WO2019074094A1 - 粒子状吸水剤の物性の測定方法及び粒子状吸水剤 - Google Patents
粒子状吸水剤の物性の測定方法及び粒子状吸水剤 Download PDFInfo
- Publication number
- WO2019074094A1 WO2019074094A1 PCT/JP2018/038092 JP2018038092W WO2019074094A1 WO 2019074094 A1 WO2019074094 A1 WO 2019074094A1 JP 2018038092 W JP2018038092 W JP 2018038092W WO 2019074094 A1 WO2019074094 A1 WO 2019074094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- absorbing agent
- particulate water
- mass
- aqueous solution
- Prior art date
Links
- 239000002250 absorbent Substances 0.000 title claims abstract description 192
- 238000000691 measurement method Methods 0.000 title claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 387
- 238000010521 absorption reaction Methods 0.000 claims abstract description 157
- 239000007864 aqueous solution Substances 0.000 claims abstract description 147
- 239000007788 liquid Substances 0.000 claims abstract description 76
- 239000000428 dust Substances 0.000 claims abstract description 48
- 239000006096 absorbing agent Substances 0.000 claims description 277
- 229920005989 resin Polymers 0.000 claims description 225
- 239000011347 resin Substances 0.000 claims description 225
- 239000002245 particle Substances 0.000 claims description 104
- 230000002745 absorbent Effects 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 85
- 238000005259 measurement Methods 0.000 claims description 69
- 230000000704 physical effect Effects 0.000 claims description 49
- 238000009792 diffusion process Methods 0.000 claims description 17
- 230000005484 gravity Effects 0.000 claims description 13
- 239000011800 void material Substances 0.000 claims description 5
- 230000035699 permeability Effects 0.000 abstract description 9
- 238000011156 evaluation Methods 0.000 abstract description 8
- 229920000247 superabsorbent polymer Polymers 0.000 abstract description 3
- 239000000499 gel Substances 0.000 description 121
- 238000006116 polymerization reaction Methods 0.000 description 74
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 69
- 239000000178 monomer Substances 0.000 description 64
- 150000003839 salts Chemical class 0.000 description 54
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 48
- 239000000843 powder Substances 0.000 description 44
- 238000001035 drying Methods 0.000 description 40
- 239000000243 solution Substances 0.000 description 38
- 239000011780 sodium chloride Substances 0.000 description 35
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 31
- 239000003431 cross linking reagent Substances 0.000 description 30
- 238000006386 neutralization reaction Methods 0.000 description 30
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 29
- 239000007787 solid Substances 0.000 description 26
- 238000004132 cross linking Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 23
- 239000011521 glass Substances 0.000 description 23
- 229920000642 polymer Polymers 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 20
- 238000009826 distribution Methods 0.000 description 20
- 238000000227 grinding Methods 0.000 description 20
- 229920002125 Sokalan® Polymers 0.000 description 17
- 229920006037 cross link polymer Polymers 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 239000000654 additive Substances 0.000 description 16
- -1 urine Substances 0.000 description 16
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 15
- 239000004584 polyacrylic acid Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 238000002156 mixing Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 210000002700 urine Anatomy 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 11
- 230000000996 additive effect Effects 0.000 description 11
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000004745 nonwoven fabric Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 239000003505 polymerization initiator Substances 0.000 description 11
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 239000003973 paint Substances 0.000 description 10
- 230000008961 swelling Effects 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 238000010557 suspension polymerization reaction Methods 0.000 description 9
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 235000013372 meat Nutrition 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000004040 coloring Methods 0.000 description 6
- 238000001739 density measurement Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000017 hydrogel Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 5
- 229910002012 Aerosil® Inorganic materials 0.000 description 5
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 229920006317 cationic polymer Polymers 0.000 description 5
- 239000002738 chelating agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003349 gelling agent Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- 229940048053 acrylate Drugs 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 125000004386 diacrylate group Chemical group 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000007602 hot air drying Methods 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229960003330 pentetic acid Drugs 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 208000010201 Exanthema Diseases 0.000 description 3
- 239000002211 L-ascorbic acid Substances 0.000 description 3
- 235000000069 L-ascorbic acid Nutrition 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 201000005884 exanthem Diseases 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 206010037844 rash Diseases 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- HFNVACONKMSOTH-UHFFFAOYSA-K [Na+].[Na+].[Na+].OC(=O)CN(CCN(CC(O)=O)CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O Chemical compound [Na+].[Na+].[Na+].OC(=O)CN(CCN(CC(O)=O)CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O HFNVACONKMSOTH-UHFFFAOYSA-K 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 150000007514 bases Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012685 gas phase polymerization Methods 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical group [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010334 sieve classification Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- BWSIKGOGLDNQBZ-LURJTMIESA-N (2s)-2-(methoxymethyl)pyrrolidin-1-amine Chemical compound COC[C@@H]1CCCN1N BWSIKGOGLDNQBZ-LURJTMIESA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical class O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical class O1C(=NCC1)* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- ZMGMDXCADSRNCX-UHFFFAOYSA-N 5,6-dihydroxy-1,3-diazepan-2-one Chemical class OC1CNC(=O)NCC1O ZMGMDXCADSRNCX-UHFFFAOYSA-N 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 239000004593 Epoxy Chemical class 0.000 description 1
- 102100029360 Hematopoietic cell signal transducer Human genes 0.000 description 1
- 101000990188 Homo sapiens Hematopoietic cell signal transducer Proteins 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012632 extractable Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/225—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/24—Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28047—Gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/04—Investigating osmotic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
- G01N33/442—Resins; Plastics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
- G01N5/02—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
- G01N5/02—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
- G01N5/025—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content for determining moisture content
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/68—Superabsorbents
Definitions
- the present invention relates to a method of measuring the physical properties of a particulate water absorbing agent.
- the present invention also relates to a particulate water-absorbing agent with high absorption performance.
- Water absorbent resin (SAP / Super Absorbent polymer) is a water-swellable water-insoluble polymer gelling agent, and it is a disposable diaper, a sanitary napkin such as a sanitary napkin and a product for adult incontinence, and a soil water retention agent for agriculture and horticulture It is used in various applications such as industrial waterproofing agents.
- water-absorbent resin many monomers and hydrophilic polymers have been proposed as raw materials, but from the viewpoint of performance and cost, acrylic acid and / or a salt thereof (hereinafter referred to as “acrylic acid (salt)
- the polyacrylic acid (salt) -based water absorbent resin which uses “) as a monomer, is most frequently used.
- Patent Document 2 discloses a method of producing a water-absorbent resin powder and a water-absorbent resin powder in which liquid permeability and water absorption speed are compatible.
- Patent Document 2 discloses a gel crushing step which is one of the manufacturing steps of a water-absorbent resin powder, the water-containing gel is further crushed by using a specific device shape. It is disclosed to improve the water absorption capacity under pressure of the water absorbent resin powder obtained.
- Patent Document 3 International Publication No. 2015/030130
- a gel crushing step which is one of the manufacturing steps of a water-absorbent resin powder, it is further crushed so as to knead a water-containing gel by using a specific device shape.
- Patent Document 4 discloses a water-absorbing agent, as defined by GCA (Gell Capillary Absorption) or the like, in which the amount of return of the absorbent article in actual use is reduced.
- the subject of this invention is providing the water absorbing resin excellent in the said physical property, and providing the measuring method which can evaluate the outstanding physical property.
- (Item 1) A method of measuring the absorption rate of a particulate water absorbing agent, in which a part or the whole of the particulate water absorbing agent is fixed to the bottom of a measurement container whose bottom is framed. Measurement of absorption rate of particulate water-absorbing agent by pressing with a flat plate, injecting an aqueous solution from an inlet provided in the flat plate, and measuring the time until the introduced aqueous solution is absorbed by the particulate water-absorbing agent Method.
- (Item 2) A method of measuring the absorption rate of the particulate water-absorbing agent, in which a part or all of the particulate water-absorbing agent is fixed to the bottom of the measurement container whose bottom is framed.
- the plate is pressurized by a flat plate, and the aqueous solution is charged from the inlet provided in the flat plate, the charged aqueous solution is absorbed by the particulate water-absorbing agent, and the flat plate is removed after a predetermined time elapses after the aqueous solution is charged.
- a member capable of absorbing the aqueous solution is disposed on the upper part of the particulate water absorbing agent, pressurized for a predetermined time, and the amount of the solution returned from the particulate water absorbing agent by measuring the mass of the aqueous solution absorbed by the member.
- a particulate water-absorbing agent having the following physical properties (1) to (2); (1) Centrifuge holding capacity (CRC) is 30 to 50 g / g, (2)
- the absorption performance index (API) represented by the following equation is 150 or less.
- Absorption performance index (API) first absorption time [sec] x second absorption time [sec] x third absorption time [sec] x return amount [g] / 1000.
- a particulate water-absorbing agent having the following physical properties (1) to (2); (1) Centrifuge holding capacity (CRC) is 30 to 50 g / g, (2)
- the new absorption performance index (nAPI) represented by the following equation is 240 or less.
- New absorption performance index (nAPI) second absorption time [sec] x third absorption time [sec] x return amount [g] / 10.
- the physical properties required for the particulate water absorbing agent can be measured more simply than the conventional measuring method.
- FIG. 1 It is a top view which shows an example of the measuring container which the bottom face surrounded by the frame of the measuring device used for the measuring method which concerns on this invention. It is the top view and side view which show an example of the flat plate in which the inlet was installed of the measuring apparatus used for the measuring method which concerns on this invention. It is the top view and sectional drawing which show the outline of the measuring apparatus used for the measuring method which concerns on this invention. It is sectional drawing which shows the outline of the measuring apparatus used by measurement of immersion holding capacity (DRC). BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the outline of the measuring apparatus used in measurement of gel permeation rate (GPR).
- DRC immersion holding capacity
- DAP diffusion absorption capacity
- Water-absorbent resin refers to a water-swellable water-insoluble polymer gelling agent, and refers to a polymer gelling agent satisfying the following physical properties. That is, a physical property having a CRC of 5 g / g or more as defined in ERT 441.2-02 as “water swellability” and an Ext of 50 mass% or less as defined in ERT 470.2-02 as "water insoluble” Point to a high molecular weight gelling agent that satisfies
- the water-absorbent resin can be appropriately designed depending on the application, and is not particularly limited, but it is preferably a hydrophilic crosslinked polymer obtained by crosslinking and polymerizing an unsaturated monomer having a carboxyl group.
- the total amount (100% by mass) is not limited to the form of being a polymer, and may be a water-absorbent resin composition containing an additive and the like within a range satisfying the above physical properties (CRC, Ext).
- the water-absorbent resin in the present invention is not limited to the final product, but is an intermediate in the production process of the water-absorbent resin (for example, a water-containing gelled crosslinked polymer after polymerization, a dried polymer after drying, water absorption before surface crosslinking Resin powder etc.), and it combines with the said water absorbing resin composition, and all these are included generically and it is named "water absorbing resin” generically.
- the shape of the water-absorbent resin may be in the form of sheet, fiber, film, particles, gel or the like, but in the present invention, the particulate water-absorbent resin is preferred.
- the "water absorbing agent” in the present invention means an absorbing and gelling agent for an aqueous liquid, which contains a water absorbing resin as a main component.
- "particulate water absorbing agent” means a particulate or powdery water absorbing agent, whether it is a single particle water absorbing agent or an aggregate of a plurality of particulate water absorbing agents. It is called a particulate water-absorbing agent.
- “particulate” means having the form of particles, and particles are small solid or liquid particles having measurable sizes (JIS Industrial Term Dictionary 4th Edition, p. 2002) Say).
- the particulate water absorbing agent may be referred to simply as a water absorbing agent.
- aqueous liquid is not limited to water, but also applicable to aqueous liquids such as urine, blood, sweat, feces, waste liquid, moisture, steam, ice, a mixture of water and an organic solvent and / or inorganic solvent, rain water, ground water, etc. Do.
- the aqueous liquid may contain water, and is not particularly limited. Preferred examples of the aqueous liquid include urine, menstrual blood, sweat and other body fluids.
- the particulate water-absorbing agent according to the present invention is suitably used as a sanitary material for absorbing an aqueous liquid.
- the water absorbing resin as a polymer is contained as a main component in the particulate water absorbing agent. That is, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, 90 to 100% by mass is contained in the particulate water-absorbing agent, and water and / or inorganic fine particles as a non-polymer Optionally contains additives such as divalent metal cations.
- the preferred moisture content is 0.2 to 30% by mass. That is, the water-absorbent resin composition in which these components are integrated is also in the category of the particulate water-absorbing agent.
- the upper limit of the water-absorbent resin in the particulate water-absorbing agent is 100% by mass, further 99% by mass, further 97% by mass, particularly 95% by mass, 90% by mass, preferably 0 other than the water-absorbent resin. It further contains a component of about 10% by mass, in particular, water and additives described later (inorganic fine particles, polyvalent metal cations).
- polyacrylic acid (salt) based resin polysulfonic acid (salt) based resin, maleic anhydride (salt) based resin, polyacrylamide based resin, polyvinyl alcohol Resin, polyethylene oxide resin, polyaspartic acid (salt) resin, polyglutamic acid (salt) resin, polyalginic acid (salt) resin, starch resin, cellulose resin, preferably polyacrylic acid Salt-based resins are used.
- Polyacrylic acid (salt) refers to polyacrylic acid and / or a salt thereof, and as a main component, acrylic acid and / or a salt thereof (hereinafter referred to as "acrylic acid (salt)") is repeated It refers to a polymer which is contained as a unit and which contains a graft component as an optional component.
- Polyacrylic acid may be obtained by hydrolysis of polyacrylamide, polyacrylonitrile or the like, but is preferably obtained by polymerization of acrylic acid (salt).
- main component means that the amount (content) of acrylic acid (salt) used is usually 50 to 100 mol%, relative to the entire monomers (excluding the internal crosslinking agent) used for polymerization. It is preferably 70 to 100 mol%, more preferably 90 to 100 mol%, still more preferably substantially 100 mol%.
- CRC is an abbreviation of centrifuge retention capacity (centrifuge holding capacity), and means the absorption capacity without load (sometimes called “water absorption capacity”) of the particulate water absorbing agent or the water absorbing resin.
- centrifuge retention capacity centrifuge holding capacity
- water absorption capacity means the absorption capacity without load (sometimes called "water absorption capacity" of the particulate water absorbing agent or the water absorbing resin.
- 0.2 g of a particulate water-absorbing agent or a water-absorbing resin is placed in a non-woven bag, and then immersed in a large excess of 0.90 mass% sodium chloride aqueous solution for 30 minutes to allow free swelling, and Water absorption capacity (unit; g / g) after draining with a centrifuge (250 G).
- the CRC (hereinafter referred to as "gel CRC”) of the water-containing gel-like cross-linked polymer was measured by changing the sample to 0.4 g and the free swelling time to 24 hours. Moreover, in calculation of the numerical value in measurement, the mass of resin solid content of the water-containing gel-like crosslinked polymer was used for the mass of the water absorbing resin. When the size of one side of the water-containing gel-like cross-linked polymer is 5 mm or more, it is measured with scissors or the like after being cut to a size of 1 mm or less.
- AAP is an abbreviation of Absorption against Pressure, and means the water absorption capacity under pressure of a particulate water absorbing agent or a water absorbing resin.
- PSD is an abbreviation for Particle Size Distribution, and means the particle size distribution of a particulate water-absorbing agent or a water-absorbing resin, which is measured by sieve classification.
- the mass average particle diameter (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are described in US Pat. No. 7,638,570 “(3) Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation ( ⁇ ) of It is measured in the same way as “Particle Diameter Distribution”.
- “Moisture Content” (ERT 430.2-02) "Moisture Content” means the moisture content of the particulate water-absorbing agent or the water-absorbing resin. Specifically, it refers to a value (unit: mass%) calculated from the loss on drying when 4.0 g of the particulate water absorbing agent or the water absorbing resin is dried at 105 ° C. for 3 hours. The measurement may be made by changing the particulate water absorbing agent or the water absorbing resin to 1.0 g and the drying temperature to 180 ° C., respectively.
- Ext is an abbreviation of Extractables and means the water-soluble component (the amount of water-soluble component) of the particulate water-absorbing agent or the water-absorbing resin.
- water-soluble component the amount of water-soluble component of the particulate water-absorbing agent or the water-absorbing resin.
- 1.0 g of a particulate water absorbing agent or a water absorbing resin is added to 200 ml of 0.90 mass% sodium chloride aqueous solution, and the amount of dissolved polymer (unit: mass%) after stirring for 16 hours at 500 rpm Say. The measurement of the amount of dissolved polymer is carried out using pH titration.
- DRC is an abbreviation for Dunk Retention Capacity (immersion holding capacity), and means the water absorption capacity of the particulate water absorbing agent or the water absorbing resin under no pressure.
- 1.0 g of a particulate water-absorbing agent or a water-absorbing resin is uniformly dispersed in a cylindrical cell having a mesh on the bottom in the same manner as in the measurement of AAP, and 0.90 mass% sodium chloride aqueous solution Water absorption capacity (unit; g / g) after free contact by contact for 5 minutes. Details of the measurement method are described in the examples. In addition, since free swelling time is 5 minutes, it describes with "DRC5min.”
- DRC general index (K-DRC5min) / (D50 / 1000) ... Formula 2
- K is an arbitrary constant.
- the K value is determined by producing various particulate water-absorbing agents, measuring DRC 5 min (unit; g / g) and D 50 (units: ⁇ m), and determining whether a preferable particulate water-absorbing agent has been obtained. It can be determined as an appropriate value.
- the DRC general index is useful as an index for determining particulate water absorbing agents having desirable physical properties.
- DRC index (Index of DRC)” is a parameter defined by the following equation 1.
- DRC index (49-DRC5min) / (D50 / 1000) ...
- the DRC index corresponds to the case where the K value in the above DRC general index is "49".
- the DRC index like the DRC general index, is useful as an index for determining particulate water-absorbing agents having desirable physical properties.
- GPR Gel Permeation Rate
- the gel permeation rate (GPR) is preferably 25 g / min or more, more preferably 50 g / min or more, and most preferably 100 g / min or more. There is no particular upper limit, but 1000 g / min or less is preferable. Details of the measurement method are described in the examples.
- Amorphous Crushed “Amorphous crushed form” refers to a water-containing gel-like crosslinked polymer obtained during or after polymerization or a dried polymer thereof, preferably a pulverized product obtained by grinding the dried polymer, It refers to a fractured shape whose shape is not constant.
- a ground material in amorphous form is preferably obtained by aqueous solution polymerization.
- the shape of the obtained hydrogel crosslinked polymer becomes spherical. Also, the granulated product of spherical particles is not irregularly crushed.
- Hygroscopic Fluidity refers to the blocking, caking, and powder flow when a particulate water-absorbing agent or a water-absorbing resin is left in an atmosphere at a temperature of 25 ° C. and a relative humidity of 90% RH for 1 hour. It means the indicator. “Hygroscopic fluidity” is also referred to as “hygroscopic fluidity (BR)” or “hygroscopic blocking ratio”. In addition, although the detail of the calculation method of hygroscopic fluidity is described in the Example, the outline is as follows.
- a particulate water-absorbing agent or a water-absorbent resin is classified using a sieve, and then the mass (W1) (unit: g) of the particulate water-absorbent agent or water-absorbent resin remaining on the sieve and the particulate water-absorbent agent passing through the sieve Alternatively, the mass (W2) (unit; g) of the water absorbent resin is measured, and calculated according to the following formula 3.
- Hygroscopic fluidity (BR) ⁇ W1 / (W1 + W2) ⁇ x 100 Formula 3.
- Hygroscopicity and fluidity improver refers to a compound or composition that improves the hygroscopic flow of a particulate water absorbing agent or a water absorbing resin. In addition, it means that it is excellent in moisture absorption fluidity, so that the value of the above-mentioned moisture absorption fluidity (BR) becomes small.
- silicon dioxide, hydrotalcite, phosphate and aluminum salt can be used. More specifically, a multi-element metal compound containing a bivalent and trivalent metal cation having a hydrotalcite structure and a hydroxyl group, and water comprising an anion of phosphoric acids and a divalent or trivalent metal cation Insoluble metal phosphates can be used.
- Degradable solubles means 0.90 mass% sodium chloride aqueous solution and 0.90 mass% L-ascorbic acid added in the measurement method of "Ext” described in (1-4-5) above. It changes to sodium chloride aqueous solution (deterioration test solution), and after standing still at 60 ° C. for 2 hours, it refers to a water soluble component when stirred for 1 hour.
- GGE Garnier crushing energy
- GGE Gel crushing energy
- the "gel crushing energy” does not include the energy for heating and cooling the jacket, and the energy of water and / or steam to be introduced.
- Gel crushing energy is abbreviated as “Gel” from “Gel Grinding Energy” in English.
- GGE is calculated by the following equation 4 when the gel pulverizer is driven by three-phase AC power.
- GGE (J / g) ⁇ 3 ⁇ voltage ⁇ current ⁇ power factor ⁇ motor efficiency ⁇ / ⁇ mass of water-containing gel-like cross-linked polymer fed to the gel grinder in 1 second ⁇ Equation 4
- the above “power factor” and “motor efficiency” are device-specific values that change depending on the operating conditions of the gel grinding device, and take values from 0 to 1. These values can be known by an inquiry to the device maker or the like.
- GGE can be calculated by changing “ ⁇ 3” in the above equation to “1”.
- the unit of voltage is (V)
- the unit of current is (A)
- the unit of mass of the hydrogel crosslinked polymer is (g / s).
- GGE is measured by the method described in WO 2011/126079.
- the above-mentioned gel crushing energy by subtracting the current value at the time of idle operation of the gel crushing device.
- the gel crushing energy in this case is calculated by the following equation 5.
- GGE in order to distinguish with said GGE, it describes with GGE (2).
- GGE (2) (J / g) ⁇ 3 ⁇ voltage ⁇ (current at gel grinding-current at idle) ⁇ power factor ⁇ motor efficiency ⁇ / ⁇ Hydrogel supplied to gel grinder in 1 second Of cross-linked polymer ⁇ ... formula 5.
- the “power factor” and “motor efficiency” in the above GGE (2) adopt the values at the time of gel crushing.
- the values of the power factor and the motor efficiency at the time of idle operation may be approximately defined as the above-mentioned equation 5 because the current value at the time of idle operation is small.
- the “mass of water-containing gel-like cross-linked polymer fed to the gel crusher in one second” in the above formulas 4 and 5 means, for example, when the water-containing gel-like cross-linked polymer is continuously fed by a quantitative feeder If the amount supplied is [t / hr], it means a value converted to [g / s].
- “Surface tension” refers to surface tension per unit area representing work (free energy) required to increase the surface area of a solid or liquid.
- the “surface tension” in the present invention refers to the surface tension of an aqueous solution when a particulate water absorbing agent or a water absorbing resin is dispersed in a 0.90 mass% sodium chloride aqueous solution. Details of the measurement method are described in the examples.
- Bulk specific gravity refers to the specific gravity when the powder is filled in a container of a fixed volume and the volume of the inner volume is used. Details of the measurement method are described in the examples.
- DAP is an abbreviation of Diffusing Absorbency under Pressure (water absorption capacity under pressure), and the basis weight of the water absorbing resin is high, and the aqueous liquid in a state where particles of the water absorbing resin are in close contact with each other by an external force
- It is a physical property value for evaluating the amount of absorption of a water absorbent resin in consideration of the diffusion power of The diffusive water absorption capacity under pressure is calculated from a measurement value after a predetermined time (60 minutes or 10 minutes) has elapsed from the start of absorption in measurement under a predetermined condition.
- the value (10 minutes value) after 10 minutes progress is described with "DAP10 min.” Details of the measurement method are described in the examples.
- the "true density” in the present invention is sufficiently dried (the moisture content is preferably less than 1% by mass, more preferably less than 0.5% by mass, particularly preferably less than 0.1% by mass)
- the density (unit: [a] of polyacrylic acid (salt) -based water absorbent resin is uniquely determined by the chemical composition (repeating unit of polymer, trace raw material such as crosslinking agent, graft component optionally used, etc.) g / cm 3 ]) is meant. Therefore, the polyacrylic acid (salt) -based water absorbent resin has a slight difference depending on the neutralization ratio, the type of salt (for example, sodium polyacrylate having a neutralization ratio of 75 mol%, etc.), and the amount and type of trace materials. Although it can be seen, it shows an almost constant value.
- the “apparent density” in the present invention is a density (unit: [g / cm 3 ] in consideration of voids (also referred to as internal cells or closed cells) present inside particles of polyacrylic acid (salt) -based water absorbent resin. Means).
- voids also referred to as internal cells or closed cells
- a space void; internal cell, closed cell; closed pore
- the introduced gas can not reach the closed pores, so the measured density is determined from the volume including the closed pores (such as closed cells). It is the calculated apparent density.
- the density (true density and apparent density) of the water-absorbent resin can be accurately measured by dry density measurement using a predetermined gas.
- the measurement principle of dry density measurement of solids is well known in the constant volume expansion method. Dry density measurement is a method of determining the volume of solids with a specific gas. Specifically, when the volume (V CELL ) of the sample chamber and the volume (V EXP ) of the expansion chamber are known, the volume (V SAMP ) of the sample can be determined by measuring the pressures (gauge pressure) P1g and P2g. Separately, the mass of the sample is measured, and the mass is divided by the volume to obtain the density (Reference: Shimadzu Corporation; http://www.shimadzu.co.jp/powder/lecture/middle/m04.html).
- the true density is uniquely determined by the chemical composition (mainly, a repeating unit of a polymer), known values may be used as they are. However, since a slight difference is seen in the value due to the influence of a trace amount material etc., when the known value is unknown, it can be obtained by the method described later (the method described in the examples).
- the internal independent cells can be destroyed or opened by crushing the water absorbing resin, the water absorbing resin substantially free of the independent cells can be obtained. It can also be regarded as true density.
- the above-mentioned "open cell” means the cell currently connected with the exterior of a water absorbing resin, and it is not counted as a volume of a water absorbing resin by dry-density measurement. Therefore, closed cells and open cells can be easily distinguished by dry density measurement.
- X to Y indicating a range means “X or more and Y or less”.
- t (ton) which is a unit of mass means “Metric ton (metric ton)”.
- salt means “-acid and / or a salt thereof”
- (meth) acryl means “acryl and / or methacryl”, respectively.
- "liter” may be described for convenience as “l” or “L” and “mass%” as “wt%.”
- the lower limit of detection is denoted as N.D. (Non Detected).
- the measuring device used in the present invention is a measuring container whose bottom is surrounded by a frame (note that it may not be a fixed frame as long as liquid can be prevented from leaking out of the measuring device).
- a mechanism capable of preventing the liquid from leaking out of the measuring apparatus is defined as a "frame”.
- the material of the container is not particularly limited, it is preferably made of resin (plastic).
- the height of the frame surrounding the bottom is not particularly limited, but is preferably 1 cm or more, more preferably 2 cm or more, and most preferably 3 cm or more. There is no particular upper limit, but usually 5 cm or less is preferable. If the frame is low, there is a risk that the supplied liquid may leak, and if it is too high, handling is difficult.
- the frame is preferably perpendicular to the bottom surface.
- the thickness of the frame is not limited, but is preferably about 0.5 to 1 cm.
- the bottom of the measuring device may be fixed, or a tape or the like may be attached to form the bottom.
- the top of the measuring device is preferably open.
- the shape of the container is not particularly limited, but is preferably rectangular.
- the aspect ratio (aspect ratio) viewed from the top of the measurement container is preferably 1: 1.5 to 1:10, and more preferably 1: 2 to 1: 8. Most preferably, it is 1: 2.5 to 1: 5.
- the aspect ratio is the ratio of the major axis to the minor axis when elliptically approximated. In addition, when calculating the said aspect ratio, it carries out with respect to the bottom part enclosed by the frame.
- the size of the container is not particularly limited, but is preferably 50 ⁇ 2000 cm 2 as the area of the bottom surface, and more preferably 70 ⁇ 1000 cm 2, more preferably 90 ⁇ 800 cm 2, and most preferably 110 ⁇ 600 cm 2.
- the dispersed particulate water-absorbing agent is fixed so that a part or all of the agent is not moved by the movement of the apparatus or the injection of liquid.
- the method of fixing the particulate water absorbing agent is not particularly limited, but a sheet coated with an adhesive is attached to the bottom of the device, and the particulate water absorbing agent is dispersed thereon, or the sheet coated with the adhesive in advance. After the particulate water-absorbing agent has been sprayed, the method of placing it on the bottom of the above-mentioned device is adopted.
- a method that does not use an adhesive it is also possible to provide an uneven surface on the bottom of the apparatus to the extent that the horizontal property is not significantly impaired so that the particulate water absorbing agent does not move.
- the particulate water absorbing agent is preferably dispersed as uniformly as possible, but in some cases, it is also possible to increase or decrease a specific range of the particulate water absorbing agent.
- the bottom area of the above-mentioned measuring device is large, in order to improve uniformity, it is also possible to fractionate into a plurality of sections and to disperse the weighed amount of particulate water-absorbing agent to each fraction. It is possible.
- the application amount of the particulate water absorbing agent is preferably 50 to 1000 g / m 2 , more preferably 80 to 800 g / m 2 , and most preferably 100 to 600 g / m 2 with respect to the area of the bottom of the measurement container. It is m 2 . If the amount is less than the above range, correct evaluation may not be possible, and in many cases, the thickness of the gel layer after swelling may be too thick for correct evaluation.
- the dispersed particulate water-absorbing agent that has been dispersed absorbs the aqueous solution under pressure. Therefore, a flat plate is used which pressurizes a part of the bottom surface (in which the particulate water absorbing agent is dispersed) of the above-mentioned measuring device.
- the said flat plate is provided with the injection port for throwing in aqueous solution, and the shape which arrange
- the height of the inlet is preferably a height that can provide a volume capable of holding the aqueous solution until the input aqueous solution is absorbed.
- the size of the inlet is preferably about 1 to 10% of the area of the flat plate.
- the size of the flat plate is preferably such that the area of the portion pressed by the flat plate is 10 to 90% of the bottom area of the measurement container, more preferably 15 to 80%, and 20 to 70%. Is most preferred.
- a sheet having an air gap with a size that allows the aqueous solution to pass and the particulate water absorbing agent can not pass between the flat plate and the particulate water absorbing agent.
- the material of the sheet may be wire mesh, non-woven fabric, resin mesh, paper such as tissue paper, or the like.
- 0.2-10.0 kPa is preferable, 0.4-8.0 kPa is more preferable, and the pressure condition (load) at the time of injection
- an aqueous solution is charged from the inlet provided on the flat plate.
- the temperature of the aqueous solution is preferably 20 to 40.degree.
- the aqueous solution may be pure water, but the conductivity of the aqueous solution is preferably 2 to 50 mS / cm, more preferably 5 to 40 mS / cm, and still more preferably 10 to 30 mS / cm. And most preferably 13 to 20 mS / cm.
- the injection rate of the aqueous solution is preferably 1 to 50 ml / sec, more preferably 2 to 40 ml / sec, still more preferably 3 to 30 ml / sec, particularly preferably 4 to 20 ml / sec, and most preferably 5 to 10 ml / sec. .
- the addition of the aqueous solution be performed multiple times. Moreover, it is preferable that the amount of input liquid of each time is the same amount.
- the interval between the aqueous solutions is preferably 1 to 180 minutes, more preferably 3 to 120 minutes, and most preferably 5 to 60 minutes. preferable.
- the total amount of the aqueous solution to be added is preferably 10 to 60 ml, more preferably 15 to 55 ml, and most preferably 20 to 50 ml based on 1 g of the dispersed particulate water-absorbing agent.
- the time (absorption time) until the aqueous solution introduced from the above-mentioned inlet is absorbed by the particulate water-absorbing agent is measured.
- the time until absorption is the time when the aqueous solution introduced from the inlet can not be confirmed, and is measured as the elapsed time (sec) from the time of introduction.
- the flat plate is removed after a predetermined time has elapsed, and a member capable of absorbing the aqueous solution is disposed above the particulate water-absorbing agent.
- a member capable of absorbing the aqueous solution is disposed above the particulate water-absorbing agent.
- a member capable of absorbing the aqueous solution it is possible to use a cotton cloth, a non-woven fabric, a foam such as a sponge, paper or the like.
- paper more specifically, paper with stable quality such as filter paper is selected.
- the size (that is, the area) of the member capable of absorbing the aqueous solution is preferably 0.1 to 3 times, more preferably 0.3 to 2 times, the area of the flat plate for applying the pressure. .5 to 1.5 times is most preferable.
- the time from the addition of the aqueous solution to the pressurization when the return amount is measured is preferably 0.1 to 60 minutes, more preferably 0.5 to 30 minutes, and most preferably 1 to 15 minutes.
- the time for applying pressure when measuring the amount of return is preferably 1 to 60 seconds, more preferably 3 to 50 seconds, and most preferably 5 to 40 seconds.
- the pressure applied when measuring the amount of return is preferably 1 to 10 kPa, more preferably 2 to 8 kPa, still more preferably 3 to 7 kPa, and most preferably 4 to 6 kPa.
- the pressurized portion is preferably half to the size of the member capable of absorbing the liquid.
- the amount of return is larger than 2.0 g, when the particulate water-absorbing agent is used as an absorbent in a sanitary product such as diapers, the amount of reversion of body fluid such as urine increases, causing skin roughness, rash and urine leakage. There is a fear.
- Step of Preparing a Monomer Aqueous Solution This step is a step of preparing an aqueous solution containing a monomer (for example, acrylic acid (salt)) as a main component (hereinafter referred to as “monomer aqueous solution”). is there.
- a monomer for example, acrylic acid (salt)
- the slurry liquid of a monomer can also be used in the range which the water absorption performance of the water-absorbing resin obtained does not fall, in this term, a monomer aqueous solution is demonstrated for convenience.
- main component means that the amount (content) of acrylic acid (salt) used is generally relative to the entire monomer (excluding internal crosslinking agent) subjected to the polymerization reaction of the water-absorbent resin. It is 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more (upper limit is 100 mol%).
- acrylic acid In the present invention, it is preferable to use acrylic acid and / or a salt thereof (hereinafter referred to as “acrylic acid (salt)”) as a monomer from the viewpoint of physical properties and productivity of the particulate water-absorbing agent to be obtained.
- the above-mentioned "acrylic acid” may be known acrylic acid, and preferably contains methoxyphenols, more preferably p-methoxyphenol as a polymerization inhibitor.
- the acrylic acid (salt) preferably contains 200 ppm or less, more preferably 10 to 160 ppm, still more preferably 20 to 100 ppm of the polymerization inhibitor, from the viewpoint of the polymerizable property of acrylic acid and the color tone of the particulate water absorbing agent. Good.
- the compounds described in US Patent Application Publication No. 2008/011512 also apply to the present invention.
- acrylic acid salt is a compound which neutralized the above-mentioned acrylic acid with the following basic composition
- a commercial acrylic acid salt for example, sodium acrylate
- acrylic acid salt It may be an acrylate obtained by neutralization in a particulate water-absorbent agent production plant.
- the “basic composition” refers to a composition containing a basic compound, and corresponds to, for example, a commercially available aqueous sodium hydroxide solution and the like.
- the basic compound include carbonates and hydrogencarbonates of alkali metals, hydroxides of alkali metals, ammonia, and organic amines.
- the basic compound includes carbonates and hydrogencarbonates of alkali metals, hydroxides of alkali metals, ammonia, and organic amines.
- hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferable, and sodium hydroxide is more preferable.
- neutralization pre-polymerization with respect to acrylic acid or neutralization (post-polymerization) with respect to a water-containing gel-like crosslinked polymer obtained by cross-linking polymerization of acrylic acid (hereinafter referred to as "post-neutralization")
- post-neutralization a water-containing gel-like crosslinked polymer obtained by cross-linking polymerization of acrylic acid
- the neutralization is not particularly limited and may be continuous or batchwise, but is preferably continuous from the viewpoint of production efficiency and the like.
- the neutralization ratio in the present invention is preferably 10 to 90 mol%, more preferably 40 to 85 mol%, still more preferably 50 to 80 mol%, particularly preferably 60 to 75 mol% to the acid group of the monomer. It is mol%.
- the neutralization ratio is less than 10 mol%, the water absorption capacity may be significantly reduced.
- the neutralization ratio exceeds 90 mol%, a high performance water-absorbent resin may not be obtained.
- the above neutralization rate is the same as in the case of post neutralization.
- the above-mentioned neutralization ratio is also applied to the neutralization ratio of the particulate water-absorbing agent as the final product.
- the neutralization ratio of 75 mol% means a mixture of 25 mol% of acrylic acid and 75 mol% of acrylic acid salt. The mixture may also be referred to as partially neutralized acrylic acid.
- the "other monomer” refers to a monomer other than the above-mentioned acrylic acid (salt) and a monomer which can be used in combination with acrylic acid (salt) to produce a particulate water-absorbing agent Point to Examples of the other monomers include water-soluble or hydrophobic unsaturated monomers. Specifically, the compounds described in US Patent Application Publication No. 2005/0215734 (except for acrylic acid) also apply to the present invention.
- a compound having two or more polymerizable unsaturated groups more preferably a compound having thermal decomposition at the drying temperature described later, more preferably (poly)
- a compound having two or more polymerizable unsaturated groups having an alkylene glycol structural unit is used as an internal crosslinking agent.
- polymerizable unsaturated group Preferably an allyl group, a (meth) acrylate group, More preferably, a (meth) acrylate group is mentioned.
- polyethylene glycol is preferable, and the number of n is preferably 1 to 100, more preferably 6 to 50.
- the amount of the internal crosslinking agent to be used is preferably 0.0001 to 10 mol%, more preferably 0.001 to 1 mol%, based on the whole monomer. By making the amount used within the above range, a desired water-absorbent resin can be obtained. When the amount used is too small, the gel strength tends to decrease and the water soluble component tends to increase. When the amount used is too large, the water absorption capacity tends to decrease, which is not preferable.
- a method is preferably applied in which a predetermined amount of an internal crosslinking agent is previously added to the aqueous monomer solution, and a crosslinking reaction is performed simultaneously with the polymerization.
- a method of adding an internal crosslinking agent during and after polymerization and performing post-crosslinking a method of radical crosslinking using a radical polymerization initiator, and radiation using active energy rays such as electron beam and ultraviolet rays
- a crosslinking method or the like can also be employed. Moreover, these methods can also be used together.
- hydrophilic polymers such as starch, starch derivatives, cellulose, cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), and polyacrylic acid (salt) cross-linked product are preferably 50% by mass or less, more preferably Is added at 20% by mass or less, more preferably 10% by mass or less, particularly preferably 5% by mass or less (the lower limit is 0% by mass), carbonates, azo compounds, foaming agents such as bubbles, surfactants, chelates
- the agent, the chain transfer agent and the like can be added preferably at 5% by mass or less, more preferably at 1% by mass or less, still more preferably at 0.5% by mass or less (the lower limit is 0% by mass).
- an ⁇ -hydroxycarboxylic acid (salt) can also be added at the time of preparation of the aqueous monomer solution.
- ⁇ -hydroxycarboxylic acid (salt) ⁇ -hydroxycarboxylic acid (salt)
- ⁇ -hydroxycarboxylic acid (salt) ⁇ -hydroxycarboxylic acid (salt)
- ⁇ -hydroxycarboxylic acid (salt) ⁇ -hydroxycarboxylic acid (salt)
- the addition of the ⁇ -hydroxycarboxylic acid (salt) reduces the soluble molecular weight of the resulting water-absorbing agent, which in turn reduces stickiness and discomfort when used as a sanitary material. Therefore, from these further viewpoints, it is preferable to add ⁇ -hydroxycarboxylic acid (salt).
- ⁇ -hydroxycarboxylic acid (salt) is a carboxylic acid having a hydroxyl group in the molecule or a salt thereof, and is a hydroxycarboxylic acid having a hydroxyl group at the ⁇ position or a salt thereof.
- a graft polymer or a water-absorbent resin composition for example, a starch-acrylic acid polymer, a PVA-acrylic acid polymer, etc.
- a graft polymer or a water-absorbent resin composition for example, a starch-acrylic acid polymer, a PVA-acrylic acid polymer, etc.
- the concentration of the monomer component in the aqueous monomer solution is not particularly limited, but it is preferably 10 to 80% by mass, more preferably 20 to 75% by mass, and still more preferably 30 from the viewpoint of the physical properties of the water absorbing resin. It is ⁇ 70% by mass.
- solvents other than water can also be used together as needed.
- the type of solvent is not particularly limited.
- the “concentration of the monomer component” is a value determined by the following equation 6.
- the mass of the aqueous monomer solution does not include the mass of the graft component, the water-absorbent resin, and the mass of the hydrophobic solvent in reverse phase suspension polymerization.
- Concentration of monomer component (mass%) ⁇ (mass of monomer component) / (mass of monomer aqueous solution) ⁇ ⁇ 100 Formula 6
- the polymerization initiator used in the present invention is not particularly limited because it is appropriately selected depending on the polymerization form etc.
- decomposition of a thermal decomposition type polymerization initiator, a photodegradable type polymerization initiator, or these polymerization initiators The redox type polymerization initiator etc. which used together the reducing agent which accelerates
- one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used.
- a peroxide or an azo compound is used, more preferably a peroxide, and still more preferably a persulfate.
- the amount of the polymerization initiator used is preferably 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomers.
- the amount of the reducing agent to be used is preferably 0.0001 to 0.02 mol% with respect to the monomer.
- the polymerization reaction may be carried out by irradiating an active energy ray such as radiation, electron beam or ultraviolet ray instead of the above-mentioned polymerization initiator, and these active energy ray and the polymerization initiator may be used in combination.
- an active energy ray such as radiation, electron beam or ultraviolet ray
- the polymerization mode to be applied to the present invention is not particularly limited, but from the viewpoint of water absorption characteristics, easiness of polymerization control, etc., preferably spray droplet polymerization, aqueous solution polymerization, reverse phase suspension polymerization, more preferably aqueous solution polymerization. And reverse phase suspension polymerization, more preferably aqueous solution polymerization.
- continuous aqueous solution polymerization is particularly preferable, and any of continuous belt polymerization and continuous kneader polymerization can be applied.
- continuous belt polymerization is disclosed in US Pat. Nos. 4,893,999 and 6,241,928 and US Patent Application Publication No. 2005/215734, etc.
- continuous kneader polymerization is disclosed in US Pat. Nos. 6,987,151 and 6,711,141 etc. Each is disclosed.
- high temperature initiation polymerization and “high concentration polymerization” are mentioned as a preferable form of the said continuous aqueous solution polymerization.
- the “high-temperature initiation polymerization” refers to polymerization at a temperature of the monomer aqueous solution of preferably 30 ° C. or more, more preferably 35 ° C. or more, still more preferably 40 ° C. or more, particularly preferably 50 ° C. or more (upper limit is boiling point) Form to start.
- the “high concentration polymerization” preferably has a monomer concentration of 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, particularly preferably 45% by mass or more (upper limit is saturation concentration) It refers to the form of polymerization. These polymerization forms can also be used in combination.
- polymerization can also be carried out in an air atmosphere, but polymerization is preferably carried out in an inert gas atmosphere such as nitrogen or argon from the viewpoint of the color tone of the water-absorbent resin to be obtained.
- an inert gas atmosphere such as nitrogen or argon from the viewpoint of the color tone of the water-absorbent resin to be obtained.
- the dissolved oxygen in the monomer aqueous solution is also preferably replaced with an inert gas (for example, dissolved oxygen; less than 1 mg / L).
- foam polymerization in which bubbles (particularly the above-mentioned inert gas and the like) are dispersed in a monomer aqueous solution to carry out polymerization.
- the solid concentration may be increased during polymerization.
- the degree of increase in solid content as an indicator of such increase in solid content concentration is defined by the following equation 7.
- the solid content increase degree is preferably 1% by mass or more, more preferably 2% by mass or more.
- Solid content rise degree (mass%) (solid content concentration of water-containing gel after polymerization)-(solid content concentration of aqueous monomer solution) Formula 7
- the solid content concentration of the monomer aqueous solution is a value determined by the following equation 8.
- the components in the polymerization system are a monomer aqueous solution, a graft component, a water absorbing resin, and other solid substances (for example, water insoluble fine particles etc.).
- the components in the polymerization system do not include the hydrophobic solvent in reverse phase suspension polymerization.
- Solid content concentration of monomer aqueous solution (% by mass) ⁇ (monomer component + graft component + water absorbing resin + mass of other solid matter) / (mass of component in polymerization system) ⁇ ⁇ 100 Formula 8
- the water-containing gel obtained in the above-mentioned polymerization step is gel-pulverized using, for example, a gel extruder such as a screw extruder such as a kneader or meat chopper, or a cutter mill.
- a step of obtaining a water-containing gel (hereinafter referred to as "particulate water-containing gel").
- the polymerization step is kneader polymerization
- the polymerization step and the gel grinding step are simultaneously carried out.
- the gel crushing step may not be carried out.
- This step is a step of drying the particulate water-containing gel obtained in the above-mentioned polymerization step and / or gel grinding step to a desired resin solid content to obtain a dried polymer.
- the resin solid content is determined from loss on drying (mass change when 1 g of a water absorbing resin is heated at 180 ° C. for 3 hours), preferably 80 mass% or more, more preferably 85 to 99 mass%, still more preferably 90. It is up to 98% by weight, particularly preferably 92 to 97% by weight.
- the method for drying the particulate water-containing gel is not particularly limited.
- heat drying, hot air drying, reduced pressure drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, azeotrope with a hydrophobic organic solvent Drying by dehydration, high humidity drying using high temperature steam and the like can be mentioned.
- hot air drying is preferable from the viewpoint of drying efficiency, and band drying in which hot air drying is performed on a ventilated belt is more preferable.
- the drying temperature (the temperature of the hot air) in the hot air drying is preferably 120 to 250 ° C., more preferably 150 to 200 ° C., from the viewpoint of color tone of the water-absorbent resin and drying efficiency.
- the drying conditions other than the above-mentioned drying temperature, such as the wind speed and drying time of hot air, may be set appropriately according to the moisture content and total mass of the particulate water-containing gel to be dried and the target resin solid content. .
- band drying the conditions described in WO2006 / 100300, WO2011 / 025012, 2011/025013, 2011/111657 etc. are applied as appropriate.
- Pulverization Step Classification Step
- the dried polymer obtained in the above-mentioned drying step is pulverized (pulverization step), adjusted to a particle size of a predetermined range (classification step), water absorbent resin powder ( This is a step of obtaining a powdery water-absorbent resin before surface crosslinking, for convenience, referred to as "water-absorbent resin powder”.
- Examples of the equipment used in the grinding process of the present invention include high-speed rotary grinders such as roll mills, hammer mills, screw mills and pin mills, vibration mills, knuckle type grinders, cylindrical mixers, etc. It is used together.
- the particle size adjustment method in the classification step of the present invention is not particularly limited, and examples thereof include sieve classification and air flow classification using a JIS standard sieve (JIS Z8801-1 (2000)).
- the particle size adjustment of the water-absorbent resin is not limited to the above-mentioned crushing step and classification step, and the polymerization step (particularly reverse phase suspension polymerization or spray droplet polymerization) and other steps (for example, granulation step, fine powder recovery step) Can be implemented as appropriate.
- the water-absorbent resin powder obtained in the present invention preferably has a mass average particle diameter (D50) of 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, still more preferably 250 to 500 ⁇ m, and particularly preferably 350 to 450 ⁇ m.
- D50 mass average particle diameter
- the proportion of particles having a particle diameter of less than 150 ⁇ m is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
- the proportion of particles having a particle diameter of 850 ⁇ m or more is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less.
- the lower limit value of the ratio of these particles is preferably as low as possible in any case, and 0% by mass is desired, but it may be about 0.1% by mass.
- the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and still more preferably 0.27 to 0.35.
- the particle size described above is applied not only to the water-absorbent resin after surface cross-linking (hereinafter sometimes referred to as "water-absorbent resin particles" for convenience), but also to the particulate water-absorbing agent as the final product. Therefore, in the water-absorbent resin particles, the surface crosslinking treatment (surface crosslinking step) is preferably performed so as to maintain the particle size in the above range, and the particle diameter adjustment is performed by providing a particle sizing step after the surface crosslinking step preferable.
- This step is a step of providing a portion with a higher crosslinking density on the surface layer of the water absorbent resin powder (portion several tens ⁇ m from the surface of the water absorbent resin powder) obtained through the above steps. And comprises a mixing step, a heat treatment step and a cooling step (optional).
- a water absorbent resin (water absorbent resin particles) crosslinked on the surface by radical crosslinking or surface polymerization on the surface of the water absorbent resin powder, a crosslinking reaction with a surface crosslinking agent, or the like is obtained.
- surface crosslinking agent Although it does not specifically limit as a surface crosslinking agent used by this invention, An organic or inorganic surface crosslinking agent is mentioned. Among them, an organic surface crosslinking agent that reacts with a carboxyl group is preferable from the viewpoint of the physical properties of the water-absorbent resin and the handleability of the surface crosslinking agent. For example, one or more surface cross-linking agents disclosed in US Pat. No. 7,183,456 can be mentioned.
- polyhydric alcohol compounds epoxy compounds, haloepoxy compounds, polyvalent amine compounds or their condensates with haloepoxy compounds, oxazoline compounds, oxazolidinone compounds, polyvalent metal salts, alkylene carbonate compounds, cyclic urea compounds, etc. It can be mentioned.
- the amount of the surface crosslinking agent used is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the water absorbent resin powder It is.
- the surface crosslinking agent is preferably added as an aqueous solution.
- the amount of water used is preferably 0.1 to 20 parts by mass, and more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the water absorbent resin powder. 5 to 10 parts by mass.
- the usage-amount is preferably 10 mass parts or less with respect to 100 mass parts of water absorbing resin powder, More preferably, it is 5 mass parts or less.
- each additive added in the below-mentioned “re-wetting step” may be added to the surface cross-linking agent (aqueous solution) within 5 parts by mass or less and mixed, or separately added in the mixing step You can also.
- This step is a step of mixing the water-absorbent resin powder and the surface crosslinking agent.
- the method of mixing the surface crosslinking agent is not particularly limited, but a surface crosslinking agent solution is prepared in advance, and the solution is preferably sprayed or dropped onto the water-absorbent resin powder, and more preferably sprayed. And mixing methods.
- a high-speed stirring mixer More preferably, a high-speed stirring continuous mixer is mentioned.
- This step is a step of applying heat to the mixture discharged from the mixing step to cause a crosslinking reaction on the surface of the water absorbent resin powder.
- the apparatus for carrying out the crosslinking reaction is not particularly limited, but preferably includes a paddle dryer.
- the reaction temperature in the crosslinking reaction is appropriately set depending on the type of surface crosslinking agent used, but is preferably 50 to 300 ° C., more preferably 100 to 200 ° C.
- This step is an optional step which is installed as necessary after the heat treatment step.
- the apparatus for performing the cooling is not particularly limited, but is preferably an apparatus having the same specifications as the apparatus used in the heat treatment step, and more preferably a paddle dryer. By changing the heat medium to a refrigerant, it can be used as a cooling device.
- the water-absorbent resin particles obtained in the heat treatment step are forcibly cooled to preferably 40 to 80 ° C., more preferably 50 to 70 ° C., if necessary.
- This step is the following water-insoluble resin particles obtained in the above-mentioned surface crosslinking step: water-insoluble inorganic fine particles, polyvalent metal salt, cationic polymer, chelating agent, inorganic reducing agent as described above
- at least one additive selected from the group consisting of a hydroxycarboxylic acid compound and the hygroscopic flow improver described above is added.
- the additive since the said additive is added by aqueous solution or a slurry liquid, a water absorbing resin particle swells in water again. Therefore, this process is referred to as a "re-humidifying process". Further, as described above, the additive may be mixed with the water absorbent resin powder simultaneously with the surface crosslinking agent (aqueous solution).
- Water-insoluble inorganic fine particles, polyvalent metal salts, cationic polymers In the present invention, from the viewpoint of improving the absorption rate, liquid permeability, hygroscopicity, etc. of the water-absorbent resin to be obtained, to add at least one selected from water-insoluble inorganic fine particles, polyvalent metal salts and cationic polymers. Is preferred.
- the water-insoluble inorganic fine particles the compound disclosed in "[5] water-insoluble inorganic fine particles” of WO 2011/040530 is applied to the present invention.
- a chelating agent In the present invention, it is preferable to add a chelating agent from the viewpoint of color tone (coloring prevention) and deterioration prevention of the water-absorbent resin to be obtained.
- Inorganic reductant In the present invention, it is preferable to add an inorganic reducing agent from the viewpoint of color tone (coloring prevention), deterioration prevention, reduction of residual monomers, etc. of the water-absorbent resin to be obtained.
- the inorganic reducing agent specifically, the compound disclosed in "[3] inorganic reducing agent" of WO 2011/040530 and the amount thereof used are applied to the present invention.
- additives other than the above-described additives may be added in order to add various functions to the water absorbent resin.
- specific examples of the additive include surfactants, compounds having a phosphorus atom, oxidizing agents, organic reducing agents, organic powders such as metal soaps, deodorants, antibacterial agents, pulp and thermoplastic fibers, and the like.
- surfactants compounds having a phosphorus atom
- organic reducing agents organic powders such as metal soaps, deodorants, antibacterial agents, pulp and thermoplastic fibers, and the like.
- the compound disclosed in WO 2005/075070 is applied to the present invention.
- the use amount (addition amount) of the additive is not particularly limited because it is appropriately determined according to the application, but preferably 3 parts by mass or less, more preferably 1 part by mass with respect to 100 parts by mass of the water absorbent resin powder. It is below a mass part. Also, the additive can be added in a step different from the above step.
- a granulation step, a particle sizing step, a fine powder removing step, a fine powder recycling step, and the like can be provided as necessary.
- the “particle sizing step” includes the fine powder removing step after the surface crosslinking step and the step of classification and crushing when the water-absorbent resin is aggregated and exceeds a desired size.
- the "reuse step of fine powder” includes a step of adding fine powder as it is as in the present invention, or adding it to a large water-containing gel and any of the steps of the process for producing a water absorbent resin.
- the use of the particulate water absorbent of the present invention is not particularly limited, it is preferably used as an absorbent for sanitary goods such as disposable diapers, sanitary napkins and incontinence pads.
- it can be used as an absorbent for high concentration diapers (high concentration diapers in which the amount of use of the particulate water-absorbing agent per disposable diaper is large) where odors from the raw materials, coloring and the like have become a problem.
- high concentration diapers high concentration diapers in which the amount of use of the particulate water-absorbing agent per disposable diaper is large
- odors from the raw materials, coloring and the like have become a problem.
- a remarkable effect can be expected when it is used for the upper layer part of the said absorber.
- the content (core concentration) of the particulate water-absorbing agent in the absorber is preferably 30 to 100% by mass, more preferably 40 to 100% by mass, still more preferably 50 to 100% by mass, still more preferably Is 60 to 100% by weight, particularly preferably 70 to 100% by weight, and most preferably 75 to 95% by weight.
- the absorbent article When the core concentration is in the above range, when the absorbent is used in the upper layer portion of the absorbent article, the absorbent article can maintain a clean white state. Furthermore, since it is excellent in the diffusibility of body fluids such as urine and blood, it is possible to improve the absorption amount by efficient liquid distribution.
- DRC Index (49-DRC5min) / (D50 / 1000) ... Formula 1.
- the DRC index is preferably 43 or less, 42 or less, 41 or less, 39 or less, 38 or less, 37 or less, 36 or less, 35 or less, 34 or less, 33 or less, 32 or less, 31 or less, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less 11 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 or less. Also preferably, it is ⁇ 5 or more and 0 or more.
- the DRC 5 min of the particulate water-absorbing agent of the present invention is not particularly limited as long as it satisfies the above-mentioned DRC index, but preferably 35 g / g or more and 38 g / g or more and 40 g / g or more.
- the upper limit is also not particularly limited, but is usually 60 g / g or less and 55 g / g or less.
- the CRC (centrifuge holding capacity) of the particulate water-absorbing agent of the present invention is 30 to 50 g / g, preferably 31 to 50 g / g, 32 to 50 g / g, 33 to 50 g / g, 34 to 50 g / g g, 35 to 50 g / g, 36 to 50 g / g, 30 to 49 g / g, 30 to 48 g / g, 30 to 47 g / g, 30 to 46 g / g, 30 to 45 g / g, 30 to 44 g / g, It is 30 to 43 g / g, 30 to 42 g / g, 30 to 41 g / g, 30 to 40 g / g, 30 to 39 g / g, and 30 to 38 g / g.
- the CRC When the CRC is less than 5 g / g, the amount of absorption is small and it is not suitable as an absorber for sanitary goods such as disposable diapers. In addition, when the CRC exceeds 70 g / g, the rate of absorption of body fluid such as urine and blood decreases, so that it is not suitable for use in high absorption rate disposable diapers and the like.
- the CRC can be controlled by an internal crosslinking agent, a surface crosslinking agent or the like.
- the particle size (particle size distribution, mass average particle size (D50), logarithmic standard deviation of particle size distribution ( ⁇ )) of the particulate water-absorbing agent of the present invention is the same as the particle size of the water-absorbent resin powder before surface crosslinking To be controlled. Preferably, it is as described in the above (3-5) grinding step and classification step.
- the surface tension (defined by the measurement method described in the examples) of the particulate water-absorbing agent of the present invention is 65 mN / m or more, preferably 66 mN / m or more, preferably 67 mN / m or more It is preferably 68 mN / m or more, more preferably 69 mN / m or more, still more preferably 70 mN / m or more, particularly preferably 71 mN / m or more, most preferably 72 mN / m or more, and there is no substantial reduction in surface tension. .
- the upper limit is usually 75 mN / m.
- the particle shape of the particulate water-absorbing agent of the present invention is irregularly crushed. Because the surface area is large in the irregularly crushed form compared to the spherical particles obtained by reverse phase suspension polymerization or gas phase polymerization, the absorption rate of the particulate water absorbing agent is increased, and fixation to the pulp is facilitated. Because you can do it.
- Hygroscopic fluidity moisture blocking ratio
- BR moisture blocking ratio
- the moisture absorption (BR) of the particulate water-absorbing agent of the present invention is usually 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less Preferably it is 10 mass% or less, Most preferably, it is 0 mass%.
- the moisture absorption (BR) of the particulate water-absorbing agent of the present invention is also 0 to 50% by mass, 0 to 40% by mass, 0 to 30% by mass, 0 to 20% by mass, or 0 to 10% by mass. It can be.
- the handleability of the particulate water absorbing agent is poor in a humid environment, and the transfer of the production plant, for example, at the time of producing a thin absorber for sanitary materials There may occur problems such as the occurrence of aggregation and clogging in the piping, and inability to uniformly mix with the hydrophilic fibers.
- adhesion to equipment can be reduced when producing an absorbent using a particulate water-absorbing agent and a hydrophilic fiber (fiber base).
- the water-soluble fraction (Ext) of the particulate water-absorbing agent of the present invention is 25% by mass or less, preferably 24% by mass or less, more preferably 22% by mass or less, still more preferably 20% by mass It is below.
- the absorption capacity for example, the water absorption capacity under pressure
- performance such as return amount may be improved. it can.
- the deterioration soluble fraction of the particulate water-absorbing agent of the present invention is 30% by mass or less, preferably 27% by mass or less, more preferably 24% by mass or less, More preferably, it is 20% by mass or less. Since the urine resistance of the particulate water-absorbing agent is improved by satisfying the above conditions, when the particulate water-absorbing agent is used in disposable diapers, the ability to remove gel deterioration, skin roughening, rash and odor by body fluid such as urine is It is possible to suppress problems such as decrease.
- the water absorption capacity (AAP) of the particulate water-absorbing agent of the present invention is preferably 18 g / g or more, more preferably 22 g / g or more, still more preferably 24 g / g or more, particularly preferably 26 g / g or more, more particularly Preferably it is 28 g / g or more, most preferably 30 g / g or more.
- the upper limit value of the water absorption capacity (AAP) under pressure is not particularly limited, but preferably 40 g / g or less.
- AAP When the AAP is less than 18 g / g, the amount of liquid return (usually referred to as "Re-Wet") when pressure is applied to the absorbent increases, and the absorbent of sanitary goods such as disposable diapers Not suitable as.
- AAP can be controlled by particle size, surface crosslinking agent and the like.
- disposable diapers manufactured using the particulate water-absorbing agent are excellent in the ability to absorb urine from pulp, can reduce the amount of reversion, and can suppress rough skin, rash and urine leakage.
- the bulk specific gravity of the particulate water-absorbing agent of the present invention is 0.57 to 0.75 [g / cm 3 ], preferably 0.58 to 0.74 [g / cm 3 ], It is preferably 0.59 to 0.73 [g / cm 3 ], more preferably 0.60 to 0.72 [g / cm 3 ].
- the 10-minute value of diffusion water absorption capacity under pressure of the particulate water-absorbing agent according to the present invention is 12.0 g / g or more, more preferably 14.0 g / g or more, and still more preferably 16.0 g / g or more. More than 0 g / g is most preferred.
- the 10-minute value of the surface diffusion treated water-absorbing agent is 7 g / g or more under pressure, but there is also a water-absorbing agent with a low 10-minute value of pressure-diffusing water absorption.
- the upper limit is not particularly limited, but is generally about 30 g / g or less.
- the degree of yellowness is preferably 0 to 17, more preferably 0 to 16, still more preferably 0 to 15, and most preferably 0 to 14. It is preferable that the particulate water absorbing agent has almost no yellowing.
- methods (Lab value, YI value, WB value, etc.) described in WO 2009/005114 can be exemplified.
- the YI value of the particulate water-absorbing agent of the present invention after accelerated coloration test is 35 or less, preferably 30 or less, more preferably 25 or less, more preferably Is 22 or less.
- the particulate water absorbing agent of the present invention is a particle having a particle diameter of 150 ⁇ m or less generated before and after the test in the damage resistant paint shaker test described in the examples.
- the amount of increase is not more than + 5%, preferably not more than + 4%, more preferably not more than + 3%, still more preferably not more than + 2%, still more preferably not more than + 1%.
- the amount of the water absorbing resin contained in the dust in the particulate water absorbing agent of the present invention is 300 ppm or less, preferably 270 ppm or less, more preferably the total amount of the particulate water absorbing agent. It is at most 240 ppm, most preferably at most 200 ppm.
- the internal cell ratio of the particulate water-absorbing agent of the present invention is 0.5 to 2.5%, preferably 0.8 to 2.3%, more preferably 1.2 to 2. It is 0%, more preferably 1.5 to 1.8%.
- the measuring method of the physical property of the particulate water absorbing agent which concerns on 1 aspect of this invention, and a particulate water absorbing agent can be expressed as follows. It is a measuring method of the absorption speed of a ⁇ 1> particulate water absorbing agent, and in the state where a part or all of particulate water absorbing agent was fixed to the bottom of the measurement container where the bottom was framed, Method of measuring the absorption rate of the particulate water-absorbing agent by pressurizing the aqueous solution, injecting the aqueous solution from the inlet provided in the flat plate, and measuring the time until the introduced aqueous solution is absorbed by the particulate water-absorbing agent .
- the aqueous solution is introduced from the inlet provided in the flat plate, the aqueous solution is allowed to be absorbed by the particulate water-absorbing agent, and the flat plate is removed after a predetermined time after the addition of the aqueous solution.
- a member capable of absorbing the aqueous solution is disposed on the upper part of the particulate water absorbing agent, pressurized for a predetermined time, and the mass of the aqueous solution absorbed by the member is measured to obtain the amount of liquid returned from the particulate water absorbing agent.
- ⁇ 4> The measurement method according to any one of ⁇ 1> to ⁇ 3>, wherein the particulate water absorbing agent is uniformly dispersed on the bottom surface of the measurement container.
- ⁇ 5> The measurement method according to any one of ⁇ 1> to ⁇ 4>, wherein a spread amount of the particulate water absorbing agent is 50 to 1000 g / m 2 with respect to an area of a bottom surface of the measurement container.
- ⁇ 6> The measurement method according to any one of ⁇ 1> to ⁇ 5>, wherein the pressurizing condition (load) at the time of charging the aqueous solution is 0.2 to 10.0 kPa.
- ⁇ 7> The measurement method according to any one of ⁇ 1> to ⁇ 6>, wherein the area of the portion pressurized by the flat plate is 10 to 90% of the bottom area of the measurement container.
- ⁇ 8> The measurement method according to any one of ⁇ 1> to ⁇ 7>, wherein the addition of the aqueous solution is performed multiple times.
- ⁇ 9> The measuring method according to any one of ⁇ 1> to ⁇ 8>, wherein the total amount of the aqueous solution to be introduced is 10 to 60 ml per 1 g of the particulate water absorbing agent.
- a particulate water-absorbing agent having the following physical properties (1) to (2); (1) Centrifuge holding capacity (CRC) is 30 to 50 g / g, (2)
- the absorption performance index (API) represented by the following equation is 150 or less.
- Absorption performance index (API) first absorption time [sec] x second absorption time [sec] x third absorption time [sec] x return amount [g] / 1000.
- the new absorption performance index (nAPI) represented by the following equation is 240 or less.
- New absorption performance index (nAPI) second absorption time [sec] x third absorption time [sec] x return amount [g] / 10.
- the particulate water-absorbing agent as described in ⁇ 13> whose ⁇ 14> above-mentioned new absorption performance index (nAPI) is 190 or less.
- the 10-minute value of diffusion water absorption capacity under pressure (DAP 10 min) is 12.0 g / g or more, (4) gel permeation rate (GPR) 25 g / min or more, (5)
- the amount of the water absorbing resin contained in the dust is 300 ppm or less based on the total amount of the particulate water absorbing agent.
- ⁇ 17> The particulate water-absorbing agent according to any one of ⁇ 11> to ⁇ 16>, wherein the DRC index defined by the following formula 1 is 43 or less.
- DRC index (49-DRC5min) / (D50 / 1000) ...
- the particulate water absorbing agent as described in ⁇ 17> whose ⁇ 19> above-mentioned DRC index is 20 or less.
- ⁇ 20> The particulate water-absorbing agent according to any one of ⁇ 11> to ⁇ 19>, wherein the particle shape is irregularly crushed.
- the particulate water-absorbing agent according to any one of ⁇ 11> to ⁇ 20> having a ⁇ 21> hygroscopic fluidity (BR) of 50% by mass or less.
- BR hygroscopic fluidity
- ⁇ 23> The particulate water-absorbing agent according to any one of ⁇ 11> to ⁇ 22>, which has a water absorption capacity (AAP) under pressure of 18 g / g or more.
- AAP water absorption capacity
- AAP water absorption capacity
- the electric equipment (a physical-property measurement of a particulate water absorption agent is also included) used by the Example and the comparative example used the power supply of 200V or 100V unless there is a note in particular.
- various physical properties of the particulate water-absorbing agent of the present invention were measured under the conditions of room temperature (20 to 25 ° C.) and relative humidity 50% RH unless otherwise noted.
- AAP Water absorption capacity under pressure
- (C) Water Content The water content of the particulate water-absorbing agent or water-absorbent resin of the present invention was measured in accordance with the EDANA method (ERT 430.2-02). In the present invention, the measurement was carried out by changing the amount of sample to 1.0 g and the drying temperature to 180 ° C.
- the drying time was changed to 24 hours and measured.
- a glass filter 24 with a diameter of 120 mm (Pore diameter; 100 to 120 ⁇ m, manufactured by mutual physical and chemical glass company, Inc.) is placed inside a circular or square petri dish 23 with a base area of 400 cm 2 and 0.90 mass% sodium chloride aqueous solution 26 (23 ⁇ 0.5 ° C) at the same level as the upper surface of the glass filter 24 (the liquid is slightly lifted by surface tension on the outer periphery of the glass filter, or about 50% of the surface of the glass filter is covered Added to become Place one filter paper 25 (ADVANTEC Toyo Corp., product name: (JIS P3801, No. 2), thickness 0.26 mm, holding particle diameter 5 ⁇ m) with a diameter of 110 mm on it, and make the entire surface of the filter paper 25 wet. did.
- a 25 mm long fluorocarbon resin rotor sufficiently washed in a beaker containing 0.90 mass% sodium chloride aqueous solution after surface tension measurement adjusted to 20 ° C., and a particulate water absorbing agent or a water absorbing resin 0.5 g was charged and stirred for 4 minutes under the condition of 500 rpm. After 4 minutes, stirring was stopped, and after the hydrated particulate water-absorbing agent or water-absorbing resin sedimented, the surface tension of the supernatant liquid was measured again by the same operation.
- a plate method using a platinum plate is adopted, and the plate is sufficiently washed with deionized water before each measurement and heated and washed by a gas burner.
- JIS standard sieves having openings 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 500 ⁇ m, 425 ⁇ m, 212 ⁇ m, 212 ⁇ m, 150 ⁇ m, 106 ⁇ m and 75 ⁇ m (The IIDA TESTING SIEVE: inner diameter 80 mm; JIS Z8801-1 (2000)), or JIS standard sieves 10.00 g of the particulate water-absorbing agent was classified using a sieve corresponding to After classification, the mass of each sieve was measured, and the mass percentage (mass%) of the particle diameter of less than 150 ⁇ m was calculated.
- the term "mass percentage less than 150 ⁇ m in particle diameter” refers to the mass ratio (%) of particles passing through a JIS standard sieve having an opening of 150 ⁇ m with respect to the entire particulate water absorbing agent.
- mass mean particle diameter (D50) says the thing of the particle diameter corresponding to 50 mass% of the whole particulate water absorbing agent.
- the logarithmic standard deviation ( ⁇ ) of the particle size distribution is represented by the following formula f-1, and the smaller the value of ⁇ , the narrower the particle size distribution.
- ⁇ 0.5 ⁇ ln (X2 / X1) ... Formula f-1
- G Hygroscopic fluidity (moisture blocking ratio) (BR; Blocking Ratio) After uniformly spraying 2 g of particulate water-absorbing agent or water-absorbing resin onto an aluminum cup with a diameter of 52 mm, a constant temperature and humidity oven under temperature 25 ° C. and relative humidity 90 ⁇ 5% RH (PLATINOUS LUCIFER PL-2G; Incubate for 1 hour.
- the mass (W1 [g]) of the particulate water-absorbing agent or water-absorbing resin remaining on the above-mentioned JIS standard sieve, and the mass (W2 [g]) of the particulate water-absorbing agent or water-absorbing resin passing through the JIS standard sieve The hygroscopic fluidity (hygroscopic blocking ratio) was calculated according to the following formula g-1. In addition, it is excellent in moisture absorption fluidity, so that the value of a blocking rate is low.
- Hygroscopic fluidity (BR) (mass%) ⁇ W1 / (W1 + W2) ⁇ ⁇ 100 ... Formula g-1.
- the extract solution which is the above aqueous solution
- the above measurement solution was titrated with 0.1 N aqueous NaOH solution to pH 10, and then titrated with 0.1 N aqueous HCl solution to pH 2.7. The titration amount at this time was determined as [NaOH] ml and [HCl] ml.
- the degraded soluble component was calculated according to the following formula h-1 from the titer and the monomer average molecular weight.
- Degraded soluble matter (% by mass) 0.1 ⁇ monomer average molecular weight ⁇ 200 ⁇ 100 ⁇ ([HCl] ⁇ [b 2 HCl]) / 1000 / 1.0 / 50.0 formula h-1
- the weight (unit; g) of the receiver containing the water absorbing agent (mass W10) is accurately measured to 0.1 g, and the following formula i-
- the bulk density was calculated according to 1.
- Bulk specific gravity (g / cm 3 ) (W10-W9) / 100 ... Formula i-1
- the temperature of the environment which measured was 24.2 degreeC, and the relative humidity was 43% RH.
- Fine powder increase before and after damage (damage resistance)
- the amount of increase in fine powder (increase in 150 ⁇ m passing material) before and after damage of the particulate water-absorbing agent of the present invention is preferably 4% by mass or less, and further 3.5% by mass or less. Within this range, there is no problem of deterioration of physical properties in actual use such as diaper manufacturing.
- the water absorbing agent was subjected to the following paint shaker test, and classified using a JIS standard sieve with an opening of 150 ⁇ m, and the increase in particles having a particle diameter of 150 ⁇ m or less before and after the test was measured.
- the glass beads After shaking, the glass beads are removed with a JIS standard sieve with an opening of 2 mm to obtain a damaged water absorbent resin.
- the measuring apparatus includes a balance 1, a container 2 of a predetermined volume placed on the balance 1, an outside air suction pipe 3, a conduit 4, a glass filter 6, and the glass filter 6 It consists of a measuring unit 5 placed on top.
- the container 2 has an opening 2a at its top and an opening 2b at its side, and the outside air suction pipe 3 is fitted into the opening 2a while the conduit 4 is attached to the opening 2b. ing.
- the container 2 contains a predetermined amount of 0.90 mass% sodium chloride aqueous solution 12.
- the lower end of the outside air suction pipe 3 is submerged in a 0.90 mass% sodium chloride aqueous solution 12.
- the glass filter 6 is formed to have a diameter of 70 mm.
- the container 2 and the glass filter 6 are in communication with each other by the conduit 4. Further, the glass filter 6 is fixed in such a manner that the upper surface thereof is positioned slightly higher than the lower end of the outside air suction pipe 3.
- the measurement unit 5 includes a filter paper 7, a sheet 8, a support cylinder 9, a wire mesh 10 attached to the bottom of the support cylinder 9, and a weight 11.
- the filter paper 7, the sheet 8, and the support cylinder 9 (that is, the wire mesh 10) are placed in this order on the glass filter 6, and the weight 11 inside the support cylinder 9, that is, the wire mesh 10.
- the sheet 8 is made of polyethylene terephthalate (PET), and is formed in a donut shape having a thickness of 0.1 mm having an opening with a diameter of 18 mm at the center.
- the support cylinder 9 is formed to have an inner diameter of 60 mm.
- the wire mesh 10 is made of stainless steel and is formed in 400 mesh (eye size 38 ⁇ m) in accordance with JIS. Then, a predetermined amount of particulate water absorbing agent is uniformly distributed on the wire mesh 10. The weight 11 is adjusted so that a load of 20 g / cm 2 (1.96 kPa) can be uniformly applied to the wire mesh 10, that is, the particulate water-absorbing agent.
- the 10-minute value of the diffusion water absorption magnification under pressure was measured using the measuring apparatus of the said structure. The measurement method is described below.
- predetermined preparation operations such as placing a predetermined amount of 0.90 mass% sodium chloride aqueous solution 12 in the container 2 and inserting the outside air suction pipe 3 into the container 2 were performed.
- the filter paper 7 was placed on the glass filter 6, and the sheet 8 was placed on the filter paper 7 such that the opening was at the center of the glass filter 6.
- 1.5 g of the particulate water-absorbing agent was uniformly dispersed in the inside of the support cylinder 9, that is, on the wire mesh 10, and the weight 11 was placed on the particulate water-absorbing agent.
- the wire mesh 10 that is, the support cylinder 9 on which the particulate water absorbing agent and the weight 11 were placed, was placed such that the central portion thereof was in agreement with the central portion of the glass filter 6.
- the weight W2 (g) of the 0.90% by mass sodium chloride aqueous solution 12 absorbed by the particulate water-absorbing agent for 10 minutes was measured using the balance 1 from the time when the support cylinder 9 was placed on the sheet 8 .
- the 0.90% by mass sodium chloride aqueous solution 12 is in the lateral direction of the particulate water-absorbing agent (indicated by the arrow in FIG. 8). It was absorbed by the particulate water-absorbing agent while diffusing almost uniformly.
- (M) Amount of Water-absorbent Resin in Dust The amount of water-absorbent resin in dust (the amount of water-absorbent resin contained in the dust generated from 100 parts by mass of particulate water-absorbing agent) was determined according to the following procedure. Step 1: Measure the amount of dust. Procedure 2: Determine the proportion (mass%) of the water-absorbent resin, SiO 2 and aluminum sulfate contained in the dust. In the case where SiO 2 and / or does not contain aluminum sulfate, the percentage contained in the dust and 0 mass%. Step 3: Calculate the amount of water-absorbent resin in the dust.
- the mass increase of the dust sucked and captured in the glass fiber filter paper for a predetermined time was measured as the amount of dust generated from the particulate water absorbing agent.
- the measurement apparatus used a Heiwa dust meter (Heubach DUSTMETER, manufactured by Heubach Engineering GmbH (Germany)), and the measurement mode was Type I.
- the temperature and humidity of the atmosphere at the time of measurement were 25 ° C. ( ⁇ 2 ° C.), and the relative humidity was 20 to 40%.
- the measurement was performed at normal pressure.
- the specific measurement method is as follows. 1. The particulate water absorbing agent (100.00 g) of the measurement sample was placed in the rotating drum of the dust meter. 2. The mass of the glass fiber filter paper with a diameter of 50 mm was measured to the unit of 0.00001 g (denoted as [Da] g) with a retention particle diameter of 0.5 ⁇ m (determined based on the precipitation retention specified in JIS P3801). As such a glass fiber filter paper, for example, a glass fiber filter paper obtained by processing GLASS FIBER, GC-90 (manufactured by ADVANTEC) or an equivalent thereof to a diameter of 50 mm can be used. 3.
- a large particle separator was attached to the rotating drum, and further, a filter case equipped with a glass fiber filter was attached. 4.
- the dust meter was set to the following measurement conditions, and it measured.
- Drum rotation speed 30 R / min
- suction air volume 20 L / min
- Time (measurement time) 30 minutes.
- the mass of the glass fiber filter paper was measured to 0.00001 g (take as [Db] g).
- the dust amount was calculated from the following formula m-1 based on [Da] and [Db].
- the ratio of Na element, Si element and Al element contained in the dust was analyzed. Then, based on the neutralization ratio and the mass average molecular weight of the water absorbing resin (including a sodium salt as a neutralizing salt), the mass ratio of the water absorbing resin, SiO 2 and aluminum sulfate was calculated from the result of the above analysis.
- the neutralization salt of the water-absorbent resin is not a sodium salt but is a potassium salt, a lithium salt, an ammonium salt, etc.
- the proportions of the water-absorbent resin, SiO 2 and aluminum sulfate in dust according to the above method You can ask for For example, when the neutralization salt of the water-absorbent resin is a potassium salt, the proportions of the K element, the Si element and the Al element may be analyzed.
- other substances for example, water, water-insoluble inorganic fine particles other than SiO 2 , etc.
- the measurement conditions of quantitative analysis are as follows.
- ⁇ Device Scanning electron microscope (JSM JSM-5410LV SCANNING MICROSCOPE)
- Acceleration voltage 20kV -Magnification: 20 times-Measurement field: about 900 ⁇ m x 1200 ⁇ m (measured with at least 50% by volume of the total area in the measurement field covered with dust)
- Si peak SiK ⁇ 1.739 KeV
- Na peak NaK ⁇ 1.041 KeV
- Al peak AlK ⁇ 1.486 KeV.
- the peak of another element overlaps with the peak of the noted element (for example, ZnL ⁇ to NaK ⁇ , etc.)
- the value of the peak is subtracted and measured. The value was calibrated.
- Mass% of Na element hereinafter, abbreviated as “Na%”
- mass% of Al element hereinafter, abbreviated as “Al%”
- Si% mass% of Si element
- the neutralization ratio N of the water-absorbent resin is determined according to the description of (neutralization) in the preparation process of the (3-1) aqueous monomer solution described above. Or it can be calculated by using the method described in (h) Degraded soluble content described above.
- the proportions of the water-absorbent resin, SiO 2 and aluminum sulfate contained in the dust are preferably measured by the method described above. However, when the component is unknown or there are many other elements, etc., it can be measured by a conventionally known method (elemental analysis etc.).
- ⁇ Measurement of the amount of water absorbent resin in dust> Calculate the amount of the water-absorbent resin in the dust according to the following formula m-9 from the amount of dust collected in the measurement of the amount of dust and the ratio of the water-absorbent resin, SiO 2 and aluminum sulfate quantified. Can.
- the value of the dust amount in the following formula m-9 is based on the total amount of the particulate water absorbing agent (the total mass of the water absorbing resin composition). Therefore, the value of the amount of the water absorbent resin in the dust in the following formula m-9 is also based on the total mass of the water absorbent resin composition.
- Amount of water absorbent resin in dust (ppm) amount of dust ⁇ P / (P + S + A) ... Formula m-9.
- 0.900 g of the particulate water-absorbing agent uniformly contained in the container 40 was swollen for 60 minutes without pressure in a 0.90 mass% sodium chloride aqueous solution to obtain a swollen gel 44 .
- the piston 46 is placed on the swelling gel 44, and 0.90 mass% sodium chloride aqueous solution 33 is swollen from the tank 31 under a constant hydrostatic pressure (3923 dyne / cm 2 ) under pressure of 0.3 psi (2.07 kPa)
- the gel layer was allowed to pass through.
- the GPR test was performed at room temperature (20-25 ° C.).
- the amount of fluid passing through the gel layer was recorded for 3 minutes at 5 second intervals as a function of time.
- the flow rate from 1 minute to 3 minutes was averaged to determine the gel permeation rate (GPR) in g / min.
- the glass tube 32 is inserted into the tank 31, and the lower end of the glass tube 32 is from the bottom of the swelling gel 44 in the cell 41 of 0.90 mass% sodium chloride aqueous solution 33 It arrange
- the 0.90% by mass sodium chloride aqueous solution 33 in the tank 31 was supplied to the cell 41 through a cocked L-shaped pipe 34 with a cock 35.
- a collection container 48 for collecting the passed solution was disposed, and the collection container 48 was placed on the upper balance 49.
- the inner diameter of the cell 41 is 6 cm, and the bottom surface of the cell 41 has no.
- a 400 stainless steel wire mesh (38 ⁇ m mesh) 42 was installed.
- the lower part of the piston 46 has a hole 47 sufficient for liquid to pass through, and the bottom part of the piston 46 has a good permeability so that the particulate water absorbing agent or its swelling gel 44 does not enter the hole 47.
- a 400 stainless steel wire mesh (38 ⁇ m mesh) 45 was attached.
- the cell 41 was placed on a table for mounting the cell, and the surface of the table in contact with the cell was placed on a stainless steel gauze 43 which does not prevent liquid permeation.
- (O-1) Apparent density After removing the water content of the water-absorbent resin, measure the apparent density taking into account the air bubbles (internal air bubbles) present inside the resin with a dry density meter (the volume of the water-absorbent resin of a given mass Dry measurement).
- the measurement method is as follows. That is, after measuring 6.0 g of a water absorbing resin in an aluminum cup having a bottom diameter of about 5 cm, it was dried in a non-air drier at 180 ° C. It was allowed to stand for 3 hours or more until the water content of the water-absorbent resin became 1 mass% or less, and was sufficiently dried.
- the apparent density (unit: [g / cm 3 ]) was measured using a dry-type automatic densitometer (AccuPyc II 1340 TC-10 cc; manufactured by Shimadzu Corporation / carrier gas; helium) for 5.00 g of the water absorbent resin after drying. . The said measurement was repeated until the measured value became equal 5 or more times continuously.
- a dry-type automatic densitometer AcuPyc II 1340 TC-10 cc; manufactured by Shimadzu Corporation / carrier gas; helium
- the diameter of the internal cells (closed cells) present inside the water-absorbent resin is usually 1 to 300 ⁇ m, and at the time of grinding, it is crushed preferentially from the part close to the closed cells. Therefore, when the water-absorbent resin is pulverized until the particle diameter is less than 45 ⁇ m, the water-absorbent resin obtained after the pulverization hardly contains closed cells. Therefore, the dry density of the water absorbent resin pulverized to a particle size of less than 45 ⁇ m is defined as the true density in the present invention.
- the measurement method is as follows.
- a production apparatus for a polyacrylic acid (salt) -based water absorbent resin powder As a production apparatus for a polyacrylic acid (salt) -based water absorbent resin powder, a polymerization step, a gel grinding step, a drying step, a grinding step, a classification step, a surface crosslinking step, a cooling step, a particle sizing step, and A continuous manufacturing apparatus was prepared, which was composed of transport steps connecting each step.
- the production capacity of the continuous production apparatus may be 3500 [kg / hr], and the above-described steps may be one series or two or more series. In the case of two or more series, the production capacity is indicated by the total amount of each series.
- a polyacrylic acid (salt) -based water absorbent resin powder is continuously produced using the continuous production apparatus.
- Production Example 1 300 parts by mass of acrylic acid, 100 parts by mass of a 48% by mass aqueous solution of sodium hydroxide, 0.94 parts by mass of polyethylene glycol diacrylate (average n: 9), 16.4 parts by mass of an aqueous solution of 0.1% by mass diethylenetriaminepentaacetic acid And a monomer aqueous solution (1) consisting of 314.3 parts by mass of deionized water.
- the monomer aqueous solution (1) temperature-controlled to 38 ° C. was continuously supplied by a metering pump, and then 150.6 parts by mass of a 48 mass% sodium hydroxide aqueous solution was continuously line-mixed. At this time, the solution temperature of the aqueous monomer solution (1) rose to 80 ° C. due to the heat of neutralization.
- the continuous polymerization machine having a planar polymerization belt provided with creases at both ends is continuously made to have a thickness of 10 mm. Supply. Thereafter, polymerization (polymerization time; 3 minutes) was continuously performed to obtain a band-like water-containing gel (1).
- the water-containing gel (1) was obtained by continuously cutting the obtained band-like water-containing gel (1) in the width direction with respect to the direction of travel of the polymerization belt at equal intervals such that the cutting length was 300 mm. .
- the water-containing gel (1) had a CRC of 33.5 g / g and a resin solid content of 49.5% by mass.
- Production Example 2 300 parts by weight of acrylic acid, 100 parts by weight of 48% by weight aqueous sodium hydroxide solution, 0.61 parts by weight of polyethylene glycol diacrylate (average n: 9), 1.0% by weight aqueous solution of 5% ethylenediaminetetra (methylene phosphonic acid) 6 A monomer aqueous solution (2) consisting of 5 parts by mass and 346.1 parts by mass of deionized water was prepared.
- the monomer aqueous solution (2) temperature-controlled to 40 ° C. was continuously supplied by a metering pump, and then 150.6 parts by mass of a 48 mass% aqueous solution of sodium hydroxide was continuously line-mixed. At this time, the solution temperature of the aqueous monomer solution (2) rose to 81 ° C. due to the heat of neutralization.
- the continuous polymerization machine having a planar polymerization belt provided with creases at both ends is continuously made to have a thickness of 10 mm. Supply. Thereafter, polymerization (polymerization time: 3 minutes) was continuously performed to obtain a band-like water-containing gel (2).
- the water-containing gel (2) was obtained by continuously cutting the obtained band-like water-containing gel (2) in the width direction with respect to the direction of movement of the polymerization belt at equal intervals such that the cutting length was 300 mm. .
- the water-containing gel (2) had a CRC of 36.0 g / g and a resin solid content of 48.1% by mass.
- the monomer aqueous solution (3) temperature-controlled to 42 ° C. was continuously supplied by a metering pump, and then 150.6 parts by mass of a 48 mass% sodium hydroxide aqueous solution was continuously line-mixed. At this time, the solution temperature of the aqueous monomer solution (3) rose to 81 ° C. due to the heat of neutralization.
- the continuous polymerization machine having a planar polymerization belt provided with creases at both ends is continuously made to have a thickness of 10 mm. Supply. Thereafter, polymerization (polymerization time: 3 minutes) was continuously performed to obtain a band-like water-containing gel (3).
- the water-containing gel (3) was obtained by continuously cutting the obtained band-like water-containing gel (3) in the width direction with respect to the direction of movement of the polymerization belt at equal intervals such that the cutting length was 300 mm. .
- the water-containing gel (3) had a CRC of 33.3 g / g and a resin solid content of 47.1% by mass.
- the monomer aqueous solution (1) temperature-controlled to 38 ° C. was continuously supplied by a metering pump, and then 149.3 parts by mass of a 48 mass% aqueous solution of sodium hydroxide was continuously line-mixed. At this time, the solution temperature of the aqueous monomer solution (1) rose to 82 ° C. due to the heat of neutralization.
- the continuous polymerization machine having a planar polymerization belt provided with creases at both ends is continuously made to have a thickness of 10 mm. Supply. Thereafter, polymerization (polymerization time; 3 minutes) was continuously performed to obtain a band-like water-containing gel (4).
- the water-containing gel (4) was obtained by continuously cutting the obtained band-like water-containing gel (4) in the width direction with respect to the direction of movement of the polymerization belt at equal intervals such that the cutting length was 300 mm. .
- the water-containing gel (4) had a CRC of 34.5 g / g and a resin solid content of 52.1% by mass.
- Example 1 (Gel grinding) The water-containing gel (1) obtained in the above Production Example 1 was supplied to a screw extruder and gel-pulverized.
- the screw extruder is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 9.5 mm, a hole number of 40, a hole ratio of 36.1%, and a thickness of 10 mm at the tip, and the screw shaft has an outer diameter of 86 mm.
- a meat chopper was used. In a state where the screw shaft rotational speed of the meat chopper was 130 rpm, the water-containing gel (1) was supplied at 4640 [g / min] and at the same time water vapor was supplied at 83 [g / min].
- the gel crushing energy (GGE) at this time was 26.9 [J / g], and GGE (2) was 13.6 [J / g].
- the temperature of the water-containing gel (1) before gel grinding was 80 ° C.
- the temperature of the ground gel after gel grinding that is, the temperature of the particulate water-containing gel (1) increased to 85 ° C.
- the particulate water-containing gel (1) obtained in the gel crushing step had a resin solid content of 49.1% by mass, a mass average particle diameter (D50) of 994 ⁇ m, and a logarithmic standard deviation ( ⁇ ) of particle size distribution of 1.01. .
- the above-mentioned particulate water-containing gel (1) is sprayed on the aeration plate within 1 minute after completion of the gel pulverization (the temperature of the particulate water-containing gel (1) at this time is 80 ° C.) and dried at 185 ° C. for 30 minutes To obtain a dry polymer (1).
- the average wind speed of the hot air was 1.0 [m / s] in the direction perpendicular to the traveling direction of the ventilation belt.
- the wind speed of the hot air was measured by a constant temperature thermal anemometer Anemomaster 6162 manufactured by Nippon Kanomax Co., Ltd.
- the whole dried polymer (1) obtained in the above drying step is supplied to a three-stage roll mill and pulverized (pulverization step), and then further classified using JIS standard sieves having openings of 425 ⁇ m and 300 ⁇ m.
- a shaped crushed water absorbent resin particle (1) was obtained.
- the CRC of the water absorbent resin particles (1) was 39.7 g / g.
- Example 2 The same operation as in Example 1 was carried out using the water-containing gel (2) obtained in the above Production Example 2. Thus, a particulate water absorbing agent (2) was obtained. Various physical properties of the particulate water absorbing agent (2) are shown in Table 1.
- Example 3 (Gel grinding) The water-containing gel (3) obtained in the above Production Example 3 was supplied to a screw extruder and gel-pulverized.
- the screw extruder is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 6.4 mm, a number of holes of 83, an aperture ratio of 41.4%, and a thickness of 10 mm at the tip, and the screw shaft has an outer diameter of 86 mm.
- a meat chopper was used. In a state where the screw shaft rotational speed of the meat chopper was 130 rpm, the water-containing gel (3) was supplied at 4640 [g / min] and at the same time water vapor was supplied at 83 [g / min].
- the gel crushing energy (GGE) at this time was 29.5 [J / g], and GGE (2) was 15.7 [J / g].
- the temperature of the water-containing gel (3) before gel grinding was 80 ° C.
- the temperature of the ground gel after the gel grinding that is, the temperature of the particulate water-containing gel (3) increased to 86 ° C.
- the particulate water-containing gel (3) obtained in the gel crushing step had a resin solid content of 46.5% by mass, a mass average particle diameter (D50) of 360 ⁇ m, and a logarithmic standard deviation ( ⁇ ) of particle size distribution of 0.99. .
- the above-mentioned particulate water-containing gel (3) is sprayed on the aeration plate within 1 minute after completion of the gel pulverization (the temperature of the particulate water-containing gel (3) at this time is 80 ° C.) and dried at 185 ° C. for 30 minutes To obtain a dry polymer (3).
- the average wind speed of the hot air was 1.0 [m / s] in the direction perpendicular to the traveling direction of the ventilation belt.
- the wind speed of the hot air was measured by a constant temperature thermal anemometer Anemomaster 6162 manufactured by Nippon Kanomax Co., Ltd.
- the whole dried polymer (3) obtained in the above drying step is supplied to a three-stage roll mill and pulverized (pulverization step), and then further classified using JIS standard sieves having openings of 425 ⁇ m and 300 ⁇ m.
- a shaped crushed water absorbent resin particle (3) was obtained.
- the CRC of the water absorbent resin particles (2) was 39.2 g / g.
- Example 4 It consists of 0.030 parts by mass of ethylene glycol diglycidyl ether, 1.0 parts by mass of propylene glycol and 3.0 parts by mass of deionized water based on 100 parts by mass of the water absorbent resin particles (1) obtained in Example 1.
- the surface crosslinker solution was uniformly mixed and heat treated at 100 ° C. for 45 minutes. Thereafter, cooling is carried out, the paint shaker test is carried out, and damage equivalent to the production process is given, then 1 part by mass of water and 0 sodium triethylene diacetate triacetate with respect to 100 parts by mass of the water absorbent resin particles (1)
- the aqueous solution consisting of .01 parts by mass was uniformly mixed. After drying at 60 ° C.
- Example 5 It consists of 0.045 parts by mass of ethylene glycol diglycidyl ether, 1.0 parts by mass of propylene glycol and 3.0 parts by mass of deionized water based on 100 parts by mass of the water absorbent resin particles (1) obtained in Example 1.
- the surface crosslinker solution was uniformly mixed and heat treated at 100 ° C. for 45 minutes. Thereafter, cooling is carried out, the paint shaker test is carried out, and damage equivalent to the production process is given, then 1 part by mass of water and 0 sodium triethylene diacetate triacetate with respect to 100 parts by mass of the water absorbent resin particles (1)
- the aqueous solution consisting of .01 parts by mass was uniformly mixed. After drying at 60 ° C.
- Comparative Example 1 (Gel grinding) The comparative hydrogel (1) obtained in the above Comparative Production Example 1 was supplied to a screw extruder and gel-pulverized.
- a meat chopper having a screw shaft with an outer diameter of 86 mm and equipped with a perforated plate having a diameter of 100 mm, a hole diameter of 16 mm, a number of holes of 16 and a hole ratio of 49.4% and a thickness of 10 mm at the tip. It was used.
- the comparative water-containing gel (1) was supplied at 4640 [g / min], and at the same time water vapor was supplied at 83 [g / min].
- the gel crushing energy (GGE) at this time was 15.8 [J / g], and GGE (2) was 4.8 [J / g].
- the temperature of the comparative hydrogel (1) before gel pulverization was 80 ° C., and the temperature of the pulverized gel after gel pulverization, that is, the temperature of the comparative particulate hydrogel (1) increased to 81 ° C.
- the comparative particulate water-containing gel (1) obtained in the gel crushing step has a resin solid content of 51.5% by mass, a mass average particle diameter (D50) of 2086 ⁇ m, and a logarithmic standard deviation ( ⁇ ) of particle size distribution of 3.79.
- the above comparative particulate water-containing gel (1) is sprayed on the aeration plate within 1 minute after completion of gel grinding (the temperature of the comparative particulate water-containing gel (1) at this time is 80 ° C.) Drying was performed for a minute to obtain a dry polymer (4).
- the average wind speed of the hot air was 1.0 [m / s] in the direction perpendicular to the traveling direction of the ventilation belt.
- the wind speed of the hot air was measured by a constant temperature thermal anemometer Anemomaster 6162 manufactured by Nippon Kanomax Co., Ltd.
- the entire amount of the comparative dried polymer (1) obtained in the above drying step is supplied to a three-stage roll mill and pulverized (pulverization step), and then classified using JIS standard sieves having openings of 850 ⁇ m and 150 ⁇ m.
- An irregularly crushed comparative water absorbent resin particle (1) was obtained.
- the CRC of the comparative water absorbent resin particles (1) was 45.1 g / g.
- Example 1 of Measurement Method Examples of measurement of absorption rate (absorption time) and return amount by the method of measuring physical properties of the particulate water-absorbing agent of the present invention are shown below with reference to FIGS. 1 to 3.
- the present invention is not limited to only such examples, and can be appropriately modified according to the description of the specification.
- a vinyl tape 57 (manufactured by Nitto Denko Corp.) is provided on the bottom of a resin measuring container 51 having a height of 8.1 cm and a width of 24.0 cm and a height of 3 cm (see FIG. 1).
- Nitto vinyl tape No. 21-100TM (0.2 mm ⁇ 100 mm ⁇ 20 m, transparent) was applied so as not to cause wrinkles.
- the particulate water-absorbing agent 56 (3.84 g) was spread uniformly on the vinyl tape 57.
- the non-woven fabric 55 spun-bonded non-woven fabric having a basis weight of 18 g / m 2 ) cut into a length of 8 cm and a width of 24 cm was placed thereon.
- the water absorption per unit area of one sheet is 190 to 230 [g / m 2 ], and the basis weight is 17.5 to 18.5 g / m 2 , A spunbonded nonwoven fabric with a thickness of 0.25 to 0.35 mm is used.
- a flat plate 52 of 8.0 cm long ⁇ 7.0 cm wide (see FIG. 2) having a cylindrical liquid inlet 54 with an inner diameter of 2.0 cm and a height of 7 cm detachably attached to the center of the non-woven fabric 55
- the liquid inlet 54 was placed so that the center of the measurement container 51 and the liquid inlet 54 coincided.
- a weight 53 whose weight was adjusted was placed thereon so that the load was 1.0 kPa (the weight 53 was placed so as to apply pressure evenly to the whole).
- Absorbent Performance Index API Absorbent Performance Index
- the absorption performance index (API) was determined by the following equation using the absorption time (t1, t2, t3) and the amount of return obtained by the above measurement method.
- the absorption performance index (API) was determined according to the following equation using the absorption time (t2, t3) and return amount obtained by the above measurement method.
- Example 1 of Absorbent Body After dry-blending 35 g of the particulate water-absorbing agent (1) obtained in Example 1 and 15 g of wood-pulverized pulp using a mixer, the resulting mixture is spread on a 400-mesh (38 ⁇ m mesh) wire screen The sheet was air-formed into a web form (sheet form) using a batch type air sheet forming apparatus. Thereafter, the formed mixture was cut into rectangles (size: 90 mm ⁇ 330 mm) and formed. Next, the formed mixture was pressed at a pressure of 196.14 kPa (2 [kgf / cm 2 ]) for 1 minute to produce a child-sized paper diaper-sized absorbent body (1).
- the content of the particulate water-absorbing agent in the produced absorbent (1) is 5.9 g, the pulp content is 2.5 g, the concentration of the particulate water-absorbing agent in the core is about 70%, and the particulate The basis weight of the water absorbing agent was about 199 [g / m 2 ].
- a mixture of pulp and water-absorbent resin which is an absorbent body of Mummy poco pants with full absorption M size (purchased from Akachanhonpo Himeji Hirohata store in July 2018. Number 201803051533 described on the top of the package), tissue paper It replaced with the said absorber (1) wrapped with.
- a pant type absorbent article (1) was produced.
- the above absorbent article (1) was attached to an infant doll (manufactured by Takaken Co., Ltd., infant nursing training model LM052, height: about 66 cm, weight: about 8 kg, material: silicone rubber). Moreover, 0.90 mass% sodium chloride aqueous solution colored with 20 mg of blue No. 1 per liter of aqueous solution was prepared as a liquid equivalent to urine. Then, with the doll lying down on a flat plate, 60 ml of the above sodium chloride aqueous solution (liquid temperature 37 ° C.) is charged three times at 10-minute intervals from the fluid absorption tube installed in the voiding part of the doll Absorbed by the body (1).
- the absorbent article (1) was removed from the doll, and the state of the absorber (1) was confirmed.
- the state of the absorber (1) was evaluated with respect to the diffusivity of the sodium chloride aqueous solution in the absorber (1) and the dry property of the part corresponding to the urination part (the state of Re-Wet). Each evaluation was performed in the following five steps, and the values of both evaluations were multiplied to obtain a comprehensive evaluation (maximum 25 to minimum 1). The results are shown in Table 3. 5: very good 4: good 3: normal 2: bad 1: very bad.
- Examples 2 to 5 of Absorber, and Comparative Example 1 The same operation as in Example 1 of the absorber is performed using the particulate water absorbing agents (2) to (5) and the comparative particulate water absorbing agent (1), respectively, and after absorbing the sodium chloride aqueous solution, the absorber (1 The status of) was confirmed. The results are shown in Table 3.
- an absorbent body produced using the particulate water-absorbing agent according to the present invention excellent in the absorption performance index (API) and the new absorption performance index (nAPI) is a sodium chloride aqueous solution. Even if it was made to absorb several times, the diffusivity and the dry property were well-balanced, and it was highly evaluated. That is, from the results in Tables 2 and 3, there is a correlation between the absorption performance index (API) and the new absorption performance index (nAPI), which are physical properties of the particulate water-absorbing agent, and the diffusivity and dry properties, which are physical properties of the absorber. It turned out that there is. Thus, it was found that the physical properties of the particulate water absorbing agent can be evaluated by evaluating the physical properties of the absorber.
- the physical properties required for the particulate water absorbing agent can be measured more simply than in the conventional measuring method.
- the present invention can be used in various fields such as disposable diapers, absorbent bodies such as sanitary napkins, absorbent articles using the same, and further, pet sheets, waterproofing materials and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
(項目1)粒子状吸水剤の吸収速度の測定方法であって、底面が枠で囲まれた測定容器の底面に粒子状吸水剤の一部又は全部が固定された状態で、底面の一部分を平板によって加圧し、該平板に設置された注入口から水溶液を投入し、該投入された水溶液が該粒子状吸水剤に吸収されるまでの時間を測定する、粒子状吸水剤の吸収速度の測定方法。
(1)遠心分離機保持容量(CRC)が30~50g/g、
(2)以下の式で表される吸収性能指数(API)が150以下。
吸収性能指数(API) = 吸収時間1回目[sec]×吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/1000。
(1)遠心分離機保持容量(CRC)が30~50g/g、
(2)以下の式で表される新吸収性能指数(nAPI)が240以下。
新吸収性能指数(nAPI) = 吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/10。
(1-1)「吸水性樹脂」
本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、以下の物性を満たす高分子ゲル化剤をいう。即ち、「水膨潤性」として、ERT441.2-02で規定されるCRCが5g/g以上、かつ、「水不溶性」として、ERT470.2-02で規定されるExtが50質量%以下の物性を満たす高分子ゲル化剤を指す。
本発明における「吸水剤」とは、吸水性樹脂を主成分として含む、水性液の吸収ゲル化剤を意味する。本発明において「粒子状吸水剤」とは、粒子状又は粉末状の吸水剤を意味し、一粒の粒子状吸水剤であっても、複数個の粒子状吸水剤の集合体であっても粒子状吸水剤と称する。また、「粒子状」とは、粒子の形態を有することを意味し、粒子とは、測定可能な大きさを持つ、固体又は液体の粒状小物体(JIS工業用語大辞典第4版、2002頁)をいう。なお、粒子状吸水剤を単に吸水剤と称する場合もある。
本発明における「ポリアクリル酸(塩)」とは、ポリアクリル酸及び/又はその塩を指し、主成分として、アクリル酸及び/又はその塩(以下、「アクリル酸(塩)」という)を繰り返し単位として含み、任意成分としてグラフト成分を含む重合体を指す。ポリアクリル酸はポリアクリルアミドやポリアクリニトリル等の加水分解で得てもよいが、好ましくはアクリル酸(塩)の重合で得られる。
「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(EDANA Recommended Test Methods)の略称である。本発明では、特に断りのない限り、ERT原本(2002年改定/公知文献)に準拠して、吸水性樹脂の物性を測定する。
「CRC」は、centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、粒子状吸水剤又は吸水性樹脂の無加圧下吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、粒子状吸水剤又は吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.90質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で水切りした後の吸水倍率(単位;g/g)のことをいう。
「AAP」は、Absorption Against Pressureの略称であり、粒子状吸水剤又は吸水性樹脂の加圧下吸水倍率を意味する。
「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される、粒子状吸水剤又は吸水性樹脂の粒度分布を意味する。
「Moisture Content」は、粒子状吸水剤又は吸水性樹脂の含水率を意味する。具体的には、粒子状吸水剤又は吸水性樹脂4.0gを105℃で3時間乾燥したときの乾燥減量から算出した値(単位;質量%)のことをいう。なお、粒子状吸水剤又は吸水性樹脂を1.0g、乾燥温度を180℃にそれぞれ変更して測定する場合もある。
「Ext」は、Extractablesの略称であり、粒子状吸水剤又は吸水性樹脂の水可溶分(水可溶成分量)を意味する。具体的には、粒子状吸水剤又は吸水性樹脂1.0gを0.90質量%塩化ナトリウム水溶液200mlに添加し、500rpmで16時間攪拌した後の溶解ポリマー量(単位;質量%)のことをいう。溶解ポリマー量の測定は、pH滴定を用いて行う。
「DRC」は、Dunk Retention Capacity(浸漬保持容量)の略称であり、粒子状吸水剤又は吸水性樹脂の無加圧下での吸水倍率を意味する。具体的には、粒子状吸水剤又は吸水性樹脂1.0gを、上記AAPの測定と同様に、底面にメッシュを有する円筒形のセルに均一に散布し、0.90質量%塩化ナトリウム水溶液に5分間接触させて自由膨潤させた後の吸水倍率(単位;g/g)のことをいう。測定方法の詳細は実施例に記載する。なお、自由膨潤時間が5分間であることから、「DRC5min」と表記する。
「DRC一般指数(General Index of DRC)」とは、下記式2で定義されるパラメータである。
DRC一般指数 = (K-DRC5min)/(D50/1000) …式2
上記式2において、Kは任意の定数である。K値は、種々の粒子状吸水剤を製造し、DRC5min(単位;g/g)及びD50(単位;μm)を測定し、好ましい粒子状吸水剤が得られたか否かを判定することにより、適切な値として決定することができる。DRC一般指数は、好ましい物性を有する粒子状吸水剤を判定する指標として有用である。
「DRC指数(Index of DRC)」とは、下記式1で定義されるパラメータである。
DRC指数 = (49-DRC5min)/(D50/1000) …式1
DRC指数は、上記DRC一般指数におけるK値が「49」である場合に相当する。DRC指数は、DRC一般指数と同様、好ましい物性を有する粒子状吸水剤を判定する指標として有用である。
「GPR」は、Gel Permeation Rate(ゲル透過速度)の略称であり、粒子状吸水剤又は吸水性樹脂を荷重下で膨潤させたときの、膨潤ゲルの粒子間を通過する液の流速(単位;g/min)のことをいう。ゲル透過速度(GPR)は25g/min以上であることが好ましく、50g/min以上であることがより好ましく、100g/min以上であることが最も好ましい。上限は特にないが、1000g/min以下が好ましい。測定方法の詳細は、実施例に記載する。
「不定形破砕状」とは、重合中若しくは重合後に得られる含水ゲル状架橋重合体又はその乾燥重合体、好ましくはその乾燥重合体を粉砕することによって得られる粉砕物の形状であって、当該形状が一定でない破砕状のことをいう。不定形破砕状の粉砕物は、好ましくは水溶液重合によって得られる。一方、粉砕工程を経ない場合、代表的には逆相懸濁重合や重合モノマーを液相に噴霧して重合する液滴重合等の場合、得られる含水ゲル状架橋重合体の形状は球状となり、球状粒子の造粒物も不定形破砕状ではない。
「吸湿流動性」とは、粒子状吸水剤又は吸水性樹脂を気温25℃、相対湿度90%RHの雰囲気下に1時間放置したときの、ブロッキングやケーキング、粉体としての流動性を評価する指標のことをいう。「吸湿流動性」は、「吸湿流動性(B.R.)」又は「吸湿ブロッキング率」とも表記する。なお、吸湿流動性の算出方法の詳細は実施例で記載するが、概略は以下の通りである。
吸湿流動性(B.R.) = {W1/(W1+W2)}×100 …式3。
「吸湿流動性改善剤」とは、粒子状吸水剤又は吸水性樹脂の吸湿流動性を向上させる化合物又は組成物のことをいう。なお、上記吸湿流動性(B.R.)の値が小さくなる程、吸湿流動性に優れることを意味する。
「劣化可溶分」とは、上記(1-4-5)に記載した「Ext」の測定方法において、0.90質量%塩化ナトリウム水溶液を、L-アスコルビン酸を添加した0.90質量%塩化ナトリウム水溶液(劣化試験液)に変更し、更に60℃、2時間静置した後、1時間攪拌したときの水可溶分のことをいう。
「ゲル粉砕エネルギー」とは、含水ゲル状架橋重合体をゲル粉砕するとき、ゲル粉砕装置が必要とする単位質量(含水ゲル状架橋重合体の単位質量)当たりの機械的エネルギーのことをいう。「ゲル粉砕エネルギー」には、ジャケットを加熱したり冷却したりするエネルギーや、投入する水及び/又はスチームのエネルギーは含まれない。なお、「ゲル粉砕エネルギー」は、英語表記の「Gel Grinding Energy」から「GGE」と略称する。GGEは、ゲル粉砕装置が三相交流電力で駆動する場合、下記式4によって算出される。
GGE(J/g) = {√3×電圧×電流×力率×モーター効率}/{1秒間にゲル粉砕機に投入される含水ゲル状架橋重合体の質量} …式4。
GGE(2)(J/g) = {√3×電圧×(ゲル粉砕時の電流-空運転時の電流)×力率×モーター効率}/{1秒間にゲル粉砕機に投入される含水ゲル状架橋重合体の質量} …式5。
「表面張力」とは、固体や液体の表面積を増加させるのに必要な仕事(自由エネルギー)を単位面積当たりで表した表面張力をいう。本発明における「表面張力」は、粒子状吸水剤又は吸水性樹脂を0.90質量%塩化ナトリウム水溶液中に分散させたときの、水溶液の表面張力をいう。測定方法の詳細は実施例に記載する。
「かさ比重」とは、一定容積の容器に粉体を充填し、その内容積を体積としたときの比重のことをいう。測定方法の詳細は実施例に記載する。
「DAP」とは、Diffusing Absorbency under Pressure(加圧下拡散吸水倍率)の略称であり、吸水性樹脂の坪量が高く、かつ、外力によって吸水性樹脂の粒子同士が密着している状態における水性液体の拡散力を加味した、吸水性樹脂の吸収量を評価するための物性値である。上記加圧下拡散吸水倍率は、所定条件下での測定における、吸収開始から所定時間(60分間又は10分間)経過後の測定値から算出される。なお、10分間経過後の値(10分値)を「DAP10min」と表記する。測定方法の詳細は実施例に記載する。
「内部気泡率」とは、以下の式で計算される値のことをいう。測定方法の詳細は実施例に記載する。
内部気泡率[%] = {(真密度[g/cm3]-見かけ密度[g/cm3])/真密度[g/cm3]}×100。
本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味する。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。また、「リットル」を「l」又は「L」、「質量%」を「wt%」と便宜上、表記することがある。更に、微量成分の測定を行う場合において、検出限界以下をN.D.(Non Detected)と表記する。
以下に、本発明に係る粒子状吸水剤の物性の測定方法について説明する((2-1)~(2-6))。なお、当該測定は、室温(20~25℃)、相対湿度40~60%RH、好ましくは45~55%RHの雰囲気下で行われる。
本発明で用いる測定装置は、底面が枠で囲まれた測定容器である(なお、測定装置外に液が漏れることを防止できれば、固定された枠でなくともよい。本発明では測定装置外に液が漏れることを防止できる機構を「枠」と定義する)。
本発明の測定では、上記測定装置の底面に粒子状吸水剤を散布した後、吸水特性を評価する。
本発明に係る測定方法では、上記散布された粒子状吸水剤に加圧下の状態で水溶液を吸収させる。そのため、上記測定装置の(粒子状吸水剤が散布された)底面の一部分を加圧する平板が用いられる。
本発明に係る測定方法では、上記平板に設置された注入口から水溶液を投入する。該水溶液の温度は、20~40℃が好ましい。また、該水溶液は、純水であってもよいが、水溶液の導電率が好ましくは2~50mS/cmであり、より好ましくは5~40mS/cmであり、更に好ましくは10~30mS/cmであり、最も好ましくは13~20mS/cmである。
本発明では、上記注入口から投入された水溶液が粒子状吸水剤に吸収されるまでの時間(吸収時間)を測定する。吸収されるまでの時間とは、注入口から投入された水溶液が確認できなくなる時間であり、投入時からの経過時間(sec)として測定される。水溶液の吸収を確認しやすくするために、水溶液を着色(青色等)することが好ましい。
本発明では、水溶液の投入後、所定時間の経過後に、上記平板を除去し、該水溶液を吸収することができる部材を上記粒子状吸水剤の上部に配置し、所定時間加圧し、該部材に吸収された水溶液の質量を測定することで、上記吸液後の粒子状吸水剤からの液の戻り量を測定する。
以下に、本発明の粒子状吸水剤の製造工程(3-1)~(3-9)について示す。
本工程は、単量体(例えばアクリル酸(塩))を主成分として含む水溶液(以下、「単量体水溶液」と称する)を調製する工程である。なお、得られる吸水性樹脂の吸水性能が低下しない範囲で、単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液について説明を行う。
本発明では、得られる粒子状吸水剤の物性及び生産性の観点から、単量体としてアクリル酸及び/又はその塩(以下「アクリル酸(塩)」と称する)が用いられることが好ましい。上記「アクリル酸」は、公知のアクリル酸でよく、重合禁止剤として好ましくはメトキシフェノール類、より好ましくはp-メトキシフェノールを含む。アクリル酸(塩)は、重合禁止剤を、アクリル酸の重合性や粒子状吸水剤の色調の観点から、好ましくは200ppm以下、より好ましくは10~160ppm、更に好ましくは20~100ppm含んでいればよい。また、アクリル酸中の不純物については、米国特許出願公開第2008/0161512号に記載された化合物が本発明にも適用される。
本発明において、「塩基性組成物」とは、塩基性化合物を含有する組成物を指し、例えば、市販の水酸化ナトリウム水溶液等が該当する。
本発明における中和として、アクリル酸に対する中和(重合前)、又はアクリル酸を架橋重合して得られる含水ゲル状架橋重合体に対する中和(重合後)(以下、「後中和」と称する)の何れかを選択又は併用することができる。また、これらの中和は、連続式でもバッチ式でもよく特に限定されないが、生産効率等の観点から連続式が好ましい。
本発明において、「他の単量体」とは、上記アクリル酸(塩)以外の単量体を指し、アクリル酸(塩)と併用して粒子状吸水剤を製造することができる単量体を指す。上記他の単量体として、水溶性又は疎水性の不飽和単量体が挙げられる。具体的には、米国特許出願公開第2005/0215734に記載された化合物(但し、アクリル酸は除く)が本発明にも適用される。
本発明で使用される内部架橋剤として、米国特許第6241928号に記載された化合物が本発明にも適用される。これらの中から反応性を考慮して1種又は2種以上の化合物が選択される。
本発明において、得られる吸水性樹脂の物性向上の観点から、下記物質を単量体水溶液の調製時に添加することもできる。
通常、得られる吸水剤の吸水特性や色調(着色防止)等の観点から、α-ヒドロキシカルボン酸(塩)を添加することが好ましい。また、α-ヒドロキシカルボン酸(塩)を添加することによって、得られる吸水剤の可溶分分子量が低減し、ひいては衛生材料として使用するときのべたつき及び不快感が低減する。従って、これらの更なる観点から、α-ヒドロキシカルボン酸(塩)を添加することが好ましい。なお、「α-ヒドロキシカルボン酸(塩)」とは、分子内にヒドロキシル基を有するカルボン酸又はその塩のことで、α位にヒドロキシル基を有するヒドロキシカルボン酸又はその塩である。
本工程において、単量体水溶液を調製するときに、上記各物質が添加される。該単量体水溶液中の単量体成分の濃度としては特に限定されないが、吸水性樹脂の物性の観点から、好ましくは10~80質量%、より好ましくは20~75質量%、更に好ましくは30~70質量%である。
単量体成分の濃度(質量%) = {(単量体成分の質量)/(単量体水溶液の質量)}×100 …式6。
本工程は、上記単量体水溶液の調製工程で得られたアクリル酸(塩)系単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)を得る工程である。
本発明で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されないが、例えば、熱分解型重合開始剤、光分解型重合開始剤、又はこれらの重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうち、1種又は2種以上が用いられる。なお、重合開始剤の取り扱い性や粒子状吸水剤又は吸水性樹脂の物性の観点から、好ましくは過酸化物又はアゾ化合物、より好ましくは過酸化物、更に好ましくは過硫酸塩が使用される。
本発明に適用される重合形態としては、特に限定されないが、吸水特性や重合制御の容易性等の観点から、好ましくは噴霧液滴重合、水溶液重合、逆相懸濁重合、より好ましくは水溶液重合、逆相懸濁重合、更に好ましくは水溶液重合が挙げられる。中でも、連続水溶液重合が特に好ましく、連続ベルト重合、連続ニーダー重合の何れでも適用される。
固形分上昇度(質量%) = (重合後の含水ゲルの固形分濃度)-(単量体水溶液の固形分濃度) …式7。
単量体水溶液の固形分濃度(質量%) = {(単量体成分+グラフト成分+吸水性樹脂+その他固形物の質量)/(重合系内の成分の質量)}×100 …式8。
本工程は、上記重合工程で得られた含水ゲルを、例えば、ニーダー、ミートチョッパー等のスクリュー押出し機、カッターミル等のゲル粉砕機でゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る工程である。なお、上記重合工程がニーダー重合の場合、重合工程とゲル粉砕工程が同時に実施されている。また、気相重合や逆相懸濁重合等、粒子状含水ゲルが重合過程で直接得られる場合には、該ゲル粉砕工程が実施されないこともある。
本工程は、上記重合工程及び/又はゲル粉砕工程で得られた粒子状含水ゲルを所望する樹脂固形分まで乾燥させて乾燥重合体を得る工程である。該樹脂固形分は、乾燥減量(吸水性樹脂1gを180℃で3時間加熱したときの質量変化)から求められ、好ましくは80質量%以上、より好ましくは85~99質量%、更に好ましくは90~98質量%、特に好ましくは92~97質量%である。
本工程は、上記乾燥工程で得られた乾燥重合体を粉砕(粉砕工程)し、所定範囲の粒度に調整(分級工程)して、吸水性樹脂粉末(表面架橋を施す前の、粉末状の吸水性樹脂を便宜上「吸水性樹脂粉末」と称する)を得る工程である。
本工程は、上述した工程を経て得られる吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmの部分)に、更に架橋密度の高い部分を設ける工程であり、混合工程、加熱処理工程及び冷却工程(任意)から構成される。
本発明で使用される表面架橋剤としては、特に限定されないが、有機又は無機の表面架橋剤が挙げられる。中でも、吸水性樹脂の物性や表面架橋剤の取り扱い性の観点から、カルボキシル基と反応する有機表面架橋剤が好ましい。例えば、米国特許7183456号に開示されている1種又は2種以上の表面架橋剤が挙げられる。より具体的には、多価アルコール化合物、エポキシ化合物、ハロエポキシ化合物、多価アミン化合物又はそのハロエポキシ化合物との縮合物、オキサゾリン化合物、オキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物、環状尿素化合物等が挙げられる。
本工程は、吸水性樹脂粉末と上記表面架橋剤を混合する工程である。該表面架橋剤の混合方法については、特に限定されないが、予め表面架橋剤溶液を作製しておき、該溶液を吸水性樹脂粉末に対して、好ましくは噴霧又は滴下して、より好ましくは噴霧して混合する方法が挙げられる。
本工程は、上記混合工程から排出された混合物に熱を加えて、吸水性樹脂粉末の表面上で架橋反応を起こさせる工程である。
本工程は、上記加熱処理工程後に必要に応じて設置される任意の工程である。
本工程は、上記表面架橋工程で得られた吸水性樹脂粒子に、下記水不溶性無機微粒子、多価金属塩、カチオン性ポリマー、キレート剤、無機還元剤、上述したヒドロキシカルボン酸化合物、上述した吸湿流動性改善剤からなる群から選ばれる少なくとも1種の添加剤を添加する工程である。
本発明において、得られる吸水性樹脂の吸収速度、通液性、吸湿流動性等の向上の観点から、水不溶性無機微粒子、多価金属塩、カチオン性ポリマーから選ばれる1種以上を添加することが好ましい。
本発明において、得られる吸水性樹脂の色調(着色防止)、劣化防止等の観点から、キレート剤を添加することが好ましい。
本発明において、得られる吸水性樹脂の色調(着色防止)、劣化防止、残存モノマー低減等の観点から、無機還元剤を添加することが好ましい。
本発明においては、上述した添加剤以外の添加剤を、吸水性樹脂に種々の機能を付加させるため、添加することもできる。該添加剤として、具体的には、界面活性剤、リン原子を有する化合物、酸化剤、有機還元剤、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプや熱可塑性繊維等が挙げられる。なお、上記界面活性剤は、国際公開第2005/075070号に開示された化合物が本発明に適用される。
本発明においては、上述した工程以外に、造粒工程、整粒工程、微粉除去工程、微粉の再利用工程等を必要に応じて設けることができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等の1種又は2種以上の工程を更に含んでもよい。なお、「整粒工程」は、表面架橋工程以降の微粉除去工程や吸水性樹脂が凝集し、所望の大きさを超えた場合に分級、粉砕を行う工程を含む。また、「微粉の再利用工程」は、本発明のように微粉をそのまま添加する形態の他、大きな含水ゲルにして、吸水性樹脂の製造工程の何れかの工程に添加する工程を含む。
本発明の粒子状吸水剤の用途は、特に限定されないが、好ましくは使い捨てオムツ、生理用ナプキン、失禁パッド等の衛生用品の吸収体用途が挙げられる。特に、原料由来の臭気、着色等が問題となっていた高濃度オムツ(使い捨てオムツ一枚当たりの粒子状吸水剤の使用量が多い高濃度オムツ)の吸収体として使用することができる。更に、上記吸収体の上層部に使用される場合に、顕著な効果が期待できる。
以下に本発明の好ましい粒子状吸水剤の特性(物性)を説明する。なお、下記物性は、特に断りのない限り、EDANA法に準拠して測定した。
DRC指数は下記式1で定義される。
DRC指数 = (49-DRC5min)/(D50/1000) …式1。
本発明の粒子状吸水剤のDRC5minは、上記DRC指数を満たせば特に限定されないが、好ましくは35g/g以上、38g/g以上、40g/g以上である。上限も特に限定されないが、通常60g/g以下、55g/g以下である。
本発明の粒子状吸水剤のCRC(遠心分離機保持容量)は、30~50g/gであり、好ましくは31~50g/g、32~50g/g、33~50g/g、34~50g/g、35~50g/g、36~50g/g、30~49g/g、30~48g/g、30~47g/g、30~46g/g、30~45g/g、30~44g/g、30~43g/g、30~42g/g、30~41g/g、30~40g/g、30~39g/g、30~38g/gである。
本発明の粒子状吸水剤の粒度(粒度分布、質量平均粒子径(D50)、粒度分布の対数標準偏差(σζ))は、表面架橋を施す前の吸水性樹脂粉末の粒度と同じになるように、制御される。好ましくは、上記(3-5)粉砕工程、分級工程に記載される通りである。
本発明の粒子状吸水剤の表面張力(実施例に記載の測定法で規定)は、65mN/m以上、好ましくは66mN/m以上、好ましくは67mN/m以上、より好ましくは68mN/m以上、更に好ましくは69mN/m以上、更に好ましくは70mN/m以上、特に好ましくは71mN/m以上、最も好ましくは72mN/m以上であり、実質的な表面張力の低下もない。上限は通常75mN/mで十分である。表面張力が上記条件を満たすことにより、使い捨てオムツでの逆戻り量を低減させることができる。
一つの好ましい実施形態では、本発明の粒子状吸水剤の粒子形状が不定形破砕状である。逆相懸濁重合や気相重合で得られた球状粒子に比べて不定形破砕状では被表面積が大きいため、粒子状吸水剤の吸収速度が大きくなり、かつ、パルプへの固定も容易にすることができるからである。
具体的な吸湿流動性(B.R.)の測定(評価)方法は、実施例の項に記載する。本発明の粒子状吸水剤の吸湿流動性(B.R.)は、通常50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下、より更に好ましくは10質量%以下、最も好ましくは0質量%である。本発明の粒子状吸水剤の吸湿流動性(B.R.)はまた、0~50質量%、0~40質量%、0~30質量%、0~20質量%、又は0~10質量%であり得る。上記吸湿流動性(B.R.)が50質量%を超える場合、多湿の環境下において、粒子状吸水剤の取り扱い性が悪く、衛生材料向けの薄型吸収体の製造時等、製造プラントの移送配管内での凝集及び詰まりの発生や、親水性繊維と均一に混合できないという問題が生じるおそれがある。上記条件を満たすことにより粒子状吸水剤及び親水性繊維(繊維基材)を用いて吸収体を作製するときに、装置設備への付着を少なくすることができる。
一つの好ましい実施形態では、本発明の粒子状吸水剤の水可溶分(Ext)は、25質量%以下、好ましくは24質量%以下、より好ましくは22質量%以下、更に好ましくは20質量%以下である。上記条件を満たすことにより粒子状吸水剤の吸収能力(例えば加圧下吸水倍率等)が向上するため、上記粒子状吸水剤を使い捨てオムツに使用したときに、戻り量等の性能を向上することができる。
一つの好ましい実施形態では、本発明の粒子状吸水剤の劣化可溶分は、30質量%以下、好ましくは27質量%以下、より好ましくは24質量%以下、更に好ましくは20質量%以下である。上記条件を満たすことにより粒子状吸水剤の耐尿性が向上するため、上記粒子状吸水剤を使い捨てオムツに使用したときに、尿等の体液によるゲル劣化、肌荒れ、かぶれ、悪臭の除去能力が低下する等の問題を抑制することができる。
本発明の粒子状吸水剤の加圧下吸水倍率(AAP)は、好ましくは18g/g以上、より好ましくは22g/g以上、更に好ましくは24g/g以上、特に好ましくは26g/g以上、更に特に好ましくは28g/g以上、最も好ましくは30g/g以上である。加圧下吸水倍率(AAP)の上限値については特に限定されないが、好ましくは40g/g以下である。
本発明の粒子状吸水剤のかさ比重は、0.57~0.75[g/cm3]、好ましくは0.58~0.74[g/cm3]、より好ましくは0.59~0.73[g/cm3]、更に好ましくは0.60~0.72[g/cm3]である。
本発明に係る粒子状吸水剤の加圧下拡散吸水倍率の10分値は、12.0g/g以上であり、14.0g/g以上がより好ましく、16.0g/g以上が更に好ましく、18.0g/g以上が最も好ましい。一般的に、表面架橋処理された吸水剤の加圧下拡散吸水倍率の10分値は7g/g以上であるが、まれに加圧下拡散吸水倍率の10分値が低い吸水剤も存在する。加圧下拡散吸水倍率の10分値が低いと、吸収体中での拡散性が悪くなり、DRCやDRC指数に優れていても吸収体としての性能を十分に発揮できない可能性がある。上限は特に限定されないが、一般的には30g/g以下程度である。
黄色度(YI値/Yellow Index/欧州特許942014号及び同1108745号参照)は、好ましくは0~17、より好ましくは0~16、更に好ましくは0~15、最も好ましくは0~14を示す。粒子状吸水剤は、殆ど黄ばみが無いことが好ましい。色調の測定方法については、国際公開第2009/005114号に記載される方法(Lab値、YI値、WB値等)を例示することができる。
一つの好ましい実施形態では、本発明の粒子状吸水剤は、実施例において説明する耐ダメージ性ペイントシェーカーテストにおいて、テスト前後で発生する150μm以下の粒子径を有する粒子の増加量が+5%以下、好ましくは+4%以下、より好ましくは+3%以下、更に好ましくは+2%以下、更により好ましくは+1%以下である。
本発明の粒子状吸水剤における粉塵中に含まれる吸水性樹脂の量は、粒子状吸水剤全量に対して300ppm以下であり、好ましくは270ppm以下であり、より好ましくは240ppm以下であり、最も好ましくは200ppm以下である。
本発明の粒子状吸水剤の内部気泡率は、0.5~2.5%、好ましくは0.8~2.3%、より好ましくは1.2~2.0%、更に好ましくは1.5~1.8%である。
本発明の一態様に係る粒子状吸水剤の物性の測定方法及び粒子状吸水剤は、以下のように表現することができる。
<1>粒子状吸水剤の吸収速度の測定方法であって、底面が枠で囲まれた測定容器の底面に粒子状吸水剤の一部又は全部が固定された状態で、底面の一部分を平板によって加圧し、該平板に設置された注入口から水溶液を投入し、該投入された水溶液が該粒子状吸水剤に吸収されるまでの時間を測定する、粒子状吸水剤の吸収速度の測定方法。
<2>粒子状吸水剤の吸収速度の測定方法であって、底面が枠で囲まれた測定容器の底面に粒子状吸水剤の一部又は全部が固定された状態で、底面の一部分を平板によって加圧し、該平板に設置された注入口から水溶液を投入し、該投入された水溶液を該粒子状吸水剤に吸収させ、上記水溶液の投入後、所定時間の経過後に、上記平板を除去し、該水溶液を吸収できる部材を上記粒子状吸水剤の上部に配置し、所定時間加圧し、該部材に吸収された水溶液の質量を測定することで、粒子状吸水剤からの液の戻り量を測定する、粒子状吸水剤の吸収速度の測定方法。
<3>上記底面が枠で囲まれた測定容器の上部から見たアスペクト比(縦横比)が1:1.5~1:10である、<1>又は<2>に記載の測定方法。
<4>上記粒子状吸水剤が測定容器の底面に均一に散布されている、<1>~<3>の何れか1項に記載の測定方法。
<5>上記粒子状吸水剤の散布量が測定容器の底面の面積に対して50~1000g/m2である、<1>~<4>の何れか1項に記載の測定方法。
<6>上記水溶液の投入時の加圧条件(荷重)が0.2~10.0kPaである、<1>~<5>の何れか1項に記載の測定方法。
<7>上記平板によって加圧される部分の面積が測定容器の底面積の10~90%である、<1>~<6>の何れか1項に記載の測定方法。
<8>上記水溶液の投入が複数回行われる、<1>~<7>の何れか1項に記載の測定方法。
<9>上記投入される水溶液の合計量が粒子状吸水剤1gに対して10~60mlである、<1>~<8>の何れか1項に記載の測定方法。
<10>上記平板と粒子状吸水剤との間に、水溶液が通過でき、粒子状吸水剤が通過できない大きさの空隙を有するシートが配置される、<1>~<9>の何れか1項に記載の測定方法。
<11>下記(1)~(2)の物性を有している、粒子状吸水剤;
(1)遠心分離機保持容量(CRC)が30~50g/g、
(2)以下の式で表される吸収性能指数(API)が150以下。
吸収性能指数(API) = 吸収時間1回目[sec]×吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/1000。
<12>上記吸収性能指数(API)が100以下である、<11>に記載の粒子状吸水剤。
<13>下記(1)~(2)の物性を有している、粒子状吸水剤;
(1)遠心分離機保持容量(CRC)が30~50g/g、
(2)以下の式で表される新吸収性能指数(nAPI)が240以下。
新吸収性能指数(nAPI) = 吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/10。
<14>上記新吸収性能指数(nAPI)が190以下である、<13>に記載の粒子状吸水剤。
<15>更に下記(3)~(5)の物性を有している、<11>~<14>の何れか1項に記載の粒子状吸水剤;
(3)加圧下拡散吸水倍率の10分値(DAP10min)が12.0g/g以上、
(4)ゲル透過速度(GPR)が25g/min以上、
(5)粉塵中に含まれる吸水性樹脂の量が粒子状吸水剤全量に対して300ppm以下。
<16>上記粒子状吸水剤の表面張力が65mN/m以上である、<11>~<15>の何れか1項に記載の粒子状吸水剤。
<17>下記式1で定義されるDRC指数が43以下である、<11>~<16>の何れか1項に記載の粒子状吸水剤。
DRC指数 = (49-DRC5min)/(D50/1000) …式1
<18>上記DRC指数が30以下である、<17>に記載の粒子状吸水剤。
<19>上記DRC指数が20以下である、<17>に記載の粒子状吸水剤。
<20>粒子形状が不定形破砕状である、<11>~<19>の何れか1項に記載の粒子状吸水剤。
<21>吸湿流動性(B.R.)が50質量%以下である、<11>~<20>の何れか1項に記載の粒子状吸水剤。
<22>劣化可溶分が30質量%以下である、<11>~<21>の何れか1項に記載の粒子状吸水剤。
<23>加圧下吸水倍率(AAP)が18g/g以上である、<11>~<22>の何れか1項に記載の粒子状吸水剤。
<24>加圧下吸水倍率(AAP)が26g/g以上である、<11>~<22>の何れか1項に記載の粒子状吸水剤。
<25>下記式で定義される内部気泡率が0.5~2.5%である、<11>~<24>の何れか1項に記載の粒子状吸水剤。
内部気泡率[%] = {(真密度[g/cm3]-見かけ密度[g/cm3])/真密度[g/cm3]}×100
<26>かさ比重が0.57~0.75[g/cm3]である、<11>~<25>の何れか1項に記載の粒子状吸水剤。
<27>加圧下拡散吸水倍率の10分値(DAP10min)が18.0g/g以上である、<11>~<26>の何れか1項に記載の粒子状吸水剤。
<28><11>~<27>の何れか1項に記載の粒子状吸水剤を含む、吸収体。
<29><28>に記載の吸収体を含む、吸収性物品。
(a)遠心分離機保持容量(CRC)
本発明の粒子状吸水剤又は吸水性樹脂の遠心分離機保持容量(無加圧下吸水倍率、CRC)は、EDANA法(ERT441.2-02)に準拠して測定した。
本発明の粒子状吸水剤又は吸水性樹脂の加圧下吸水倍率(AAP)は、EDANA法(ERT442.2-02)に準拠して測定した。
本発明の粒子状吸水剤又は吸水性樹脂の含水率は、EDANA法(ERT430.2-02)に準拠して測定した。なお、本発明においては、試料量を1.0g、乾燥温度を180℃にそれぞれ変更して測定した。
図4に示す装置を用い、内径60mmのプラスチックの支持円筒20の底に、ステンレス製400メッシュの金網21(目の大きさ38μm)を融着させ、室温(20~25℃)、湿度50RH%の条件下で、該金網上に粒子状吸水剤又は吸水性樹脂1.000±0.005gを均一に散布し、この測定装置一式の質量Wa(g)を測定した。
DRC5min(g/g) = {(Wb-Wa)/(粒子状吸水剤又は吸水性樹脂の質量)} …式d-1。
十分に洗浄された100mlのビーカーに20℃に調整された0.90質量%塩化ナトリウム水溶液50mlを入れ、まず、0.90質量%塩化ナトリウム水溶液の表面張力を、表面張力計(KRUSS社製のK11自動表面張力計)を用いて測定した。この測定において表面張力の値は71~75[mN/m]の範囲でなくてはならない。
本発明に係る粒子状吸水剤の粒度分布(PSD)及び粒度分布の対数標準偏差(σζ)は、米国特許出願公開第2006/204755号に開示された測定方法に準じて測定した。
σζ = 0.5×ln(X2/X1) …式f-1
なお、式f-1中、X1はR=84.1%、X2はR=15.9%のときのそれぞれの粒径である。
粒子状吸水剤又は吸水性樹脂2gを、直径52mmのアルミニウムカップに均一に散布した後、温度25℃、相対湿度90±5%RH下の恒温恒湿機(PLATINOUSLUCIFERPL-2G;タバイエスペック社製)中で1時間静置した。1時間経過後、上記アルミニウムカップに入った粒子状吸水剤又は吸水性樹脂を、目開き2000μm(JIS8.6メッシュ)のJIS標準篩(The IIDA TESTING SIEVE:内径80mm)の上に静かに移し、ロータップ型ふるい振盪機(株式会社飯田製作所製ES-65型ふるい振盪機;回転数230rpm、衝撃数130rpm)を用いて、室温(20~25℃)、相対湿度50%RHの条件下で5秒間分級した。上記JIS標準篩上に残存した粒子状吸水剤又は吸水性樹脂の質量(W1[g])、及び該JIS標準篩を通過した粒子状吸水剤又は吸水性樹脂の質量(W2[g])を測定し、下記式g-1に従って、吸湿流動性(吸湿ブロッキング率)を算出した。なお、ブロッキング率の値が低いほど、吸湿流動性に優れている。
吸湿流動性(B.R.)(質量%) = {W1/(W1+W2)}×100 …式g-1。
長さ35mmの回転子を入れた容量250mlの内蓋及び外蓋付きプラスチック容器に、L-アスコルビン酸を0.05質量%及び塩化ナトリウムを0.90質量%含有する水溶液(劣化試験液/L-アスコルビン酸0.10gと0.90質量%塩化ナトリウム水溶液199.90gとの混合物)200.0gを量り取り、次いで、粒子状吸水剤又は吸水性樹脂1.00gを上記水溶液に添加して、内蓋、外蓋で密栓した。その後、60±2℃に調整した恒温器に2時間静置した。2時間経過後、恒温器から上記容器を取り出し、室温下で、スターラーを用いて1時間攪拌(回転数500rpm)した。上記操作により、粒子状吸水剤又は吸水性樹脂の水可溶分を抽出した。
劣化可溶分(質量%) = 0.1×単量体平均分子量×200×100×([HCl]-[b2HCl])/1000/1.0/50.0 …式h-1。
中和率[モル%] = {1-([NaOH]-[b1NaOH])/([HCl]-[b1HCl])}×100 …式h-2。
「Density」(ERT460.2-02)とは、吸水剤のかさ比重を意味する。なお、本発明ではERT460.2-02を参照の上で、JIS K3362に準じてかさ比重を測定した。
かさ比重(g/cm3) = (W10-W9)/100 …式i-1
なお、測定を行った環境の温度は24.2℃であり、相対湿度は43%RHであった。
後述の測定方法により規定される本発明の粒子状吸水剤のダメージ前後の微粉増加量(150μm通過物の増加量)は、好ましくは4質量%以下、更には3.5質量%以下である。かかる範囲でオムツ製造等の実使用に物性低下の問題がない。
吸水剤に下記ペイントシェーカーテストを行い、目開き150μmのJIS標準篩で分級し、テスト前後における150μm以下の粒子径を有する粒子の増加量を測定した。
ペイントシェーカーテスト(PS-test)とは、直径6cm、高さ11cmのガラス製容器に、直径6mmのガラスビーズ10g、吸水性樹脂30gを入れてペイントシェーカー(東洋製機製作所;製品No.488)に取り付け、800cycle/min(CPM)で30分間、振盪するテストである。装置の詳細は特開平9-235378号公報に開示されている。
本発明の粒子状吸水剤の水可溶分(Ext)は、EDANA法(ERT470.2-02)に準拠して測定した。
特開2010-142808号公報に記載の測定方法に従って、粒子状吸水剤の加圧下拡散吸水倍率の10分値の測定を行った。具体的には、以下の通りである。
加圧下拡散吸水倍率(g/g) = W2/粒子状吸水剤の質量 …式l-1。
粉塵中の吸水性樹脂の量(粒子状吸水剤100質量部から生じる粉塵中に含まれている、吸水性樹脂の量)を下記手順により求めた。
手順1:粉塵量を測定する。
手順2:粉塵中に含まれている吸水性樹脂、SiO2及び硫酸アルミニウムの割合(質量%)を求める。なお、SiO2及び/又は硫酸アルミニウムが含まれない場合は、粉塵中に含まれている割合を0質量%とする。
手順3:粉塵中の吸水性樹脂の量を算出する。
下記測定条件で、所定時間にガラス繊維濾紙に吸引して捕捉されたダストの質量増を、粒子状吸水剤から生じる粉塵量として測定した。測定装置はホイバッハ・ダストメータ(Heubach DUSTMETER、Heubach Engineering GmbH(ドイツ)製)を使用し、測定モードはTypeIとした。測定時の雰囲気の温度及び湿度は、25℃(±2℃)、相対湿度20~40%であった。また、測定は常圧で行った。
1.ダストメータの回転ドラムに、測定サンプルの粒子状吸水剤(100.00g)を入れた。
2.保留粒子径0.5μm(JIS P3801に規定の沈澱保持性に基づいて求められる)で、直径50mmのガラス繊維濾紙の質量を、0.00001g単位まで測定した([Da]gとする)。このようなガラス繊維濾紙としては、例えば、GLASS FIBER,GC-90(ADVANTEC製)又はその相当品を、直径50mmに加工したガラス繊維濾紙を用いることができる。
3.回転ドラムに大型粒子分離機を取り付け、更に、ガラス繊維濾紙を装着したフィルターケースを取り付けた。
4.ダストメータを下記測定条件に設定し、測定した。
ドラム回転数:30R/min、吸引風量:20L/min、Time(測定時間):30分間。
5.30分間経過後、ガラス繊維濾紙の質量を、0.00001g単位まで測定した([Db]gとする)。
粉塵量(ppm) = {([Db]-[Da])/100.00}×1000000 …式m-1。
上述した粉塵量の測定によって捕集された粉塵中における、吸水性樹脂、SiO2及び硫酸アルミニウムの割合(質量%)を、それぞれ定量した。
・装置:走査電子顕微鏡(JEOL製 JSM-5410LV SCANNING MICROSCOPE)
・加速電圧:20kV
・倍率:20倍
・測定視野:900μm×1200μm程度(測定視野における全面積の少なくとも50体積%以上が粉塵で覆われている状態で測定)
・Siピーク:SiKα 1.739KeV
・Naピーク:NaKα 1.041KeV
・Alピーク:AlKα 1.486KeV。
・吸水性樹脂成分量P = {(Na%/23)/(N/100)}×Mw …式m-3
・SiO2成分量S = (Si%/28.08)×60.08 …式m-4
・硫酸アルミニウム成分量A = (Al%/26.98)×630.4/2 …式m-5
・粉塵中に含まれている吸水性樹脂の割合(質量%) = {P/(P+S+A)}×100 …式m-6
・粉塵中に含まれているSiO2の割合(質量%) = {S/(P+S+A)}×100 …式m-7
・粉塵中に含まれている硫酸アルミニウムの割合(質量%) = {A/(P+S+A)}×100 …式m-8。
上記粉塵量の測定において捕集された粉塵量、及び、定量された吸水性樹脂、SiO2及び硫酸アルミニウムの割合から、下記式m-9により、粉塵中の吸水性樹脂の量を算出することができる。上述した通り、下記式m-9中の粉塵量の値は、粒子状吸水剤全量(吸水性樹脂組成物の全質量)を基準としている。従って、下記式m-9中の粉塵中の吸水性樹脂の量の値も、吸水性樹脂組成物の全質量を基準としている。
粉塵中の吸水性樹脂の量(ppm) = 粉塵量×P/(P+S+A) …式m-9。
米国特許第5849405号明細書記載の食塩水流れ誘導性(SFC)試験を参考に、測定条件を変更し、以下の手順で行った。
粒子状吸水剤の真密度及び見かけ密度を、下記方法によって測定した。
吸水性樹脂の水分を除去した後、樹脂内部に存在する気泡(内部気泡)を考慮した見かけ密度を、乾式密度計で測定(所定質量の吸水性樹脂に関してその体積を乾式測定)した。測定方法は以下の通り。即ち、底面の直径が約5cmのアルミニウムカップに吸水性樹脂6.0gを量り取った後、180℃の無風乾燥機中で乾燥させた。当該吸水性樹脂の含水率が1質量%以下となるまで3時間以上静置させ、十分に乾燥させた。乾燥後の吸水性樹脂5.00gに関して、乾式自動密度計(AccuPycII 1340TC-10cc;株式会社島津製作所製/キャリアガス;ヘリウム)を用いて見かけ密度(単位;[g/cm3])を測定した。当該測定は、測定値が連続して5回以上同一となるまで繰り返した。
吸水性樹脂内部に存在する内部気泡(独立気泡)の径は、通常、1~300μmであり、粉砕時には、独立気泡に近い部分から優先的に粉砕される。それゆえ、粒子径が45μm未満となるまで吸水性樹脂を粉砕すると、粉砕後に得られる吸水性樹脂には独立気泡がほとんど含まれなくなる。従って、粒子径が45μm未満となるまで粉砕された吸水性樹脂の乾式密度を、本発明では真密度として規定した。測定方法は以下の通り。即ち、ボールミルポット(株式会社テラオカ製;型番No.90/内寸;直径80mm、高さ75mm、外寸;直径90mm、高さ110mm)に吸水性樹脂15.0g及び円柱状磁製ボール(径13mm、長さ13mm)400gを入れた後、60Hzで2時間稼動させることで、目開き45μmのJIS標準篩を通過する(粒子径が45μm未満の)吸水性樹脂を得た。当該粒子径が45μm未満の吸水性樹脂6.0gに関して、上記「(o-1)見かけ密度」と同様に180℃にて3時間以上乾燥させた後、乾式密度を測定した。そして、得られた測定値を本発明における「真密度」とした。
上述した「(o-1)見かけ密度」に記載した方法で測定した見かけ密度(これをρ1[g/cm3]とする)、及び上述した「(o-2)真密度」に記載した方法で測定した真密度(これをρ2[g/cm3]とする)を用いて、下記式で内部気泡率を定義した。
内部気泡率[%] = {(真密度[g/cm3]-見かけ密度[g/cm3])/真密度[g/cm3]}×100。
以下の製造例において、ポリアクリル酸(塩)系吸水性樹脂粉末の製造装置として、重合工程、ゲル粉砕工程、乾燥工程、粉砕工程、分級工程、表面架橋工程、冷却工程、整粒工程、及び各工程間を連結する輸送工程から構成される連続製造装置を用意した。該連続製造装置の生産能力は3500[kg/hr]であり、上記工程はそれぞれ1系列又は2系列以上であってもよい。2系列以上の場合、生産能力は各系列の合計量で示す。該連続製造装置を用いて、ポリアクリル酸(塩)系吸水性樹脂粉末を連続的に製造する。
アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数;9)0.94質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、及び脱イオン水314.3質量部からなる単量体水溶液(1)を作製した。
アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数;9)0.61質量部、1.0質量%エチレンジアミンテトラ(メチレンホスホン酸)5ナトリウム水溶液6.5質量部、及び脱イオン水346.1質量部からなる単量体水溶液(2)を作製した。
アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数;9)1.46質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、及び脱イオン水361質量部からなる単量体水溶液(3)を作製した。
アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数;9)0.59質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、及び脱イオン水238.1質量部からなる単量体水溶液(1)を作製した。
(ゲル粉砕)
上記製造例1で得られた含水ゲル(1)を、スクリュー押出機に供給しゲル粉砕した。該スクリュー押出機としては、先端部に直径100mm、孔径9.5mm、孔数40個、開孔率36.1%、厚さ10mmの多孔板が備えられた、スクリュー軸の外径が86mmのミートチョッパーを使用した。該ミートチョッパーのスクリュー軸回転数を130rpmとした状態で、含水ゲル(1)を4640[g/min]、同時に、水蒸気を83[g/min]でそれぞれ供給した。このときのゲル粉砕エネルギー(GGE)は26.9[J/g]、GGE(2)は13.6[J/g]であった。なお、ゲル粉砕前の含水ゲル(1)の温度は80℃であり、ゲル粉砕後の粉砕ゲル、即ち粒子状含水ゲル(1)の温度は85℃に上昇していた。
次に、上記粒子状含水ゲル(1)をゲル粉砕終了後1分以内に通気板上に散布(このときの粒子状含水ゲル(1)の温度は80℃)し、185℃で30分間乾燥を行い、乾燥重合体(1)を得た。熱風の平均風速は通気ベルトの進行方向に対して垂直方向に1.0[m/s]であった。なお、熱風の風速は、日本カノマックス株式会社製定温度熱式風速計アネモマスター 6162で測定した。
次いで、上記乾燥工程で得られた乾燥重合体(1)全量を3段ロールミルに供給して粉砕(粉砕工程)し、その後更に、目開き425μm及び300μmのJIS標準篩で分級することで、不定形破砕状の吸水性樹脂粒子(1)を得た。吸水性樹脂粒子(1)のCRCは、39.7g/gであった。
次に、上記吸水性樹脂粒子(1)100質量部に対して、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.4質量部、プロピレングリコール0.6質量部、及び脱イオン水3.0質量部からなる(共有結合性)表面架橋剤溶液を均一に混合し、190℃で45分間程度、得られる吸水性樹脂粉末(1)のCRCが33g/gとなるように加熱処理した。その後、冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを付与した後に、吸水性樹脂粉末100質量部に対して、水1質量部、ジエチレントリアミン5酢酸3ナトリウム0.01質量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き425μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル製)0.4質量部を均一に添加した。こうして、粒子状吸水剤(1)を得た。粒子状吸水剤(1)の諸物性を表1に示す。
実施例1と同様の操作を、上記製造例2で得られた含水ゲル(2)を用いて行った。こうして、粒子状吸水剤(2)を得た。粒子状吸水剤(2)の諸物性を表1に示す。
(ゲル粉砕)
上記製造例3で得られた含水ゲル(3)を、スクリュー押出機に供給しゲル粉砕した。該スクリュー押出機としては、先端部に直径100mm、孔径6.4mm、孔数83個、開孔率41.4%、厚さ10mmの多孔板が備えられた、スクリュー軸の外径が86mmのミートチョッパーを使用した。該ミートチョッパーのスクリュー軸回転数を130rpmとした状態で、含水ゲル(3)を4640[g/min]、同時に、水蒸気を83[g/min]でそれぞれ供給した。このときのゲル粉砕エネルギー(GGE)は29.5[J/g]、GGE(2)は15.7[J/g]であった。なお、ゲル粉砕前の含水ゲル(3)の温度は80℃であり、ゲル粉砕後の粉砕ゲル、即ち粒子状含水ゲル(3)の温度は86℃に上昇していた。
次に、上記粒子状含水ゲル(3)をゲル粉砕終了後1分以内に通気板上に散布(このときの粒子状含水ゲル(3)の温度は80℃)し、185℃で30分間乾燥を行い、乾燥重合体(3)を得た。熱風の平均風速は通気ベルトの進行方向に対して垂直方向に1.0[m/s]であった。なお、熱風の風速は、日本カノマックス株式会社製定温度熱式風速計アネモマスター 6162で測定した。
次いで、上記乾燥工程で得られた乾燥重合体(3)全量を3段ロールミルに供給して粉砕(粉砕工程)し、その後更に、目開き425μm及び300μmのJIS標準篩で分級することで、不定形破砕状の吸水性樹脂粒子(3)を得た。吸水性樹脂粒子(2)のCRCは、39.2g/gであった。
次に、上記吸水性樹脂粒子(3)100質量部に対して、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.4質量部、プロピレングリコール0.6質量部、及び脱イオン水3.0質量部からなる(共有結合性)表面架橋剤溶液を均一に混合し、190℃で35分間程度、得られる吸水性樹脂粉末(3)のCRCが34g/gとなるように加熱処理した。その後、冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを付与した後に、吸水性樹脂粉末100質量部に対して、水1質量部、ジエチレントリアミン5酢酸3ナトリウム0.01質量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き425μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル製)0.4質量部を均一に添加した。こうして、粒子状吸水剤(3)を得た。粒子状吸水剤(3)の諸物性を表1に示す。
実施例1で得られた吸水性樹脂粒子(1)100質量部に対して、エチレングリコールジグリシジルエーテル0.030質量部、プロピレングリコール1.0質量部及び脱イオン水3.0質量部からなる表面架橋剤溶液を均一に混合し、100℃で45分間、加熱処理した。その後、冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを付与した後に、吸水性樹脂粒子(1)100質量部に対して、水1質量部、及びジエチレントリアミン5酢酸3ナトリウム0.01質量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き425μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル製)0.4質量部を均一に添加した。こうして、粒子状吸水剤(4)を得た。粒子状吸水剤(4)の諸物性を表1に示す。
実施例1で得られた吸水性樹脂粒子(1)100質量部に対して、エチレングリコールジグリシジルエーテル0.045質量部、プロピレングリコール1.0質量部及び脱イオン水3.0質量部からなる表面架橋剤溶液を均一に混合し、100℃で45分間、加熱処理した。その後、冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを付与した後に、吸水性樹脂粒子(1)100質量部に対して、水1質量部、及びジエチレントリアミン5酢酸3ナトリウム0.01質量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き425μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル製)0.4質量部を均一に添加した。こうして、粒子状吸水剤(5)を得た。粒子状吸水剤(5)の諸物性を表1に示す。
(ゲル粉砕)
上記比較製造例1で得られた比較含水ゲル(1)を、スクリュー押出機に供給しゲル粉砕した。該スクリュー押出機としては、先端部に直径100mm、孔径16mm、孔数16個、開孔率49.4%、厚さ10mmの多孔板が備えられた、スクリュー軸の外径が86mmのミートチョッパーを使用した。該ミートチョッパーのスクリュー軸回転数を100rpmとした状態で、比較含水ゲル(1)を4640[g/min]、同時に、水蒸気を83[g/min]でそれぞれ供給した。このときのゲル粉砕エネルギー(GGE)は15.8[J/g]、GGE(2)は4.8[J/g]であった。なお、ゲル粉砕前の比較含水ゲル(1)の温度は80℃であり、ゲル粉砕後の粉砕ゲル、即ち比較粒子状含水ゲル(1)の温度は81℃に上昇していた。
次に、上記比較粒子状含水ゲル(1)をゲル粉砕終了後1分以内に通気板上に散布(このときの比較粒子状含水ゲル(1)の温度は80℃)し、185℃で30分間乾燥を行い、乾燥重合体(4)を得た。熱風の平均風速は通気ベルトの進行方向に対して垂直方向に1.0[m/s]であった。なお、熱風の風速は、日本カノマックス株式会社製定温度熱式風速計アネモマスター 6162で測定した。
次いで、上記乾燥工程で得られた比較乾燥重合体(1)全量を3段ロールミルに供給して粉砕(粉砕工程)し、その後更に、目開き850μm及び150μmのJIS標準篩で分級することで、不定形破砕状の比較吸水性樹脂粒子(1)を得た。比較吸水性樹脂粒子(1)のCRCは、45.1g/gであった。
次に、上記比較吸水性樹脂粒子(1)100質量部に対して、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.4質量部、プロピレングリコール0.6質量部、及び脱イオン水3.0質量部からなる(共有結合性)表面架橋剤溶液を均一に混合し、190℃で35分間程度、得られる比較吸水性樹脂粉末(1)のCRCが34g/gとなるように加熱処理した。その後、冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを付与した後に、比較吸水性樹脂粉末100質量部に対して、水1質量部、ジエチレントリアミン5酢酸3ナトリウム0.01質量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き850μmのJIS標準篩を通過させ、二酸化ケイ素(商品名:アエロジル200、日本アエロジル製)0.3質量部を均一に添加した。こうして、比較粒子状吸水剤(1)を得た。比較粒子状吸水剤(1)の諸物性を表1に示す。
本発明の粒子状吸水剤の物性測定方法による吸収速度(吸収時間)及び戻り量の測定の実施例を、図1~図3を参照しながら、以下に示す。本発明は係る例のみに限定されるものではなく、明細書の記載に従って適宜変更することが可能である。
上記測定方法で得られた吸収時間(t1,t2,t3)及び、戻り量を用いて、以下の式で吸収性能指数(API)を求めた。
t1:吸収時間1回目[sec]
t2:吸収時間2回目[sec]
t3:吸収時間3回目[sec]
吸収性能指数(API) = t1×t2×t3×戻り量[g]/1000 = 吸収時間1回目[sec]×吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/1000
(新吸収性能指数API;New Absorbent Performance Index)
上記測定方法で得られた吸収時間(t2,t3)及び、戻り量を用いて、以下の式で吸収性能指数(API)を求めた。
t2:吸収時間2回目[sec]
t3:吸収時間3回目[sec]
新吸収性能指数(nAPI) =t2×t3×戻り量[g]/10 = 吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/10。
実施例1で得られた粒子状吸水剤(1)35g、及び木材粉砕パルプ15gを、ミキサーを用いて乾式混合した後、得られた混合物を400メッシュ(目開き38μm)のワイヤースクリーン上に広げ、バッチ型空気抄造装置を用いてウェッブ状(シート状)に空気抄造した。その後、抄造した混合物を長方形(大きさ:90mm×330mm)に切り出して成形した。次いで、該成形した混合物を圧力196.14kPa(2[kgf/cm2])で1分間プレスすることで、子供用紙オムツサイズの吸収体(1)を作製した。
5:非常に良い
4:良い
3:普通
2:悪い
1:非常に悪い。
吸収体の実施例1と同様の操作を、粒子状吸水剤(2)~(5)、及び比較粒子状吸水剤(1)を用いてそれぞれ行い、塩化ナトリウム水溶液を投入後の吸収体(1)の状態を確認した。その結果を表3に示す。
2 容器
2a 開口部
2b 開口部
3 外気吸入パイプ
4 導管
5 測定部
6 ガラスフィルター
7 濾紙
8 シート
9 支持円筒
10 金網
11 重り
12 0.90質量%塩化ナトリウム水溶液
20 プラスチックの支持円筒
21 ステンレス製400メッシュの金網
22 膨潤ゲル
23 ペトリ皿
24 ガラスフィルター
25 濾紙
26 0.90質量%塩化ナトリウム水溶液
31 タンク
32 ガラス管
33 0.90質量%塩化ナトリウム水溶液
34 コック付きL字管
35 コック
40 容器
41 セル
42 ステンレス製金網(目開き38μm)
43 ステンレス製金網
44 膨潤ゲル
45 ステンレス製金網(目開き38μm)
46 ピストン
47 穴
48 捕集容器
49 上皿天秤
51 測定容器
52 平板
53 重り
54 液注入口
55 不織布
56 粒子状吸水剤
57 ビニールテープ
Claims (29)
- 粒子状吸水剤の吸収速度の測定方法であって、
底面が枠で囲まれた測定容器の底面に粒子状吸水剤の一部又は全部が固定された状態で、底面の一部分を平板によって加圧し、該平板に設置された注入口から水溶液を投入し、該投入された水溶液が該粒子状吸水剤に吸収されるまでの時間を測定する、粒子状吸水剤の吸収速度の測定方法。 - 粒子状吸水剤の吸収速度の測定方法であって、
底面が枠で囲まれた測定容器の底面に粒子状吸水剤の一部又は全部が固定された状態で、底面の一部分を平板によって加圧し、該平板に設置された注入口から水溶液を投入し、該投入された水溶液を該粒子状吸水剤に吸収させ、
上記水溶液の投入後、所定時間の経過後に、上記平板を除去し、該水溶液を吸収できる部材を上記粒子状吸水剤の上部に配置し、所定時間加圧し、該部材に吸収された水溶液の質量を測定することで、粒子状吸水剤からの液の戻り量を測定する、粒子状吸水剤の吸収速度の測定方法。 - 上記底面が枠で囲まれた測定容器の上部から見たアスペクト比(縦横比)が1:1.5~1:10である、請求項1又は2に記載の測定方法。
- 上記粒子状吸水剤が測定容器の底面に均一に散布されている、請求項1~3の何れか1項に記載の測定方法。
- 上記粒子状吸水剤の散布量が測定容器の底面の面積に対して50~1000g/m2である、請求項1~4の何れか1項に記載の測定方法。
- 上記水溶液の投入時の加圧条件(荷重)が0.2~10.0kPaである、請求項1~5の何れか1項に記載の測定方法。
- 上記平板によって加圧される部分の面積が測定容器の底面積の10~90%である、請求項1~6の何れか1項に記載の測定方法。
- 上記水溶液の投入が複数回行われる、請求項1~7の何れか1項に記載の測定方法。
- 上記投入される水溶液の合計量が粒子状吸水剤1gに対して10~60mlである、請求項1~8の何れか1項に記載の測定方法。
- 上記平板と粒子状吸水剤との間に、水溶液が通過でき、粒子状吸水剤が通過できない大きさの空隙を有するシートが配置される、請求項1~9の何れか1項に記載の測定方法。
- 下記(1)~(2)の物性を有している、粒子状吸水剤;
(1)遠心分離機保持容量(CRC)が30~50g/g、
(2)以下の式で表される吸収性能指数(API)が150以下。
吸収性能指数(API) = 吸収時間1回目[sec]×吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/1000。 - 上記吸収性能指数(API)が100以下である、請求項11に記載の粒子状吸水剤。
- 下記(1)~(2)の物性を有している、粒子状吸水剤;
(1)遠心分離機保持容量(CRC)が30~50g/g、
(2)以下の式で表される新吸収性能指数(nAPI)が240以下。
新吸収性能指数(nAPI) = 吸収時間2回目[sec]×吸収時間3回目[sec]×戻り量[g]/10。 - 上記新吸収性能指数(nAPI)が190以下である、請求項13に記載の粒子状吸水剤。
- 更に下記(3)~(5)の物性を有している、請求項11~14の何れか1項に記載の粒子状吸水剤;
(3)加圧下拡散吸水倍率の10分値(DAP10min)が12.0g/g以上、
(4)ゲル透過速度(GPR)が25g/min以上、
(5)粉塵中に含まれる吸水性樹脂の量が粒子状吸水剤全量に対して300ppm以下。 - 上記粒子状吸水剤の表面張力が65mN/m以上である、請求項11~15の何れか1項に記載の粒子状吸水剤。
- 下記式1で定義されるDRC指数が43以下である、請求項11~16の何れか1項に記載の粒子状吸水剤。
DRC指数 = (49-DRC5min)/(D50/1000) …式1 - 上記DRC指数が30以下である、請求項17に記載の粒子状吸水剤。
- 上記DRC指数が20以下である、請求項17に記載の粒子状吸水剤。
- 粒子形状が不定形破砕状である、請求項11~19の何れか1項に記載の粒子状吸水剤。
- 吸湿流動性(B.R.)が50質量%以下である、請求項11~20の何れか1項に記載の粒子状吸水剤。
- 劣化可溶分が30質量%以下である、請求項11~21の何れか1項に記載の粒子状吸水剤。
- 加圧下吸水倍率(AAP)が18g/g以上である、請求項11~22の何れか1項に記載の粒子状吸水剤。
- 加圧下吸水倍率(AAP)が26g/g以上である、請求項11~22の何れか1項に記載の粒子状吸水剤。
- 下記式で定義される内部気泡率が0.5~2.5%である、請求項11~24の何れか1項に記載の粒子状吸水剤。
内部気泡率[%] = {(真密度[g/cm3]-見かけ密度[g/cm3])/真密度[g/cm3]}×100 - かさ比重が0.57~0.75[g/cm3]である、請求項11~25の何れか1項に記載の粒子状吸水剤。
- 加圧下拡散吸水倍率の10分値(DAP10min)が18.0g/g以上である、請求項11~26の何れか1項に記載の粒子状吸水剤。
- 請求項11~27の何れか1項に記載の粒子状吸水剤を含む、吸収体。
- 請求項28に記載の吸収体を含む、吸収性物品。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/754,054 US11633717B2 (en) | 2017-10-12 | 2018-10-12 | Measurement method for properties of particulate absorbent agent, and particulate absorbent agent |
KR1020207012916A KR102406972B1 (ko) | 2017-10-12 | 2018-10-12 | 입자상 흡수제의 물성의 측정 방법 및 입자상 흡수제 |
EP18865632.6A EP3696532A4 (en) | 2017-10-12 | 2018-10-12 | METHOD OF MEASURING PROPERTIES OF PARTICULAR ABSORBENT AGENT, AND PARTICULAR ABSORBENT AGENT |
KR1020227018667A KR102639960B1 (ko) | 2017-10-12 | 2018-10-12 | 입자상 흡수제의 물성의 측정 방법 및 입자상 흡수제 |
CN201880065382.2A CN111183347B (zh) | 2017-10-12 | 2018-10-12 | 颗粒状吸水剂物性的测定方法及颗粒状吸水剂 |
JP2019548255A JPWO2019074094A1 (ja) | 2017-10-12 | 2018-10-12 | 粒子状吸水剤の物性の測定方法及び粒子状吸水剤 |
EP22179546.1A EP4113099A3 (en) | 2017-10-12 | 2018-10-12 | Particulate absorbent agent |
JP2021180334A JP7299958B2 (ja) | 2017-10-12 | 2021-11-04 | 粒子状吸水剤 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017198438 | 2017-10-12 | ||
JP2017-198438 | 2017-10-12 | ||
JP2017-236491 | 2017-12-08 | ||
JP2017236491 | 2017-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019074094A1 true WO2019074094A1 (ja) | 2019-04-18 |
Family
ID=66100730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038092 WO2019074094A1 (ja) | 2017-10-12 | 2018-10-12 | 粒子状吸水剤の物性の測定方法及び粒子状吸水剤 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11633717B2 (ja) |
EP (2) | EP4113099A3 (ja) |
JP (2) | JPWO2019074094A1 (ja) |
KR (2) | KR102639960B1 (ja) |
CN (1) | CN111183347B (ja) |
WO (1) | WO2019074094A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210097895A (ko) * | 2020-01-31 | 2021-08-10 | 주식회사 엘지화학 | 고흡수성 수지의 발포에 따른 건조성을 예측하기 위한 방법 |
CN114486896A (zh) * | 2022-01-30 | 2022-05-13 | 浙江大学 | 一种可在线监测烧结液相熔融和渗流特性的设备和方法 |
JP7482911B2 (ja) | 2019-07-04 | 2024-05-14 | ベーアーエスエフ・エスエー | 超吸収体の特性を決定する方法 |
KR102799963B1 (ko) | 2020-04-08 | 2025-04-23 | 주식회사 엘지화학 | 도프 용액의 응고 속도를 측정하는 방법을 이용한 고분자 분리막의 품질 예측 방법, 상기 고분자 분리막의 품질 예측 장치 및 상기 분리막의 제조방법 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110579427B (zh) * | 2019-10-22 | 2024-11-15 | 桂林理工大学 | 一种裂隙-孔隙双渗透介质优势流模拟装置及实验方法 |
CN114199712A (zh) * | 2021-11-26 | 2022-03-18 | 金三江(肇庆)硅材料股份有限公司 | 一种二氧化硅吸油值的测量方法 |
KR102602276B1 (ko) * | 2022-02-10 | 2023-11-16 | 고려대학교 산학협력단 | 화학물질 경피전이량 측정 장치 및 측정 방법 |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893999A (en) | 1985-12-18 | 1990-01-16 | Chemische Fabrik Stockhausen Gmbh | Apparatus for the continuous production of polymers and copolymers of water-soluble monomers |
JP2606988B2 (ja) * | 1991-09-12 | 1997-05-07 | 株式会社日本触媒 | 吸水剤組成物および該吸水剤組成物を含んでなる止水材 |
JPH09235378A (ja) | 1995-12-27 | 1997-09-09 | Nippon Shokubai Co Ltd | 吸水剤及びその製造方法並びにその製造装置 |
US5849405A (en) | 1994-08-31 | 1998-12-15 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
EP0942014A2 (en) | 1998-03-11 | 1999-09-15 | Nippon Shokubai Co., Ltd. | Hydrophilic resin, absorbent article, and acrylic acid for polymerization |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
EP1108745A1 (en) | 1999-12-15 | 2001-06-20 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition |
US6710141B1 (en) | 1999-11-20 | 2004-03-23 | Basf Aktiengesellschaft | Method for continuously producing cross-linked fine-particle geleous polymerizates |
US20050058810A1 (en) * | 2003-09-12 | 2005-03-17 | Dodge Richard Norris | Absorbent composites comprising superabsorbent materials with controlled rate behavior |
JP2005098956A (ja) * | 2003-08-29 | 2005-04-14 | San-Dia Polymer Ltd | 吸液性粒子の吸液量測定装置、吸液量測定方法及び製造方法 |
WO2005075070A1 (ja) | 2004-02-05 | 2005-08-18 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤及びその製造方法並びに吸水性物品 |
US20050215734A1 (en) | 2004-03-24 | 2005-09-29 | Yorimichi Dairoku | Method for continuous production of water-absorbent resin |
JP2005334616A (ja) * | 2004-04-30 | 2005-12-08 | Sumitomo Seika Chem Co Ltd | 吸収体およびそれが用いられた吸収性物品 |
US6987151B2 (en) | 2001-09-12 | 2006-01-17 | Dow Global Technologies Inc. | Continuous polymerization process for the manufacture of superabsorbent polymers |
US20060204755A1 (en) | 2003-02-10 | 2006-09-14 | Kazushi Torii | Walter-absorbing agent |
WO2006100300A1 (de) | 2005-03-24 | 2006-09-28 | Basf Aktiengesellschaft | Verfahren zur herstellung wasserabsorbierender polymere |
US7183456B2 (en) | 2000-09-20 | 2007-02-27 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
US7265190B2 (en) | 2002-11-07 | 2007-09-04 | Nippon Shokubai Co., Ltd. | Process and apparatus for production of water-absorbent resin |
US20080161512A1 (en) | 2005-04-07 | 2008-07-03 | Takaaki Kawano | Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin |
US20080194863A1 (en) | 2005-09-07 | 2008-08-14 | Basf Se | Neutralization Process |
WO2009005114A1 (ja) | 2007-07-04 | 2009-01-08 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤およびその製造方法 |
WO2009123197A1 (ja) | 2008-03-31 | 2009-10-08 | 株式会社日本触媒 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置 |
JP2010142808A (ja) | 1995-09-01 | 2010-07-01 | Nippon Shokubai Co Ltd | 吸収剤組成物およびその製造方法、並びに、吸収剤組成物を含む吸収物品 |
WO2011025013A1 (ja) | 2009-08-28 | 2011-03-03 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2011040530A1 (ja) | 2009-09-30 | 2011-04-07 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
WO2011111657A1 (ja) | 2010-03-08 | 2011-09-15 | 株式会社日本触媒 | 粒子状含水ゲル状架橋重合体の乾燥方法 |
WO2011126079A1 (ja) | 2010-04-07 | 2011-10-13 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末 |
WO2014046106A1 (ja) * | 2012-09-21 | 2014-03-27 | 三洋化成工業株式会社 | 水性液体吸収性樹脂、水性液体吸収性組成物並びにこれらを用いた吸収体及び吸収性物品 |
WO2015030129A1 (ja) | 2013-08-28 | 2015-03-05 | 株式会社日本触媒 | ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末 |
WO2015030130A1 (ja) | 2013-08-28 | 2015-03-05 | 株式会社日本触媒 | ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末 |
WO2015129917A1 (ja) | 2014-02-28 | 2015-09-03 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法 |
JP2016209111A (ja) * | 2015-04-30 | 2016-12-15 | 日本製紙クレシア株式会社 | 吸収性物品 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7169843B2 (en) * | 2003-04-25 | 2007-01-30 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
RU2333229C2 (ru) | 2003-06-24 | 2008-09-10 | Ниппон Шокубаи Ко., Лтд. | Водопоглощающая композиция на основе смол, способ ее изготовления (варианты), поглотитель и поглощающее изделие на ее основе |
US20060282052A1 (en) | 2003-08-29 | 2006-12-14 | San-Dia Polymers, Ltd. | Absorbent resin particle, and absorber and asborbent article employing the same |
JP5600670B2 (ja) | 2009-02-17 | 2014-10-01 | 株式会社日本触媒 | ポリアクリル酸系吸水性樹脂粉末およびその製造方法 |
KR101651675B1 (ko) * | 2009-10-30 | 2016-08-29 | 유한킴벌리 주식회사 | 환형의 흡수부재를 구비하는 흡수제품 |
JP5647625B2 (ja) | 2009-12-24 | 2015-01-07 | 株式会社日本触媒 | ポリアクリル酸系吸水性樹脂粉末及びその製造方法 |
JP6157853B2 (ja) | 2010-06-30 | 2017-07-05 | 株式会社日本触媒 | ポリアクリル酸系吸水性樹脂及びその製造方法 |
CN109608665A (zh) * | 2012-08-30 | 2019-04-12 | 株式会社日本触媒 | 颗粒状吸水剂及其制造方法 |
KR101743274B1 (ko) * | 2014-06-12 | 2017-06-02 | 주식회사 엘지화학 | 고흡수성 수지 |
JP6441374B2 (ja) * | 2014-09-29 | 2018-12-19 | 株式会社日本触媒 | 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法 |
KR102348349B1 (ko) | 2015-01-07 | 2022-01-10 | 가부시키가이샤 닛폰 쇼쿠바이 | 흡수제 및 그의 제조 방법, 그리고 평가 방법 및 측정 방법 |
JP6557721B2 (ja) | 2015-03-30 | 2019-08-07 | 株式会社日本触媒 | 粒子状吸水剤 |
CN110325273B (zh) * | 2017-02-22 | 2022-09-06 | 株式会社日本触媒 | 吸水性片、长条状吸水性片及吸收性物品 |
-
2018
- 2018-10-12 EP EP22179546.1A patent/EP4113099A3/en active Pending
- 2018-10-12 WO PCT/JP2018/038092 patent/WO2019074094A1/ja unknown
- 2018-10-12 KR KR1020227018667A patent/KR102639960B1/ko active Active
- 2018-10-12 US US16/754,054 patent/US11633717B2/en active Active
- 2018-10-12 CN CN201880065382.2A patent/CN111183347B/zh active Active
- 2018-10-12 EP EP18865632.6A patent/EP3696532A4/en active Pending
- 2018-10-12 KR KR1020207012916A patent/KR102406972B1/ko active Active
- 2018-10-12 JP JP2019548255A patent/JPWO2019074094A1/ja active Pending
-
2021
- 2021-11-04 JP JP2021180334A patent/JP7299958B2/ja active Active
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893999A (en) | 1985-12-18 | 1990-01-16 | Chemische Fabrik Stockhausen Gmbh | Apparatus for the continuous production of polymers and copolymers of water-soluble monomers |
JP2606988B2 (ja) * | 1991-09-12 | 1997-05-07 | 株式会社日本触媒 | 吸水剤組成物および該吸水剤組成物を含んでなる止水材 |
US5849405A (en) | 1994-08-31 | 1998-12-15 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
JP2010142808A (ja) | 1995-09-01 | 2010-07-01 | Nippon Shokubai Co Ltd | 吸収剤組成物およびその製造方法、並びに、吸収剤組成物を含む吸収物品 |
JPH09235378A (ja) | 1995-12-27 | 1997-09-09 | Nippon Shokubai Co Ltd | 吸水剤及びその製造方法並びにその製造装置 |
EP0942014A2 (en) | 1998-03-11 | 1999-09-15 | Nippon Shokubai Co., Ltd. | Hydrophilic resin, absorbent article, and acrylic acid for polymerization |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
US6710141B1 (en) | 1999-11-20 | 2004-03-23 | Basf Aktiengesellschaft | Method for continuously producing cross-linked fine-particle geleous polymerizates |
EP1108745A1 (en) | 1999-12-15 | 2001-06-20 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition |
US7183456B2 (en) | 2000-09-20 | 2007-02-27 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
US6987151B2 (en) | 2001-09-12 | 2006-01-17 | Dow Global Technologies Inc. | Continuous polymerization process for the manufacture of superabsorbent polymers |
US7265190B2 (en) | 2002-11-07 | 2007-09-04 | Nippon Shokubai Co., Ltd. | Process and apparatus for production of water-absorbent resin |
US7638570B2 (en) | 2003-02-10 | 2009-12-29 | Nippon Shokubai Co., Ltd. | Water-absorbing agent |
US20060204755A1 (en) | 2003-02-10 | 2006-09-14 | Kazushi Torii | Walter-absorbing agent |
JP2005098956A (ja) * | 2003-08-29 | 2005-04-14 | San-Dia Polymer Ltd | 吸液性粒子の吸液量測定装置、吸液量測定方法及び製造方法 |
US20050058810A1 (en) * | 2003-09-12 | 2005-03-17 | Dodge Richard Norris | Absorbent composites comprising superabsorbent materials with controlled rate behavior |
WO2005075070A1 (ja) | 2004-02-05 | 2005-08-18 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤及びその製造方法並びに吸水性物品 |
US20050215734A1 (en) | 2004-03-24 | 2005-09-29 | Yorimichi Dairoku | Method for continuous production of water-absorbent resin |
JP2005334616A (ja) * | 2004-04-30 | 2005-12-08 | Sumitomo Seika Chem Co Ltd | 吸収体およびそれが用いられた吸収性物品 |
WO2006100300A1 (de) | 2005-03-24 | 2006-09-28 | Basf Aktiengesellschaft | Verfahren zur herstellung wasserabsorbierender polymere |
US20080161512A1 (en) | 2005-04-07 | 2008-07-03 | Takaaki Kawano | Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin |
US20080194863A1 (en) | 2005-09-07 | 2008-08-14 | Basf Se | Neutralization Process |
WO2009005114A1 (ja) | 2007-07-04 | 2009-01-08 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤およびその製造方法 |
WO2009123197A1 (ja) | 2008-03-31 | 2009-10-08 | 株式会社日本触媒 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置 |
WO2011025013A1 (ja) | 2009-08-28 | 2011-03-03 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2011025012A1 (ja) | 2009-08-28 | 2011-03-03 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2011040530A1 (ja) | 2009-09-30 | 2011-04-07 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
WO2011111657A1 (ja) | 2010-03-08 | 2011-09-15 | 株式会社日本触媒 | 粒子状含水ゲル状架橋重合体の乾燥方法 |
WO2011126079A1 (ja) | 2010-04-07 | 2011-10-13 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末 |
WO2014046106A1 (ja) * | 2012-09-21 | 2014-03-27 | 三洋化成工業株式会社 | 水性液体吸収性樹脂、水性液体吸収性組成物並びにこれらを用いた吸収体及び吸収性物品 |
WO2015030129A1 (ja) | 2013-08-28 | 2015-03-05 | 株式会社日本触媒 | ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末 |
WO2015030130A1 (ja) | 2013-08-28 | 2015-03-05 | 株式会社日本触媒 | ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末 |
WO2015129917A1 (ja) | 2014-02-28 | 2015-09-03 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法 |
JP2016209111A (ja) * | 2015-04-30 | 2016-12-15 | 日本製紙クレシア株式会社 | 吸収性物品 |
Non-Patent Citations (2)
Title |
---|
"Glossary of Technical Terms in Japanese Industrial Standards", 2002 |
MODERN SUPERABSORBENT POLYMER TECHNOLOGY, 1998, pages 197 - 199 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7482911B2 (ja) | 2019-07-04 | 2024-05-14 | ベーアーエスエフ・エスエー | 超吸収体の特性を決定する方法 |
KR20210097895A (ko) * | 2020-01-31 | 2021-08-10 | 주식회사 엘지화학 | 고흡수성 수지의 발포에 따른 건조성을 예측하기 위한 방법 |
KR102770770B1 (ko) * | 2020-01-31 | 2025-02-21 | 주식회사 엘지화학 | 고흡수성 수지의 발포에 따른 건조성을 예측하기 위한 방법 |
KR102799963B1 (ko) | 2020-04-08 | 2025-04-23 | 주식회사 엘지화학 | 도프 용액의 응고 속도를 측정하는 방법을 이용한 고분자 분리막의 품질 예측 방법, 상기 고분자 분리막의 품질 예측 장치 및 상기 분리막의 제조방법 |
CN114486896A (zh) * | 2022-01-30 | 2022-05-13 | 浙江大学 | 一种可在线监测烧结液相熔融和渗流特性的设备和方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019074094A1 (ja) | 2020-11-05 |
US20200324269A1 (en) | 2020-10-15 |
EP3696532A4 (en) | 2021-12-15 |
EP4113099A2 (en) | 2023-01-04 |
CN111183347A (zh) | 2020-05-19 |
CN111183347B (zh) | 2023-03-21 |
EP3696532A1 (en) | 2020-08-19 |
KR102406972B1 (ko) | 2022-06-10 |
KR102639960B1 (ko) | 2024-02-27 |
KR20220080210A (ko) | 2022-06-14 |
KR20200067857A (ko) | 2020-06-12 |
JP2022023984A (ja) | 2022-02-08 |
JP7299958B2 (ja) | 2023-06-28 |
US11633717B2 (en) | 2023-04-25 |
EP4113099A3 (en) | 2023-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7299958B2 (ja) | 粒子状吸水剤 | |
JP5301159B2 (ja) | 吸水剤及びこれを用いた吸水体、並びに吸水剤の製造方法 | |
JP5558818B2 (ja) | 粒子状吸水剤およびその製造方法 | |
JP6340348B2 (ja) | 内部構造が改善された吸水性樹脂の製造方法 | |
KR100876827B1 (ko) | 흡수성 수지를 주성분으로 포함하는 입자상의 흡수제 | |
JP6557721B2 (ja) | 粒子状吸水剤 | |
US20190111411A1 (en) | Particulate water absorbing agent | |
US7285615B2 (en) | Particulate water-absorbent resin composition | |
WO2010100936A1 (ja) | 吸水性樹脂の製造方法 | |
JPWO2018155591A1 (ja) | 吸水性シート、長尺状吸水性シートおよび吸収性物品 | |
WO2017002972A1 (ja) | 粒子状吸水剤 | |
JP7382493B2 (ja) | 粒子状吸水剤 | |
JP4500134B2 (ja) | 粒子状吸水性樹脂組成物 | |
WO2021162072A1 (ja) | 吸収体、吸水剤および吸水剤の製造方法 | |
WO2024204126A1 (ja) | 粒子状吸水剤、当該粒子状吸水剤を含む吸収体および当該吸収体を含む衛生製品 | |
JP2023088497A (ja) | 表面架橋された(メタ)アクリル酸(塩)系吸水性樹脂を含む吸水剤および(メタ)アクリル酸(塩)系吸水性樹脂の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865632 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019548255 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207012916 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018865632 Country of ref document: EP Effective date: 20200512 |