[go: up one dir, main page]

WO2016171273A1 - 被覆金型およびその製造方法 - Google Patents

被覆金型およびその製造方法 Download PDF

Info

Publication number
WO2016171273A1
WO2016171273A1 PCT/JP2016/062828 JP2016062828W WO2016171273A1 WO 2016171273 A1 WO2016171273 A1 WO 2016171273A1 JP 2016062828 W JP2016062828 W JP 2016062828W WO 2016171273 A1 WO2016171273 A1 WO 2016171273A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
mold
coating
nitride
Prior art date
Application number
PCT/JP2016/062828
Other languages
English (en)
French (fr)
Inventor
史明 本多
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2017514223A priority Critical patent/JP6477867B2/ja
Priority to CN201680023253.8A priority patent/CN107532279B/zh
Priority to EP16783294.8A priority patent/EP3287544B1/en
Priority to KR1020177030103A priority patent/KR102174803B1/ko
Priority to ES16783294T priority patent/ES2878165T3/es
Priority to US15/567,970 priority patent/US11779989B2/en
Publication of WO2016171273A1 publication Critical patent/WO2016171273A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • the present invention relates to a coated mold coated with a hard coating applied to, for example, a mold for press working or forging, and a manufacturing method thereof.
  • plastic working such as forging and press working
  • steel typified by tool steel such as cold die steel, hot die steel, and high speed steel, and dies with cemented carbide as the base material
  • the plastic working method described above includes a cold working in which processing is performed near room temperature, a warm working in which a workpiece is heated to 400 ° C. or higher, and a hot working.
  • the work surface of the mold and the work material slide, causing wear and galling on the work surface of the mold, and the work surface of the mold. Therefore, it is desired to improve the mold life.
  • a coated mold in which a hard film is coated on a work surface of a mold by a physical vapor deposition method has been applied to improve the life of the mold.
  • the coating temperature is lower than the tempering temperature of steel among various coating forming means, so that the mold is not softened by the coating, and the mold is not easily deformed or deformed.
  • Patent Document 1 shows that AlCrSi nitride, which is a film type having excellent heat resistance and wear resistance, is applied.
  • Patent Document 2 shows a film structure in which a laminated film in which V nitride and AlCrSi nitride having excellent lubrication characteristics are alternately laminated is provided and the surface roughness is controlled within a certain range.
  • An object of the present invention is to provide a coating mold excellent in wear resistance, heat resistance and adhesion resistance, and a method for producing the same.
  • One aspect of the present invention is a coating mold having a hard coating on the surface, and the hard coating includes an A layer made of a nitride having a thickness of 5 ⁇ m or more and a B layer made of a diamond-like carbon coating.
  • the B layer is on the outer surface side of the A layer, and the surface of the B layer has an arithmetic average roughness Ra ⁇ 0.2 ⁇ m, a maximum height Rz ⁇ 2.0 ⁇ m, and a skewness Rsk ⁇ 0. It is a type.
  • the A layer is preferably a laminated film in which a nitride containing chromium and a nitride containing vanadium are alternately laminated, and the film thickness of the A layer is preferably 8 ⁇ m or more.
  • Another aspect of the present invention is a method for producing a coated mold having a surface coated with a hard coating, the step of coating a layer A made of a nitride having a thickness of 5 ⁇ m or more, and the surface of the layer A
  • the surface roughness of the A layer is Ra ⁇ 0.2 ⁇ m, Rz ⁇ 2.0 ⁇ m, and Rsk ⁇ 0, and after the surface polishing step of the A layer, a diamond-like carbon film is formed.
  • the A layer is preferably coated with a thickness of 8 ⁇ m or more.
  • the present invention it is possible to provide a coated mold that is excellent in durability and can improve the life of a mold over a use range between cold and warm.
  • a coated mold having a hard film formed on the surface is used.
  • the coating mold used for these applications since the force applied to the surface of the hard coating is large, if the coating is thin, the coating strength is poor and the coating is easily damaged.
  • a large force is applied to the interface between the film and the mold, and therefore film peeling and film damage are likely to occur due to the difference in the amount of elastic deformation between the film and the mold. For this reason, the influence of the film thickness of the hard coating on the mold life becomes extremely large. Further, when the sliding property of the hard coating itself is poor, galling occurs and the mold life tends to be reached early.
  • the present inventor has an upper layer (layer A) made of a thick nitride (the upper layer is a hard coating) as a hard coating.
  • DLC diamond-like carbon
  • a film made of nitride is a film type having excellent heat resistance and wear resistance, and tends to have excellent adhesion to steel as a mold. Therefore, the durability of the coating mold can be further increased by forming the nitride film thicker.
  • an A layer made of nitride having a thickness of 5 ⁇ m or more is provided in order to exhibit excellent durability under a high load use environment.
  • the A layer made of nitride tends to have poor sliding characteristics, and galling or adhesion may occur in the initial stage. Therefore, in order to impart excellent sliding characteristics to the coating mold, a diamond-like carbon film B layer, which is a film type having excellent sliding characteristics, is provided on the upper layer of the A layer.
  • the B layer in order for the B layer to be sufficiently effective, it is important to polish the surface of the A layer facing the B layer and then provide the B layer.
  • the A layer since the A layer is controlled to be a thick film, the A layer tends to accumulate droplets and film defects, and the surface of the A layer with the film formed thereon becomes a rough surface. Therefore, if the B layer, which is a diamond-like carbon film mainly composed of amorphous material, is provided directly on the roughened layer A, the surface of the layer B is uneven as well as the rough surface (irregularities) of the layer A. Occurs and the surface state of the B layer deteriorates.
  • the irregularities on the surface of the B layer are caused by the surface roughness of the A layer, it is difficult to improve the surface roughness of the B layer (especially skewness Rsk described later) even if only the B layer is polished. . Furthermore, it is difficult to ensure sufficient adhesion between the A layer and the B layer, and peeling tends to occur. Therefore, by polishing the surface of the A layer to remove surface defects such as droplets and providing the B layer, the adhesion between the A layer and the B layer is enhanced and the surface roughness of the B layer is smooth. It can be.
  • the surface of the B layer in the present invention has an arithmetic average roughness Ra (conforming to JIS-B-0601-2001) of 0.2 ⁇ m or less and a maximum height Rz (JIS- B-0601-2001) can be 2.0 ⁇ m or less, and the skewness Rsk (conforming to JIS-B-0601-2001) can be less than 0.
  • Ra arithmetic average roughness
  • Rz JIS- B-0601-2001
  • Rsk conforming to JIS-B-0601-2001
  • the skewness Rsk is a parameter indicating the objectivity with respect to the center line of the amplitude distribution curve. For example, in the case of a film surface with many concave portions, the skewness Rsk indicates less than 0, and when there are many convex portions, the skewness Rsk indicates zero or more, and the frequency of the convex portions and the concave portions can be managed. . In the present invention, it is preferable that the number of convex portions is small, and the skewness Rsk is preferably less than zero.
  • Polishing with abrasive paper or polishing with media consisting of resin and diamond particles can reduce the arithmetic average roughness Ra and the surface roughness of the maximum height Rz, but it is not easy to reduce the protrusions reliably. It is difficult to make the film skewness Rsk less than 0. On the other hand, if buffing using a diamond paste is performed, a smooth surface with reduced convex portions can be easily obtained, and it is preferable to make the skewness Rsk of the coating less than zero.
  • the A layer is a nitride and may be a single layer or a multilayer as long as the total film thickness is 5 ⁇ m or more. Further, a laminated film in which nitrides having different compositions are alternately laminated may be used.
  • the A layer preferably has a thickness of 8 ⁇ m or more after polishing. Furthermore, the A layer is preferably 10 ⁇ m or more. However, if the film thickness becomes too thick, film peeling may easily occur depending on processing conditions. Therefore, the film thickness of the A layer is preferably 70 ⁇ m or less. Furthermore, it is preferable that it is 60 micrometers or less. Furthermore, it is preferable that it is 50 micrometers or less. Furthermore, it is preferable that it is 40 micrometers or less.
  • Layer A is a nitride composed of one or more elements selected from Group 4a, Group 5a and Group 6a of the periodic table and aluminum (Al), silicon (Si), and boron (B). It is preferable that Since nitrides composed of these elements have high heat resistance and wear resistance, they are excellent in durability.
  • the crystal structure of the A layer is preferably a face-centered cubic lattice (fcc) structure that tends to be more durable. Moreover, in a severe use environment, there is a possibility that the B layer is worn out. Therefore, in order to ensure a certain level of durability even when the A layer is exposed, the A layer preferably contains a nitride containing chromium (Cr).
  • a hard coating such as CrN, CrAlN, CrSiN, AlCrSiN is preferable, and these hard coatings are excellent in wear resistance and heat resistance.
  • the hard coating contains chromium, a uniform and dense oxide film is easily formed on the surface of the mold being processed, and damage tends to be suppressed. Therefore, in a mold used in a high load environment where frictional heat is generated during sliding, it is preferable to apply a nitride containing chromium, which is effective in improving the life of the coated mold. It is also preferable that the A layer contains a nitride containing vanadium (V).
  • vanadium is appropriately oxidized in the operating temperature range of 25 to 200 ° C, so that it is formed on the mold surface as a thin oxide layer and has an affinity with the counterpart material (workpiece) Reduce. Therefore, the layer A contains a vanadium nitride having excellent sliding characteristics, so that the entire hard coating has excellent sliding characteristics, and the work material adheres to the coating surface during use of the mold. Can be reduced.
  • the vanadium oxide reacts with the surface of the workpiece and the iron oxide, which is wear powder, and softens the iron oxide. Abrasive wear that progresses by biting can be suppressed.
  • the effect of the vanadium oxide softening the iron oxide of the work piece tends to suppress the generation of wear powder during sliding, and local scratches and galling are caused on the work surface during press molding. Can be suppressed.
  • the A layer of the present invention is a single layer, it is preferably chromium nitride or vanadium nitride.
  • This chromium nitride is added with one or more elements selected from Group 4a, Group 5a and Group 6a of the periodic table and aluminum (Al), silicon (Si), and boron (B). Including those that are.
  • the layer A preferably includes a laminated film in which nitrides containing chromium and nitrides containing vanadium are alternately laminated.
  • a laminated film By making such a laminated film, excellent wear resistance and heat resistance are simultaneously imparted to the thick film A layer, which is the main component of the hard film, and at the same time excellent sliding characteristics are imparted. Durability can be further improved.
  • the nitride containing chromium is preferably a nitride containing 30% or more of chromium by the atomic ratio of the metal portion.
  • the nitride containing vanadium is preferably a nitride having a vanadium content of 60% or more in terms of the atomic ratio of the metal portion. More preferably, it is 70% or more, and further 80% or more.
  • the individual film thickness of the laminated film is set to 100 nm or less. It is preferable to do. By controlling the individual film thickness of the laminated film, a coated mold having the above-mentioned various characteristics in a balanced manner is obtained. In addition, since the occurrence of unevenness on the sliding surface of the film is suppressed even in each temperature environment during use, and the aggressiveness to the work material is low, it is possible to suppress damage such as galling that occurs during sliding, Lifetime can be improved. More preferable individual film thickness is less than 50 nm, and further less than 20 nm. Moreover, it is preferable that each film thickness is 3 nm or more.
  • the film thickness of the nitride containing vanadium is thicker than the film thickness of the nitride containing chromium. preferable. Furthermore, if the film thickness of the nitride containing vanadium is 1.5 times or more than the film thickness of the nitride containing chromium, it is more preferable because an oxide of vanadium that enhances the sliding characteristics is sufficiently generated. More preferably, it is 2.0 times or more. In addition, when the operating temperature range is approximately 300 ° C. or higher, the oxidation of the compound mainly composed of vanadium further proceeds, so excessive oxide is formed, and depending on the usage environment, the wear resistance may be reduced. There is. Therefore, the film thickness of the nitride containing vanadium is preferably 4.0 times or less than the film thickness of the nitride containing chromium.
  • the A layer of the present invention is a multilayer, it is preferably a laminated film of chromium nitride and vanadium nitride, and more preferably, chromium nitride and vanadium nitride are alternately laminated. Further, chromium nitride is added with one or more elements selected from Group 4a, Group 5a and Group 6a of the periodic table and aluminum (Al), silicon (Si), and boron (B). May be.
  • the B layer is preferably a diamond-like carbon film containing carbon having carbon-carbon bonds such as sp 2 bonds and sp 3 bonds and / or free carbon not having carbon-carbon bonds. In order to impart higher sliding characteristics, it is preferable that the diamond-like carbon film has a sp 2 bond content higher than the sp 3 bond.
  • the B layer may contain other elements as necessary as long as it is in a range having the largest number of carbon atoms among the elements constituting the B layer.
  • the B layer preferably contains a metal (including metalloid) element in order to impart characteristics such as wear resistance and heat resistance.
  • the metal (including metalloid) element contained in the B layer may be contained in the form of a compound such as metal, alloy, carbide, nitride, carbonitride, carbonitride, carbonitride.
  • the content ratio (atomic%) of metal (including metalloid) elements is 2% or more. Further, it is preferably 5% or more.
  • the B layer preferably has a content ratio (atomic%) of metal (including metalloid) elements of 20% or less. Further, it is preferably 10% or less.
  • the layer B is preferably a diamond-like carbon film containing nitrogen in order to impart heat resistance.
  • the B layer preferably has a nitrogen content ratio (atomic%) of 20% or less in order to impart excellent heat resistance. Further, it is preferably 15% or less.
  • the B layer is preferably a diamond-like carbon film containing hydrogen.
  • the hydrogen content (atomic%) is 5% or more. Furthermore, it is preferably 10% or more.
  • the B layer preferably has a hydrogen content (atomic%) of 30% or less. Further, it is preferably 25% or less.
  • the B layer may contain a metal (including a semimetal) element, nitrogen, and hydrogen alone or simultaneously.
  • the B layer may contain a metal (including metalloid) element, nitrogen and hydrogen at the same time, or may contain only nitrogen and hydrogen, or only a metal (including metalloid) element and nitrogen. May be contained, or only metal (including metalloid) elements and hydrogen may be contained.
  • the B layer may be a single layer or a multilayer.
  • the B layer can contain a rare gas such as Ar, oxygen, or the like.
  • the B layer preferably has a film thickness of 1 ⁇ m or more. Furthermore, it is preferable that it is 2 micrometers or more. However, if the film thickness becomes too thick, film peeling may easily occur depending on processing conditions. Therefore, the film thickness of the B layer is preferably 15 ⁇ m or less. Furthermore, it is preferable that it is 12 micrometers or less.
  • the mold material of the present invention is not particularly defined, but cold die steel, hot die steel, high speed tool steel, cemented carbide or the like can be used as appropriate.
  • the mold may be obtained by previously applying a surface hardening process using diffusion such as nitriding or carburizing.
  • the hard coating according to the present invention can be coated at a temperature lower than the tempering temperature of the die material such as cold die steel, hot die steel or high speed steel by coating by PVD method. Variations in dimensions can be suppressed. Moreover, since a residual compressive stress can be given to a hard film and the mechanical characteristics of a hard film can also be improved, it is preferable.
  • the A layer is preferably coated by an arc ion plating method that is excellent in the adhesion of the film among the PVD methods. After coating the A layer by the arc ion plating method, it is preferable to remove the sample from the furnace and polish the surface of the A layer, and then coat the B layer by the sputtering method.
  • the B layer By coating the B layer by a sputtering method, it is possible to coat a diamond-like carbon film that is smoother and has excellent sliding characteristics.
  • plasma CVD may be used for coating the B layer. It is preferable to use plasma CVD because the productivity is more excellent.
  • the surface of the B layer may be polished in order to obtain a smoother surface state.
  • a method of polishing the surface of a hard film with an abrasive cloth holding an abrasive such as diamond paste (2) Using diamond particles and an abrasive containing water, the abrasive is slid on the film coated on the mold at high speed.
  • a polishing method using so-called Aero Wrap (registered trademark) or the like that polishes by generated frictional force.
  • Aero Wrap registered trademark
  • a polishing agent having elasticity and adhesiveness is sprayed without using air.
  • polishing with so-called SMAP (mirror shot machine manufactured by Kamei Iron Works) or the like may be performed, and diamond paste polishing of 3 ⁇ m or less may be performed after these mechanical polishings. By these, more preferable smoothing can be realized.
  • the surface roughness of the A layer is set to arithmetic average roughness Ra ⁇ 0.2 ⁇ m, maximum height Rz ⁇ 2.0 ⁇ m, and skewness Rsk ⁇ 0.
  • the arithmetic average roughness Ra is preferably 0.05 ⁇ m or less and the maximum height Rz is preferably 1.00 ⁇ m or less.
  • a hard film such as a metal, carbide, carbonitride, or a nitride having a composition different from that of the A layer is provided between the mold and the A layer. It may be coated. Moreover, in order to improve the adhesiveness of A layer and B layer, you may provide another membrane
  • the film between the A layer and the B layer is more preferably a film containing metal titanium in order to further improve the adhesion.
  • the present invention is preferably applied to a mold for plastic working in an environment where the work surface of the mold slides violently with the workpiece.
  • a coating mold applied to warm processing or hot processing in which a workpiece is heated to 400 ° C. or more, and the effect of improving the life is great.
  • it is preferably applied to a hot stamping mold in which a workpiece is heated and quenched simultaneously with press molding.
  • a mold for processing a plated steel plate plated with aluminum, zinc or the like is preferably applied to a plated steel plate plated with aluminum, zinc or the like.
  • an arc ion plating apparatus having a structure in which a mold rotates at the center surrounded by a plurality of targets was used.
  • a metal target constituting the metal or alloy component of the hard coating was prepared by powder metallurgy, and this metal target was mounted on an arc ion plating apparatus.
  • a mirror-finished product of hot die steel SKD61 was used as the mold, and it was thoroughly degreased and cleaned before being put into the arc ion plating apparatus.
  • the mold was heated to around 450 ° C. by a heater (not shown) installed in the chamber and held for 50 minutes.
  • Example No. 1 After ion etching of the mold, nitrogen gas is introduced, a bias voltage of ⁇ 130 V is applied to the mold, the mold temperature is 450 ° C., the reaction gas pressure is 3.0 Pa, and the arc current is 100 A. A layer of CrN was coated so as to have a thickness of 0 to 5.0 ⁇ m. The rotational speed of the mold during the coating process was 3 rpm. Thereafter, in order to smoothly polish the surface of CrN, the mold was taken out of the chamber, and surface polishing was performed using an aero lapping apparatus (AERO LAP YT-300) manufactured by Yamashita Towers. Thereafter, polishing was performed with a 1 ⁇ m diamond paste so that the arithmetic average roughness Ra was 0.2 ⁇ m or less, the maximum height Rz was 2.0 ⁇ m or less, and the skewness Rsk was less than 0.
  • AERO LAP YT-300 aero lapping apparatus manufactured by Yamashita Towers.
  • a sputtering apparatus was used for coating the B layer. This apparatus was equipped with a metal Ti target and a graphite C target. The mold coated with the A layer was sufficiently degreased and washed, and then placed in a sputtering apparatus. As an initial step in the sputtering apparatus, the substrate was heated to around 200 ° C. with a heater for heating installed in a chamber and held for 50 minutes. Next, Ar gas was introduced, a bias voltage of ⁇ 200 V to ⁇ 500 V was applied to the mold, and a 20 minute plasma cleaning process (Ar ion etching) was performed.
  • Ar gas was introduced, a bias voltage of ⁇ 200 V to ⁇ 500 V was applied to the mold, and a 20 minute plasma cleaning process (Ar ion etching) was performed.
  • a bias voltage of ⁇ 50 V is applied to the mold, Ar gas, hydrocarbon gas, and nitrogen gas are introduced, and the metal mold is composed of titanium metal and carbon under the conditions of sputtering power of 0.5 kW to 10 kW (titanium carbide).
  • a diamond-like carbon B layer having a thickness of about 4 ⁇ m as the outermost layer was coated thereon.
  • the rotational speed of the mold during the coating process was 3 rpm.
  • Example No. 2 As the A layer, a film composed of an alternately laminated structure of Al60Cr37Si3N (at%) and VN (hereinafter also referred to as AlCrSiN / VN) was formed.
  • the other conditions for the B layer are as follows. Same as 1.
  • Example No. 11 The layer A was coated with CrN, and the surface of the layer A was polished only by an aero lapping apparatus (AERO LAP YT-300) manufactured by Yamashita Towers. Subsequent film formation conditions for the B layer, etc. Same as 1.
  • Sample No. 12 is CrN in the A layer
  • sample No. In No. 13 the A layer was coated with AlCrSiN / VN
  • the B layer was coated without any surface polishing of the A layer.
  • the film formation conditions for the B layer are as shown in Sample No. Same as 1.
  • the peel load of the film was measured using a scratch tester (REVETEST) manufactured by CSM.
  • the measurement conditions are: measurement load: 0.9 to 120 N, load speed: 99.25 N / min, scratch speed: 10 mm / min, scratch distance: 12 mm, AE sensitivity: 5, indenter: Rockwell, diamond, tip radius: 200 ⁇ m
  • the peeling critical load value of the film was a load value at which the frictional force obtained by measurement was changed, or a load when the hard film was completely peeled off from the mold.
  • the measurement results are shown in Table 2 and FIG. From Table 2 and FIG. 1, the high adhesion of 90 N or more is obtained for any sample in the critical peeling load value. This is because the film is very thick as 5 ⁇ m or more, and among them, the film thickness of the A layer is 9 ⁇ m, which is thicker than other samples. No peeling occurred in No. 3 even at a measurement load of 120N.
  • Heat resistance test In the heat test, in order to evaluate the oxidation resistance of the film, each sample was heated at 400 ° C. for 1 h in a constant temperature controlled atmospheric furnace, and then the film cross section was observed to check whether the film thickness was reduced or an oxide layer was formed. From this, the heat resistance of the coating was evaluated. For example, in the case of a DLC film made of C (carbon) or the like, if the film is oxidized, C of the film becomes CO 2 gas, and thus the film thickness is reduced. In the case of a nitride film, the nitride is replaced by an oxide as the oxidation proceeds, resulting in the formation of a low density oxide film. The measurement results are shown in Table 2 and FIG. None of the samples had any reduction in coating thickness or formation of an oxide layer after heating in an atmospheric furnace, and it was confirmed that there was no problem in heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)

Abstract

本発明は、冷間から温熱間の使用領域に亘って、耐久性および耐凝着性に優れる被覆金型およびその製造方法を提供することを目的とする。 表面に硬質皮膜を有する被覆金型であって、前記硬質皮膜は、膜厚が5μm以上の窒化物からなるA層と、ダイヤモンドライクカーボン皮膜からなるB層とを含み、前記B層は前記A層よりも外表面側にあり、前記B層の表面が、算術平均粗さRa≦0.2μm、最大高さRz≦2.0μm、スキューネスRsk<0であることを特徴とする被覆金型。

Description

被覆金型およびその製造方法
 本発明は、例えばプレス加工用や鍛造用の金型等に適用される硬質皮膜が被覆された被覆金型およびその製造方法に関するものである。
 従来、鍛造、プレス加工といった塑性加工には、冷間ダイス鋼、熱間ダイス鋼、高速度鋼といった工具鋼に代表される鋼や、超硬合金等を母材とする金型が用いられている。上記した塑性加工の方法は、室温付近で加工を行う冷間加工と、被加工材が400℃以上に加熱されて加工を行う温間加工や熱間加工がある。プレス加工用や鍛造用の金型を用いた塑性加工では、金型の作業面と被加工材とが摺動することによって、金型の作業面に摩耗やカジリが生じ、金型の作業面の損耗が生じ易く、金型寿命の向上が望まれている。
 近年、金型寿命の向上のため、金型の作業面に物理蒸着法(以下、PVD法という)により硬質皮膜が被覆された被覆金型が適用されている。物理蒸着法は、各種の被覆形成手段の中でも被覆温度が鋼の焼戻し温度より低温であるため、被覆による金型の軟化が少なく、金型の変形や変寸が生じ難い。
 例えば、特許文献1には、耐熱性と耐摩耗性に優れる膜種であるAlCrSiの窒化物を適用することが示されている。また、特許文献2は、潤滑特性に優れるVの窒化物とAlCrSiの窒化物を交互に積層させた積層皮膜を設け、その表面粗さを一定範囲に制御した皮膜構造が示されている。
特開2005-042146号公報 特開2011-183545号公報
 近年、自動車車体に使用される鋼板として、高張力鋼板が増加しており、その成形には被加工材を加熱してプレス成形と同時に焼入れを行うホットスタンプ法が適用される場合がある。特に、アルミや亜鉛がメッキされたメッキ鋼板をホットスタンプ法で加工する場合、金型表面に凝着が発生して早期に金型寿命に至る場合がある。
 本発明者の検討によると、負荷が大きい使用環境下や、ホットスタンプ法等でメッキ鋼板を加工する場合には、従来の被覆金型では金型寿命および耐凝着性に改善の余地があることを確認した。本発明は、耐摩耗性、耐熱性および耐凝着性に優れる被覆金型およびその製造方法を提供することを目的とする。
 本発明の一態様は、表面に硬質皮膜を有する被覆金型であって、前記硬質皮膜は、膜厚が5μm以上の窒化物からなるA層と、ダイヤモンドライクカーボン皮膜からなるB層とを含み、前記B層は前記A層よりも外表面側にあり、前記B層の表面が、算術平均粗さRa≦0.2μm、最大高さRz≦2.0μm、スキューネスRsk<0である被覆金型である。前記A層はクロムを含有する窒化物とバナジウムを含有する窒化物とが交互に積層された積層皮膜であることが好ましく、前記A層の膜厚は、8μm以上であることが好ましい。
 本発明の他の一態様は、表面に硬質皮膜が被覆された被覆金型の製造方法であって、膜厚が5μm以上の窒化物からなるA層を被覆する工程と、前記A層の表面を研磨し、前記A層の表面粗さをRa≦0.2μm、Rz≦2.0μm、Rsk<0とする表面研磨工程と、前記A層の表面研磨工程の後、ダイヤモンドライクカーボン皮膜からなるB層を被覆する工程と、を含み、前記B層の表面が、算術平均面粗さRa≦0.2μm、最大高さRz≦2.0μm、スキューネスRsk<0を満たす被覆金型の製造方法である。前記A層は、8μm以上被覆することが好ましい。
 本発明によれば、冷間から温熱間の使用領域に亘って、耐久性に優れ、金型寿命を向上させることができる被覆金型を提供することができる。
本発明例のスクラッチ試験結果である。 本発明例の被膜断面を示す拡大写真である。 比較例の被膜断面を示す拡大写真である。 相手材がZnのときの、本発明例と比較例とのボールオンディスク試験結果である。 相手材がAlのときの、本発明例と比較例とのボールオンディスク試験結果である。 本発明例と比較例とのボールオンディスク試験による皮膜の損傷形態を示す、皮膜表面の拡大写真である。
 鍛造、プレス加工といった塑性加工に用いる金型では、表面に硬質皮膜が形成された被覆金型が用いられる。これらの用途に用いられる被覆金型では、硬質皮膜の表面に加えられる力が大きいため、皮膜が薄いと皮膜強度が乏しくなり皮膜が損傷し易くなる。特に、高負荷環境下では、皮膜と金型の界面に大きな力が加わるため、皮膜と金型の弾性変形量の違いから、皮膜剥離や皮膜損傷が発生し易くなる。このため、金型寿命に及ぼす硬質皮膜の膜厚の影響が極めて大きくなる。また、硬質皮膜自体の摺動特性が乏しい場合には、カジリが発生して早期に金型寿命に到達する傾向にある。
 本発明者は、高負荷の環境下において優れた耐久性を発揮するためには、硬質皮膜として、厚膜の窒化物からなる層(A層)の上層(上層とは硬質皮膜が形成された被覆金型の外表面側を上とし、被覆金型の内部側を下とした場合の上側の層という意味である)にダイヤモンドライクカーボン(以下、DLCとも記載する)皮膜からなる層(B層)を設けた皮膜構成が有効であり、更には、A層のB層に対向する面を研磨することが重要であることを知見した。以下、詳細について説明する。なお本明細書における耐久性とは、耐摩耗性、耐熱性、耐凝着性の総称であり、優れた耐久性とは、上述した三種類の耐性において優れていることを意味する。
 窒化物からなる皮膜は、耐熱性と耐摩耗性に優れる膜種であり、金型である鋼等との密着性にも優れる傾向にある。そのため、窒化物の皮膜をより厚く形成することで被覆金型の耐久性をより高めることができる。本発明では、高負荷の使用環境下において優れた耐久性を発揮するために、5μm以上の厚膜とした窒化物からなるA層を設ける。但し、窒化物からなるA層は摺動特性に乏しい傾向にあり、初期にカジリや凝着が発生する場合がある。そのため、被覆金型に優れた摺動特性を付与するために、A層の上層に摺動特性に優れる膜種であるダイヤモンドライクカーボン皮膜のB層を設ける。A層の上層に摺動特性に優れる膜種であるダイヤモンドライクカーボン皮膜を設けることで、初期のカジリや凝着が抑制される傾向にあり耐凝着性を高めることができる。
ここで、B層が十分に効果を奏するためにはA層のB層に対向する面を研磨して、その後、B層を設けることが重要である。本発明ではA層を厚膜に制御しているため、A層がドロップレットや皮膜欠陥を蓄積しやすく、皮膜を形成したままのA層の表面は粗い面となってしまう。そのため、粗い面となったA層の直上に非晶質を主体とするダイヤモンドライクカーボン皮膜であるB層をそのまま設けると、A層の粗面(凹凸)に倣うようにB層表面にも凹凸が生じ、B層の表面状態が悪化する。このB層の表面の凹凸はA層の表面粗さに起因しているため、B層のみを研磨してもB層の表面粗さ(特に後述するスキューネスRsk)を改善することは困難である。さらにA層とB層との密着性が十分に確保され難く、剥離も起こりやすくなる傾向にある。そこで、A層の表面を研磨してドロップレット等の表面欠陥を除去した上でB層を設けることで、A層とB層の密着性が高まるとともに、B層の表面粗さを平滑な状態とすることができる。
 上記したA層への研磨を施すことにより、本発明におけるB層の表面は、算術平均粗さRa(JIS-B-0601-2001に準拠)が0.2μm以下、最大高さRz(JIS-B-0601-2001に準拠)が2.0μm以下、スキューネスRsk(JIS-B-0601-2001に準拠)が0未満とすることができる。
 硬質皮膜の表面に、ドロップレットや皮膜欠陥、不純物等が含まれると、金型として使用するのに適さない。そして、摺動環境下では、皮膜表面の凸部が起点となり、被加工材を攻撃し、摩耗粉を発生させることにより、皮膜剥離や摩耗が発生する。そのため、一般的な表面粗さである算術平均粗さRa、最大高さRzに加えては、凸部の頻度を把握するためにスキューネスRskを制御することが重要である。
 スキューネスRskは、振幅分布曲線の中心線に対する対象性を示すパラメータである。例えば、表面に凹部が多い皮膜表面の場合は、スキューネスRskが0未満を示し、凸部が多い場合にはスキューネスRskが0以上を示し、凸部と凹部の頻度を管理することが可能である。本発明では、凸部が少ないことが好ましく、スキューネスRskを0未満とすることがよい。
 研磨紙による磨きや、樹脂とダイヤモンド粒子からなるメディアを照射する磨きでは、算術平均粗さRaや最大高さRzの表面粗さは低減できるが、凸部を確実に低減させることは容易ではなく、皮膜のスキューネスRskを0未満とするのは困難である。一方、ダイヤモンドペーストを用いたバフ研磨を実施すれば平滑かつ凸部の減少した表面が得られ易く、皮膜のスキューネスRskを0未満とするのに好ましい。
 A層は窒化物であり、総膜厚が5μm以上であれば、単層であっても多層であってもよい。また、組成が異なる窒化物が交互に積層した積層皮膜であってもよい。
 A層は研磨後の膜厚が8μm以上であることが好ましい。更には、A層は10μm以上であることが好ましい。但し、膜厚が厚くなり過ぎると、加工条件によっては皮膜剥離が発生し易くなる場合がある。そのため、A層の膜厚は70μm以下であることが好ましい。更には、60μm以下であることが好ましい。更には、50μm以下であることが好ましい。更には、40μm以下であることが好ましい。
 A層は、周期律表の4a族、5a族、6a族の金属元素およびアルミニウム(Al)、ケイ素(Si)、ホウ素(B)から選択される1種または2種以上の元素からなる窒化物であることが好ましい。これらの元素からなる窒化物は、耐熱性と耐摩耗性が高いため、耐久性に優れる。また、A層の結晶構造は、耐久性がより優れる傾向にある面心立方格子(fcc)構造とすることが好ましい。
 また過酷な使用環境においては、B層が磨滅する可能性も有り得る。よってA層が露出した状態でもある程度の耐久性を確保するために、A層はクロム(Cr)を含有する窒化物を含むことが好ましい。具体的には例えば、CrN、CrAlN、CrSiN、AlCrSiN等の硬質皮膜であることが好ましく、これらの硬質皮膜は耐摩耗性と耐熱性に優れる。また、硬質皮膜がクロムを含有することで加工中の金型表面に均一で緻密な酸化膜が形成され易くなり、損傷が抑制される傾向にある。そのため摺動中に摩擦熱が発生する高負荷環境で使用される金型においては、クロムを含有する窒化物を適用することで、被覆金型の寿命向上に有効であり好ましい。
 また、A層はバナジウム(V)を含有する窒化物を含むことも好ましい。バナジウムを主体とする化合物は、25~200℃の使用温度域においてバナジウムが適度に酸化されるため、それが薄い酸化層として金型表面に形成され、相手材(被加工材)との親和性を低下させる。そのため、A層が摺動特性に優れるバナジウムの窒化物を含有することで、硬質皮膜の全体が優れた摺動特性を有するものとなり、金型の使用中における皮膜表面への被加工材の付着を低減できる。そして、被加工材が鉄系の場合には、バナジウムの酸化物が、被加工材の表面や摩耗粉である鉄酸化物と反応して、鉄酸化物を軟化させるので、皮膜に摩耗粉が食い込むことにより進行するアブレシブ摩耗を抑制することができる。また、バナジウムの酸化物が被加工材の鉄酸化物を軟化させる効果は、摺動中に摩耗粉の発生を抑制する傾向にあり、プレス成型中の作業面にて局部的なスクラッチやカジリを抑えることができる。
 本発明のA層は単層の場合、クロム窒化物またはバナジウム窒化物であることが好ましい。このクロム窒化物は、周期律表の4a族、5a族、6a族の金属元素およびアルミニウム(Al)、ケイ素(Si)、ホウ素(B)から選択される1種または2種以上の元素を添加しているものも含む。
 上記のクロムとバナジウムの添加効果を効果的に得るために、A層はクロムを含有する窒化物とバナジウムを含有する窒化物とが交互に積層された積層皮膜を含むことが好ましい。このような積層皮膜とすることで、硬質皮膜の主体である厚膜のA層に、優れた耐摩耗性と耐熱性が付与されると同時に優れた摺動特性も付与され、被覆金型の耐久性をより向上させることができる。
 クロムを含有する窒化物は、金属部分の原子比率でクロムが30%以上の窒化物であることが好ましい。また、バナジウムを含有する窒化物は、金属部分の原子比率でバナジウムが60%以上の窒化物であることが好ましい。より好ましくは70%以上、更には80%以上である。
 耐摩耗性と耐熱性に優れるクロムを含有する窒化物と、摺動特性に優れるバナジウムを含有する窒化物の両特性を効果的に発現させるには、積層皮膜の個々の膜厚を100nm以下とすることが好ましい。積層皮膜の個々の膜厚を制御することで、上記の諸特性をバランスよく併せもった被覆金型となる。そして、使用中の各温度環境でも皮膜摺動面の凹凸発生が抑えられ、かつ被加工材への攻撃性も低いことから、摺動時に発生するカジリ等の損傷を抑制し、被覆金型の寿命を改善できる。より好ましい個々の膜厚は、50nm未満、更には20nm未満である。また、個々の膜厚は3nm以上であることが好ましい。
 更に、本発明では、過酷な使用環境下でも十分な摺動特性を再現するために、バナジウムを含有する窒化物の膜厚がクロムを含有する窒化物の膜厚よりも厚膜であることが好ましい。更に、バナジウムを含有する窒化物の膜厚がクロムを含有する窒化物の膜厚より1.5倍以上であれば、摺動特性を高めるバナジウムの酸化物が十分に生成されるのでより好ましい。より好ましくは2.0倍以上である。
 また、概ね300℃以上の使用温度域になると、バナジウムを主体とする化合物の酸化が更に進行することから、過剰な酸化物が形成されるため、使用環境によっては、耐摩耗性が低下する場合がある。そのため、バナジウムを含有する窒化物の膜厚はクロムを含有する窒化物の膜厚の4.0倍以下とすることが好ましい。
 本発明のA層は多層の場合、クロム窒化物とバナジウム窒化物との積層被膜であることが好ましく、クロム窒化物とバナジウム窒化物とが交互に積層していることがさらに好ましい。またクロム窒化物は、周期律表の4a族、5a族、6a族の金属元素およびアルミニウム(Al)、ケイ素(Si)、ホウ素(B)から選択される1種または2種以上の元素が添加されていてもよい。
 B層は、sp結合、sp結合などの炭素原子同士の結合を有するカーボン、および/または炭素原子同士の結合を有していないフリーカーボンを含んだダイヤモンドライクカーボン皮膜であることが好ましい。より高い摺動特性を付与するためには、sp結合よりもsp結合の含有量が多いダイヤモンドライクカーボン皮膜であることが好ましい。B層は、B層を構成する元素のうち炭素原子が最も多い範囲であれば、必要に応じて他の元素を含有してもよい。
 B層は、耐摩耗性や耐熱性等の特性を付与するために、金属(半金属を含む)元素を含有することが好ましい。B層に含まれる金属(半金属を含む)元素は、金属、合金、炭化物、窒化物、炭窒化物、炭酸窒化物、炭ホウ化物等の化合物の形態で含有すればよい。好ましくは金属(半金属を含む)元素の含有比率(原子%)は2%以上である。更には、5%以上であることが好ましい。但し、金属(半金属を含む)元素の含有比率が多くなると、摺動特性が低下する傾向にある。そのため、B層は、金属(半金属を含む)元素の含有比率(原子%)が20%以下であることが好ましい。更には、10%以下であることが好ましい。
 また、B層は、耐熱性を付与するために、窒素を含有したダイヤモンドライクカーボン皮膜であることが好ましい。ダイヤモンドライクカーボン皮膜が窒素を含有することで、皮膜により優れた耐熱性を付与することができる。好ましくは窒素の含有比率(原子%)は5%以上である。更には、10%以上であることが好ましい。但し、窒素の含有量が多くなり過ぎると摺動特性が低下する傾向にある。そのため、B層は、優れた耐熱性を付与するために、窒素の含有比率(原子%)が20%以下であることが好ましい。更には、15%以下であることが好ましい。
 また、B層は、水素を含有するダイヤモンドライクカーボン皮膜であることが好ましい。ダイヤモンドライクカーボン皮膜が水素を含有することで、皮膜硬度が低下してより優れた摺動特性を付与することができる。好ましくは水素の含有比率(原子%)が5%以上である。更には、10%以上であることが好ましい。但し、水素の含有量が多くなり過ぎると耐摩耗性が低下する傾向にある。そのため、B層は、水素の含有比率(原子%)が30%以下であることが好ましい。更には、25%以下であることが好ましい。
 B層は、金属(半金属を含む)元素、窒素、水素をそれぞれを単独で含有してもよいし、同時に含有してもよい。例えば、B層は、金属(半金属を含む)元素、窒素、水素を同時に含有してもよいし、窒素、水素のみを含有してもよいし、金属(半金属を含む)元素と窒素のみを含有してもよいし、金属(半金属を含む)元素と水素のみを含有してもよい。
 B層は単層であっても多層であってもよい。B層は、Ar等の希ガスや酸素等を含みうる。
 B層は、膜厚が1μm以上であることが好ましい。更には、2μm以上であることが好ましい。但し、膜厚が厚くなり過ぎると、加工条件によっては皮膜剥離が発生し易くなる場合がある。そのため、B層の膜厚は15μm以下であることが好ましい。更には、12μm以下であることが好ましい。
 本発明の金型材料は特段に定めるものではないが、冷間ダイス鋼、熱間ダイス鋼、高速度工具鋼または超硬合金等を適宜使用することができる。金型は、窒化処理または浸炭処理等といった拡散を利用した表面硬化処理を予め適用したものでもよい。
 本発明に係る硬質皮膜は、PVD法で被覆することで、冷間ダイス鋼、熱間ダイス鋼または高速度鋼等の金型材料の焼き戻し温度より低温で被覆処理が可能となり、金型の寸法の変動を抑制することができる。また、硬質皮膜に残留圧縮応力を付与することができ、硬質皮膜の機械特性も改善できるので好ましい。
 A層は、PVD法の中でも皮膜の密着性に優れるアークイオンプレーティング法で被覆することが好ましい。アークイオンプレーティング法でA層を被覆した後、炉内から試料を取出してA層の表面を研磨し、その後、スパッタリング法でB層を被覆することが好ましい。B層をスパッタリング法で被覆することでより平滑で摺動特性に優れるダイヤモンドライクカーボン皮膜を被覆することができる。B層の被覆では、グラファイトターゲットに電力を投入して、反応ガスとして炭化水素ガスと窒素ガスを用いてスパッタリング法で被覆することが好ましい。特に非平衡マグネトロンスパッタリング法を用いて被覆することが好ましい。また、B層の被覆では、プラズマCVDを用いてもよい。プラズマCVDを用いることで、より生産性が優れるので好ましい。
 B層の表面は、より平滑な表面状態にするため研磨しても良い。
 A層の表面を研磨するには、次のような機械的研磨が好ましい。
 (1)ダイヤモンドペースト等の研磨剤を保持した研磨布で硬質皮膜の表面を磨く方法
 (2)ダイヤモンド粒子と含水した研磨剤を用い、金型に被覆された皮膜に研磨剤を高速で滑走させて、発生する摩擦力によって磨く、いわゆるエアロラップ(登録商標)等による研磨方法
 また本発明では上記の研磨方法に加えてエアーを使用せずに弾性と粘着性を持った研磨剤を噴射することで磨く、いわゆるスマップ(SMAP)(亀井鉄工所製の鏡面ショットマシンである)等による研磨を行ってもよく、これらの機械的研磨の後に3μm以下のダイヤモンドペースト磨きを行っても良い。これらにより、より好ましい平滑化が実現できる。
 これらの研磨によりA層の表面粗さを算術平均粗さRa≦0.2μm、最大高さRz≦2.0μm、スキューネスRsk<0とする。尚、算術平均粗さRaを0.05μm以下、最大高さRzを1.00μm以下としておくことが好ましい。
 金型とA層の間には、金型とA層との密着性を高めるために、必要に応じて、金属、炭化物、炭窒化物またはA層の組成と異なる窒化物等の硬質皮膜を被覆してもよい。
 また、A層とB層の密着性を高めるために、必要に応じて、B層を被覆する前にA層の組成と異なる別の皮膜を設けてもよい。このとき、A層の表面を研磨した後、金属、炭化物、炭窒化物またはA層の組成と異なる窒化物等の硬質皮膜を設けることが好ましい。
このA層とB層との間の皮膜は、より密着性を高めるために金属チタンを含有する皮膜であることがより好ましい。
 また、B層の上層には、必要に応じて、金属、炭化物、炭窒化物または窒化物等の硬質皮膜を被覆してもよい。
 本発明は、金型の作業面が被加工材と激しく摺動する環境にある塑性加工用金型に適用することが好ましい。特に、被加工材が400℃以上に加熱される温間加工や熱間加工に適用される被覆金型に適用することで、寿命改善の効果が大きく好ましい。
 更には、被加工材を加熱してプレス成形と同時に焼入れを行うホットスタンプ用金型に適用することが好ましい。更には、アルミや亜鉛等をメッキしたメッキ鋼板を加工する金型に適用することが好ましい。
 A層の被覆には、複数のターゲットが取り囲む中心で金型が回転する構造のアークイオンプレーティング装置を用いた。硬質皮膜の金属または合金成分を構成する金属ターゲットを粉末冶金法で作製し、この金属ターゲットをアークイオンプレーティング装置に装着した。金型には熱間ダイス鋼SKD61の鏡面仕上げ品を使用し、アークイオンプレーティング装置に入れる前に、十分に脱脂洗浄を行った。コーティング装置内における初期工程としては、チャンバーに設置された図示しない加熱用ヒーターにより、金型を450℃付近に加熱し、50分間保持した。次に、Arガスを導入し、金型には-200V~-500Vのバイアス電圧を印加して、20分間のプラズマクリーニング処理(Arイオンエッチング)を行った。
 続いて、金型には-800Vのバイアス電圧を印加して、金属Tiターゲットを用いて金属イオンエッチングを約5分間行った(金属イオンエッチング後の冷却を含む)。以下、各試料の被覆条件の詳細を説明する。
<試料No.1>
 金型のイオンエッチング後、窒素ガスを導入し、金型には-130Vのバイアス電圧を印加して、金型温度450℃、反応ガス圧力3.0Pa、アーク電流100Aの条件で、約3.0~5.0μmの膜厚になるようCrNであるA層を被覆した。被覆工程中の金型の回転数は3rpmとした。
 その後、CrNの表面を平滑に研磨するため、金型をチャンバーから取り出して、ヤマシタワークス社製エアロラップ装置(AERO LAP YT-300)を使用して表面研磨を行った。さらにその後、1μmのダイヤモンドペーストにてポリッシング研磨し、算術平均粗さRaが0.2μm以下、かつ最大高さRzが2.0μm以下、スキューネスRskが0未満となるように研磨した。
 B層の被覆には、スパッタリング装置を使用した。この装置には金属TiターゲットとグラファイトCターゲットを装着した。A層が被覆された金型を十分に脱脂洗浄した後、スパッタリング装置内に設置した。スパッタリング装置内における初期工程としては、チャンバーに設置された加熱用ヒーターにて200℃付近に加熱し、50分保持した。次に、Arガスを導入し、金型には-200V~-500Vのバイアス電圧を印加して、20分間のプラズマクリーニング処理(Arイオンエッチング)を行った。
 次に、金型には-50Vのバイアス電圧を印加し、Arガス、炭化水素ガス、窒素ガスを導入し、スパッタ電力0.5kW~10kWの条件で、金属チタンと炭素とからなる(炭化チタンを含む)中間層を被覆し、その上に、最表層である約4μm程度の膜厚を有するダイヤモンドライクカーボンのB層を被覆した。被覆工程中の金型の回転数は3rpmとした。
<試料No.2、3>
 A層としてAl60Cr37Si3N(at%)とVNとの交互積層構造(以下、AlCrSiN/VNとも記載する。)からなる被膜を形成した。その他のB層の条件等は、試料No.1と同じとした。
<試料No.11>
 A層としてCrNを被覆し、A層表面研磨には、ヤマシタワークス社製エアロラップ装置(AERO LAP YT-300)による研磨のみを実施した。その後のB層の成膜条件等は試料No.1と同じとした。
<試料No.12、13>
 試料No.12はA層にCrN、試料No.13はA層にAlCrSiN/VNを被覆し、いずれもA層の表面研磨を実施せずに、B層を被覆した。B層の成膜条件は試料No.1と同じとした。
<試料No.14、15、16>
 試料No.14、15、16のいずれもA層にCrNを被覆し、B層の被覆は行わなかった。試料No.14はA層の表面研磨に、エアロラップによる研磨と、1μmのダイヤモンドペーストによるポリッシング研磨とを実施した。試料No.15はA層の表面研磨にエアロラップによる研磨のみを行い、試料No.16はA層の表面研磨を実施しなかった。表1には各試料の試験条件を示す。また図2に本発明例である試料No.2の被膜断面の拡大写真を、図3に比較例である試料No.14の被膜断面の拡大写真を示す。
Figure JPOXMLDOC01-appb-T000001
 これらの試料について、その硬質皮膜の表面粗さ測定、スクラッチ試験、耐熱試験、ボールオンディスク試験を行った。各評価試験方法を以下に示す。
(表面粗さ測定)
 表面粗さの測定には、東京精密(株)製触針式粗さ計(サーフコム)を用いた。測定条件は評価長さ4mm、測定速度0.3mm/s、カットオフ値0.8mm、フィルタ種別をガウシアンとした。測定結果を表2に示す。本発明例である試料No.1~3は、いずれもRa≦0.2mm、Rz≦2.0mm、Rsk<0という値を示しており、表面が平滑かつ凸部が少ないことが分かる。A層表面をエアロラップ研磨のみで仕上げた比較例の試料No.11と15は、Rsk>0であり、狙いとする表面粗さを満足していない。A層表面の研磨を実施していない他の比較例試料においても、Rz>2.0、Rsk>0となっており、目標とする表面粗さを有していなかった。また、No.14は、B層が形成されていなく、表2に示す表面粗さは、A層の表面粗さであり、このA層の表面粗さがRa≦0.2mm、Rz≦2.0mm、Rsk<0となっている。このNo.14は、No.1~3と同じA層の研磨を行っている。つまり、No.1~3のA層の表面粗さもRa≦0.2mm、Rz≦2.0mm、Rsk<0となっていることがわかる。
(スクラッチ試験)
 続いて皮膜の密着性を評価するために、CSM社製スクラッチ試験機(REVETEST)を用い、皮膜の剥離荷重を測定した。
 測定条件は、測定荷重:0.9~120N、荷重スピード:99.25N/min、スクラッチスピード:10mm/min、スクラッチ距離:12mm、AE感度:5、圧子:ロックウェル、ダイヤモンド、先端半径:200μm、ハードウェア設定:Fnコンタクト0.9N、Fnスピード:5N/s、Fn除去スピード:10N/s、アプローチスピード:2%/sとした。皮膜の剥離臨界荷重値は、測定によって得られる摩擦力が変動した荷重値、または硬質皮膜が金型から全て剥がれた時の荷重とした。測定結果を表2および図1に示す。
 表2および図1より、いずれの試料も剥離臨界荷重値は90N以上の高い密着性が得られている。これは被膜が5μm以上と非常に厚いためであり、その中でもA層の膜厚が9μmと、他の試料よりも厚くなっている本発明例の試料No.3は、120Nの測定荷重においても剥離が発生しなかった。
 (耐熱試験)
 耐熱試験は被膜の耐酸化性を評価するために、各試料を恒温制御式の大気炉にて、400℃×1h加熱した後、被膜断面観察により、膜厚の減少や酸化層の形成の有無から、被膜の耐熱性を評価した。例えばC(炭素)からなるDLC被膜等の場合、酸化すると被膜のCがCO2ガスとなるため、膜厚の低減が発生する。窒化物被膜の場合は,酸化が進行すると窒化物が酸化物に置き換わり,その結果,低密度な酸化物被膜が形成する。測定結果を表2と図4に示す。いずれの試料も大気炉による加熱後は、被膜厚みの減少や、酸化層の形成は発生しておらず、耐熱性に問題はないことが確認できた。
Figure JPOXMLDOC01-appb-T000002
(ボールオンディスク試験)
各試料について、相手材をZnおよびAlとしたときの摺動特性を評価した。試験条件は、ボールオンディスク試験機(CSM Instruments社製Tribometer)を使用した。25℃(常温)にて、コーティング皮膜に相手材となる先端径φ6のZnピン、またはφ6のAlボールを10Nの荷重で押し付けながら、円盤状試験片を10cm/秒の速度で回転させた。試験距離は、50mとし、摩擦係数は全試験距離の平均値をとった。表3、図4および図5に各温度における各種皮膜の摩耗係数を示す。また、図6に摺動部の外観写真を示す。
本発明例の試料No.1~3は、相手材がZnおよびAlの場合において、摺動面への凝着は確認されなかった。また摩擦係数についても、Znに対して0.15以下、Alに対しては0.25以下と低い値を示しており、安定した摩擦挙動を有していた。これに対して表面粗さが粗い比較例のNo.11~13は、相手材がZnおよびAlの場合において凝着が多くなり、摩擦係数も大きくなっていた。B層を被覆していない比較例の試料No.14~16は、表面粗さに関係なく相手材が凝着していた。
Figure JPOXMLDOC01-appb-T000003

 

Claims (5)

  1.  表面に硬質皮膜を有する被覆金型であって、前記硬質皮膜は、膜厚が5μm以上の窒化物からなるA層と、ダイヤモンドライクカーボン皮膜からなるB層とを含み、前記B層は前記A層よりも外表面側にあり、前記B層の表面が、算術平均粗さRa≦0.2μm、最大高さRz≦2.0μm、スキューネスRsk<0を満たすことを特徴とする被覆金型。
  2.  前記A層がクロムを含有する窒化物とバナジウムを含有する窒化物とが交互に積層された積層皮膜であることを特徴とする、請求項1に記載の被覆金型。
  3.  前記A層の膜厚が8μm以上であることを特徴とする、請求項1または2に記載の被覆金型。
  4.  表面に硬質皮膜を有する覆金型の製造方法であって、
     膜厚が5μm以上の窒化物からなるA層を被覆する工程と、
     前記A層の表面を研磨し、前記A層の表面粗さをRa≦0.2μm、Rz≦2.0μm、Rsk<0とする表面研磨工程と、
    前記A層の表面研磨工程の後、ダイヤモンドライクカーボン皮膜からなるB層を被覆する工程と、を含み、
    前記B層の表面が、算術平均面粗さRa≦0.2μm、最大高さRz≦2.0μm、スキューネスRsk<0を満たすことを特徴とする被覆金型の製造方法。
  5.  前記A層の膜厚が8μm以上であることを特徴とする、請求項4に記載の被覆金型の製造方法。
PCT/JP2016/062828 2015-04-23 2016-04-22 被覆金型およびその製造方法 WO2016171273A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017514223A JP6477867B2 (ja) 2015-04-23 2016-04-22 被覆金型およびその製造方法
CN201680023253.8A CN107532279B (zh) 2015-04-23 2016-04-22 包覆模具及其制造方法
EP16783294.8A EP3287544B1 (en) 2015-04-23 2016-04-22 Coated metal mold and method for manufacturing same
KR1020177030103A KR102174803B1 (ko) 2015-04-23 2016-04-22 피복 금형 및 그 제조 방법
ES16783294T ES2878165T3 (es) 2015-04-23 2016-04-22 Molde metálico revestido y método para producirlo
US15/567,970 US11779989B2 (en) 2015-04-23 2016-04-22 Coated metal mold and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-088365 2015-04-23
JP2015088365 2015-04-23

Publications (1)

Publication Number Publication Date
WO2016171273A1 true WO2016171273A1 (ja) 2016-10-27

Family

ID=57143135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062828 WO2016171273A1 (ja) 2015-04-23 2016-04-22 被覆金型およびその製造方法

Country Status (7)

Country Link
US (1) US11779989B2 (ja)
EP (1) EP3287544B1 (ja)
JP (1) JP6477867B2 (ja)
KR (1) KR102174803B1 (ja)
CN (1) CN107532279B (ja)
ES (1) ES2878165T3 (ja)
WO (1) WO2016171273A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097286A1 (ja) * 2016-11-28 2018-05-31 日立金属株式会社 金型およびその製造方法
WO2018123831A1 (ja) * 2016-12-28 2018-07-05 新日鐵住金株式会社 熱間プレス用めっき鋼板、熱間プレス用めっき鋼板の製造方法、熱間プレス成形品の製造方法、及び車両の製造方法
WO2018124279A1 (ja) * 2016-12-28 2018-07-05 Dowaサーモテック株式会社 珪窒化バナジウム膜、珪窒化バナジウム膜被覆部材およびその製造方法
JP2018158355A (ja) * 2017-03-22 2018-10-11 新日鐵住金株式会社 チタン板のプレス用金型及びチタン板のプレス成形方法
JP2018158354A (ja) * 2017-03-22 2018-10-11 新日鐵住金株式会社 チタン板のプレス用金型及びチタン板のプレス成形方法
JP2018164936A (ja) * 2017-03-28 2018-10-25 日新製鋼株式会社 打抜き加工用金型及びそれを用いた打抜き加工方法
WO2019198728A1 (ja) * 2018-04-13 2019-10-17 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
WO2020009171A1 (ja) * 2018-07-04 2020-01-09 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
WO2020009170A1 (ja) * 2018-07-04 2020-01-09 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
JP2020069506A (ja) * 2018-10-31 2020-05-07 東洋製罐グループホールディングス株式会社 金属塑性加工用治具
JP2020142322A (ja) * 2019-03-06 2020-09-10 株式会社不二製作所 Dlc被覆部材の表面処理方法
WO2020189717A1 (ja) * 2019-03-20 2020-09-24 日立金属株式会社 被覆金型、被覆金型の製造方法、および硬質皮膜形成用ターゲット
JP2021533254A (ja) * 2018-06-18 2021-12-02 イドロメカニーク エ フロットマン クロム、炭素およびケイ素を含むアンダーコートの上を非水素化非晶質炭素コーティングで被覆した部品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6874803B2 (ja) * 2018-11-19 2021-05-19 Jfeスチール株式会社 耐かじり性評価方法
CN113165045B (zh) * 2018-12-03 2023-06-27 日立金属株式会社 热冲压用被覆模具
KR20220151700A (ko) 2020-04-20 2022-11-15 닛폰세이테츠 가부시키가이샤 열간 프레스 성형품의 제조 방법 및 열간 프레스 성형품

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313636A (ja) * 2006-04-27 2007-12-06 Kyocera Corp 切削工具およびそれを用いた被削材の切削方法
JP2009166096A (ja) * 2008-01-17 2009-07-30 Tocalo Co Ltd プレス金型とその寿命管理方法、およびプレス金型のコーティング皮膜とその補修方法
JP2010284710A (ja) * 2009-06-15 2010-12-24 Hitachi Metals Ltd 塑性加工用被覆金型およびその製造方法
JP2011183545A (ja) * 2010-02-10 2011-09-22 Hitachi Tool Engineering Ltd 摺動特性に優れた被覆工具及びその製造方法
JP2012115869A (ja) * 2010-11-30 2012-06-21 Kobe Steel Ltd 塑性加工用金型およびその製造方法、ならびにアルミニウム材の鍛造方法
JP2012232344A (ja) * 2011-04-18 2012-11-29 Nippon Koshuha Steel Co Ltd プレス成形用金型及びプレス成形金型用保護膜の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825377B1 (fr) * 2001-05-31 2003-09-19 Essilor Int Inserts de moulage
JP3621943B2 (ja) 2003-07-25 2005-02-23 三菱重工業株式会社 高耐摩耗性高硬度皮膜
JP4984206B2 (ja) 2005-07-28 2012-07-25 Dowaサーモテック株式会社 ダイヤモンドライクカーボン皮膜被覆部材およびその製造方法
JP2008074947A (ja) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd 低摩擦摺動機構及びこれを用いた摺動システム
JP5102516B2 (ja) 2007-03-06 2012-12-19 株式会社神戸製鋼所 成形金型
JP2013151707A (ja) * 2010-04-01 2013-08-08 Hitachi Ltd 摺動部材
JP5035479B2 (ja) * 2011-01-27 2012-09-26 三菱マテリアル株式会社 耐欠損性、耐摩耗性にすぐれた表面被覆切削工具
JP6015663B2 (ja) * 2011-09-28 2016-10-26 日立金属株式会社 摺動特性に優れた被覆部材
CN103311281B (zh) * 2012-03-14 2016-03-30 中国科学院微电子研究所 半导体器件及其制造方法
JP5752640B2 (ja) * 2012-05-30 2015-07-22 株式会社神戸製鋼所 成膜方法
US9657384B2 (en) * 2013-03-22 2017-05-23 Nittan Valve Co., Ltd. DLC film coating and coated valve lifter
JP2014196680A (ja) 2013-03-29 2014-10-16 株式会社日立製作所 冷媒圧縮機
US20150004362A1 (en) * 2013-07-01 2015-01-01 General Electric Company Multilayered coatings with diamond-like carbon
JP5918326B2 (ja) 2014-09-16 2016-05-18 株式会社リケン 被覆摺動部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313636A (ja) * 2006-04-27 2007-12-06 Kyocera Corp 切削工具およびそれを用いた被削材の切削方法
JP2009166096A (ja) * 2008-01-17 2009-07-30 Tocalo Co Ltd プレス金型とその寿命管理方法、およびプレス金型のコーティング皮膜とその補修方法
JP2010284710A (ja) * 2009-06-15 2010-12-24 Hitachi Metals Ltd 塑性加工用被覆金型およびその製造方法
JP2011183545A (ja) * 2010-02-10 2011-09-22 Hitachi Tool Engineering Ltd 摺動特性に優れた被覆工具及びその製造方法
JP2012115869A (ja) * 2010-11-30 2012-06-21 Kobe Steel Ltd 塑性加工用金型およびその製造方法、ならびにアルミニウム材の鍛造方法
JP2012232344A (ja) * 2011-04-18 2012-11-29 Nippon Koshuha Steel Co Ltd プレス成形用金型及びプレス成形金型用保護膜の製造方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023052A (zh) * 2016-11-28 2019-07-16 日立金属株式会社 模具及其制造方法
KR102252719B1 (ko) * 2016-11-28 2021-05-17 히다찌긴조꾸가부시끼가이사 금형 및 그 제조 방법
JP7029646B2 (ja) 2016-11-28 2022-03-04 日立金属株式会社 金属材料加工用金型およびその製造方法、ならびに金型
WO2018097286A1 (ja) * 2016-11-28 2018-05-31 日立金属株式会社 金型およびその製造方法
CN110023052B (zh) * 2016-11-28 2022-05-31 日立金属株式会社 金属材料加工用模具及其制造方法
JPWO2018097286A1 (ja) * 2016-11-28 2019-10-17 日立金属株式会社 金型およびその製造方法
US11820048B2 (en) 2016-11-28 2023-11-21 Proterial, Ltd. Mold and production method therefor
KR20190077459A (ko) * 2016-11-28 2019-07-03 히다찌긴조꾸가부시끼가이사 금형 및 그 제조 방법
JP6369659B1 (ja) * 2016-12-28 2018-08-08 新日鐵住金株式会社 熱間プレス用めっき鋼板、熱間プレス用めっき鋼板の製造方法、熱間プレス成形品の製造方法、及び車両の製造方法
WO2018124279A1 (ja) * 2016-12-28 2018-07-05 Dowaサーモテック株式会社 珪窒化バナジウム膜、珪窒化バナジウム膜被覆部材およびその製造方法
US11072857B2 (en) 2016-12-28 2021-07-27 Dowa Thermotech Co., Ltd. Vanadium silicon nitride film, member coated with vanadium silicon nitride film and method for manufacturing the same
WO2018123831A1 (ja) * 2016-12-28 2018-07-05 新日鐵住金株式会社 熱間プレス用めっき鋼板、熱間プレス用めっき鋼板の製造方法、熱間プレス成形品の製造方法、及び車両の製造方法
JP2018158354A (ja) * 2017-03-22 2018-10-11 新日鐵住金株式会社 チタン板のプレス用金型及びチタン板のプレス成形方法
JP2018158355A (ja) * 2017-03-22 2018-10-11 新日鐵住金株式会社 チタン板のプレス用金型及びチタン板のプレス成形方法
JP2018164936A (ja) * 2017-03-28 2018-10-25 日新製鋼株式会社 打抜き加工用金型及びそれを用いた打抜き加工方法
KR20200125702A (ko) * 2018-04-13 2020-11-04 닛폰세이테츠 가부시키가이샤 열간 프레스 성형품의 제조 방법, 프레스 성형품, 다이 금형 및 금형 세트
JPWO2019198728A1 (ja) * 2018-04-13 2021-04-22 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
US12179246B2 (en) 2018-04-13 2024-12-31 Nippon Steel Corporation Production method for hot press molded articles, press molded article, die mold, and mold set
WO2019198728A1 (ja) * 2018-04-13 2019-10-17 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
JP7081662B2 (ja) 2018-04-13 2022-06-07 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
CN111936248A (zh) * 2018-04-13 2020-11-13 日本制铁株式会社 热压成型品的制造方法、压制成型品、冲模模具及模具套件
KR102385301B1 (ko) * 2018-04-13 2022-04-11 닛폰세이테츠 가부시키가이샤 열간 프레스 성형품의 제조 방법, 프레스 성형품, 다이 금형 및 금형 세트
JP7104806B2 (ja) 2018-06-18 2022-07-21 イドロメカニーク エ フロットマン クロム、炭素およびケイ素を含むアンダーコートの上を非水素化非晶質炭素コーティングで被覆した部品
JP2021533254A (ja) * 2018-06-18 2021-12-02 イドロメカニーク エ フロットマン クロム、炭素およびケイ素を含むアンダーコートの上を非水素化非晶質炭素コーティングで被覆した部品
CN112236243A (zh) * 2018-07-04 2021-01-15 日本制铁株式会社 热压成型品的制造方法、压制成型品、冲模模具及模具套件
WO2020009171A1 (ja) * 2018-07-04 2020-01-09 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
JP6648875B1 (ja) * 2018-07-04 2020-02-14 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
US11633772B2 (en) 2018-07-04 2023-04-25 Nippon Steel Corporation Hot press-formed item manufacturing method, press-formed item, die, and die set
CN112236244A (zh) * 2018-07-04 2021-01-15 日本制铁株式会社 热压成型品的制造方法、压制成型品、冲模模具及模具套件
WO2020009170A1 (ja) * 2018-07-04 2020-01-09 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
US11491528B2 (en) 2018-07-04 2022-11-08 Nippon Steel Corporation Hot press-formed item manufacturing method, press-formed item, die, and die set
JP6648874B1 (ja) * 2018-07-04 2020-02-14 日本製鉄株式会社 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
JP2020069506A (ja) * 2018-10-31 2020-05-07 東洋製罐グループホールディングス株式会社 金属塑性加工用治具
JP2020142322A (ja) * 2019-03-06 2020-09-10 株式会社不二製作所 Dlc被覆部材の表面処理方法
KR102308453B1 (ko) 2019-03-06 2021-10-06 후지 세이사쿠쇼 가부시키가이샤 Dlc코팅부재의 표면처리방법
KR20200107737A (ko) * 2019-03-06 2020-09-16 후지 세이사쿠쇼 가부시키가이샤 Dlc코팅부재의 표면처리방법
JPWO2020189717A1 (ja) * 2019-03-20 2020-09-24
WO2020189717A1 (ja) * 2019-03-20 2020-09-24 日立金属株式会社 被覆金型、被覆金型の製造方法、および硬質皮膜形成用ターゲット
JP7509129B2 (ja) 2019-03-20 2024-07-02 株式会社プロテリアル 被覆金型、被覆金型の製造方法、および硬質皮膜形成用ターゲット
US12163214B2 (en) 2019-03-20 2024-12-10 Proterial, Ltd. Coated mold, method for manufacturing coated mold, and hard coat-forming target

Also Published As

Publication number Publication date
KR102174803B1 (ko) 2020-11-05
ES2878165T3 (es) 2021-11-18
KR20170129876A (ko) 2017-11-27
EP3287544A1 (en) 2018-02-28
EP3287544A4 (en) 2019-01-02
EP3287544B1 (en) 2021-06-16
US11779989B2 (en) 2023-10-10
US20180141102A1 (en) 2018-05-24
CN107532279A (zh) 2018-01-02
CN107532279B (zh) 2020-10-30
JPWO2016171273A1 (ja) 2017-11-09
JP6477867B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6477867B2 (ja) 被覆金型およびその製造方法
JP5351875B2 (ja) 塑性加工用金型およびその製造方法、ならびにアルミニウム材の鍛造方法
JP6015663B2 (ja) 摺動特性に優れた被覆部材
JP5920681B2 (ja) 摺動特性に優れた塑性加工用被覆金型及びその製造方法
WO2009099226A1 (ja) Dlc被覆摺動部材及びその製造方法
JP6211987B2 (ja) Znめっき鋼板の熱間成形用金型
WO2011125657A1 (ja) 耐食性に優れた被覆物品の製造方法および被覆物品
JP6308298B2 (ja) 被覆工具の製造方法
JP6274317B2 (ja) ダイカスト用被覆金型の製造方法
JP5616082B2 (ja) セラミックス被覆材の製造方法
JP6569376B2 (ja) 超硬工具及びその製造方法
JP2024061966A (ja) 金属塑性加工用金型及びその製造方法
JP2013076124A (ja) 耐食性に優れた被覆物品の製造方法および被覆物品
JP2013227640A (ja) 耐食性に優れた被覆物品およびその製造方法
JP5892414B2 (ja) 耐食性に優れた被覆物品の製造方法および被覆物品
CN112962053A (zh) 一种自润滑防粘铝复合涂层、制备方法及其应用
JP2006206960A (ja) 硬質皮膜被覆摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514223

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030103

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15567970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016783294

Country of ref document: EP