[go: up one dir, main page]

CN112962053A - 一种自润滑防粘铝复合涂层、制备方法及其应用 - Google Patents

一种自润滑防粘铝复合涂层、制备方法及其应用 Download PDF

Info

Publication number
CN112962053A
CN112962053A CN202110139073.9A CN202110139073A CN112962053A CN 112962053 A CN112962053 A CN 112962053A CN 202110139073 A CN202110139073 A CN 202110139073A CN 112962053 A CN112962053 A CN 112962053A
Authority
CN
China
Prior art keywords
layer
composite coating
self
lubricating
sticking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110139073.9A
Other languages
English (en)
Inventor
张�林
王启民
李伯荣
张世宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Zhenhua Technology Co ltd
Anhui University of Technology AHUT
Original Assignee
Guangdong Zhenhua Technology Co ltd
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Zhenhua Technology Co ltd, Anhui University of Technology AHUT filed Critical Guangdong Zhenhua Technology Co ltd
Priority to CN202110139073.9A priority Critical patent/CN112962053A/zh
Publication of CN112962053A publication Critical patent/CN112962053A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明涉及表面涂层技术领域,具体涉及一种自润滑防粘铝复合涂层、制备方法及其应用,这种自润滑防粘铝复合涂层,模具基体到表面依次包括离子渗氮层、CrN打底层、CrVN中间层、CrVCN工作层,所述模具基体为热作模具钢,述离子渗氮层的厚度为50~100μm,组织结构主要包含面向立方结构γ‑Fe4N硬质相,CrN打底层的厚度为0.5~1μm,CrVN中间层的厚度为2~3μm,组织结构为粗大柱状晶,CrVCN工作层的厚度为2~5μm,由细小的纳米晶镶嵌在非晶基体中构成纳米复合结构;这种自润滑防粘铝复合涂层的制备方法,提升复合涂层的抗粘铝性能,解决如何实现多元复合涂层的自润滑以及抗粘铝性能的问题。

Description

一种自润滑防粘铝复合涂层、制备方法及其应用
技术领域
本发明涉及表面涂层技术领域,具体涉及一种自润滑防粘铝复合涂层、制备方法及其应用。
背景技术
铝合金因具有比强度高、耐腐蚀和良好的加工成形性等优点成为新能源汽车轻量化实施和发展的重要材料。然而铝合金挤压成形过程中,由于高温、高压以及金属基体连续塑性变形的特点,模具与铝合金容易发生严重的粘结现象,在模具表面形成粘铝层,模具与铝合金材料之间的摩擦力加大,其表面的颗粒或磨屑将发生脱落,并在载荷作用下与模具和铝合金材料形成磨粒磨损,磨粒磨损的产生将进一步增大模具的表面粗糙度,反过来又将加剧模具和铝合金材料的粘着磨损,导致模具表面损伤,大大缩短使用寿命,降低成形精度和质量。
表面强化是改善模具性能,延长使用寿命最有效的方法。传统的氮化处理在模具表面产生压应力,有利于改善模具的抗疲劳性能,但氮化层受工艺条件的限制常常因脆性大而发生剥离。物理气相沉积(PVD)硬质涂层因具有高硬度和耐磨损性能,被广泛应用到铝合金挤压模具,目前常采用等离子渗镀(等离子渗氮复合PVD涂层)工艺,进一步提高涂层与基体的结合强度。CrN基涂层具有良好的抗粘附性,但较高的摩擦系数难以满足要求。涂层中添加适量的Magneli相形成元素(V、Mo、W),可以在高温摩擦过程原位生成低剪切强度的层状结构氧化膜,进而使得涂层具有优异的高温减摩性能和自润滑特性。然而,Magneli相形成元素在高温状态下容易快速扩散和氧化导致涂层失效,多元复合涂层的抗粘铝性能尚存在许多技术难题。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决如何实现多元复合涂层的自润滑以及抗粘铝性能的问题,提供了一种自润滑防粘铝复合涂层、制备方法及其应用。
为了实现上述目的,本发明公开了一种自润滑防粘铝复合涂层,模具基体到表面依次包括离子渗氮层、CrN打底层、CrVN中间层、CrVCN工作层,所述模具基体为热作模具钢,述离子渗氮层的厚度为50~100μm,组织结构主要包含面向立方结构γ-Fe4N硬质相,CrN打底层的厚度为0.5~1μm,CrVN中间层的厚度为2~3μm,组织结构为粗大柱状晶,CrVCN工作层的厚度为2~5μm,由细小的纳米晶镶嵌在非晶基体中构成纳米复合结构。
所述CrVN中间层中V原子百分比为8~10%,Cr原子百分比为45~55%。
所述CrVCN工作层中V原子百分比为2~6%,Cr原子百分比为10~30%,C原子百分比为30~70%。
本发明还公开了一种自润滑防粘铝复合涂层的制备方法,包括以下步骤:
S1:等离子渗氮:将研磨抛光后的热作模具钢基体放入等离子体渗氮炉中进行渗氮处理,然后将渗氮模具进行机械抛光处理,去除白亮层;
S2:离子刻蚀清洗:通入Ar气,开启离子源,设置基体偏压,进行氩离子刻蚀清洗;
S3:打底层制备:通入N2气,开启Cr靶,控制偏压、气压,制备CrN打底层;
S4:中间层制备:开启Cr靶和CrV合金靶,在打底层上制备CrVN中间层;
S5:工作层制备:通入乙炔,控制乙炔流量,在中间层上制备CrVCN工作层。
所述步骤S1中等离子渗氮条件为:N2和H2作为反应气体,N2流量为200~260sccm,H2流量为600~650sccm,气压为200~220Pa,渗氮温度为480~530℃,电压为700~750V,占空比为50~70%,渗氮保温时间为6~10h。
所述步骤S2中氩离子刻蚀清洗条件为:Ar气气体流量为100~200sccm,基体偏压为-200~-300V,离子源电流为60~80A,氩离子刻蚀清洗时间为20~40min。
所述步骤S3中弧流为100~140A,基体偏压为-50~-100V,沉积时间为40~60min。
所述步骤S4中CrV合金靶的Cr与V原子数量比为70:30,弧流为100~160A,沉积时间为60~90min。
所述步骤S5乙炔气体流量为50~200sccm,沉积时间为60~150min。
本发明还公开了一种上述自润滑防粘铝复合涂层在铝合金挤压模具上的应用。
与现有技术比较本发明的有益效果在于:本发明用等离子渗氮复合真空离子镀技术实现涂层的多尺度结构梯度设计,获得微米级的氮扩散渗氮层,呈现平缓的硬度梯度分布,同时渗氮层中存在γ-Fe4N硬质相,有利于面心立方结构CrN打底层外延生长,改善了涂层体系的承载能力,提升耐磨损性能。CrVN中间层粗大的柱状晶可以贮存位错,提供塑性变形,而CrVCN工作层中细小的纳米晶起到强化作用,并且表面纳米结构会促进低摩擦的氧化膜生成,形成非晶包裹纳米晶的纳米复合结构可有效抑制V原子的扩散和氧化失效。另外,工作层在摩擦过程中形成低剪切强度的类石墨结构碳质摩擦转移膜与Magneli相钒-氧化物能够在宽温域内发挥协同润滑作用,显著提升复合涂层的抗粘铝性能。该涂层有望应用于铝合金挤压模具,延长模具服役寿命,提高产品精度和质量。
附图说明
图1为本发明的复合涂层结构示意图,图中,1-模具钢基体,2-渗氮层,3-CrN打底层,4-CrVN中间层,5-CrVCN工作层;
图2为实施例中的复合涂层的拟合XPS图谱;
图3为实施例和对比例的复合涂层的XRD图谱;
图4为实施例和对比例的复合涂层的划痕形貌;
图5为实施例和对比例的复合涂层与铝合金球的磨痕截面SEM形貌;
图6为实施例和对比例的复合涂层与铝合金球的磨痕拉曼图谱。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例
本实施例的CrVCN复合涂层,由离子渗氮层、CrN打底层、CrVN中间层和CrVCN工作层构成,记为CrVCN,结构示意图如图1所示,制备方法如下:
将H13热作模具研磨抛光至Ra=0.1μm,放置等离子渗氮炉内渗氮处理,分别通入240sccm和620sccm的N2和H2作为反应气体,施加的控制电压为720V,占空比为60%,渗氮温度为510℃,保温气压为200Pa,保温时间为8h。渗氮完成后,对工件进行抛光处理,表面粗糙度Ra<70nm,经过蒸馏水和酒精超声清洗并烘干。
将渗氮工件放置真空离子镀的基片台上,在阴极弧源位置上一部分安装单质Cr靶,一部分安装CrV(V=30at.%)合金靶。抽真空,本底真空达到1×10-4Pa,基片温度加热到450℃,通入氩气100sccm,开启离子源增强刻蚀,离子源电流为80A,基体偏压为-300V,离子刻蚀清洗时间为30min。
离子刻蚀清洗结束后,关闭氩气,通入氮气,保持气压为3.5Pa,开启Cr靶,弧流为120A,基体偏压为-60V,沉积时间为60min,获得CrN打底层。
打底层制备结束后,开启CrV合金靶,弧流为130A,沉积时间为60min,获得CrVN中间层。
中间层制备结束后,通入乙炔,流量为75sccm,真空室总气压恒定为3.5Pa,沉积60min,获得CrVCN工作层。
在热作模具钢表面制备总厚度为5.5μm的CrVCN复合涂层,涂层中少量碳与金属Cr发生键合,形成CrVCN固溶体结构,但大部分碳以非晶态形式存在,涂层结晶度降低,如图2和图3所示。
对上述制备的CVCN复合涂层进行性能测试如下:通过划痕法并结合划痕形貌测试复合涂层与模具钢基体之间的结合强度,得出复合涂层的结合强度达到67N,如图4所示;利用球盘摩擦磨损试验机测量复合涂层与铝合金的磨损性能,摩擦副为1060铝合金球(硬度约150HV,直径Φ=6mm),载荷为10N,磨损时间为60min,测试温度为室温(22±3)℃,结果表明未发现明显的粘铝现象,如图5所示。
对比例
本对比例的复合涂层无CrVCN工作层,由离子渗氮层、CrN打底层和CrVN中间层构成,记为CrVN复合涂层,其制作方法如下:
将H13热作模具研磨抛光至Ra=0.1μm,放置等离子渗氮炉内渗氮处理,分别通入240sccm和620sccm的N2和H2作为反应气体,施加的控制电压为720V,占空比为60%,渗氮温度为510℃,保温气压为200Pa,保温时间为8h。渗氮完成后,对工件进行抛光处理,表面粗糙度Ra<70nm,经过蒸馏水和酒精超声清洗并烘干。
将渗氮工件放置真空离子镀的基片台上,在阴极弧源位置上一部分安装单质Cr靶,一部分安装CrV(V=30at.%)合金靶。抽真空,本底真空达到1×10-4Pa,基片温度加热到450℃,通入氩气100sccm,开启离子源增强刻蚀,离子源电流为80A,基体偏压为-300V,离子刻蚀清洗时间为30min。
离子刻蚀清洗结束后,关闭氩气,通入氮气,保持气压为3.5Pa,开启Cr靶,弧流为120A,基体偏压为-60V,沉积时间为60min,获得CrN打底层。
打底层制备结束后,开启CrV合金靶,弧流为130A,沉积时间为120min,获得CrVN中间层。所制备的CrVN复合涂层的总厚度为5.5μm。
图4是实施例和对比例中两种工艺下复合涂层结合力划痕形貌,a为CrVCN涂层,b为CrVN复合涂层,可以看出CrVCN复合涂层的结合力高于CrVN复合涂层。
图5是实施例和对比例中两种工艺下复合涂层与铝合金球的磨痕截面SEM形貌,a为CrVCN涂层,b为CrVN复合涂层,可以明显看出,无CrVCN工作层的复合涂层出现一层粘铝层,而CrVCN工作层的复合涂层未观察到粘铝现象,说明室温下非晶碳在接触面或摩擦层上形成低剪切强度的转移层,起到了很好的抗粘铝作用。
图6是实施例和对比例中两种工艺下复合涂层与铝合金对磨后的磨痕拉曼光谱,可以看出涂层在摩擦过程均形成Magneli相氧化物,而CrVCN复合涂层出现明显的石墨相特征峰,证实了非晶碳的石墨化效应有效地抑制了铝粘结,从而提高模具使用寿命,提升产品精度和质量。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (10)

1.一种自润滑防粘铝复合涂层,其特征在于,模具基体到表面依次包括离子渗氮层、CrN打底层、CrVN中间层、CrVCN工作层,所述模具基体为热作模具钢,述离子渗氮层的厚度为50~100μm,组织结构主要包含面向立方结构γ-Fe4N硬质相,CrN打底层的厚度为0.5~1μm,CrVN中间层的厚度为2~3μm,组织结构为粗大柱状晶,CrVCN工作层的厚度为2~5μm,由细小的纳米晶镶嵌在非晶基体中构成纳米复合结构。
2.如权利要求1所述的一种自润滑防粘铝复合涂层,其特征在于,所述CrVN中间层中V原子百分比为8~10%,Cr原子百分比为45~55%。
3.如权利要求1所述的一种自润滑防粘铝复合涂层,其特征在于,所述CrVCN工作层中V原子百分比为2~6%,Cr原子百分比为10~30%,C原子百分比为30~70%。
4.一种如权利要求1~3任一项所述的自润滑防粘铝复合涂层的制备方法,其特征在于,包括以下步骤:
S1:等离子渗氮:将研磨抛光后的热作模具钢基体放入等离子体渗氮炉中进行渗氮处理,然后将渗氮模具进行机械抛光处理,去除白亮层;
S2:离子刻蚀清洗:通入Ar气,开启离子源,设置基体偏压,进行氩离子刻蚀清洗;
S3:打底层制备:通入N2气,开启Cr靶,控制偏压、气压,制备CrN打底层;
S4:中间层制备:开启Cr靶和CrV合金靶,在打底层上制备CrVN中间层;
S5:工作层制备:通入乙炔,控制乙炔流量,在中间层上制备CrVCN工作层。
5.如权利要求4所述的一种自润滑防粘铝复合涂层的制备方法,其特征在于,所述步骤S1中等离子渗氮条件为:N2和H2作为反应气体,N2流量为200~260sccm,H2流量为600~650sccm,气压为200~220Pa,渗氮温度为480~530℃,电压为700~750V,占空比为50~70%,渗氮保温时间为6~10h。
6.如权利要求4所述的一种自润滑防粘铝复合涂层的制备方法,其特征在于,所述步骤S2中氩离子刻蚀清洗条件为:Ar气气体流量为100~200sccm,基体偏压为-200~-300V,离子源电流为60~80A,氩离子刻蚀清洗时间为20~40min。
7.如权利要求4所述的一种自润滑防粘铝复合涂层的制备方法,其特征在于,所述步骤S3中弧流为100~140A,基体偏压为-50~-100V,沉积时间为40~60min。
8.如权利要求4所述的一种自润滑防粘铝复合涂层的制备方法,其特征在于,所述步骤S4中CrV合金靶的Cr与V原子数量比为70:30,弧流为100~160A,沉积时间为60~90min。
9.如权利要求4所述的一种自润滑防粘铝复合涂层的制备方法,其特征在于,所述步骤S5乙炔气体流量为50~200sccm,沉积时间为60~150min。
10.一种如权利要求1~3任一项所述的自润滑防粘铝复合涂层在铝合金挤压模具上的应用。
CN202110139073.9A 2021-02-01 2021-02-01 一种自润滑防粘铝复合涂层、制备方法及其应用 Pending CN112962053A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110139073.9A CN112962053A (zh) 2021-02-01 2021-02-01 一种自润滑防粘铝复合涂层、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110139073.9A CN112962053A (zh) 2021-02-01 2021-02-01 一种自润滑防粘铝复合涂层、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN112962053A true CN112962053A (zh) 2021-06-15

Family

ID=76273069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110139073.9A Pending CN112962053A (zh) 2021-02-01 2021-02-01 一种自润滑防粘铝复合涂层、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112962053A (zh)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
方波: ""等离子渗镀CrN基多元复合涂层及其摩擦学性能研究"", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
JP6477867B2 (ja) 被覆金型およびその製造方法
CN110106468B (zh) 基于硬质合金基体表面纳米化的涂层制备方法
JP2012115869A (ja) 塑性加工用金型およびその製造方法、ならびにアルミニウム材の鍛造方法
CN105239039B (zh) 一种多层纳米复合涂层冲压模具及其制备方法
CN104862644A (zh) 一种高温耐磨Cr-CrN-CrMoAlN梯度纳米多层薄膜及其制备方法
CN108754450A (zh) 一种低应力类金刚石多层薄膜及其制备方法
CN103978748B (zh) 一种中高温自润滑多弧离子镀多元梯度工具涂层及其制备方法
CN111286701A (zh) 一种宽温域耐磨润滑涂层及其制备方法与应用
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
CN113073293B (zh) 一种改善e690钢摩擦学性能的结构及方法
CN108977775A (zh) 一种TiAlSiN涂层刀具制备工艺
CN114807850A (zh) 一种应用于热锻模具表面的氮化物硬质薄膜及其制备方法
CN112962053A (zh) 一种自润滑防粘铝复合涂层、制备方法及其应用
CN110373631B (zh) 一种MeCN-催化金属复合涂层、其制备方法与应用
CN1727410A (zh) 一种纳米复合类金刚石涂层及其制备方法
KR100923291B1 (ko) 에어컴프레서용 베인의 저온 질화 및 디엘씨 코팅방법
CN114892169B (zh) 复合涂层及包含其的工具件
CN114990485A (zh) 一种超耐磨的复合涂层及制备方法和在牙板模具上的应用
CN115110030A (zh) 铈掺杂高熵合金氮化物涂层及其制备方法
CN206940975U (zh) 纳米复合涂层刀具
CN108411263B (zh) 一种梯度复合润滑涂层及其制备方法
CN113862671B (zh) Pvd-cvd联用制备类金刚石膜的方法、类金刚石膜、合金材料及汽车部件
CN116083847B (zh) 一种二硼化钛硬质涂层、涂层刀具及制备方法
CN110578114A (zh) 一种掺杂的类石墨复合薄膜及其制备方法、含有掺杂的类石墨复合薄膜的部件
CN116288219B (zh) 一种FeCoNiCu高熵合金掺杂非晶碳薄膜及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210615

RJ01 Rejection of invention patent application after publication