烯系树脂发泡颗粒、其制造方法及聚丙烯系树脂发泡成型体 | |
JP4011962B2 (ja) | ポリプロピレン系樹脂押出発泡シートの製造方法、製造された押出発泡シートおよび該発泡シートからなる成形体 | |
EP4112678A1 (en) | Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body | |
JP2022152955A (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022203036A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
WO2022191181A1 (ja) | 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体 | |
EP4083089A1 (en) | Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles | |
WO2022210647A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022163627A1 (ja) | 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法 | |
WO2022154070A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
WO2022050375A1 (ja) | 押出発泡粒子およびその製造方法 | |
WO2022210648A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2022210645A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
TWI627193B (zh) | 改質聚丙烯系樹脂及改質聚丙烯系樹脂之製造方法 | |
WO2022181762A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 | |
WO2022210646A1 (ja) | ポリプロピレン系樹脂押出発泡粒子 | |
WO2023176911A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2023127914A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2023054223A1 (ja) | ポリプロピレン系樹脂押出発泡粒子、ポリプロピレン系樹脂発泡成形体および積層発泡体 | |
WO2024176975A1 (ja) | ポリプロピレン系樹脂二段発泡粒子の製造方法、発泡成形体の製造方法、及びポリプロピレン系樹脂二段発泡粒子 | |
JP2018059056A (ja) | ポリプロピレン系樹脂、樹脂発泡体、及び、樹脂成形品 | |
WO2024101188A1 (ja) | ポリプロピレン系樹脂押出発泡粒子、その製造方法、及び発泡成形体 | |
JP2024142608A (ja) | 分岐構造を有するポリプロピレン系樹脂の押出発泡粒子の製造方法、および発泡成形体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22767135 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023505573 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022767135 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022767135 Country of ref document: EP Effective date: 20231010 |